
Discovering Correctness Constraints
for Self-Management of System Configuration

Emre Kiciman
Yi-Min Wang

March 20, 2004

Technical Report
MSR-TR-2004-22

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

To appear in Proc. IEEE International Conference on Autonomic Computing (ICAC), May 2004.

� 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

Discovering Correctness Constraints for Self-Management of System
Configuration

Emre Kıcıman and Yi-Min Wang
emrek@cs.stanford.edu, ymwang@microsoft.com

Abstract

Managing the configuration of computer systems today
is a difficult task. Too easily, a computer user or administra-
tor can make a simple mistake or lapse and misconfigure a
system, causing instabilities, unexpected behavior, and gen-
eral unreliability. Bugs in software that changes these con-
figurations, such as installers, only worsen the situation. A
self-managing configuration system should be continuously
monitoring itself for invalid settings, preventing the bugs
from harming the system. Unfortunately, while there are
many constraints which can differentiate between valid and
invalid settings, few of these constraints are explicitly writ-
ten down, much less written down in a form usable by an
automatic monitor. We propose an approach to automati-
cally infer these correctness constraints based on samples
of known good configurations. In this paper we present
Glean, a system for analyzing the structure of configura-
tions and automatically inferring four types of correctness
constraints on that structure.

1. Introduction

Misconfigured systems are a significant source of prob-
lems in computer systems today. Whether they originate
from user mistakes, application errors, or corrupted data,
these misconfigurations cause serious problems for system
reliability. In [9], Oppenheimer studies failures at three
large Internet services and finds that configuration errors
were the largest category of operator mistakes that caused
end-user visible downtime. Studies of wide-area network
systems indicate that misconfigurations in BGP are respon-
sible for almost 3 of every 4 BGP routing announcements
[8]; and that misconfigurations are a significant cause of ex-
tra load on DNS root servers [1].

We focus on configuration data stored in the Windows
registry, including both application configuration informa-
tion and operating system configuration. In [5], Ganap-
athi et al. study problems related to the Windows registry,
and find that faulty configuration data in the registry can

cause a variety of failures, such as causing general system
instability, hiding criticial functionality from a user, or caus-
ing normal functionality to have unanticipated side-effects.
These misconfigurations can occur for any number of rea-
sons: an application installation or uninstallation might fail,
leaving behind an inconsistent configuration or corrupting
the configuration of other components of the system; a ma-
licious or buggy program might corrupt a user’s configura-
tion; untested interactions between different versions of a
library or program might cause configuration inconsisten-
cies; or a user might not be aware of all of the side-effects
of a setting and simply misconfigure the system.

An important part of a self-managing configuration sys-
tem is prophylactic monitoring of the registry for possi-
ble problems. In their study of Windows registry prob-
lems [5], Ganapathi et al. find that over one third of the
problems studied could be proactively detected and diag-
nosed by monitoring the registry for known problems and
their signatures.

The difficulty in monitoring for problems is knowing
what the monitor should be looking for. As shown in Fig-
ure 1, a monitor can use both positive and negative identi-
fication to detect possible problems. The positive identifi-
cation approach is to monitor for known signs of problems.
For example, if we know that a problem occurs when a par-
ticular configuration value is set to ’0’, we can watch for
that change and possibly block it. Positive-identification de-
pends on having a large list of known problems to watch out
for. While this works well for detecting well-known prob-
lems, we also want to have the ability to detect potential
problems that we have not seen before.

Negative-identification provides the ability to detect
these unknown problems. Rather than looking for signs of
known problems, we build constraints that describe what
a good configuration looks like based on a training set of
believed good snapshots of registries. When these correct-
ness constraints are broken, we can assume that the reg-
istry is also broken, even though we may not have seen the
specific situation at hand before. Unfortunately, very few
of these correctness constraints are documented, and given
that there are over 200,000 settings in the registry of a typ-

Figure 1. Positive detection looks for known indications
of bad registries, but cannot detect problems not seen be-
fore. Negative detection applies correctness constraints that
describe good registries and detects registries that do not
meet these constraints as bad. Negative detection cannot,
however, detect a bad registry that otherwise meets the cor-
rectness constraints.

ical machine, manually generating the constraints on these
keys is simply not feasible.

In this paper we describe Glean, a system for automat-
ically learning correctness constraints to use in negative-
identification of problems. We present three contributions
in this paper:

1. A method of discovering classes of configurations
within a registry, imposing extra structure useful in in-
ferring generalized correctness constraints.

2. Algorithms for inferring four kinds of correctness con-
straints on configuration settings.

3. An evaluation of these discovered constraints, based
on an analysis of a Product Support Services database,
describing problems encountered by customers and
solved by the product support teams.

Section 1.1 presents a short background on the Windows
registry. Section 2 provides an overview of Glean’s ap-
proach to inferring consistency constraints. Sections 3 and
4 give the details for discovering configuration classes and
learning correctness constraints. We present our results and
evaluate our system in Section 5, and conclude with a dis-
cussion of related and future work.

1.1. Background: Windows Registry

The Windows registry provides centralized storage for
information and settings about the hardware, operating sys-

tem, applications, users, and user preferences on a Win-
dows PC. The registry provides a hierarchical structure for
settings, allowing keys to have subkeys and named values,
similar to the directory and file structure of a file system, as
shown in Figure 2. It is up to clients of the registry to decide
how to organize their own settings, though some conven-
tions are generally followed. For example, vendors usually
place their user-specific application settings underneath the
key \HKEY_CURRENT_USER\Software\[VendorName].

For the purposes of our analysis, we use a slightly
modified representation of the Windows registry structure.
Rather than having hierarchical sets of keys containing
<name,value> pairs, we add the name of the value as a leaf
key in our tree of registry keys and assign values directly
to the leaves in our tree. This minor change simplifies our
model, without causing loss of information contained in the
registry.

2. Glean Approach

The Glean approach to generating correctness con-
straints is to analyze snapshots of "believed-good" registries
in two stages. First, Glean searches for repeated groups of
configuration settings in these registry snapshots to infer the
existence of general classes of configuration settings. These
configuration classes, directly identified by their common
structure, form the basic unit of many of the constraints that
Glean learns.

An example of a configuration class is the group of keys
used to store information about each type of file (text files,
GIF images, etc.) registered with the operating system.
Each of these file type registrations uses many registry keys
grouped together to describe, e.g., how to open the file. The
same key structure is reused for each file type registration.

Once Glean finds these configuration classes, it searches
for rules that describe the constraints and invariants on
them. We hypothesize specific constraints based on the
data in our registry snapshots, and validate our hypotheses
against all our snapshots before fully believing it and assert-
ing it as a constraint.

3. Configuration classes

Configuration classes are a natural first building block
to discovering more about the structure of the information
stored in the Windows registry. We know that many types
of information stored in the registry, including software reg-
istrations, per-user account information, and hardware set-
tings among others, are all repeated for each instance of
the entity they describe. Discovering this extra structure
within a registry allows us to create general configuration
constraints that apply across all of the instances of a class.

Figure 2. Some of the hierarchical keys and values in a typical Windows registry. HARDWARE, SECURITY and SYSTEM
are among the top-level keys, and each has several subkeys (though only SYSTEM is expanded to show its subkeys in this view).
ClassGUID is the name of a value, and {4D36E97B...} is the actual content of that value.

We look for repeated groups of configuration settings that
share a common hierarchical structure: two items in a con-
figuration belong to the same class if more than a threshold
amount of their substructure is identical.

Note that configuration classes ignore the ancestors of
a key in the hierarchy. That is, whether or not two keys
are in the same location in the hierarchy does not affect our
decision to put the keys together in a configuration class.
Basing our decision only on the substructure of keys allows
us to define a finer-granularity of class and also allows us
to detect configuration classes that are spread out across the
registry in separate user accounts, backups of parts of the
registry, etc.

The rest of this section describes how we discover con-
figuration classes, name and describe the class, and how we
name instances of these classes.

3.1. Class discovery algorithm

Glean uses data-clustering to infer additional structure
about the keys and values stored in the registry. Data clus-
tering algorithms are unsupervised learning algorithms that
organize sets of objects by grouping together similar ob-
jects, as measured by some similarity or distance metric.
In this context, data clustering can identify configuration
classes by grouping together configuration settings with
similar structures.

Our Glean prototype uses a hierarchical, bottom-up clus-
tering method using arithmetic averages (UPGMA) and cal-
culates the distances between clusters based on the sim-
ple convex average metric [7, 6]. We stop clustering when
we meet a threshold distance. The complete algorithm for
discovering configuration classes and extracting names for
them is shown in Algorithm 1. The first step (before the
data clustering is applied), is to filter out keys with little
substructure. This filters out keys, such as leaf-nodes in the

hierarchy of registry keys, with so little structure that they
are unlikely to be part of a configuration class.

Once we have initialized each key into its own unary
cluster, we begin running our data clustering algorithm. The
findClosestClusters() function searches for and returns
the two clusters closest to each other. We merge that pair
together, and add the combined cluster to our set of clus-
ters. Once we have merged all clusters less than a threshold
distance apart, we stop. At this point, the resulting clusters
larger than minclustersize are our discovered configura-
tion classes.

Algorithm 1 Algorithm for data clustering and naming
load registry R

clusters = {k|k ∈ R, |k.subkeys| ≥ minsubkeys}
{ignore keys that have too little substructure}
loop

pair = findClosestClusters(clusters)
if pair.distance ≤ thresholddistance then

clusters.remove(pair)
newcluster = merge(pair)
clusters.add(newcluster)

else
exit loop

end if
end loop
for all c s.t. c ∈ clusters, |c| ≥ minclustersize do
{loop through resulting configuration classes}

namec = {s|∀k ∈ c, s ∈ k.subkeys}
end for

The last step of the procedure is to extract the common
substructure of the keys in each cluster as the name of the
configuration class. To double-check that this class name is
appropriate, we can verify that all or almost all of the keys in
the registry snapshot that match this substructure are within

Figure 3. By looking at the hierarchical difference in the
names of the keys shown here, we can infer that hklm,
Software, Classes, and interface are not identifying
names, and that the strings on the level of BF95...AAA4F

are.

the discovered cluster.
A more sophisticated naming system might only use

those features which differentiate this class from others, in
effect, reducing the size of the name without reducing its
efficacy. Though this would be more efficient, our experi-
ments have not yet warranted this complexity.

3.2. Naming instances

Once we have discovered the configuration classes, it is
useful to also know how to name instances of registry keys
within the class. This is especially important as we look for
references to instances of this configuration class in Sec-
tion 4.3. We can determine a superset of identifying strings
by looking at the differences in the hierarchical key names.
Figure 3 shows an example of this process. Here, we look at
three keys that differ only in their last elements, presenting
us with an obvious identifier for each key.

The problem of determining the identifying keys be-
comes more difficult when the configuration class is spread
out across the registry in different locations in the hierar-
chy. For example, completely identifying user-specific con-
fig settings often requires using both the user’s ID string,
and a randomized ID together. One example is the configu-
ration class formed by the keys:

\hku\S...797\....\shellnoroam\bags\55\shell
\hku\S...797\....\shell\bags\8\shell
\hku\S...451\....\shell\bags\3\shell

Using our heuristic of looking at the branch-
points in the tree represented by these keys, we
see that the total set of identifying strings is
{S...797, S...451, shellnoroam, shell, 55, 8, 3}.

In this example, the first branchpoint represents the user
ID, and the final branchpoint is an identifying number. To-
gether with the middle branchpoint, this creates a likely su-
perset of the identifiers for a key. We call this a superset
because it is possible that some of the branchpoints in the
hierarchy may not actually be necessary to uniquely iden-
tify the keys. For instance, the difference between keys with
shell and shellnoroam in the above example may not be
significant. Unfortunately, without more information, we
cannot determine which of these identifying strings are ir-
relevant, so we include them all.

4. Generating hypotheses

Once Glean has found the configuration classes in a reg-
istry, the next step is to search for the correctness constraints
placed on the registry. Glean looks for both internal con-
straints that describe the valid structure of the values inside
an instance of a configuration class, and the external rela-
tionships across configuration classes and arbitrary keys in
the registry. In this section, we describe four kinds of con-
straints and how to generate them: size constraints, value
constraints, reference constraints, and equality constraints.

Glean’s general strategy for discovering these constraints
is to first start with a template rule that describes the form
of the constraint. Then Glean iterates over the sample reg-
istry snapshots and the discovered configuration classes and
fills in the template to generate a hypothesis for a constraint.
Glean validates this hypothesis against the data in each of
the snapshots to ensure that it meets our confidence thresh-
olds and either accepts or rejects the hypothesis as a valid
constraint.

4.1. Size constraint

The size constraint specifies that, within a given config-
uration class, the value of a subkey always has a fixed size.
This constraint is an example of an internal constraint, as
it only refers to the structure within a single configuration
class. Intuitively, the size constraint is likely to describe
configuration settings that take a fixed form, even when the
values of the form vary.

The template for a size constraint is “∀i ∈
C, |i.subkey| = x”, for a given size x and configuration
class C. Using Algorithm 2 and a set of registry snapshots,
Glean hypothesizes possible size constraints.

Algorithm 2 Inferring size constraints
for all c s.t. c ∈ set of configuration classes do

for all subkey s.t. subkey ∈ namec do
if ∃x s.t. ∀k ∈ c, |k.subkey → value| = x then
{Found hypothesis}

propose |c.subkey → value| = x

end if
end for

end for

4.2. Value constaint

The value constraint is an internal constraint that de-
clares that, within a configuration class, the value of a sub-
key always takes on one of a small set of values. For ex-
ample, a value constraint easily describes situations where
a key represents an option setting, such as a choice between
TRUE and FALSE.

The template for a value constraint is “∀i ∈ C, i.s ∈
{x1, x2, ..., xn}” for a small set of values X , a subkey s

and configuration class C. To fill this template, Glean looks
at all instances of a given type across our sample registries,
and, for each subkey within the structure, sees what pos-
sible values it has. If the number of values is much less
than the number of samples, Glean forms the appropriate
hypothesis. In our implementation, we use i < lg(n) as
the threshold for determining whether i � n. Algorithm 3
summarizes this procedure.

Algorithm 3 Discovering values constraints
for all c s.t. c ∈ setofconfigurationclasses do

for all subkey s.t. subkey ∈ namec do
if |unique(i.subkey → value|i ∈ c)| � |c| then
{Found hypothesis}

propose c.subkey ∈ unique(i.subkey →
value)|i ∈ c

end if
end for

end for

Currently, Glean only looks for constraints that limit reg-
istry values to one of a small number of enumerable values,
and does not attempt to discover constraints that limit val-
ues to being within a continuous range of values, such as
real values between [0, 1.0).

4.3. Reference constraint

The reference constraint is an external constraint, and
specifies that a particular key in the registry must always
reference an instance of a particular configuration class. For

example, a default printer setting should name the configu-
ration settings for a printer registration.

The template for a reference constraint is “k ∈
ID(i)|i ∈ C”, for some configuration class C, and where
ID(i) is the set of strings identifying the instance i of the
configuration class C. Algorithm 4 shows how Glean in-
fers a hypothesis from this template. Glean first creates a
hashtable of all the values in the registry. As it adds the
values to the hashtable, Glean does some preprocessing of
the values, such as lower-casing all strings, to better match
registry semantics. Glean also filters out any values that
are too small, under the belief that values such as “1” are so
common that they are more likely to generate false-positives
than true constraints. Glean then iterates over the configu-
ration classes in the registry, and makes a list of all the keys
whose values match one of the instances of the configura-
tion class.

While our internal constraints take advantage of the fact
that most configuration classes are repeated many times—
sometimes thousands of times—to provide a high confi-
dence in a hypothesis, our external constraints only have
one sample per registry snapshot. Because of this lower
sampling, it is that much more important to cross-validate
reference constraints across many registry snapshots. Our
implementation of Glean hypothesizes reference constraints
for registry snapshot being analyzed, then creates the final
constraint only if the reference constraint exists in all of the
snapshots.

Algorithm 4 Discovering reference constraints

Put all values in registry into a hashtable t s.t. t[v] = {
all keys with value v}
for all c s.t. c ∈ setofconfigurationclasses do

for all id s.t. ∃i ∈ c, id ∈ ID(i) do
if |t[id]| > 0 then {Found hypotheses}
∀k ∈ t[id], propose ∃i ∈ c s.t. k → value ∈
ID(i)

end if
end for

end for

4.4. Equality constraint

The equality constraint specifies that a set of keys in the
registry must always have the same value, though it does
not constrain what that value may be. The equality con-
straint is an external constraint, and is the only one of our
correctness constraints that does not refer explicitly to con-
figuration classes.

To discover equality constraints, Glean simply puts all
the registry keys in a registry snapshot into a hashtable,
hashed by their values. As in the previous subsection, Glean

lower-cases strings as it places them in the hashtable, since
many values, like hostnames and usernames in Windows,
are case-insensitive. Again, Glean also filters out small val-
ues to avoid false matches. Glean then iterates over the
hashtable, looking at all keys with a common value, and
hypothesizes that any set of keys whose values are identical
should always be equal to one another. Algorithm 5 sum-
marizes this procedure.

To create a cross-validated equality constraint, Glean it-
erates over the hypotheses from one registry snapshot, and
looks for mostly-identical hypotheses among the hypothe-
ses from the other registry snapshots. Glean then intersects
the keys on the left-hand-side of these equality constraint
hypotheses to create a final equality constraint. If Glean
cannot find similar hypotheses in each of the other snap-
shots, then it invalidates the hypothesis.

Algorithm 5 Discovering equality constraints

Put all values in registry into a hashtable t s.t. t[v] = {
all keys with value v}
for all v s.t. t[v] 6= ∅ do

propose ∃x s.t. ∀k ∈ t[v], k → value = x

end for

5. Evaluation

We have built a prototype of Glean in C#, and use it
to analyze eight registry snapshots from different Windows
XP machines. All these machines were desktop deploy-
ments. Each of these registries had about 200,000 keys.
Each of the performance numbers presented in this section
is the mean of 3 successive runs of Glean on a 2GHz Intel
Pentium IV machine with 500MB of memory.

5.1. Discovering configuration classes

The first step of our analysis of the Windows registry,
discovering the configuration classes, began by filtering out
registry keys with little substructure. This step left between
25,000 and 31,000 keys in each of our registry snapshots for
us to analyze. We merged these keys into (on average) 1600
clusters. Only 1500 keys of the 25,000 were unique enough
that they did not fall into any of our discovered clusters.

These 1600 clusters varied greatly in size, with the plu-
rality of clusters having a small size (half contained only
two keys), while the largest cluster had over 5500 keys
grouped together. The mean size of the cluster was 15 keys;
the median size was 6 keys. The largest class is identified
by the signature:

(Default)
TYPELIB

PROXYSTUBCLSID32
PROXYSTUBCLSID

and maps to the keys in the location
\HKLM\Software\CLASSES\INTERFACE*. This
location is where COM interfaces are registered, and
these keys map interface identifies to the 16-bit and 32-bit
versions of their interface libraries.

At this same location, we also discover a slightly differ-
ent configuration class. The class defined below has 1700
instances. Even though it is stored at the same location,
it differs significantly from the above. This configuration
class represents 32-bit interfaces that do not provide a 16-
bit interface library:

(Default)
PROXYSTUBCLSID32
NUMMETHODS

Other interesting configuration classes Glean discovers
includes the file type registrations for video files (AVI,
WMV, ASX, MPEG, ...), which is discovered as a class sep-
arate from the registrations for most image files (.GIF, .TIF,
.JPEG, ...) and other formats. Glean also finds separate
configuration class for each of <trust settings for various
security certificates>, <security settings for different Inter-
net zones>, <hotfix patch descriptions>, and many others.
Continued spot-checking of the configuration classes Glean
discovers shows us that the settings Glean discovers make
intuitive sense.

For the rest of this paper, we arbitrarily chose the con-
figuration classes discovered in one of our registries as the
“canonical set” of classes to use when analyzing all our
registries. Though we would have preferred to generate a
canonical set by merging the configuration classes of many
registries, time constraints kept us from implementing this
feature.

Including the I/O time to read the registry snapshot and
write the configuraton clusters to disk, generating these con-
figuration clusters takes 4 minutes. The main resource con-
straint on our prototype is its unoptimized memory usage—
it easily uses several hundred megabytes of memory to clus-
ter the keys in a registry snapshot.

5.2. Generating constraints

After generating our configuration classes, we analyzed
our registry snapshots to infer size, value, reference, and
equality constraints. All together, Glean discovered 2785
size, 2706 value, 672 reference, and 1859 equality con-
straints.

Both kinds of internal constraints were generated and
validated across three registry snapshots. Due to functional
limitations of our initial prototype, the external constraints

were generated from the analysis of a single registry, mean-
ing they are less likely to generalize well across registries.
Our prototype takes 3min 40sec to generate and validate the
internal constraints, and 56sec to generate the external con-
straints.

Of the size constraints, 238 were rules declaring that the
value of a key must be empty (size=0). Some of the more
notable size constraints found included that the CLSID

subkeys (an abbreviation for the class id used to reference
to COM objects) of most configuration classes had a size of
38, the correct length of a COM ID. Similar size constraints
were found on keys that used different names, such as
EV ENTCLASSAPPLICATIONID, APPID, and
CLASSGUID, to refer to class ids. Whereas a manu-
ally created constraint would likely only have looked for the
well-known CLSID and would have missed these others,
Glean found all these automatically.

The value constraints show how Glean can infer clear
and useful constraints on configuration settings. In one set
of keys, located at \hklm\System\controlset*\services*, Glean
discovers that the TY PE subkey must have a value of 16
or 32, clearly refering to a distinction between 16-bit and
32-bit services. Glean also correctly generates value con-
straints on the perceived type and content type (or mime
type) of the configuration classes for the various file type
registrations described above. Glean correctly limits the
video file types to being perceived as video files, and makes
similar constraints on image files, audio files, compressed
files, etc.

Among the reference constraints that Glean finds is one
that declares that various “shell extensions” keys (that de-
clare how files are opened in the Windows graphical inter-
face) be limited to a class of COM registrations that pro-
vide details on context menu handlers, icon handlers, and
other signatures of COM objects that are capable of han-
dling file-related actions. Included among the equality con-
straints that Glean finds are all the various keys that store the
hostname of a machine. Glean also discovers many registry
keys that store user names.

We found that almost all of the constraints that we in-
spected to be reasonable. But, there are corner cases that
cause Glean to behave poorly. For example, if a set of de-
fault user preferences is replicated within a registry, once
for each user of the machine, it can quickly pass the required
threshold of support to generate a rule that incorrectly con-
straints these preferences.

In particular, Glean is also vulnerable to poor sampling
among its registry snapshots. For example, if Glean is fed
registry snapshots from machines that do not have a partic-
ular application installed, Glean will obviously not be able
to generate any constraints on that application’s configu-
ration settings. Worse, if Glean is fed bad registry snap-
shots, it can generate constraints that are too loose, and fail

to detect problems. For now, the solution is to carefully
choose the snapshots that Glean bases its constraints on,
though the long-term approach is to scale up Glean’s anal-
ysis techniques to analyze many more registry snapshots at
once and/or use representative sampling of registries, and
assume only that most of the snapshots are correct.

5.3. Detecting real errors

To evaluate Glean’s ability to detect real configuration
errors, we analyze a database of 43 serious registry prob-
lems gathered by the Strider project from Microsoft’s Prod-
uct Support Services knowledge base and e-mail case logs
on customer issues and solutions. For each of these con-
figuration errors, our database includes the offending reg-
istry key; whether the key’s existence, absence, or an invalid
value causes the error; and natural language descriptions of
the symptoms and solution to the problem. Unfortunately,
this database does not include enough information for us to
determine the configuration class of the offending registry
key. Instead, we rely on the configuration class of the key as
found in our own registry snapshots. If the key does not ap-
pear in our snapshot, we pessimistically assume that Glean
would not be able to determine the configuration class.

We evaluate each of these configuration errors against
Glean’s discovered consistency constraints. Overall, Glean
successfully detects 33% (14/43) of these errors, with sev-
eral being detected by multiple constraints. Our most suc-
cessful constraint is the equality constraint, which detected
13 of these configuration problems. The size and enumer-
ation constraints each detected 4 errors and the reference
constraint detected 1.

The configuration errors that Glean’s constraints did not
catch fell largely into two categories. The first category of
errors Glean missed were errors that added or removed keys
to the registry but did not affect the value stored in a key. As
Glean’s constraints are mostly value-oriented, they did not
notice these structural changes. This result indicates that a
fruitful direction of future work would be to generate con-
straints on the sub-structure of keys. In a preliminary anal-
ysis, we find that if Glean had included a simple constraint
that the configuration class of a key be stable over time,
Glean would have detected 44% of these configuration er-
rors.

The second category of errors Glean missed were those
that changed the value of keys with unknown configuration
classes. Part of this problem lies in our pessimism in as-
signing our configuration classes to the problem keys in our
database. Glean would have detected several more errors if
we had, for example, optimistically assigned configuration
classes to new keys based on their location in the registry’s
hierarchy of keys. As discussed previously, a larger problem
exists when Glean’s training set comes from machines with-

out the same applications as the machines Glean is meant to
guard. For example, one of the errors Glean failed to de-
tect was in a configuration for Microsoft Money v. 11, not
installed in the snapshots used to train Glean.

6. Related work

The Strider project allows semi-automatic trouble-
shooting of configuration problems [10], the second ma-
jor part of a self-managing configuration system. Strider
can trouble-shoot almost any user-perceived configuration
problem, even ones where an otherwise valid configuration
setting is at fault. In contrast, Glean’s goal is to detect prob-
lems before the user notices them. However, Glean can only
detect invalid settings.

Several projects have previously advocated building
models of believed correctness based on observations of
many systems and treating deviations from this model as
likely problems. To find bugs in source code, Engler et
al. instantiate rule templates into beliefs about correctness
properties of the code; then marks code that contradicts
these beliefs as a possible bug [4]. To improve the detection
of application-level failures in complex Internet services,
the Pinpoint project dynamically models normal patterns of
communication and component behavior within the service
and flags anomalous behaviors as possible faults [2].

In [3], Demsky and Rinard present a system which au-
tomatically detects and repairs data structure corruption,
based on a specification of correctness properties. It may be
fruitful to investigate using an expanded version of Glean to
automatically discover the correctness properties required
by Demsky and Rinard based on correct samples of the data
structures in question.

7. Future work

There are several interesting research areas for future
work related to Glean. An obvious step is to tightly integrate
Glean with a dynamic monitoring system. Other areas of fu-
ture work include developing constraints on configuration
structures, adding specialized knowledge of common con-
figuration primitives, such as IP addresses and filenames,
and investigating statistical learning techniques, such as
support vector machines, to more efficiently and robustly
represent constraints.

Though this work has so far focused on detecting prob-
lems with the Windows registry, the basic principles behind
Glean should be generally applicable to most configuration
systems. Adapting the Glean system to generate correctness
constraints for other systems, such as Unix /etc files, is an
important avenue for future work.

8. Conclusions

Automatic inference of correctness constraints allows us
to quickly extract a useful model of the constraints that gov-
ern the configuration of a system. Taking advantage of the
hidden structure of configuration classes lets us generalize
our constraints across groups of settings in a natural way
and discover relationships otherwise hidden by the hierar-
chical representation of the registry.

Our experiments show that these automatic techniques
can discover many of the consistency constraints that gov-
ern the validity of the Windows registry. Manual inspection
of these constraints shows that they make intuitive sense.
Applying these rules against a set of known registry prob-
lems shows that they can detect a significant percentage of
problems based solely on snapshots of good registries.

References

[1] N. Brownlee, K. Claffy, and E. Nemeth. DNS Measurements
at a Root Server. In Sixth Global Internet Symposium, San
Antonio, TX, November 2001.

[2] M. Y. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer.
Using runtime paths for macro analysis. In 9th Workshop on
Hot Topics in Operating Systems, Kauai, HI, 2002.

[3] B. Demsky and M. Rinard. Automatic Detection and Re-
pair of Errors in Data Structures. In Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Anaheim,
CA, 2003.

[4] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Symposium on Operating Systems
Principles, 2001.

[5] A. Ganapathi, Y.-M. Wang, N. Lao, and J.-R. Wen. Why
PCs Are Fragile and What We Can Do About It: A Study
of Windows Registry Problems. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks
’04), Florence, Italy, June 2004.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer-Verlag, 2001.

[7] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

[8] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP Misconfiguration. In Conference of the Special Interest
Group on Data Communication (SIGCOMM), Pittsburg, PA,
August 2002.

[9] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do
Internet services fail, and what can be done about it? In 4th
USENIX Symposium on Internet Technologies and Systems
(USITS ’03), 2003.

[10] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, Y. Chun,
and Z. Zhang. STRIDER: A Black-box, State-based Ap-
proach to Change and Configuration Management and Sup-
port. In Proceedings of Usenix LISA, 2003.

