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Abstract

We describe a novel approach to statistical machine translation that com-
bines syntactic information in the source language with recent advances in
phrasal translation. We depend on a source-language dependency parser and
a word-aligned parallel corpus. The only target language resource assumed is
a word breaker. These are used to produce treelet (“phrase”) translation pairs
as well as several models, including a channel model, an order model, and a
target language model. Together these models and the treelet translation pairs
provide a powerful and promising approach to MT that incorporates the power
of phrasal SMT with the linguistic generality available in a parser. We evalu-
ate two decoding approaches, one inspired by dynamic programming and the
other employing an A* search, comparing the results under a variety of set-
tings.
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Chapter 1

Introduction

Over the past decade, we have witnessed a revolution in the field of machine
translation (MT) toward statistical or corpus-based methods. Statistical ma-
chine translation (SMT) systems have reached the point where they can pro-
vide end-to-end translation systems that operate in real-time. Along the way,
lessons from the Example-Based MT (EBMT) community have been effectively
leveraged to produce higher quality translations. State-of-the-art SMT systems
are now consistently winning competitions, faring well in both automated and
human evaluations.

Yet for all its successes, SMT still has many hurdles to overcome. Qualita-
tive comparisons of SMT translations against more traditional transfer-based
MT systems show strengths and weaknesses of each approach. While SMT ex-
cels at learning translations of domain-specific terminology and fixed phrases,
simple grammatical generalizations are poorly captured and often mangled
during translation ([34]). Transfer-based systems are complementary in many
ways: while they succeed more often in producing grammatical and fluent
translations, the time-consuming human input involved in producing such a
system necessarily focuses on broad coverage generalizations. Thus they of-
ten fail in exactly the area where SMT succeeds: domain-specificity. A nat-
ural next step, then, is to incorporate the strengths of both approaches. In-
deed, producing a hybrid system combining the power of statistical learning
and modeling with the insight of linguistic analysis has recently been the sub-
ject of much research. One existing system developed at Microsoft Research
([20]), for instance, bridged the gap between the domain-specific learning of
Example-based and SMT systems and the syntactically informed nature of
transfer-based systems. However it did not incorporate the multiplicity of
models and end-to-end search from which SMT systems derive much of their
power.

This report proposes a novel means of employing a source language de-
pendency parser in combination with a variety of statistical models to produce
a dependency tree-based SMT system. A decoder for this system uses treelet
translation pairs and a host of models to produce high quality translations.



1.1 Related work

1.1.1 Formative statistical work

The touchstone of SMT is a detailed journal report from a group of trailblaz-
ing researchers at IBM ([3]). In clear mathematical detail, this work explores
the application of the expectation maximization (EM) algorithm ([6]) to a se-
ries of increasingly complex models intended to automatically induce a word
alignment given a sentence aligned corpus. While there are limitations to this
approach (e.g., a target word can be aligned to at most one source word), these
models have proven incredibly powerful and general, and the detail provided
in this paper is sufficient to allow reimplementation of the important ideas.

In a COLING paper from 1996, Vogel, Tillmann, and Ney ([36]) explored
an improved alignment model incorporating an HMM. This has proven to be
a successful and powerful replacement for Model 2, and is commonly used
in word alignment. Very few other improvements to the original IBM models
have proven so influential.

Och and Ney ([23]) have recently published a careful and detailed com-
parison of word alignment models on two standard datasets. This provides a
reference for alignment error rates, and suggests training regimens that prove
effective on both French-English Hansards data and German-English VERB-
MOBIL data. One unfortunate aspect of this evaluation is the relatively homo-
geneous typology of the language pairs involved: neither French-English nor
the restricted language of VERBMOBIL demonstrate the broad differences that
one might encounter in aligning Japanese or Warlpiri to English, for example.
Regardless, this work is a valuable guide for applying the effective techniques
of unsupervised word alignment. A recent workshop ([21]) demonstrates that
these methods do indeed represent the state of the art.

While several groups have attempted to produce purely word-based string-
to-string SMT systems (such as [35], [11]), the sheer computational complexity
of the problem [15] was a difficult obstacle to overcome, and it proved difficult
to capture local context in a word-to-word statistical model. Thus the resulting
systems were often rather slow and produced only moderate quality transla-
tions.

1.1.2 Phrasal SMT

The field of statistical machine translation found a second wind with the incor-
poration of phrasal translations. Instead of attempting to model the transla-
tion of each word independently, the simple but powerful idea behind Phrasal
SMT is to remember how chunks of words translate together. This captures an
important intuition of foreign language learning: small idioms and common
phrases are both idiosyncratic and important for both fluency and fidelity.

As a concrete example, consider the Spanish phrase presuponer cosa, which
may translate as the English phrase make assumption, whereas the most likely
translations of these words in isolation are presuppose and thing. While it is



certainly possible to model such a translation as presuponer translating as make
and cosa translating as assumption under restricted environments, the transla-
tion problem is greatly simplified if we use “phrases”’, in addition to words,
as our atomic translation units. Parameter estimation over phrases does be-
come more difficult (i.e. maximum likelihood estimation quickly encounters
sparse data issues), but the resultant translations are still significantly better
even when these issues are not solved.

Those approaching the MT problem from a linguistic viewpoint might sus-
pect that phrases aligned to constituent boundaries would be more helpful
than arbitrary strings of words from the training set. However, recent experi-
ments ([17]) suggest that this is not the case: a system that includes all aligned
word sequences contiguous in the source and target outperforms a system only
containing those sequences that were identified as constituents by an English
Treebank parser.

Recent phrasal SMT systems ([17],[42]) are conceptually quite simple. Be-
ginning with a word alignment, all contiguous source and target word se-
quences that are consistent with the alignment are gathered as possible phrasal
translation pairs (also known as alignment templates); these pairs are collected
into a single translation repository. Then a translation probability is associated
with each distinct pair by maximum likelihood, IBM’s Model 1 ([37]), or any
number of other means. This translation model is used in combination with at
least a target language model (to form a classic noisy channel model), or per-
haps with a group of other models in a log-linear framework. The best scoring
translation is found by a rather simple search: a monotone decoder assumes
that source phrase order is preserved and uses Viterbi decoding to find the
best path through the translation lattice ([37],[42]). More commonly, a small
amount of phrase reordering is allowed; this phrasal movement is modeled in
terms of offsets, much like the HMM alignment model, with the probabilities
trained off the word-aligned corpus ([16]). The approach is clear, elegant, and
effective.

Phrase-based SMT is not a panacea, however. The reordering model men-
tioned above is limited in terms of linguistic generalizations. For instance,
when translating English to Japanese, we would hope for a system able to no-
tice the large-scale typological distinctions. For instance, English SVO clauses
generally become Japanese SOV clauses, and English post-modifying preposi-
tional phrases become Japanese pre-modifying postpositional phrases. While
the phrasal reordering model above might learn that reorderings are more com-
mon in English-Japanese than English-French, it does not learn that the subject
is likely to stay in place where the object is likely to move before the verb; nor
does it learn any generalization regarding prepositional / postpositional phrase
movement. More often than not, a phrase-based decoder acts at the mercy of
rote-memorized phrases and a target language model biased toward fluency,
not necessarily accuracy.

I Throughout this work, we will use the term phrase to denote a contiguous sequence of words in
a sentence. Note the distinction from a constituent, which carries the usual linguistic connotations.



In addition, phrasal SMT is currently limited to phrases that are contiguous
in both source and target. Such a system cannot learn the generalization that
English not may translate as French ne . .. pas except in the context of a specific
verb (e.g., not have translating as n’ai pas). Very large datasets can correct these
shortcomings for the more common discontiguous patterns by simply memo-
rizing a wide variety of possibilities, but less common discontiguous phrases
will simply be impossible to learn.

1.1.3 Syntactic SMT

For the above reasons and more, many researchers have tackled the incorpora-
tion of syntax into statistical machine translation. Yet syntactic information has
many possible representations, and there are many ways to incorporate it into
the translation pipeline. This is a brief summary of the more notable attempts;
the interested reader is directed to the original sources for more detailed infor-
mation.

Note that there has also been a body of work on incorporating syntactic
information into the word alignment process (e.g., [5], [7], [9], [12]). Since this
report does not attempt to address the word alignment problem directly, these
papers will not be addressed directly.

One very simple means of incorporating syntax into SMT is via reranking:
a baseline system is used to produce an n-best list of translations, and then
a group of models that may include syntactic models, is used to rerank the
output. A recent workshop investigated employing a variety of syntactically
motivated features in this approach, but found very little positive impact ([25]).
In fact, the only feature that had a strong positive impact was a new statistical
model. Yet this is a rather tenuous means of introducing syntactic information:
an n-best list of even 16,000 translations captures only a minute fragment of
the translation possibilities of a 20 word sentence, and reranking provides the
syntactic model no opportunity to boost or prune large sections of that search
space.

Inversion Transduction Grammars ([38],[39]) were one of the earliest at-
tempts to incorporate a notion of constituency into SMT. The fundamental idea
is to consider alignment and translations as simultaneous parses of source and
target language. Two types of binary branching rules are allowed. Either the
source and target constituents are produced in the same order, or the source
and target constituents are produced in reverse order. It turns out that the re-
ordering constraints allowed by these parses are actually quite broad and cover
most common situations ([41],[43]). To make this process computationally ef-
ficient, however, some severely limiting simplifying assumptions are made.
First, the parsing process is modeled with a single non-terminal label. This
reduces translation complexity to a low order polynomial (1°) at the cost of
modeling power. In effect one simply learns a very high level preference re-
garding how often nodes should switch without any information regarding
the contexts in which such a switch should occur. Also the translation model
acts only at the level of a single lexical item at a time; phrasal combinations



are not modeled directly. In the light of recent phrasal SMT successes, this is a
rather severe limitation.

In an attempt to improve the problems with fluency in an SMT system, an
alternate approach is to employ a parser in the target language ([40], etc). On
the training data, one can learn probabilities on a set of operations to convert a
target language tree to a source language string. These operations can be com-
bined with a tree-based language model to produce a noisy channel translation
search. This approach does seem to positively impact fluency ([4]), but fails to
impact translation quality significantly. In a sense, this is not so surprising: the
parser is applied to MT-output, which is notoriously unlike native language,
and no additional insight is gained during source language analysis.

Recent work on Multitext Grammars and Generalized Multitext Grammars
([19]) generalizes the ITG line of research by allowing non-contiguous trans-
lations and loosening the reordering constraints. While the theory is elegant
and intriguing, no published results exist. In addition the published details on
parameter estimation and decoding in this framework do not describe how to
incorporate phrasal information. Still, this work is very young and we may
soon see progress in this area.

Yet another approach toward the translation problem is dependency tree
translation via head-transduction ([1]). As a first approximation, assume the
existence of a source dependency parse for the input sentence. A collection of
transducers then apply to each level of the dependency tree to produce a target
dependency tree, and the translation is then simply read from the tree. Instead
of using a more standard dependency parser, their dependency structures are
induced directly from the corpus. Thus many of the difficult monolingual be-
haviors (e.g., ne ... pas in French,) may have a dependency structure that is
more suitable for translation, though the constituency boundaries produced
by the process may be more suspect. These transducers are also limited in
scope, only relying on very local context, so the end result is a fundamentally
word-based, not phrase-based, decoder. The transducer induction process may
also be complicated by data sparsity problems: instead of factoring the transla-
tion model into several different components (lexical selection, ordering, etc.),
a single transducer is trained. A variety of methods for training these trans-
ducers have been proposed (e.g., [14]), but few attempt to address the problem
of limited context or add a larger number of models into the decoding process.

Another line of research has formed at the confluence of dependency trans-
ducers and Multitext Grammars: Synchronous Dependency Insertion Gram-
mars ([8]). This provides a formalism for both alignment and translation, the
latter incorporating a standard noisy channel model with a dependency-tree-
based language model to predict the probability of each child given its head.

Another means of employing dependency information is translating via
paths in the dependency tree ([18]). This is one of the first methods that seems
to incorporate larger memorized patterns like phrasal SMT in combination
with a dependency analysis. However the modeling here is really quite sim-
ple: in the interest of translation speed, only a direct MLE translation model is
used. Thus the decoding process does not balance fidelity against fluency us-



ing a target language model; in our experience, the absence of a target model
is usually fatal. The resulting translations do seem to benefit from the use of

treelets, but overall the approach does not come close to quality of a phrasal
SMT decoder.

1.1.4 Trends, strengths, and weaknesses

Many, though not all, attempts in syntactic SMT have relied on a context-free
constituency analysis instead of a dependency analysis. While this may seem
like a natural starting point due to its well-understood nature and commonly
available tools, we feel that this is not the most effective representation for syn-
tax in MT. Dependency analysis, in contrast to constituency analysis, tends to
bring more semantically related elements together (e.g., verbs become adjacent
to all their arguments, not just objects). In addition, dependency trees are bet-
ter suited to heavily lexicalized operations, which have proven quite effective
in phrasal SMT.

A vast majority of syntactic SMT approaches have focused on word-to-
word translation, despite the proven effectiveness of phrasal SMT. Conversely,
phrasal SMT has not yet incorporated notions of constituency into the transla-
tion search. In addition, syntactic SMT decoders have not yet incorporated the
more powerful log-linear framework. Instead, they have used more traditional
noisy-channel models, which probably limits possible translation quality.



Chapter 2

Fundamentals

The primary contribution of this work is the pervasive use of a dependency tree
representation of the source language in every aspect of the translation system!
and in combination with the application of the best modeling and decoding
advances from the string-based phrasal SMT community to these dependency
tree representations, with particular emphasis on a novel tree-based ordering
model. Additional important contributions include efficient, high-quality de-
coders that address the unique challenges of tree-based decoding.

2.1 Overview

At a high level, our system employs a source-language dependency parser,
a target language word segmentation component, and an unsupervised word
alignment component to learn translations from a parallel sentence aligned cor-
pus. We begin by parsing the the source side to obtain dependency trees. We
then apply a word-alignment component (currently string-based) to the bitext.

The word alignments are then used to project the source dependency parses
onto the target sentences, to produce an aligned parallel dependency corpus.
From this corpus we extract a treelet translation model incorporating source
and target treelet pairs, where a treelet is defined to be a connected subgraph
of the dependency tree. Note that the concept of a treelet is a generalization of
a subtree, which must include all descendants of the root node. Like subtrees,
though, every treelet still has a unique root. In the system described in this
report we also allow one unusual variation on treelets: treelets with missing
roots. This allows us to model important phenomena, such as “not *” — “’ne *
pas”™’.

In addition, we train a variety of statistical models on this aligned depen-
dency tree corpus, including a channel model, an order model, and an agree-
ment model.

1With the notable exception, in this report, of the alignment component. We intend to address
this in a followup paper.



To translate an input sentence, we first produce a dependency parse of that
sentence. We then employ a decoder to find the best combination and ordering
of the treelet translation pairs according to a host of models that are combined
in a log-linear framework as in [27] or [24].

This approach offers the following advantages over string-based SMT sys-
tems. Instead of limiting learned phrases to word sequences contiguous in the
source and in the target, we allow translation by all possible chunks that are
form connected subgraphs (treelets) in the source and target dependency trees.
This is a powerful extension: not only are the vast majority of phrases contigu-
ous in the surface also treelets of the tree, but we also gain very powerful com-
binations not previously available to a phrasal SMT component. For instance,
combinations such as verb-subject, verb-preposition, article-noun, adjective-
noun etc. will be learned regardless of the number of intervening words.

Another major advantage is to allow reordering along source language con-
stituency bounds, and to allow our movement models to incorporate infor-
mation from the source analysis. Such models have a great deal of power:
they model directly the probability that the object of a preposition in English
should move before the postposition in Japanese, or the probability that a pre-
modifying adjective in English becomes a post-modifying adjective in French.
This does, however, imply that we are somewhat constrained by the source
language analysis. We generally assume the concept of phrasal cohesion ([10]):
given a source language subtree rooted at s, the translation of this subtree
should be a subtree in the target. Yet in practice, this assumption does not
prove to be a significant limitation: since our treelet translation pairs can be
arbitrary subgraphs of the source and target dependency graphs, we can easily
translate fixed phrases that do not lay precisely on constituency bounds. Also,
as in [18], we do not rely on a target dependency analysis; instead we project
the dependencies from source to target. Thus constructions that might seem
divergent in a monolingually-motivated target languages analysis may in fact
be represented in our projected dependency trees by very parallel structures.

The remainder of this chapter is devoted to the process of deriving the
aligned parallel dependency tree corpus, which acts as a foundation for the re-
mainder of our training. Chapter 3 discusses our models, Chapter 4 addresses
decoding, and Chapter 5 is devoted to methods for deriving weights for each
model. In Chapter we present experimental results in a variety of settings, and
conclude by discussing some of the important lessons learned as well as future
work.

2.2 Word alignment

As in most modern SMT systems, we depend heavily on a word-aligned bi-
text. This is the foundation of our translation information: we extract treelet
translation pairs as well as positional information from this alignment. We are
rather indifferent about the source of this alignment: whether it comes a purely
surface-based alignment using the IBM models or a more syntactic source such

10



as that of Lin and Cherry ([5]), we employ it the same way. This is a potential
downfall, since we do not necessarily enforce any agreement between the word
alignment and the phrasal information.

We currently follow the common practice of deriving many-to-many align-
ments by running the IBM models in both directions (both source-to-target and
target-to-source) and combining the results heuristically ([26]). However, we
differ in that we use alignments from the union of the two sets of alignments
if and only if they are motivated by contiguity in the source dependency tree.
We accept alignments from the union using the following heuristics (in order):

1. Accept all alignments that are unique on both sides (i.e. the only align-
ment in the union from the given source word is to the given target word,
and vice versa).

2. Accept all alignments that are unique on one side (i.e. the only alignment
in the union from the given source word is to that target word, but the
target word has other non-unique alignments, or vice versa).

3. Accept those many-to-one alignments that are adjacent to existing align-
ments in the source dependency tree (i.e. accept an alignment (s;, t;)
if we've already accepted an alignment (s, t;), and either (i) = j or

hs(j) =1).

4. Accept all one-to-many alignments.

2.3 Source dependency trees

To gather syntactic information, we require a source language dependency
parser that produces unlabeled, ordered dependency trees and annotates each
source word with a part-of-speech (POS). Given some input set of tokens s7..5,
a dependency parse is a head function h: for any s;, h(i) is the index of the head
of s;, or 0 if s; is the root. The dependencies do not cross” — given any nonzero
i,k such that h(i) = k, then for all j between i and k, k() is also between i and
k. The dependency structure is directed, unlabeled, and ordered.

An isomorphic representation is a tree structure. The root of the depen-
dency structure is the root of the tree. Each node in the tree has a list of its
pre-modifying dependents and post-modifying dependents in order. We will
switch between these two representations as convenient, though we most often
use the tree structure.

2.4 Projecting dependency trees

Given a pair of parallel word aligned sentences and a source dependency tree,
we use the alignment to project the source structure onto the target sentence.

2Note that dependency grammars may, in general, allow crossing dependencies. We do not
allow them in our system, however.
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Let us first consider a sentence pair where each source word is uniquely aligned
to a single target word and vice versa. In this case, the induced dependency
function h; is simple to construct using the source dependency function /s and
the set of aligned pairs A. We follow a rule where:

ht(l) = ] < H(Sk, ti)r (Sl,t]') € A such that hs<k) =1

While this will create a target dependency tree that is maximally in agree-
ment with the source tree, it may create a dependency tree that does not read
off in the same order as the target string (since our alignments do not enforce
phrasal cohesion). For instance, consider the following dependency tree (de-
noted by bracketing) and word alignment (denoted by indices): *

(((tired;) meny) and; (dogsa))
hommes; y3 chiens, fatigues;

Using the algorithm described above, we end up with the following depen-
dency tree:

((hommes (fatigues)) et (chiens))

If we read off these leaves in order, we do not get the original input string.
In a second pass, we correct this situation by reattaching out-of-order nodes
higher in the tree. For instance, if we reattach fitigues to et, then the string
reads off in the correct order. For each node that is the wrong order relative to
its siblings, we reattach it to the lowest of its ancestors that allows it to be in
the correct place relative to all its siblings and parent.

Now consider a sentence pair where we have many-to-one alignments. The
projection rule defined above for one-to-one alignments applies without mod-
ification:

ht(l) =] &= H(Sk, ti), (Sl,tj) € A such that hs(k) =1

Since the heuristics for refining alignments guarantee that all sets of source
nodes aligned to the same target node are connected subgraphs of the source
dependency tree, the projected target dependencies would correspond exactly
to the source dependencies if each connected subgraph aligned to the same
target node is condensed into a single node.

Next consider a sentence pair with one-to-many alignments. The projec-
tion rule described above would make the target nodes siblings. While this
is a valid representation, it fails to capture our intuition that the a set of tar-
get words aligned to a source word should probably move as a unit. Thus for

3Notice that either the English dependency parse is incorrect, or the target sentence is not a
correct translation of the source sentence. This source dependency tree would correspond to the
translation hommes fitigues et chiens, for example.
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each set of target words aligned to the same source word, we make the right-
most word be the head, and each previous word becomes a dependent on that
word:*

h(i) =] <« (E(Sk,ti),(sl,tj)EAsuchthaths(k):l/\

V(sk, tm) € A(m < 1)) i
(H(Sk, t), (Sk, t]) eANIL ])

Finally, we must deal with the case of unaligned nodes. Most source un-
aligned nodes do not present a problem, with the exception of the root. If the
root is unaligned, then we start the projection process at each dependent of the
root, producing a forest of dependency structures. We then pick one such tree
to be the root (currently the right-most structure), and make all other trees be
dependents of that root tree.

To attach unaligned target nodes into the dependency structure, we first
project the dependency structure as defined above for all the nodes that are
aligned. Now assume we have an unaligned node in position j. Leti < j and
k > j be the target positions closest to j such that k(i) = k or h(k) = i. If this is
well defined, then we attach ¢; to the lower of the two (e.g., if h(i) = k, then we
attach t jto t;). However, it is possible that all the nodes to the left of position
i are unaligned (or conversely that all the nodes to the right are unaligned). In
that case, we attach to the left-most (or right-most) node that was aligned.

2.5 Extracting treelet translation pairs

We now have an aligned pair of dependency trees, from which we extract treelet
translation pairs: pairs of source and target treelets along with word-level align-
ment linkages. We begin by enumerating all possible treelets of the source
dependency tree. For each source treelet, we then look at the union of all tar-
get nodes aligned to the source nodes. If this set of target nodes is a treelet
(i.e. a connected subgraph of the target dependency tree), then we keep the
treelet translation pair along with its word alignment and ordering informa-
tion. For instance, from the aligned dependency tree pair above (tired men and
dogs aligned to hommes et chiens fitigues), we would learn the following treelet
translation pairs:

tiredy) — (fitiguesy)

(
(menq) — (hommesy)
(

andy) — (etq)

(dogs1) +— (chiensy)

“In the future we plan to use a more consistent and informative method of selecting the head,
such as using the node with the strongest lexical alignment probability.

13



o ((menq) andy) — ((hommes1) ety)

e (andy (dogsy)) — (ety (chiensy))

o ((menq) andy (dogs3)) — ((hommesy) et, (chienss))

o (((tiredy) meny) ands (dogss)) — ((hommesy) et3 (chiensy) (fitiguesy))

o ((menq) * (dogsy)) — ((hommesy) * (chiensy))

As mentioned above, we also allow the special case of treelets with wild-
card roots. This allows us to learn translations such as ((doesn’t1) *) +— ((neq) *
(pasq) from examples such as doesn’t recalculate and ne recalcule pas. Note that
we do not learn a treelet translation pair for the source treelet ((tired) men) be-
cause the set of target nodes aligned to those words, fitigues and hommes, do
not form a treelet: they are not a connected subgraph of the target dependency
tree.

We also keep treelet counts to be used in maximum likelihood estimation.
We use a variable threshold to limit the size of extracted treelets to control
the combinatorial explosion. In practice, we find that extracting all treelets
containing up to four source nodes provides an effective trade-off.

14



Chapter 3

Models

Given a candidate translation t for a source sentence s, the role of the transla-
tion model is to define a distribution Pr(t|s). Given such a model, the transla-
tion process is a search through candidate space for a t that maximizes transla-
tion probability.

As in ([27]), we have generalized beyond the simple noisy-channel frame-
work to a more general framework of log-linear models. Let us walk through
this generalization in more detail, starting with the classic noisy channel ap-
proach:

t* = argmax(Pr(t|s))
t

Pr(s|t)Pr(t

= argmax <(P|rgs)()>

= argmax (Pr(s|t)Pr(t))

= argmax (exp(log(Pr(s|t)) + log(Pr(t))))

= argmax (log(Pr(s|t)) + log(Pr(t)))
The above equation suggests that we should uniformly weight the contribu-
tions of the channel model and the target language model. Yet these proba-
bility factors are seldom completely comparable in practice: they may differ

significantly in scale or in variance. As an attempt to compensate for this fact,
we may introduce scaling factors:

argmax(Pr(t|s)) = argmax (Ajlog(Pr(s|t))+ Ay log(Pr(t)))

Here we may notice a striking similarity to the framework of log-linear models.
Such a framework is composed of a vector of feature functions F and a vector
of scaling factors or weights A whose dot product is the overall score for any
given candidate. In this framework, the best t given a fixed s is:

argmax (2 Aifi(t, s))
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By treating our component probability models as feature functions, this frame-
work allows us to incorporate a variety of different models, each of which at-
tempts to capture a different aspect of the translation process. In the following
sections we describe a set of models that have proven effective in our system.
In Chapter 5 we describe methods for training the A weights to maximize an
objective function.

3.1 Channel models

We first attempt to model Pr(s|t), also known as the channel model. In actual
fact, we incorporate three distinct channel models, one based on a maximum
likelihood estimate of replacement, and two based on word-to-word alignment
probabilities.

Given a source treelet o and a target treelet 7, the maximum likelihood
probability estimate is simply:

C(o, 1)
C(-, 1)

Pryre(o|T) =

Here C(0, T) represents the count of times that we saw the treelets o and T
aligned in any training sentence pair, and C(-, T) represents the number of
times we saw the treelet 7 in any target side sentence.

While the MLE model effectively captures idiomatic and other non-literal
phrasal translations, it suffers from sparsity of data. Therefore we also include
word-to-word models. These models do not typically suffer from data sparsity,
although they have the downside of preferring more literal translations.

The word-to-word model uses the sum of IBM Model 1 scores over all pos-
sible alignments within the treelet ([37]); we use an unnormalized Model 1
score to help bias toward larger treelets. Given a source treelet o and a target
treelet 7, we estimate probabilities in the following manner:

Pry(olt) =[] > Pr(s|t)

scotecT

In addition, we incorporate Model 1 probability estimates in the forward

direction:
Prygi(7lo) = [1 3 Pr(tls)
tetsco

Given a set of treelet translation pairs that cover a given input dependency
tree and produce a target dependency tree, we model the probability of source
given target as the product of the individual treelet translation probabilities.
That is, we assume a uniform probability distribution over the decompositions
of a tree intro treelets.
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3.2 Order model

We model the likelihood of seeing the ordering of a nuclear subtree: that is, a
node and all its children, but not its indirect descendants. In formal terms,
given a target node t, we wish to model the probability of seeing the pre-
modifiers in a given order Pr(r(t)|t,s) and the post-modifiers in a given order
Pr(o(t)|t,s). The reader will notice that we have included the full source sen-
tence s in the conditioning information for these probability distributions. We
attempt to mine the source dependency tree for movement information.

Our work in order modeling was most directly inspired by the Amalgam
project ([31]), an attempt to reconstruct surface strings from a deep analysis.
Ordering was an important component in their pipeline of operations: after
having generated a set of surface nodes from an abstract representation, it
was necessary to pick a surface order that was representative of the grammat-
ical roles and constraints given by the input structure and the target language
grammatical constraint. We face a corresponding issue: given a source lan-
guage dependency structure and a set of partially ordered target nodes, we
must find the most likely total ordering of those target nodes.

The order models we use attempt to predict the ordering of each set of con-
stituents independently: the order model probability of a whole dependency
tree is the product of the ordering probabilities at each head. Consider the
following source and target dependency trees:

((Toq) createy ((thes) ((InkColory) propertys) definitiong))
((Poury) créer; ((laz) définitiong (deg (propriétés (ColourEncrey)))))

To model the probability of a whole candidate, we first model the ordering
of the modifiers of creér: pour and définition. We then proceed down the de-
pendency tree to model the ordering of each of the modifiers relative to their
head. Thus the probability of the above target dependency tree would be de-
composed as follows, where the heads are identified in italic:

Pr((pour, créer, définition) |...) -

Pr((la, définition, de) | ...) -
Pr((de, propriété) |...) -
Pr((propriété, ColourEncre) | ...)

(The conditioning information has been omitted for brevity.)
We model ordering at each head in one of two ways, as described in the
next two sections.

3.2.1 Head-relative position model

One method of predicting the order of a set of modifiers is to model in terms
of position relative to the head of the structure. That is, we decompose the
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order at each head into a series of placement decisions, one for each child. For
instance, we have:

Pr((pour, créer, définition) |...) =
Pr(ros(pour) = —1|...) -
Pr(ros(définition) = +1|...)

We train this model using decision trees (DTs), which allow incorporation
a variety of conditioning information. The following items are currently used:

o Lexical item of the node being ordered
o Lexical item of the head

o Lexical item and part-of-speech of the input node aligned to the node
being ordered

o Lexical item and part-of-speech of the input node aligned to the head

o Head-relative position of the input node aligned to the node being or-
dered

In addition, it is possible to include information about siblings in the condition-
ing information to produce a Markov ordering model. However, we found that
this additional information has little impact in practice; thus we do not include
it in the final model. The target feature is simply the head-relative position in
the target side.

Training this model is straightforward. Starting with the aligned parallel
dependency tree corpus, we first annotate each source and target node with
its head-relative position. Each target node with a parent provides a single
training data point; at each node, we read off each of the features listed above,
and gather all the features together into a single training set. We then employ a
DT learner which attempts to predict the head-relative position of a target side
node given all the other features.

To score a candidate translation tree at runtime, we follow a similar ap-
proach. First we annotate both source and target trees with head-relative po-
sitions. Then, for each target node with a parent, we consult the decision tree
to find the appropriate leaf node corresponding to the features of that depen-
dency tree node, and we estimate the probability of the constructed node by
MLE over the distribution of positions at that DT leaf node.

Unfortunately this model is subject to problems with data sparsity. Depen-
dency trees with large numbers of modifiers tend to have few training exam-
ples for the distant modifiers and hence may not have smooth distributions.
It is also limited in its linguistic generalizations: while it may notice that an
English adjective in position -1 becomes a French adjective in position +1, this
gives the model no information about where an English adjective in position
-2 should go.
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3.2.2 Swap/Challenge model

To alleviate some of the previous problems, we considered an alternate ap-
proach to ordering that attempts to incorporate several linguistic intuitions.
First, the prediction of whether a modifier moves to the opposite side of the
head during translation is somewhat orthogonal from its final relative posi-
tion. Secondly, source scope is very often preserved during translation.

Thus this alternate model acts in two distinct phases. First it attempts to
predict whether each child is premodifier or a postmodifier given the same
conditioning information as above; that is, we model whether it should “swap
sides”. We then have a set of pre-modifiers and post-modifiers; it remains to
predict their relative order. We can model this as a series of decisions (or “chal-
lenges”) regarding whether we should preserve source scope or promote some
target node to be closer to the head. That is, the pre-modifier closest to the head
must have won a challenge against all the other pre-modifiers, the next closest
pre-modifier must have won a challenge against all remaining pre-modifiers,
and likewise until no pre-modifiers is remaining. The post-modifiers are or-
dered in the same way. Note that each possible order of modifiers is uniquely
defined by a series of swap and challenge operations.

Let’s return to the example of pour creer dfinition. In this case, each word
does not swap sides, and since there is only a single pre-modifier and a single
post-modifier, the challenges are rather trivial. Here is the decomposition:

Pr((pour, créer, définition) |...) =
Pr(SwAP(pour) = FALSE]|...) -
Pr(swAP(définition) = FALSE|...) -
Pr(CHALLENGE(pour, {}) = TRUE]|...) -
Pr(CHALLENGE(définition, {}) = TRUE]|...)

Consider the alternate ordering where créer has two post-modifiers as a
demonstration of the challenge model:

Pr({créer, définition, pour) |...) =
Pr(swaP(pour) = TRUE]|...) -
Pr(swApr(définition) = FALSE|...) -
Pr(CHALLENGE (définition, {pour}) = TRUE]|...) -
Pr(CHALLENGE(pour, {}) = TRUE]|...)

In this ordering, pour is now a post-modifier, while its translation in the source
sentence was a pre-modifier, hence it has been swapped. Similarly, définition
has won a challenge against pour, as it was placed closer to the head.

This model was trained using decision trees, though we split each phase
into a separate decision tree. For the swap phase, we visit each modifier in
turn to gather the same set of features used for the head-relative order model;
the target feature is a boolean value indicating whether the modifier swapped
sides.
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The challenge phase is modeled as a sequential selection process, based
on the binary conditional ordering model introduced in the Amalgam project
([31]). It estimates a distribution over the boolean decision that a modifier
should be placed at the current point given a set of features computed on the
set of not-yet-unordered modifiers and, optionally, some subset of the already-
ordered modifiers that are closest to the head. As in the head-relative model,
we omit features computed on the already-ordered nodes, so the resultant
model is not a Markov model. Training this phase is slightly more compli-
cated since we must produce both positive and negative training examples.
The positive examples are simply read off of correctly-ordered nodes. We pro-
duce negative examples by permuting the tree and reading off one negative
training point for each incorrectly ordered node in that permutation.

To score a candidate with this swap/challenge order model, we begin by
determining the unique set of SWAP and CHALLENGE operations required to
produce this output. Then we score each operation by identifying the relevant
leaf node in the decision tree and producing an MLE estimate of the probability
over the distribution at that leaf.

However, in the end we found this swap/challenge model did not outper-
form the order model predicting head-relative positions. On initial inspection,
this approach seems to place too much emphasis on scope-preserving transla-
tion. In practice, certain absolute positions often loosely correspond to seman-
tic relations: the first premodifier of a verb tends to be the subject, and that
subject may move in idiosyncratic ways. In the future we plan to investigate
this and other model structures more fully, but for now we employ only the
head-relative model in our evaluations.

3.3 Target language model

Given an ordered target language dependency tree, it is trivial to read off the
surface string, which can be evaluated by a standard trigram target language
model. In practice, this serves to incorporate agreement information and gen-
erally improve the fluency of translation. Following Goodman’s careful anal-
ysis of different approaches for language modeling ([13]), we employed a tri-
gram model using modified Kneser-Ney smoothing.

3.4 Agreement model

We have also experimented with a dependency-based bigram model that at-
tempts to model the probability of a modifier given a head. That is, the bi-
grams are in the dependency tree, not in the surface string. The intention is to
model agreement phenomena, for instance it should predict that Pr(la|table) is
much greater than Pr(le|table). At first glance, this may seem redundant with
the target language model, yet it is useful for two reasons. It is not limited
to a trigram window: it produces identical results regardless of the number
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of intervening modifiers. Secondly, this model can be evaluated before any
ordering has been attempted. The latter property is particularly useful in A*
decoding, as we shall discuss later.

Training this model is a simple matter: from the target side dependency
trees that were projected in the manner described in Section 2.4, we simply
read off all head-modifier bigrams.

3.5 Miscellaneous other models

Having such a general framework at our fingertips allows us to incorporate a
variety of additional information in the translation process. For instance, we
have reason to believe that larger treelet translation pairs often provide better
translations, since they capture more context and allow fewer possibilities for
search and model error. Therefore we can add a feature function that counts
the number of phrases used in any subtree, in the hopes that it will be assigned
a negative weight.

We also add a feature that counts the number of target words; this acts as a
insertion/deletion bonus that can help balance a target language model biased
toward shorter sentences or a channel model biased toward longer sentences.
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Chapter 4

Decoding

The role of a decoder in a dependency tree-based SMT system is to efficiently
find a high probability translation for a given source sentence. In our approach,
the source is dependency parsed beforehand, and a sequence of operations
can generate a large number of target dependency trees. The probability of a
candidate translation is determined by our translation models (see Chapter 3).
The challenge of tree-based decoding is that the traditional left-to-right
decoding approach of string-based systems is inapplicable. Additional chal-
lenges are posed by the need to handle incomplete subtrees, discontiguous and
overlapping treelets, and a combinatorially explosive ordering search space.
In the following sections we describe two distinct approaches to decoding.

4.1 Exhaustive search and dynamic programming

A first approach to the decoding problem is strongly influenced by the Inver-
sion Transduction Grammar approach ([38], [39]). We translate bottom up; first
we find the best translations for a given subtree, then we reuse those lower-
level subtree computations in finding the best translations of higher subtrees.
Yet our approach extends this framework in a variety of ways. First, we employ
treelet translation pairs instead of single word translations. Second, our depen-
dency structure allows a more sophisticated ordering story. Instead of model-
ing rearrangements as either preserving source order or swapping source or-
der, we allow the dependents of a node to be ordered in any arbitrary way,
and use the order model described in Section 3.2 to estimate probabilities. We
also allow larger order n-grams in our target language model, not just bigrams.
Finally, we use a log-linear framework for model combination that allows any
amount of other information to be modeled.

We will initially approach the decoding problem in the context of a bottom
up, exhaustive search. For each input node we will define the set of all pos-
sible treelet translation pairs of the subtree rooted at each input node in the
following manner.
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Figure 4.1: Example decoder setup. (a) shows an example input dependency
tree. (b) shows an example treelet translation pair. The subtrees in (a) not
covered by the treelet translation pair (a) are enclosed by boxes.

A treelet translation pair x is said to match the input dependency tree S iff
there is some connected subgraph S’ of S and an isomorphism f between S’
and the o(x), source side of x. This isomorphism must preserve lexical items,
parts-of-speech, dependency relations, and relative orderings. More formally,
foralls;,s; € S’

1. There exists s, s; € o(x) such that f(s;) = sy and f(s;) = s;.
2. lex(s;) = lex(sg); cat(s;) = cat(s;).

3. h(s;) = s;iff h(sg) = s;.

4. i< jiffk <.

As noted before, a treelet has a unique root. We'll say a treelet translation pair
x is rooted at a source node s € S iff x matches S and the root of o(x) maps to s
under the matching isomorphism above.

In an initial pass, we scan through our treelet translation model to find
all treelet translation pairs that match the input dependency tree. We place
each matched pair on a list associated with the input node where the match is
rooted. Next we move bottom up through the dependency tree, computing a
list of possible target language trees that are translations of the source language
subtree.

At each input node s, we consider each treelet translation pair in turn. The
source treelet may cover only a portion of the input subtree rooted at s. As an
example, consider Figure 4.1, which demonstrates an input dependency tree
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and an example treelet translation pair. We find the roots of all the input sub-
trees that are not covered by the treelet — in this case, configuation and computer
— and look in their candidate lists (constructed from a previous bottom-up
subtree translation call) for all possible translations. We define a candidate set to
be a partially ordered set of lexical translations for a given treelet created by as-
signing a candidate to each source node left uncovered by the treelet. Then, for
each covering treelet and each candidate set for that treelet, we consider each
possible interleaving of the candidates with one another and with the children
whose relative order is specified by the treelet. Pseudo-code for the exhaustive
decoding algorithm is show in Algorithm 1.

The exhaustive search described above can be converted into a dynamic
programming search rather easily. Note that in general, a higher level trans-
lation depends on a minimum of information from the translation subtree ac-
quired from a lower level: the order model may ask for information about
the root node, the target language model scores for the first two words in the
subtree may be affected, and the last two words in the subtree may affect the
translation of the next two words after this subtree. Therefore, we only need
keep the best scoring translation candidate for a given subtree for each (head,
first two words, last two words) tuple. Unfortunately this is provides minimal
savings beyond exhaustive decoding in practice. In the worst case, the number
of treelet translation pairs that must be stored in the input list for any particular
node is proportional to the number of head lemmas, multiplied by the number
of first two lemmas, multiplied by the number of last two items, which leads
to a worst case list size of O(V%), where V is the vocabulary size. Thus the
dynamic programming approach does not allow for great savings, mainly be-
cause a trigram target language model forces the algorithm to consider external
context.

4.2 Optimizations to exhaustive search

The above decoder will find the optimal translation according to the models
given sufficient time. Unfortunately, this turns out to be an awfully long time
in practice. The following sections introduce a variety of optimizations and
simplifications to allow real-time translation output.

421 n-bestlist

Instead of keeping the full list of translation candidates for a given input node,
an easy win is to only keep some top-scoring subset of the candidates. While
the decoder is no longer guaranteed to find the optimal translation at this point,
the resulting drop in quality is minimal, even with a modest n-best list size of
12 candidates.
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Algorithm 1 Exhaustive decoding algorithm

function GetNBestTranslations(s : input node)
L « (; a sorted list of translations
for all treelet translation pairs x rooted at s do
R « roots of input subtrees not covered by x
forallr € Rdo
let x[r] < GetNBestTranslations(r)
end for
for all sets of translations Q, one from x[r| for each r € R do
for all ordered attachments Q' of Q into the target side of x do
T < target subtree interleaving Q" with target side of x
score T according to models
add T to L in order
end for
end for
end for
return the n-best list L
end function

4.2.2 Duplicate translation checking

In order to limit the number of ordering operations conducted by the decoder,
one can check to see if a given word-set has been previously ordered by the de-
coder before the ordering process begins. We have currently implemented this
using a hash table that is indexed on unordered trees. Two trees are consid-
ered to be equal in this scheme if they have the same tree structure and lexical
choices after sorting each parent’s children into a canonical order. Checking for
equality under these circumstances is not trivial in terms of complexity, nor is
determining the hash function value. The bottle-neck for both processes is sort-
ing the tree’s nodes, which involves a recursive set-less-than function, which
ends the recursion by comparing the lexical choices at leaf nodes.

This implementation, which adheres to tree structure, may be slow, but it
does capture information that would not be present in a strict bag-of-words
representation. We will know exactly when two trees are identical in terms
of the ordering operations our decoder is capable of performing, and we will
never prune a tree capable of forming a novel ordering of words that we have
not yet seen. It seems likely that any method that attempts to use a true bag-of-
words, or to collapse the tree to its string form before sorting would lose this
information, and potentially miss valid translation possibilities.

4.2.3 Early dropping

Another means of restricting the search space is to drop candidates early in the
decoding process, ideally before we explore the large and expensive ordering
space. For instance, one safe way of pruning candidates early is to look at the
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Algorithm 2 Greedy ordering algorithm

Opest : empty ordering with 0 probability.
for all possible count of premodifiers and postmodifiers do
for all premodifer position from right to left do
for all unordered node do
Evaluate this unordered node in this position
end for
Place the higest scoring unordered node in this position
Remove that node from the unordered pool
end for
for all postmodifier position from left to right do
for all unordered node do
Evaluate this unordered node in this position
end for
Place the higest scoring unordered node in this position
Remove that node from the unordered pool
end for
if this ordering has a higher probability than Oy, then
Opest 1= this ordering
end if
end for
Return Oy,

channel model scores of the treelet translation pair along with the completed
scores of the child subtrees to be attached when creating the final translation.
If the sum of these scores is lower than the lowest score currently on the n-best
list, then the final candidate is bound to fall off the n-best list, since adding the
order model probability will only drop the overall score. A nice benefit of this
approach is that it does not affect the optimality of the algorithm.

424 Greedy ordering

The ordering stage is the decoder’s most expensive step: its complexity grows
with the factorial of the number of nodes to be ordered. It is also the inner-most
loop; it is called for each possible combination of translation choices. Therefore,
anything we can do to speed up ordering will result in significant decoder
speed-ups.

One way to speed up ordering is to eliminate it. Given a fixed pre and post-
modifier count, our order model is capable of evaluating a single ordering de-
cision independently from other ordering decisions. We have implemented a
version of the decoder that takes advantage of this to severely limit the num-
ber of ordering possibilities for a given translation set. Then during decoding,
we can replace the step that considers all possible orderings with the approach
outlined in Algorithm 2.
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For any target tree node t, we let n,,(t) be the number of child modifiers
whose order is specified by the treelet translation pairs and 7,(t) be the num-
ber of children whose order is not specified. Then the number of ordered can-
didates for a given treelet combination is on the order of

o (U <(nm<ty)lu"|(‘t;1u(t)>nu(t)!)> = (U (W»

In contrast, the greedy ordering outlined above only explores a small subset of
those, on the order of:

0 <|'| ((mn() + nu<t>>nu<t>2)>

t

While significantly faster, this ordering decision process is suboptimal in a
number of ways. First of all, generating translation candidates based solely on
the order model cuts the target language model out of the decoding process.
The TLM is relegated to contributing to the grade for complete translations
generated by the decoder, but it may never see the translations that it would
assign a high likelihood to. Furthermore, if we were content to ignore the TLM,
this is still not guaranteed to be the optimal ordering decision based on the de-
cision tree alone. There is a hidden dependency in that at each greedy decision
point, we remove one placeholder and one place-filler from the list. It is pos-
sible in taking the best option for an early place-holder, we will eliminate the
ability to adequately fill another place-holder.

4.2.5 Variable-sized n-best lists

All of modifications listed above deal with trying to reduce the number of or-
derings the decoder attempts. However, ordering is only one source of com-
plexity. The number of translations using a given treelet translation pair is
exponential in the number of subtrees of the input not covered by that treelet
translation pair. The decoder would see a significant speed-up by reducing the
number of translation combinations that need to be attempted.

One possible solution to this problem is variable-sized n-best lists. This
means that a recursive call to translate an uncovered subtree will limit the size
of the returned n-best list according to the number of uncovered subtrees in
the current treelet. The idea is that if a treelet covers very little of the tree,
and will require several recursive calls, then those calls should return smaller
n-best lists. This way, the treelet translation pairs that are most vulnerable to
exponential blow-up will artificially lower the value of the exponent. Further-
more, it has the intuitive appeal of allowing the engine to thoroughly explore
those treelet translation pairs that are likely to result in good translations, that
is: those treelet translation pairs that already translate a lot of the tree for us.
Meanwhile, it is less thorough when it needs to do most of the work from
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scratch, in which case it only explores the translations that are likely to pro-
duce good results.

The current implementation determines # at any point by dividing a seed
value by the number of uncovered nodes that need to be resolved using recur-
sive calls. We then round up, so no treelet translation pairs will ever get an
effective n of less than 1. We have found that 12 makes a good seed value, as
it results in an intuitive progression that falls off quickly, but still differentiates
between interesting cases:

Number of Effective
uncovered subtrees n-best size
12

6

N O WDN R~
— N W

Table 4.1: Effective n-best list sizes

The use of variable-sized n-best lists has made it possible for the exhaustive
decoder to outperform the greedy decoder. Before, the exhaustive decoder
would rarely return, even for small values of 7.

4.2.6 Limiting treelet translation pairs

In practice, channel model scores and treelet size are powerful predictors of
high quality translation. Pruning away low scoring treelet translation pairs
before the search starts allows the decoder to spend more time inspecting com-
binations and orderings of high quality treelet translation pairs. We have at-
tempted a variety of pruning heuristics, such as:

e Only keep those treelet translation pairs with an MLE probability above
some threshold. A cutoff of 0.01 has proven effective.

e Given a set of treelet translation pairs where the source treelets are iden-
tical, only keep those pairs whose MLE probability is within some ratio
of the best pair. For instance, we only keep treelet translation pairs whose

MLE probability is no less than 1/ 20th of the best MLE probability.

o After finding all treelet translation pairs that matched a given input de-
pendency tree, keep only the top n treelet translation pairs rooted at each
input node, as ranked first by size, then by MLE channel model score,
then by Model 1 score. The threshold n = 3 works well in practice.
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Although almost none of the above optimizations is guaranteed to preserve
optimality, in practice the decoder, using these optimizations, is able to trans-
late approximately one sentence per second, with no degradation in quality.

One drawback of the dynamic programming approach, however, is that
this decoder makes no provision for handling overlapping treelet translation
pairs, which previous experience with the MSR-MT([20]) system indicated to
be an important contributor to translation quality.! This led us to explore an
alternate decoding strategy.

4.3 A* decoding

Inspired by impressive recent results with standard search frameworks ([29]),
our next decoder framework was an A* approach. The high-level organization
of this decoder is significantly different: instead of building candidates bottom-
up according to the input tree, we build candidates as collections of overlap-
ping treelet translation pairs. The treelet translation pairs in each candidate
must be compatible with each other, in that the overlapping portions must be
consistent in their translations and implied ordering. The search is guided by
actual model scores for the covered portions of the input and admissible (opti-
mistic) estimates for the uncovered portions. The order and target models do
not allow for actual scores until the treelet translation pairs cover a complete
subtree. In actual practice our search does not attempt ordering until the entire
input tree is covered. Until that point the ordering and target model rely on
optimistic estimates. To compensate for this, we use an agreement model, not
employed by the DP-style decoder. This is a tree-based bigram model, which
measures agreement between a pair of parent and child nodes in the target lan-
guage tree, and is trained off the projected target language dependency trees
obtained in the training phase. This model is based on [2]. The remainder of
this section covers the search process in more detail.

The A* search can be thought of as a traversal of a binary tree of choices,
where the branches on each node represents the choice to use or not use a
particular treelet translation pair.

We begin by assembling all treelet translation pairs into a single, global
list L, which is then sorted by one of several desirability criteria. The most
promising sort criteria are (treelet size, channel model score) and (A* score).

We then initialize a queue of incomplete and complete candidates. Each
candidate is composed of the following members:

o The position of the next treelet translation to attempt in the global list of
translations L.

o The set of treelet translations already selected in this candidate.

¢ A representation of the input nodes covered by this candidate.

1We did attempt to simply produce all possible combinations of overlapping treelet translation
pairs in a pre-pass, but the combinatorial explosion proved to be completely infeasible in practice.
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o The actual and optimistic estimates portions of the scores for this candi-
date according to each model.

We initialize the incomplete queue with the empty candidate: its position
is set to the first treelet pair in the list, its channel model estimates include esti-
mates for all input nodes, and the other estimates are initialized as appropriate.

At each step, we extract the highest scoring candidate from the incomplete
queue. We consider the next treelet translation in the global list as indicated
by the next-treelet pair pointer in each candidate. If there are no more treelet
pairs, we drop the candidate.

If the next treelet translation is not compatible (described in more detail
below) with the treelet translations already chosen for this candidate, we skip
it and move to the next one. Similarly if the treelet is compatible but adds no
new information (i.e. it does not cover any new input nodes) to the already
chosen treelets, we also skip it and move on.

If the treelet translation is compatible and covers new input nodes, then we
clone the current candidate, and we add the treelet translation to the candi-
date’s previously chosen set of treelets. We then add in actual model scores for
the newly covered input nodes, and subtract out the optimistic estimates for
those nodes. The new score is subjected to several threshold tests (see below)
and the candidate is discarded if it fails any of them. If it passes the tests, but
does not yet cover the entire input, we enqueue it in the incomplete queue.

If the new candidate now covers the entire input, we merge the overlapping
treelets, and pick the ordering with the highest model score (see details below).
The model score in this case includes no estimates, but instead uses the actual
scores for all models, including the order and target models. The completed
candidate is then enqueued in the completed queue.

Meanwhile the unmodified copy of the candidate represents the “not cho-
sen” branch in the search space. We update its next-treelet pair pointer. We
also update its estimated scores to reflect the choices not taken. This has the
effect of tightening up the estimate with each not-taken choice, with no loss
of admissibility, and tighter estimates result in better pruning. The updated
score is subjected to threshold tests and the candidate is discarded if it fails any
of them, otherwise it is inserted back into the incomplete queue based on its
updated score.

Thus at each stage, we add a maximum of two new candidates, correspond-
ing to the 2" search space of all possible subsets of the available treelets.

The process repeats until the incomplete queue is empty, or we have ex-
pended a specified amount of effort on the search. In the latter case, the result
is not guaranteed to be optimal, so we have a number of heuristics to ensure
that it is in practice as close to optimal as possible.
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4.3.1 Admissible heuristics
Channel models

Computing optimistic estimates for the channel model turns out to be rather
simple. To find the estimate for any given input node, we find the maximum
estimate assigned by any treelet translation 7 covering that input node. Let
p(7) be the channel model probability associated with T and size(7) be the
number of input nodes that this treelet pair covers; then the optimistic estimate
from T will be simply the probability mass of 7 divided evenly among the input
nodes. More formally, we have:

optest(i) =  max {p(T)l/Size(T)}
T covering i

The justification for this is rather straightforward. Given any treelet translation
o, we know that its probability is less than or equal to the product of the opti-
mistic estimates of the nodes that it covered. If this were not the case, then at
least one of the estimates must be less than p(c)1/512€(%): contradiction. This
argument works equally well for both the Model 1 and the maximum likeli-
hood channel model.

We actually compute this score based on every suffix of the list of transla-
tions L, which gives us at every point in the A* search an estimate based only
on the treelet translations we have left to consider. This allows for progressive
tightening of estimates with no loss of admissibility.

Furthermore, if a node cannot be covered by the remaining treelet transla-
tions, its estimate is set to negative infinity. This has the effect that a candidate
is pruned as soon as it rejects the last available choice for translating any input
node.

Agreement model

For each input node we compute the agreement score between all possible
translations of that word (given the list of treelet translations) and all possi-
ble translations of its parent. The highest such score is used as the optimistic
estimate.

This estimate is also progressively tightened, as described in the previous
section.

Target model

To derive an optimistic estimate for the target model, we first gather all the
target words provided by the set of treelet translations that matched the input.
We then compare all possible n-grams of those available target language lem-
mas against the target language model to find the context that maximizes the
probability of every target token. This provides a relatively loose target model
estimate.
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Since we do not order (and hence cannot score the target model) until we
have entirely covered the input this estimate is not updated incrementally, but
instead replaced with an actual target model score when ordering is completed.

Other models

For all other models we are currently using the most naive optimistic estimate,
the maximum possible value regardless of any contextual information. For
probabilistic models, we assign a probability of 1; for the non-probabilistic
models, we assign the greatest possible value or smallest possible value, ac-
cording to the sign of the respective lambda.

4.3.2 Compatibility

A highly restrictive sense of compatibility might consider two treelet pairs in-
compatible if they overlap, i.e. cover the same input node. This leads to a
decoder very similar in expressive power to the above dynamic programming
decoder: no overlapping treelet pairs are allowed.

However, a more complicated notion of compatibility may be beneficial to
translation quality. Consider the input sentence: “Click the selected button.”
Now assume that we have translations for “click button” and “selected but-
ton” that agree on the translation of “button”. It seems counterintuitive and
perhaps detrimental to force a choice between these two translations instead of
allowing their translational preferences to mutually reinforce. Thus we extend
the notion of compatibility to allow these sorts of alignments.

Note, however that treelet translations may provide one-to-one, one-to-
many, many-to-one or many-to-many translations and/or insertion or deletion
of words. Our treelets, therefore, retain node-level alignment information from
training time. Each treelet translation is divided into a disjoint set of paired
source and target minimal translation units (MTUs), where each MTU corre-
sponds to the minimum unit of alignment. Unaligned nodes are rolled up into
their parent MTUs, so that we model word insertion and deletion as one-to-
many and many-to-one translation.

Note also that since treelets are ordered, each treelet node implies a partial
ordering among its children.

Therefore, we consider two treelet translations to be compatible if, on the
portions of the input where they overlap, they agree on both the boundaries
and the content of the MTUs. Furthermore, for each target node in the overlap
there must exist a total ordering of child nodes that respects the partial ordering
implied by each treelet translation.

4.3.3 Ordering

Given a set of treelet translations that cover the entire input, we proceed in
a bottom-up manner, stitching (potentially overlapping) treelet pairs together.
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At each node we compute the best ordering by considering all possible order-
ings that respect the constraints imposed by the individual treelet translations.
Each ordering is scored using the ordering and target language models. We
save the n-best orderings on each node. At the parent node, we score all pos-
sible orderings of the children, considering all combinations of the child n-best
lists for each ordering.

Since ordering is the most expensive step in the search, we impose several
restrictions. If a node has more than a specified number of siblings (N1), the
size of its n-best list is reduced to 1, to limit combinatorial explosion on its
parent. If ordering a candidate takes more than a specified amount of time, the
n-best lists are reduced to size 1 at every node.

More drastically, if a node has more than a specified number of children
(N2, N2 < N1), we skip exhaustive ordering entirely. Instead we evaluate the
source order, reverse source order and the greedy order. The greedy order is
computed by greedily picking the most probable modifier for each position in
turn.

4.3.4 Optimizations

We use the same limits on treelet translations as used by the DP-style decoder.
In addition we employ the following A*-specific optimizations.

Round robin

As has become common practice, we speed the search process by consider-
ing in each iteration not just the highest scoring incomplete candidate, but one
such candidate for each candidate size (measured in terms of input nodes cov-
ered). This is because overly optimistic scores associated with smaller treelet
pairs (where a greater portion of the score is an optimistic estimate rather than
actual) can result in the decoder spending too much time in the shallower parts
of the search space. ([17])

We extend this by also considering in each iteration, for each input node
7, at least one candidate that has already covered 1 and at least one candidate
that has not already covered 7. This is because the divergence between actual
scores and optimistic estimates can vary significantly from one input node to
another. Without this heuristic, the decoder can devote too much time to ex-
ploring every choice related to one portion of the input and run out of time
before it has searched an adequate number of choices relating to a different
part of the input.

These two optimizations have no effect if the search runs to completion.

Thresholds

We discard any incomplete candidate whose estimated score is lower than the
actual score of the current best completed candidate. This is an admissible
heuristic. To speed up its application, we pre-populate the completed queue
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with the “greedy candidate”, i.e. the candidate obtained by taking the “yes”
branch at every decision point in the search space until the input is covered.
Given a good ordering of treelet translations, the greedy candidate turns out to
be the winner surprisingly often, and hence it provides a good tight A* thresh-
old, with no loss of admissibility.

The second threshold we apply does not meet the admissibility criterion,
but has very little negative effect in practice. We compare the portion of an
incomplete candidate score for which we have tight estimates (i.e. two chan-
nel models and the agreement models), with the corresponding portion of the
score for the best completed candidate. If an incomplete candidate’s score is
lower than a specified ratio of the best candidate’s score, it is pruned. ([17])
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Chapter 5

Optimizing model weights

Even with only two models, one must carefully choose the weights (lambdas)
assigned to each in a log-linear framework to effectively balance the contribu-
tion of a target language model and a channel model. Given that we have six or
more models, it becomes even more important to balance their contributions.

Our general approach is to first choose a simple setting for each of the
lambdas, produce an n-best list of candidates for a large body of sentences
with known translations, and then attempt to select lambdas that maximize
some objective function or discriminative ability. Our initial lambdas are sim-
ple: for each probability model, assign an initial lambda of 1, and for the non-
probabilistic models (phrase count, word count, etc), assign an initial lambda
of 0. We then translate, preserving up to 1,000 best candidates.

We apply two different automated evaluation metrics (or oracle scores) for
lambda evaluation: word-error rate (WER), and BLEU. Our final development
evaluation metric was BLEU, so we were unsurprised to find that maximum
BLEU training was able to produce the best results.

5.1 Perceptron

Our first attempt at selecting lambdas was to use Perceptron-based discrimi-
native reranking [33], due to its simple algorithmic structure and fast training
speed. Two reranking methods are suggested in this paper: the first based on
splitting the candidate set into broad brush subsets, and the second based on
a more exhaustive pairwise comparison. The objective function used in these
experiments was Word Error Rate (WER). The next two sections are a review
of the approaches described by Shen. The remainder of this section is devoted
to our modifications and experiences with these approaches.
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5.1.1 Splitting

The splitting algorithm divides each n-best list into three sections according to
their oracle scores: a set of good translations, a set of bad translations, and a set
of neutral translations. After sorting the n-best lists by oracle score, the sets are
defined by the externally selected variables r and k, where r is the number of
top translations considered to be good, and k is the number of bottom transla-
tions considered to be bad. If at any point the weighted linear combination of
available features indicates that a translation from the bad set is better than a
translation from the good set, then it is treated as an error, and the perceptron
weights are adjusted according to the difference of their feature values. Let x,
be the feature vector of the good example and x;, be the feature vector of the
bad example. The perceptron algorithm will adjust its weights w according to:

Wi = Wi+ (Xg — xp)

It stores all errors seen for a particular n-best list, and updates the weights only
after processing that list. It then uses the updated weight-set on the next n-best
list. The process repeats until either the algorithm reaches some maximum
number of iterations, or until the current weight set perfectly discriminates
between the good and bad sets of every n-best list in the training data.

5.1.2 Ordinal regression

Ordinal regression works in very much the same way as splitting, except in-
stead of adjusting when an item in the “good” set is confused with an item in
the “bad” set, it adjusts for all pair-wise errors that meet some distance criteria.
The algorithm currently registers a pair-wise error when the weight set ranks
xp above x¢, and the true oracle rank o(x) is twenty ranks above o(x;), and
20(xq ) is still a better rank than o(x;) (to avoid having the algorithm spend too
much effort in correcting errors at the bottom of the list).([32])

The second innovation in ordinal regression is to adjust weights (and count
errors) differently depending on the severity of the error. A function g ensures
that an error confusing the candidates near the top in oracle ranking is more
important than confusing candidates near the bottom of the list, while confus-
ing candidates that are far apart is more important than confusing candidates
that are close together. In effect, the weight adjustment described above in the
Splitting section is weighted according to g:

W] = Wt + g(Xg, Xg) (Xg — Xb)
where 1 ,
g(x,y) = m - @

5.1.3 Modifications

Due to problems finding error criteria that make our data linearly separable,
several modifications were made to the perceptron algorithm to handle the
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cases where it does not converge to a solution with no training errors. The first
solution to this problem was to introduce a learning rate, which is not men-
tioned [33], but presumably is necessary in most implementations. [22] pref-
aces all perceptron convergence guarantees with, “using a low enough learn-
ing rate,” in addition to the linear separability assumption. The update term is
multiplied by this learning rate before each weight is updated.

In the cases where linear separability is not possible (or perhaps not desir-
able), then a low learning rate can be used to allow the algorithm to approxi-
mate some form of gradient descent minimizing square error [22]. In this case,
the algorithm may not necessarily converge; instead, the best error rate seen
so far is tracked, and at the end of a fixed number of iterations, the weights
corresponding to this error rate are returned.

The rerank algorithm used here is neither a standard perceptron nor an
averaged perceptron'. The weight vector returned to the user is the average of
all weight vectors used across the various n-best lists in the last iteration. This
makes it more stable than a standard perceptron, but perhaps not as stable as a
true averaged perceptron or a voting perceptron.

5.1.4 Choosingrand k

In the case of the splitting algorithm, a large number of strategies were at-
tempted to try to find good values for r and k. This section will describe one
method briefly. r is set to the number of candidates in the n-best list that have
an oracle score greater than the top-scoring candidate under the initial weight-
ing scheme. It effectively targets these candidates as the ones whose scores
need to be fixed. In order to balance the number of positive and negative ex-
amples (personal communication, Libin Shen), we set k to be the same size as
r. Afterward, a check corrects for overlap (no one is both a good and bad trans-
lation), and then rebalances for set size. Note that we may select a different r
and k for each sentence.

5.1.5 Experience in practice

It is very important that the data be linearly separable. All the work done by
Shen et al to introduce splitting, or g() functions or distance criteria has only
one purpose: to define the error criteria so that the data set becomes linearly
separable. In addition, one must use large n-best list sizes to achieve separabil-
ity, though we found little improvement in results when using more than 1,000
translations.

We were only able to achieve linear separability with the splitting approach
only by (1) ignoring candidate lists with fewer than 500 entries and (2) consid-
ering a very few good and bad translations (e.g. ¥ = k = 9). In this case, the

L At each stage in perceptron training, we have a weight for each of the features. Normally the
weights established by a perceptron are the weights of the final iteration. One simple means of
preventing overfitting is to instead return the average of the weights over all timesteps; we refer
to this as an averaged perceptron.
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algorithm behaves very well, marching toward zero errors, and reacting pre-
dictably when features are uniformly negated. An alternate approach, which
ignores linear separability and simply relies on a low training rate to slowly
inch toward good weights, is also rather effective.

Ordinal regression is intuitively more appealing than splitting, however it
is much slower. Splitting is capable of ignoring most of the pair-wise com-
parisons in the data set. It need only walk through all of k for each item in
r. However, regression has a more complex distance criteria, which makes it
have complexity of O(n?) in the number of candidates. For this reason, we did
not explore it as completely as splitting, though the limited experimentation
that we did pursue showed no great advantage in performance.

5.1.6 Remaining issues

Despite all our experimentation with parameter settings, we found little im-
provement in final BLEU score with the lambdas suggested by these methods.
We suspect three main causes. First, all the methods are focused on finding a
linear separator for some subsets of candidates, yet this is not necessarily our
desired task. Instead, we wish to maximize the objective function score of the
single best translation. A second major cause may be that we evaluate in terms
of BLEU score, but the method is trying to discriminate based on WER. We did
not try the perceptron algorithm with an ordering based on BLEU scores.

Finally, the methods described above focus very specifically on n-best list
rank order, without regard for the actual objective function values. In most n-
best lists, we observe only a small number of objective function values, so for a
1000-best list, there may be 50 or more translations with the same WER score.
In the splitting approach, we choose a fixed r and k at the beginning regardless
of the objective function values: such a cutoff often will not include all transla-
tions with the same score, and which translations it selects is rather arbitrary.
Similarly, ordinal regression assumes that the n-best list is totally ordered by
the objective function, when it fact it may only be partially ordered, and tries
to recreate an arbitrary total ordering of that partial order. In addition, cer-
tain sentences may have nearly uniform translation quality, where others vary
widely between high quality and poor translations; using the same cutoff for
all sentence pairs fails to capture this distinction. While the weighting function
g described above helps alleviate some of these problems in the ordinal regres-
sion approach, a training method more focused on the objective function holds
greater promise in our opinion.

5.2 Maximum BLEU training

Recent work by Franz Och ([24]) describes a method of optimizing any objec-
tive function directly-whether it is BLEU, WER, or some unknown new evalua-
tion score. As above, this method requires a translation system that can provide
an n-best list for any input sentence, a set of continuously valued model scores
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for each translation, and some objective function. The remainder of this section
is a review of Och’s method. The next section describes some improvements
we made to increase the stability of the algorithm.

At a high level, the Maximum BLEU algorithm operates much like any
multi-dimensional function optimization approach: A direction is selected and
the objective function is maximized along that direction using a line search.
This is repeated until no effect is produced.

Och’s novel contribution is in the implementation of the line search. First
we restrict ourselves to the n-best list of one translation. Let w be our current
set of weights and d be the direction along which we wish to line search, then
the final score assigned to any translation x at point A is fx(A) = x - (w + Ad),
a linear function of A. Thus we know that the highest score f(A) is piece-
wise linear, which allows for an efficient computation and representation of
the highest-scoring translation at value of A:

() = argmax {fx(V)}

This in turn leads to a compact representation of the objective function at any
value of A. It is a simple matter to extend this to a whole corpus by combining
the piecewise linear representations of each sentence. Finding the maximal
BLEU score along that line only requires walking the exhaustive representation
and returning the maximal scoring value.

Despite some claims to the contrary ([24]), we found that the algorithm
often converged on different maxima given different starting points. We there-
fore attempt to run the algorithm ten times each from a different, random start-
ing point, and pick the weights corresponding to the maximal objective func-
tion value.

5.2.1 Stability improvements

One potential cause of instability is that the algorithm seeks the maximum
value without regard for the range of parameters under which this value is
maximized. Thus a narrow, unstable peak with the highest value might be se-
lected in favor of a broad, more stable peak with a slightly lesser value. To
counteract this phenomenon, we propose maximizing a moving average of the
objective function as opposed to maximizing the objective function directly.
More formally, assume we are given the objective function X(A) and a breadth
of the moving average b. Then we can compute a moving average function as

follows:
A+b R

avge ,(A) = //\ (A dN

Again, the piecewise linear form of X allows for an easy computation of this
moving average.

—b
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Chapter 6

Experiments

We evaluated the translation quality of the system using the BLEU metric ([30]).
Both the DP-inspired and the A* decoder were evaluated; the latter was tested
under several settings to explore the speed vs. quality trade-offs.

We compared against several systems to demonstrate the competitiveness
of this approach:

e A monotone phrasal SMT system. In this system word reordering is re-
stricted to the local reordering captured within phrase translation pairs.
The BLEU score difference between a monotone decoder and a decoder
allowing reorderings appears to be on the order of five percentage points

([57D).

e A hybrid MT system developed here at Microsoft Research ([20]). The
English-French version of this system employs a deep parser in both the
source and target language and a machine-learned sentence realization
system in French ([31]).

6.1 Data

We started with a parallel English-French corpus of Microsoft technical data:
this includes product documentation, support articles, and application strings,
amongst others. From these 1,566,265 sentence pairs, we selected a small sub-
set for quicker training and test. We only kept sentence pairs where both sides
were between 40 and 160 characters long and contained no XML or HTML
tags', leaving a set of 570,562 sentence pairs. From this set, we held out 2,000
sentences for development testing, 2,000 sentences for testing, and 250 sen-
tences for lambda training. We experimented with various training set sizes,
ranging from 1,000 to 300,000.

I The use of tags in our corpus is rather idiosyncratic. In some sentences they denote technical
terms or phrases; in others they denote purely presentation information. Therefore we decided to
omit all tagged sentences to simplify the situation and make our evaluation more standard.
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6.2 Training

Tree-to-string system

We parsed the source (English) side of the corpus using the handcrafted NLP-
WIN parser developed at Microsoft Research. This parser is able to produce
many varieties of analysis, ranging from surface (morphological analysis and
part-of-speech tagging) to deep (predicate argument structure with many types
of syntactic normalizations). For the purposes of these experiments we only
used a dependency tree output identifying part-of-speech tags, but without
morphological analysis.

For word alignment, we used the GIZA++ package [26]. We followed a
rather standard training regimen of 5 iterations of Model 1, followed by 5 iter-
ations of the HMM Model, followed by 5 iterations of Model 4; this was applied
in both directions.

We then projected the dependency trees and used the aligned dependency
tree pairs to extract treelet translation pairs, train the order model, and train
the agreement model. The target language model was trained using only the
French side of the corpus; additional sentences may improve the performance
of such a target language model.

Finally we trained lambdas via Maximum BLEU on 250 held out sentences,
each with a single reference translation.

Monotone phrasal SMT baseline

The same GIZA++ alignments used in the tree-to-string system were used to
train the monotone phrasal SMT system. As is common practice, we used a
heuristic combination of the monolingual alignments that attempts to mini-
mize AER?. From this combined alignment, we extracted phrasal translation
pairs. The same target language model used above was employed here. At de-
coding time, only two models were used: a MLE channel model, and the target
language model. Each was given equal weight.

MSR-MT

The existing machine translation system MSR-MT used its own word align-
ment approach as described in [20] on the same training data.

6.3 Results

We present BLEU scores on a 2,000 sentence test set using a single reference
translation for each sentence. Table 6.1 compares results from a variety of dif-
ferent approaches. The monotone decoder produces results that are signifi-
cantly worse than the other approaches. Although the stated limitations of this

2The heuristic combination for the phrasal SMT system followed [28] rather than the method
described in Chapter 2
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implementation — such as the lack of different translation models and its lim-
ited reordering capabilities — account for some amount of that shortfall, the
difference is still quite large. In addition, the tree-to-string system slightly out-
performs our existing MSR-MT system on the same training data. The MSR-
MT system has proven effective in translating Microsoft technical documen-
tation, so a win against that system provides validation that the tree-to-string
translations will be useful to end users.

Decoding approach BLEU score
Monotone, maxlen4 29.00 +/-1.15

MSR-MT 3792 +/-1.36
T2S A*-fast 39.05+/-1.14
T2S A*-slow 39.02 +/-1.11
T2S DP-fast 3896 +/-1.17

Table 6.1: Comparison of various approaches on 100k training data.

To determine the impact of adding additional data, we also experimented
using different dataset sizes. Note that all results are presented for the DP-
inspired decoder using high-speed settings.

Training set size BLEU score
1,000 1572 +/-0.99

3,000 24.66+/-1.07

10,000 31.05+/-1.34

30,000 34.45+/-1.53

100,000 38.96 +/-1.17

300,000 40.64 +/-1.60

Table 6.2: Learning curve.
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Chapter 7

Conclusions and future work

We have described a novel approach to syntactically-informed statistical ma-
chine translation. Key components include the use of a parsed dependency tree
representation of the source language in every aspect of the translation system,
the application of the best modeling and decoding advances of the string-based
phrasal SMT community to these dependency tree representations, and a par-
ticular emphasis on a novel tree-based ordering model. The introduction of
two efficient decoding approaches enable quick experimentation in this area
and open the door to real-world applications.

Initial experimentation suggests this approach holds promise. However,
this effort only scratches the surface of possible lines of experimentation; we
see quite a few areas for improvement and enhancement.

Currently we only consider the top parse of an input sentence. One means
of considering alternate possibilities is to build a packed forest of dependency
trees and use this in decoding translations of each input sentence. In the DP-
inspired decoder, we can then translate starting at each possible root node in
the forest, and, in the end, pick the best translation at any of the possible roots.

Our models are trained using only the Viterbi word alignment from a sur-
face string alignment component. Another potential improvement would be
to use several of the top ranked alignments instead of the single best, or even
to incorporate parse information (as in [5]) into the word alignment process.

A novel contribution of our system is a linguistically motivated approach
toward ordering based on the source dependency tree. While this paper ex-
plores two promising models, we believe that this merely scratches the sur-
face. Within this paradigm, different model structures (whether discriminative
or generative), alternate machine learning methods, and novel representations
of the target features all have the potential for significant improvements.

Finally and perhaps most importantly, we plan to stage more exhaustive
comparisons against other systems. The performance of the monotone phrasal
SMT decoder suggests that we may be competitive with state-of-the-art SMT
systems, but a more careful evaluation must be performed.
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