A two-tier technique for supporting quantifiersin a
lazily proof-explicating theorem prover

K. Rustan M. Leino?, Madan Musuvathi ®, and Xinming Ou!

0 Microsoft Research, Redmond, WA, USA
{leino, madanm}emicrosoft.com
L Princeton University, Princeton, NJ, USA
xou@cs.princeton.edu

Manuscript XO 0/ KRML 151, 15 October 2004.

Abstract. Lazy proof explication is a theorem-proving architecture that allows
a combination of Nelson-Oppen-style decision procedures to leverage a SAT
solver’s ability to perform propositional reasoning efficiently. The SAT solver
finds ways to satisfy a given formula propositionally, while the various decision
procedures perform theory reasoning to block propositionally satisfied instances
that are not consistent with the theories. Supporting quantifiers in this architecture
poses a challenge as quantifier instantiations can dynamically introduce boolean
structure in the formula, requiring tighter interleaving between propositional and
theory reasoning.

This paper proposes handling quantifiers by using two SAT solvers, thereby sep-
arating the propositional reasoning of the input formula from that of the instan-
tiated formulas. This technique can then reduce the propositional search space,
with an eye toward improving performance. The technique can use off-the-shelf
SAT solvers and requires only that the theories are checkpointable.

0 Introduction

Automatic verification of hardware and software systems requires a good decision pro-
cedure for the conditions to be verified. Verification conditions generated for the static
analysis and verification of software reference functions and predicates for many types
of values, including those of the source programming language. Designing decision
procedures for these individual theories may be easier than designing a decision proce-
dure that handles all of them. Nelson and Oppen [9, 8] developed a famous method for
combining decision procedures of a class of first-order theories. Because of its modular
architecture, theorem provers based on this method can readily support many interesting
theories that are useful in practice. Many theorem provers are based on such combina-
tions, for example Simplify [2], Verifun [4], ICS [1], and CVC L.ite [0], and these have
been applied to the verification of hardware and software systems.

Software verification conditions also involve quantified formulas. For example, the
verifications conditions generated by the program checker ESC/Java [6] use quantified
formulas in several ways: (0) to specify a partial set of properties of otherwise uninter-
preted functions, (1) to axiomatize properties guaranteed by Java and its type system, (2)
to describe a procedure call’s effect on the program heap, (3) to state object invariants

for all objects of a class, and (4) to support quantifiers, usually over array elements, sup-
plied by the user. Unfortunately, the Nelson-Oppen combination method is applicable
only to quantifer-free first-order formulas, so quantifiers in that setting cannot be han-
dled as an ordinary theory, but instead need special support. Another problem is that any
theorem prover is necessarily incomplete for quantified formulas, but the prevalence of
quantified formulas in important problems demands that theorem provers handle them
effectively in practice.

The Simplify theorem prover [2] provides support for quantified formulas that has
been shown to be effective for software verification applications, for example in ex-
tended static checking [3, 6]. Simplify uses a kind of pattern matching of ground terms
to trigger the instantiation of universally quantified formulas. However, Simplify does
not handle propositional search very efficiently. A new generation of theorem provers,
including Verifun [4], ICS [1], and CVC Lite [0], attempt to speed up the proposi-
tional search by leveraging the last decade’s advances in SAT solving and using a lazy
proof-explication architecture. In such an architecture, a Nelson-Oppen combination
of decision procedures interact with an off-the-shelf SAT solver: the SAT solver finds
ways to satisfy a given formula propositionally, while the combination of other decision
procedures performs theory reasoning to block propositionally satisfied instances that
are not consistent with the theories.

To use such a new-generation theorem prover in software verification applications,
we seek to incorporate support for quantified formulas in the lazy-proof-explication ar-
chitecture. This poses the following key challenges. First, quantified formulas typically
involve propositional connectives. As a result, quantifier instantiations performed dur-
ing theory reasoning can dynamically introduce boolean structure in the formula. This
requires tighter interleaving between propositional and theory reasoning. Second, most
quantifier instantiations are not useful in proving the validity of the formula. Blindly
exposing such redundant instantiations to the SAT solver could drastically reduce the
performance of the propositional search.

The first support for quantified formulas in a lazy-proof-explication prover has been
incorporated into Verifun [5]. When the quantifier instantiations result in formulas with
propositional structure, Verifun augments the original formula with such instantiations
so that the SAT solver can find ways to satisfy these instantiations in the context of the
original formula. However, the added disjunctions then persist in the prover’s state.

As an alternative approach, we propose a two-tier technique in this paper. This tech-
nique involves two off-the-shelf SAT solvers, a main solver that performs the proposi-
tional reasoning of the input formula, and a little solver that reasons over the quantifier
instantiations. When the main SAT solver produces a propositionally satisfying instance
that is consistent with the decision procedures, a pattern matching algorithm, similar to
the one in Simplify, generates a set of quantifier instantiations. The little SAT solver,
along with the decision procedures, tries to falsify the satisfying instance with the in-
stantiations produced. If successful, the little SAT solver generates a blocking clause
that only contains literals from the input formula. By thus separating the propositional
reasoning of the input formula from that of the instantiated formulas, this technique
reduces the propositional search space, with an eye toward improving performance.

Section 1 introduces some preliminaries and reviews the architecture of theorem
provers based on lazy proof explication. Section 2 discusses the main problem in han-
dling quantifiers in lazy-proof-explication theorem provers. The quantifier algorithm is
presented in Section 3. We trace through an example in Section 4. The final sections
offer a discussion, some related work, and a conclusion.

1 Theorem proving using lazy proof explication

In this section, we review in more detail the architecture and main algorithm of a theo-
rem prover based on lazy proof explication.

1.0 Terminology

A formulais constructed by an arbitrary combination of function and predicate symbols,
propositional connectives and quantifier bindings. The following is an example formula:

(Va,i,ve 0<i A i< Length(a) = read(write(a,i,v),i) =v) A
Length(b) >0
= read(write(b,0,10),0) = 10

An atomic formula is a subformula that does not start with a propositional connec-
tive and is not inside another atomic formula. Propositional connectives include con-
junction, (A), disjunction (Vv), negation (—), and implication (=). For example,
the following are all atomic formulas:

(Va,i,v e 0<i A i< Length(a) = read(write(a,i,v),i) =v),
Length(b) > 0,
read(write(b,0,10),0) = 10.

A literal is either an atomic formula or its negation. A monome is a set of literals.
If P is aset of formulas, we sometimes write just 7 when we mean the conjunction of
the formulas in P.

A theorem prover can be equivalently viewed either as a validity checker or a satisfi-
ability checker: establishing the validity of a given conjecture P is equivalentto finding
a satisfying assignment to — P For the theorem provers discussed in this paper, we take
the second view, thinking of the input as a formula (the negation of a conjecture) to be
satisfied or shown unsatisfiable.

Definition 0. Atautology for formula F' isanother formula T' suchthat F A T and
F areequisatisfiable.

Proposition 0 Ifboth T and U aretautologiesfor F',then T' A U isalso atautology
for F'.

Proposition 1 If T isatautologyfor F and T' = U, then U isalso atautology for
F.

1.1 Lazy proof explication

In a lazy-proof-explication theorem prover, an off-the-shelf SAT solver conducts propo-
sitional reasoning. Each atomic formula is treated as an opaque propositional variable
by the SAT solver and assigned a truth value. When the SAT solver returns a truth value
assignment that makes the whole formula propositionally satisfiable, decision proce-
dures are invoked to perform theory reasoning to determine if the truth value assign-
ment (a monome) is consistent with all the underlying theories. If so, the input formula
is satisfiable. Otherwise, the theories are responsible for explicating a proof that shows
the monome is not satisfiable. The proof must be a tautology and is then conjoined to
the original formula, pruning the SAT solver’s search space by blocking the inconsistent
truth value assignment.

For example, suppose a theorem prover is asked about the satisfiability of the fol-
lowing formula:

([z<vlvIg=5D A ([z <0l VIy<z]) A [z =y]

where for clarity we have enclosed each atomic formula within special brackets. As (the
propositional projection of) this formula is passed to the SAT solver, the SAT solver
may return a monome containing the following three literals (corresponding to the truth
value assignement to three atomic formulas),

[z <vy], [y <=], -[z=1y] (0)

This monome is then passed to the theories, where the theory of arithmetic would detect
an inconsistency and return the following proof:

[z<y]Ay<z] = [z=14] @

By conjoining this tautology to the original formula, the propositional assignment (0) is
explicitly ruled out in the further reasoning performed by the SAT solver. Since (1) is a
tautology, it could have been generated and conjoined to the input even before the first
invocation of the SAT solver, but the strategy of generating this lemma on demand—that
is, lazily—is the reason the architecture is called lazy proof explication.

Figure 0 outlines the algorithm of a theorem prover using lazy proof explication.
We write PSat(F') to denote the propositional satisfiability of formula F'. It is im-
plemented by calling an off-the-shelf SAT solver (after projecting the atomic formulas
onto propositional variables). If the result is True, a monome m is returned as the
satisfying assignment. Then CheckMonome is called to determine if m is consistent
with all the underlying theories. The signature-disjoint theories are combined using the
Nelson-Oppen method and cooperate by propagating equalities. CheckMonome(m)
returns a set of explicated proofs that are sufficient to refute monome m. An empty set
indicates that the theories are unable to detect any inconsistency, in which case the orig-
inal formula really is satisfiable. Otherwise, the explicated proofs are conjoined to F'
and the loop continues until either the formula becomes propositionally unsatisfiable,
or the theories are unable to find inconsistency in the monome returned by PSat.

Once the SAT solver returns a monome, the inconsistency can be discovered without
any propositional reasoning. This enables a clear interface between the propositional
reasoning and theory reasoning.

Input: formula '
Output: satisfiability of F/
while (PSat(F)) {
let monome m be the satisfying assignment ;
P := CheckMonome(m) ;
if (P=0){
return True ;
} else {
F=FANP;
}
}

return False ;

Fig. 0. Lazy-proof-explication algorithm without support for quantifiers.

2 Handling Quantifiers

When a formula contains quantifiers, usually the information expressed by the quanti-
fiers must be used in showing a formula is unsatisfiable. This section discusses some
basic notations and challenges for handling quantifiers. The main quantifier algorithm
is presented in Section 3.

2.0 Terminology

A quantified formula has the form (dz ¢ F), where § is either ¥ or 3. Quan-
tifiers can be arbitrarily nested. Provided all the bound variables have been suitably
a-renamed, the following three equations hold:

~(dre F) = (dxe —F)
(bze FING = (dxe FAG)
(bze F)VG = (dxe FVG)

Here V = 3 and 3 = V. By repeatedly applying the above three equations, we can
move all the quantifiers in a formula to the front and convert it to the prenex form
(0121 0 (62200 ... (0, x, @ F))), where F does not contain any quantifier.

The existentially bound variables in the prenex form can be eliminated by skolem-
ization. Skolemization replaces each existential variable z in the quantified body with
aterm K (%), where K is a fresh function symbol that is unique to the quantified for-
mula and the existential variable z, and ¥ is the list of universally bound variables that
appear before . The skolem term K (%) is interpreted as the “existing term” deter-
mined by ¥. We say the resulting purely universal formula is in canonical form. We
use Canon(Q)) to denote the canonical form of a formula Q.

A quantifier atomic formula is an atomic formula that starts with a quantifier. A
quantifier literal is either a quantifier atomic formula or its negation.

For any quantified formula C' in canonical form and any substitution 6 that maps
each universal variable to a ground term, we write C'[6] to denote the formula gotten
by taking C'’s body and substituting ¢ into it.

2.1 Challengesin handling quantifiers

In order to reason about quantifiers, one needs to instantiate the universal variables with
some concrete terms. This will introduce new facts that contain boolean structures,
which cannot be directly used in the theory reasoning to refute the current monome.
Neither can one only rely on propositional reasoning to handle these new facts because
some inconsistency has to be determined by the theories. This means that in order to
reason about quantifiers, both propositional reasoning and theory reasoning are neces-
sary. This poses a challenge to theorem provers with lazy proof explication, where the
two are clearly separated.

One simple approach is to conjoin the original formula with tautologies of instanti-
ating universal quantifiers. Let @ be a quantifier literal in a formula F' and let ¢ be a
substitution that maps each universal variable in Canon(Q) to a concrete term. Then,
the following is a tautology for F':

Q = Canon(Q)[0]

Intuitively, it is a tautology because both @ = Canon(Q) and Canon(Q) =
Canon(Q)[0] are tautologies. The latter implication is obviously a tautology. The first
implication is a tautology because each existential variable z is assigned a fresh skolem-
izer K that does not coincide with any other symbol in the formula. This way it ex-
presses exactly the meaning of “some existing term”, with respect to the orginal for-
mula.

Conjoining these tautologies puts more constraints on the original formula. If the
instantiations are properly chosen, more inconsistencies can be detected and eventually
the formula can be shown to be unsatisfiable. Simplify [2] uses a matching heuristic
to return a set of instantiations that will likely be useful in refuting the formula. How-
ever, there may still be too many (sometimes infinite number of) useless instantiations
returned by the matcher. This may blow up the SAT solver because those tautologies
often introduce new atomic formulas, adding more case splits.

The quantifier algorithm presented in this paper adopts a different approach. First,
the matching heuristic in Simplify is still used to return likely-useful instantiations. But
a second SAT solver (the little solver) performs the propositional reasoning for those
instantiated formulas. During the reasoning process many new instantiations are gen-
erated, but only some of them are relevant in refuting the monome. Once the monome
is refuted, we show how to construct a proof that not only involves the theories but
also those relevant instantiations. The rationale of using a second SAT solver is that
the propositional reasoning for finding a satisfying monome can be separated from the
propositional reasoning for refuting a monome. Once a monome is refuted, many of
the instantiations are not useful anymore. Without this two-tier approach they would
remain in the formula and introduce many unnecssary case splits in the future rounds
of reasoning.

3 Quantifier algorithm

The quantifier reasoning is performed in the CheckMonome function in the algorithm
shown in Fig 0. We show the quantifier algorithm in two steps. In section 3.0, we present

the simple one mentioned in section 2.1. In section 3.1, we show how to use the little
SAT solver in CheckMonome to perform both propositional and theory reasoning.

3.0 Simplequantifier algorithm

Input: Monome m
Output: a set of proofs P
Assert m to the theories ;
if (m is consistent with all the theories) {
Generates tautologies P by instantiating universal variables ;
} else {
Theories output proofs P ;

}

return P ;

Fig. 1. CheckMonome algorithm with simple support for quantifiers.

Fig. 1 shows the CheckMonome algorithm with the simple quantifier support dis-
cussed in section 2.1. The quantifier module is invoked only when the other theories
cannot detect any inconsistency in the given monome. As discussed in section 2.1, the
tautologies are generated by instantiating universal variables. The instantiations are re-
turned from a matching algorithm similar to that of Simplify. To avoid generating dupli-
cate instantiations, the quantifier module remembers the instantiations it has produced.
When no more tautologies can be generated, CheckMonome will return an empty set,
in which case the theorem prover algorithm in Fig. 0 will terminiate with the result of
True. Since for some formulas there may be an infinite number of instantiations, we
put a upper limit on the number of times the quantifier module can be called for each
run of the theorem prover and simply return an empty set when the limit is exceeded.

Unlike the proofs output by the theories after discovering an inconsistency, the tau-
tologies generated by the quantifier module generally are not guaranteed to refute the
monome. There are two reasons for this. First, many inconsistencies involve both quan-
tifier reasoning and theory reasoning. Without cooperating with the other theories, the
tautologies returned by instantiating quantifiers alone may not be sufficient to proposi-
tionally block the monome. Second, the instantiations returned by the matching algo-
rithm depend on the monome. Since instantiating quantifiers may produce more atomic
formulas to appear in a monome, it is possible that the matcher can provide the “right”
instantiation only after several rounds.

As a result of CheckMonome returning a set of tautologies insufficient to refute
the monome, the next round may call CheckMonome with the same monome, plus
some extra literals coming from the quantifier instantiation. This is certainly undesir-
able, because the SAT solver then repeats its work to find the same monome again. A
more serious problem of this simple algorithm is that many of the returned tautologies
are not even relevant in refuting the monome. Those useless tautologies remain in the

formula during the proving process, and without removing them, the SAT solver will
eventually be overwhelmed by many unnecessary case splits.

3.1 Thetwo-tier quantifier algorithm

In order to use quantifier instantiations to refute a monome, propositional reasoning
is needed. The key problem of the simple CheckMonome algorithm is, by directly
returning the tautologies generated from quantifiers, it essentially relies on the main
SAT solver to perform the propositional reasoning of those newly generated formulas.
This causes repetitive and unnecessary work in the main SAT solver. To address this
problem, we separate the propositional reasoning of the instantiated formula from that
of the original formula by using a little SAT solver in our CheckMonome algorithm

(Fig. 2).

Input: Monome m
Output: a set of proofs P
Assert m to theories ;
Checkpoint all theories ;
P:=0;
loop {
if (Theories say consistent) {
Quantifier module generates new tautologies P ;
if (Po =0) {
return 0 ;

}
} else {

Theories explicate proof Py ;
}

P:=PUPo;

if (PSat(m A P) = False) {
return FindUnSATCore(m,P) ;

}

let m U m’ be the satisfying monome ;
Restore checkpoints in all the theories ;
Assert m’ to theories ;

Fig.2. The CheckMonome algorithm using the little SAT solver.

When the quantifier module generates some tautologies in P, the little SAT solver
performs propositional reasoning m A P. For every satisfying assignment m A m’
produced by the little SAT solver, the algorithm invokes the theories to check if the
assignment is consistent. To avoid redundant work, the algorithm checkpoints the theory
state before invoking the little solver. As a result, the algorithm only needs to assert
m’ to the theories in each iteration of the loop in figure 2. If the theories detect an
inconsistency, they block m’ by adding an explicated proof into P.

The loop continues as long as P does not propositionally refute m and the quanti-
fier module generates new facts in each iteration. If no more instantiation can be gener-
ated but m A P is still satisfiable, the algorithm terminates and returns an empty set,
indicating failure to refute monome m.

Once P can refute m, the function FindUnSATCore is called to extract a good-
quality proof from P. FindUnSATCore(F, G) requires that F A G is proposi-
tionally unsatisfiable. It returns a formula H such that G = H, F A H is still
unsatisfiable, and the atomic formulas in H all occur in F'. The proof generated by
FindUnSATCore(m,P) has the following characteristics:

0. The proof is sufficient to propositionally refute m.
1. The proof contains only atomic formulas appearing in m.

Returning such a proof always reduces the propositional search space for the orig-
inal formula. FindUnSATCore can be implemented in various ways. Modern SAT
solvers can extract a small unsatisfiable core of a propositional formula [10] and this
seems to be useful in FindUnSATCore. Alternatively, interpolants [7] may also be
used here, because any interpolant of G and F would satisfy the specification of
FindUnSATCore(F, G). For our preliminary experiments, we have the following
naive (and probably inefficient) implementation of the FindUnSATCore function for
the particular kind of arguments that show up in the algorithm:

For a monome m and a formula P, if PSat(m A P) = False, then there exists a
minimal subset mg of m such that PSat(mg A P) = False. Sucha mg can be gotten
by trying to take out one literal from m at a time and discard the literal if the formula
remains propositionally unsatisfiable. It is easy to see that P = —mg. We just return
—my as the result of FindUnSATCore(m, P).

Algorithm properties The correctness of the algorithm hinges on the fact that every
formula in P is a tautology for the monome m. The correctness of the algorithm is
formalized as the following theorem.

Theorem 1 Let P be the set of all tautologies generated during the run of the algo-
rithm. Then, the algorithm refutes the monome m iff Sat(m A P) = False.

Here, we use Sat(F') to denote the satisfiability of F', taking into account all the
domain theories but not quantifiers. We use QSat(F') to denote the satisfiability of F
taking into account all the theories and quantifiers. Intuitively, the result of the algorithm
is the same as if we had generated all the tautologies P up front and run a standard
Nelson-Oppen theorem prover on the formula m A P. Since conjoining tautologies
does not change the satisfiability of a formula, the theorem shows our algorithm to be
sound:

Corollary 2 If the algorithmrefutes m, then QSat(m) = False.

This is due to the fact that QSat(F) = Sat(F').On the other hand, the algorithm is not
complete, since we cannot always generate all the tautologies relevant to the formula.
When the algorithm fails to refute a monome, the best thing we know is Sat(m A P) =
True, that is, even with all the information in 7, a Nelson-Oppen theorem prover
cannot refute the monome either.

10

4 Example

In this section, we demonstrate how our algorithm works on a small example.
Let P and @ be two quantified formulas:

P: (Vze z<10 = R(f(z)))
Q: (Yye R(f(y) = S(9(y)))

where the match patterns to be used for P and @ are z: f(z) and y: g(y), respectively.
These patterns may have been specified by the user or may have been inferred by the
theorem prover. We now trace our algorithm through the request of determining whether
or not the following formula is satisfiable:

[Pl A QT A (Ib=1] Vv [b=2]) A —=[SF®N] A —-[S(9(0)])
In the first round, the main SAT solver returns a monome m, say
{[P], @I, b =11, =[S @)D, ~[SgO)]) }

Since no theory can detect inconsistency, the quantifier module is invoked to generate
tautologies. According to the match pattern, z is instantiated with b in P and y is
instantiated with 0 in Q:

[Pl = ([b <10] = [R(f(D))]) 2
[@] = ([B(F(0)] = [S(g(O)]))

The tautologies (2) and (3) are conjoined to the monome and the little SAT solver is
called. The extended monome m’ for the newly-introduced atomic formulas might be:

{ -6 < 10], ~[R(F(0))] }

At this point the theories detect an inconsistency between [b = 1] and —[b < 10]. So
a new tautology is added:

[b=1] A —[b <10] = False 4)
In the next iteration, m’ is

{[RF D], —[R(FOD] }

The theories are unable to detect inconsistency in the monome m A m'. The quantifier
module is invoked again to generate tautologies. This time the term f(0) in the newly
generated formulas matches the pattern, so z in P is instantiated by 0.

[P] = ([0 <10] = [R(f(0))]) (5)
The next m’ is

{ [R(f(D))], ~[R(f(0))], =(0 <10) }
The theory then detects an inconsistency:

-(0 < 10) = False (6)

11

After conjoining (6), the original monome m will be propositional refuted. The proof
constructed is

[P ATQT A =[S(9(0)] = False

After conjoining this proof to the original formula, it becomes propositionally unsatis-
fiable.

If we use the simple algorithm, tautology (2) would be conjoined to the input for-
mula, even though it has nothing to do with the contradiction. In the subsequent solv-
ing, this unnecessary tautology would introduce a case spliton ([b = 1] V [b = 2]).
The theories would have to consider both in order to block the truth value assignment
—[b < 10]. By separating the two SAT solvers, our algorithm only needs to consider
one of them.

5 Discussion

The quantifier algorithm presented in the last section is in the setting of a theorem prover
using lazy proof explication. However, for a theorem prover that calls decision proce-
dures eagerly, such as Simplify and CVC Lite, the problem of useless instantiations
also exists. Without properly handling, this will eventually blow up the propositional
search. Simplify adopts a simple heuristic that gives atomic formulas generated by in-
stantiating quantifiers a lower priority in case splits. It is not quite clear how effective
this approach is. It is possible that the two-tier approach can also be incorporated into a
Simplify-like theorem prover, although the close coupling of propositional and theory
reasonings would make it more complicated.

The FindUnSATCore function in this paper always returns a formula containing
only original atomic formulas. However, this is not always the best thing to do. For
example, suppose a theorem prover is asked about the satisfiability of the following
formula:

[(Vze Plz) = z<a)] AN[P2)] A (Ja=0]V [a=1])

If the SAT solver first picks a satisfying assignment consisting of the first two conjuncts
and the disjunct [= 0], then our algorithm would generate the proof

[(Vz e Pz) = 2<a)] A[P2)] = -[a=0]

Then, leading to the next round of theory reasoning, the SAT solver would pick the
satisfying assignment that instead selects the other disjunct, [a = 1]. This will cause
the generation of the proof

[(Vz e Pz) = 2<a)] A[P2)] = -[a=1]

after which the SAT solver can determine the given formula to be unsatisfiable. But by
instead returning the proof

[(Vz e Pz) = 2<a)] A[P2)] = [2<ad]

in response to the first satisfying assignment, the second round of theory reasoning does
not need to instantiate any quantifiers.

12

For efficiency, it is best if theories combined using Nelson-Oppen are convex. In-
formally, a convex theory will never infer a disjunction of equalities without inferring
one of them. Thus the decision procedures only need to propagate single equalities.
For non-convex theories, sometimes it is necessary for the decision procedure to propa-
gate a disjunction of equalities. For example, the integer arithmetic theory can infer the
following fact:

0<LzANz2z<1l = z=0Vz=1.

This fact should be added as a tautology in the proving process. Like the tautologies
generated by quantifier instantiation, there is a risk that useless tautologies increase
the work required of the propositional search. The same technique discussed in this
paper is readily applied to those non-convex theories. In this sense, our algorithm in
Fig. 2 actually provides a unified approach to handle both quantifiers and non-convex
theories—they can both be viewed as a theory that can generate tautologies of arbitrary
forms.

6 Redated work

Among decision-procedure based theorem provers, besides our work, Simplify [2], Ver-
ifun [4], and CVC Lite [0] all provide some degree of quantifier support.

Simplify’s method of using triggering patterns to find instantiations [8, 2] has proved
quite successful in practice. Once an instantiation is generated, it remains in the prover
until the proof search backtracks from the quantifier atomic formula. We implemented
a similar triggering algorithm and use a second SAT solver to reason about the instanti-
ated formulas so that useful instantiations can be identified.

Our handling of quantifiers is based on Verifun’s early work [5]. Some attempts have
been made in Verifun to identify useful tautologies from instantiations of quantifiers.
However, it seems that it is an optimization that works only when the instantiations
alone can propositionally refute the current monome. In most scenarios, we believe, the
quantifier module needs to cooperate with other theories to find out the instantiations
that are useful to refute the monome.

In CVC Lite, each term is given a type and the formula is type checked. Types
give hints about which terms can be used to instantiate a universal variable. However,
instantiating a variable with every term whose type matches may be unrealistic for large
problems.

7 Conclusion

This paper proposes a two-tier approach for handling quantifiers in a lazy-proof-explica-
tion theorem prover. The propositional reasoning of the original formula and that of the
instantiated formulas are handled by two SAT solvers. The major purpose of this sepa-
ration is to avoid unnecessary case splits caused by intertwining useless instantiations
and the original formula. The FindUnSATCore method can extract, from a set of tau-
tologies generated during quantifier reasoning, a “good tautology” that is both relevant
to the problem and sufficient to refute the given monome. We also use checkpointable
theories to improve efficiency during the quantifier reasoning.

13

References

10.

Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Proceedings of the 16th International Conference on Computer Aided
\erification (CAV), Lecture Notes in Computer Science. Springer, July 2004.

Leonardo de Moura and Harald Ruef. Lemmas on demand for satisfiability solvers. In Fifth
International Symposium on the Theory and Applications of Satisfiability Testing (SAT 02),
May 2002.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, July 2003.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. Research Report 159, Compaq Systems Research Center, December 1998.
Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theorem proving using
lazy proof explication. In 15th Computer-Aided \erification conference (CAV), July 2003.
Cormac Flanagan, Rajeev Joshi, and James B. Saxe. An explicating theorem prover for
quantified formulas. Draft manuscript, May 2004.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Extended static checking for Java. In Proceedings of the 2002 ACM
S GPLAN Conference on Programming Language Design and Implementation (PLDI), vol-
ume 37, number 5 in SIGPLAN Notices, pages 234-245. ACM, May 2002.

Kenneth L. McMillan. Interpolation and SAT-based model checking. In 15th International
Conference on Computer Aided \erification, Lecture Notes in Computer Science. Springer,
2003.

Charles Gregory Nelson. Techniques for Program Verification. PhD thesis, Stanford Univer-
sity, 1980. Also available as Xerox PARC technical report CSL-81-10, 1981.

Greg Nelson and Derek C. Oppen. Simplification by coorperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245-57, 1979.

Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formulas. In Sixth International Conference on Theory and Applications of Satisfi-
ability Testing (SAT2003), May 2003.

