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1 Abstract 

We present a scalable protocol for establishing 
bounds on clock synchronization in the presence 
of Byzantine faults. The worst a faulty 
participant can do to a correct host is cause the 
correct host to establish (arbitrarily) weak but 
correct bounds; because the correct hosts knows 
what those bounds are, we refer to the protocol 
as Byzantine-fault quantifying. Correct hosts can 
use the quantified bounds to inform path 
selection, enabling them to route around 
misbehaving hosts. 

We describe how to employ the protocol in a 
practical environment that makes use of 
Byzantine-fault tolerant replicated state 
machines. 

2 Introduction 

This paper describes a scalable clock-
synchronization protocol that withstands 
malicious failures. We developed this protocol 
in the context of Farsite, a distributed serverless 
filesystem. Farsite uses replication and 
encryption to produce reliable, private storage 
from resources supplied by incompletely trusted 
hosts. The hosts are desktop workstations, on the 
scale of 100,000 machines. By “incompletely 
trusted,” we mean that we expect only a small 
fraction of the population of machines to be 
Byzantine-faulty. 

Farsite uses simple replication to ensure the 
availability of file data. To ensure the 
availability and consistency of directory 
metadata, upon which the consistency of the 
entire filesystem service depends, Farsite uses 
Byzantine-fault-tolerant replicated state 
machines. We call the set of hosts replicating a 

BFT state machine a “server group,” because it 
acts like a virtual trustworthy server. 

A server group enforces consistency by doling 
out leases to client machines. A lease is a lock 
that expires: the lock is a promise that the host 
holding the lease can access the data it protects 
consistently; the expiration provides robustness 
against failure [4]. If a lease-holder vanishes 
(because of network failure, software crash or 
malicious failure) and fails to return the lease, 
the lease eventually expires so that it can be 
given out to another host. 

Achieving consistency in the presence of 
expiration requires that the lessor and lessee 
agree on the expiration time, at least 
conservatively. The lessee cannot believe it 
holds the lease once the lessor believes the lease 
has expired. Clock synchronization is necessary 
to accomplish this agreement. 

Note that when we say “synchronize clocks,” we 
don’t adjust the value of a (scalar) system clock, 
which then becomes input to future rounds of 
the algorithm, as does NTP [8]. Instead, we 
compute and maintain bounds (a pair) on the 
relationship between a local system clock and a 
global reference clock. The bounds let lessees 
behave conservatively: if a lease is set to expire 
at 3:00 PM, and based on its local clock the 
client can bound the global clock within 
(2:57,3:02), then the client must assume that the 
lease might have expired. 

The purpose of the protocol presented in this 
paper is to enable each participant in Farsite to 
compute bounds relating its local clock to some 
global reference clock. In Section 3, we describe 
the protocol, treating the global reference clock 
and each participant as a separate “host.” In 
Section 4, we discuss how we implement a 
trustworthy reference clock in Farsite, and in 



Section 5 how time bounds are communicated 
from individual hosts to server groups. 

3 The Scalable Protocol 

We present the scalable protocol in three steps. 
First, we assume that the participating hosts are 
arranged in a communication tree, and we 
describe how to make a single measurement that 
relates the local oscillator of each participating 
machine to the reference clock; the key idea is to 
make the measurement robust against 
adversarial participants. Next, we discuss how to 
schedule measurements to preserve scalability. 
Finally, we address path selection, the problem 
of establishing a communication tree.  

3.1 Measurement 

The first key idea is that we can enable every 
participant in the system to make a measurement 
of the global reference clock without trusting 
other participants and performing only constant 
work on any host, including the reference host. 

The output of a measurement for a host h is a 
triple 321 ,, hgh . Values 1h  and 3h are in units 
of the local oscillator on h, and value 2g  is in 
the units of the global oscillator. The 
measurement triple indicates that the global 
oscillator read 2g  at the same moment that the 
local oscillator read some value 2h , where 

321 hhh ≤≤ . 

3.1.1 Measurement algebra 

For the measurement to be useful in the future, 
we need some constraint on the relationship 
between the local and reference oscillators, or 
else we know nothing after the measurement is 
complete. We assume that oscillators g and h 
have rates differing by at most some bound λ : 

( ) ( )00 hghgh −≤−− λ
 

Or, solving for g : 
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Given our measurement, we can bound 0h  in 
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Into the future, at any time 3hh > , we can 
bound the values of g  by substituting minimum 
and maximum values of 0h : 
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3.1.2 Hierarchical synchronization 

One way to make a scalable measurement of a 
reference clock, adopted by the NTP protocol, is 
to use hierarchical synchronization. Hosts in the 
topmost layer of the communication tree 
(stratum 1) directly measure the reference clock. 
Each host in stratum 2 measures a host in 
stratum 1, and computes information about the 
reference clock from that measurement and 
statistical information provided by the stratum 1 
host. Hierarchical synchronization seems to 
require a participant to trust each ancestor on the 
path to the root to provide correct information 
about its synchronization measurements; we 
cannot afford that trust. 

3.1.3 Hierarchical communication 

To achieve scalability, however, hierarchy 
seems like an indispensable tool. To exploit 
hierarchy in the presence of adversaries, we 
remove from the protocol reliance on the 
purported computations of intermediate nodes. 
Instead, we use intermediate nodes only to relay 
communication to the global reference host; we 
can use cryptographic techniques to immediately 
verify whether an intermediate node has 
faithfully performed its communication duties. 

A simple manifestation of this idea is to use 
signed communication between each participant 
and the global reference host. Concatenating 
signed messages on the way up the tree and 
demultiplexing messages on the way down 
clearly enables us to limit the number of packets 
seen by each host to a constant (the tree fanout). 
However, it leaves the problem that the number 
of bytes seen by hosts high in the tree is )(nO ; 



furthermore, the root host must verify 
)(nO signatures and sign )(nO  outbound 

messages. 

The problem is solved by observing that host h 
does not require that it receive a personal 
message from g, nor does it even require that g 
even be aware of h’s existence. To achieve the 
measurement property 321 hhh ≤≤ , h only 
cares that for some message from g timestamped 

2g , h can verify that 2g  occurred after some 
time 1h . Such a proof supports the left 
inequality; the right inequality is supported 
because of the causality of the universe and 
because g is trusted never to sign a timestamp 
that its oscillator has not yet produced. 

The measurement protocol, then, works like this. 
Host h produces a nonce at local time 1h , and 
makes a note of that relationship. (We refer to 
the nonce itself by the local time 1h  that it was 
created.) Host h forwards the nonce to its parent 
in the communication tree. 

That parent host p waits for other children to 
submit their nonces 11 ki L , then it produces its 
own nonce 1p . Host p computes a cryptographic 
hash function to create a derivative hash ( )1111 ,, pkihh L= , and forwards that hash to 
its parent. 

This process recurs up the tree, until the global 
reference host g collects a set of hashes from the 
nodes in the top layer. The global reference host 
reads its oscillator as value 2g , and signs a 
message containing 2g  and the top-level hashes. 
It relays that message to the top-level nodes. 

The intermediate nodes relay the signed message 
from g down the tree, along with the Merkle-tree 
sibling data [7]: each node passes to its children 
the list of hashes that composed the input to its 
derivative hash. 

When these data arrive at host h, h can verify 
that the message from g is indeed from g 
because of its signature. Furthermore, h can 
verify that 2g  must have occurred after 1h , for 
if it had not, then either an adversary managed to 
guess the value of nonce 1h , or an adversary 
managed to invert the cryptographic hash 
function to show how the top-level hash in 2g  
can be computed as a function of input 1h .  

As described, the protocol resists adversaries 
tampering with communication. But if an 
adversary merely mutes or delays 
communication, the protocol has two 
shortcomings. First, because intermediate nodes 
wait for all of their children to participate, any 
single failure would cause the protocol to halt. 
We address this problem in Section 3.2. Second, 
while a delay or drop in communication cannot 
cause a participant to compute incorrect bounds 
on the relationship between its clock and the 
global clock, it certainly prevents the protocol 
from tightening those bounds (or measuring 
initial bounds). We discuss how to circumvent 
this denial of service in Section 3.3. 

3.1.4 Historical rate information 

With only a bound on the rate deviation of the 
clocks, our knowledge of the synchronization of 
the clocks deteriorates (the bounds grow) as time 
passes from 3h , the moment of measurement. 
We bound rather than estimate the time, so 
simply estimating rate, which can improve time 
estimates, does not improve the resulting 
bounds. There are two ways we could consider 
using historical rate information to improve our 
algorithm. 

3.1.4.1 Second-derivative assumption 

We could consider an assumption on the 
deviation between the second derivative of the 
local and reference clocks. Such an assumption 
effectively enables us to use historical rate 
information to reduce deterioration in the 
bounds, since an observed rate would then be 
known not to suddenly swing. 

Carrying a laptop from a cooled office to a park 
bench in the sunshine might suddenly change the 
rate of the oscillator in the laptop. Thus this 
assumption might be justified only if the thermal 
mass of each oscillator in the system is insulated 
from temperature changes in its environment. 
Furthermore, because the new assumption 
affects the squared term, its effectiveness at 
limiting bounds drift is quickly subsumed by the 
basic rate deviation assumption. 



3.1.4.2 Mostly-constant rate assumption 

Suppose that the rate deviation of any oscillator 
from a nominal rate is determined by the sum of 
two terms: one due to process limitations, which 
remains constant once the oscillator is put into 
service, and a second which varies due to 
thermal fluctuations. If the magnitude of the first 
term substantially dominates the second term, 
then we can measure the long-term rate, add 
conservative values reflecting the maximum 
deviation due to thermal effects, and have a 
dynamic bound on rate deviation that is much 
more precise than the static bound. 

Typical "AT cut" crystal oscillators used in 
microprocessor circuits deviate in rate by a 
factor less than 6105 −×  across a temperature 
range of 0-70ºC. The total variation, accounting 
for both process deviation and temperature 
deviation, is typically listed as 410− . Thus, by 
measuring the constant term due to process 
variation, we stand to improve the deterioration 
rate of our bounds by more than an order of 
magnitude. 

Maintaining this long-term rate information 
without loss requires maintaining a pair of 
convex hulls and the tangents between them. 
This task takes ( )1O  amortized time per 
measurement. With adversarial input, it can 
consume linear space; that is, we may need to 
store every measurement ever made to ensure 
optimal results. However, a simple greedy 
algorithm (discarding minimum-angle points on 
the convex hulls) saves space with minimal 
impact on accuracy. In practice, since an 
adversary controls the bounds we measure, we 
would apply the greedy pruning algorithm to 
maintain a constant number of points on the 
convex hulls. 

3.2 Scheduling 

The basic description of the aggregated 
measurement protocol in the previous section 
had internal nodes in the communication tree 
blocking until all of their children report in. That 
description is clearly inadequate, because a 
single faulty host can stall the entire protocol. 

Instead, let a host accept a hash from its child at 
any time, with each new hash displacing the last 

one from that child. According to some 
schedule, the host aggregates its children’s 
hashes and its own nonce, and submits a new 
hash to its parent. This protocol ensures that any 
host submitting its hash “on time” will see its 
nonce included in the measurement, while hosts 
that abstain only harm themselves and their 
children in the tree. 

The challenge, then, is to identify a suitable 
schedule for internal nodes to aggregate hashes, 
and a schedule for the root node to sign 
timestamps. First, the schedule should ensure 
that any host with a path to the root composed of 
non-faulty hosts succeeds in making enough 
measurements and with minimal delay so that it 
converges on “good” bounds. Second, a good 
schedule is parsimonious, to save network traffic 
and work by the aggregating hosts. 

3.2.1 Unsynchronized aggregation 

A simple schedule is for each host to aggregate 
periodically, but without any particular 
synchronization. The justification for this 
approach is that relying on synchronization is 
difficult, since that is what the entire protocol is 
trying to achieve. 

The tightness of the bounds computed by a 
participant is limited by the total delay between 
the construction of the nonce at 1h  and the 
receipt of the timestamp at 3h . If each host on 
the path from h to g aggregates periodically and 
without phase synchronization, then that delay 
will include waiting time proportional to the 
product of the aggregation period and the depth 
of h in the communication tree. 

Suppose that hosts make measurements with 
period P . The clock-rate deviation λ  requires 
that in the duration of one inter-measurement 
period, a host’s bounds must grow by Pλ , so 
there is no point in performing a measurement 
with precision much better than Pλ . 

So, we can relate measurement accuracy of m , 
measurement period P , aggregation period q , 
network delay µ , and tree depth d  with the 
following two conditions: 
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It is also clear that ( )µλ +≈ qdP , for if one is 
much bigger than the other, then one source of 
error dominates the other, and we waste either 
measurements or aggregations. 

The cost of a measurement is that of sampling 
the reference clock (which is expensive in our 
environment) and performing a digital signature 
(which is typically expensive). The cost of 
aggregation is the computation of a hash and the 
sending and receipt of a (hash-sized) packet, 
once per participant in the system. 

For our application, we expect 01.0=λ , 
ms1=µ , and 10<d ; we imagine s1=m  will 

be quite sufficient. Those choices lead to 
s100=P  and ms100≈q . The cost  of P  is a 

digital signature and BFT-state-machine 
operation every couple of minutes.  The cost of 
q  is that each host aggregates and sends ten 
packets per second, and hence receives some 

f10  packets per second, where f  is the tree 
fanout. 

We are reasonably satisfied with these values 
from an engineering perspective: for our system, 
we can tune the parameters and discover that the 
resulting costs are acceptable. Ideally, however, 
it would be nice if the system could self-tune, 
milking out ideal bounds (within a constant 
factor of µd ). The present approach also wastes 
work proportional to λ1 : better clocks allow 
better synchronization, exploiting which requires 
more aggregations per measurement. It would be 
nice if the algorithm used resources constant in 
the quality of the clocks. 

3.2.2 Self-synchronized aggregation 

It would be nice to improve the aggregation 
schedule to not scale poorly with improved 
synchronization quality. Indeed, it seems that the 
aggregation tree should enable us to limit the 
number of packets received and the work 
performed by each host, including the reference 
host, to be proportional to the fanout f . 

The basic idea is to give each host a budget of k  
hash submissions per measurement interval. The 

host tries to use its budget to minimize the time 
its hash spends waiting at the next level in the 
tree. For example, if the host believes that the 
next measurement occurs at 4:00, and its local 
clock bounds (from prior measurements) give it 
an accuracy of s5=δ , then the host can send a 
packet every k5  seconds in that interval. If at 
least one arrives on time, then his measurement 
delay will be limited only by his parent’s delay 
(unavoidable), network delay to and from his 
parent (unavoidable), and the maximum kδ  
wait time. Since the latter quantity is smaller 
than the original δ , we can expect the host’s 
bounds to converge to the sum of the 
unavoidable delay terms. 

There are a couple of problems with this basic 
approach. The first is that the host cannot know 
when the parent’s deadline is, since the parent 
must send its hash before the global 
measurement deadline to ensure it arrives on 
time. The second, related problem is that the 
host must anticipate the network delay, for if the 
global 4:00 occurs at the early end of its bounds, 
then a packet sent at exactly 4:00 will arrive too 
late to provide synchronization. But measuring 
network delay will not help, since an adversarial 
network can offer fast delivery for delay 
measurement and then poor performance when 
the timeliness matters. 

We have tried several approaches to mitigate 
these problems, but each has its limitations. One 
is to send a series of submissions before the 
deadline with geometrically-dropping delays 
between them. This approach “discovers” the 
network delay to within a constant factor (the 
base of the exponential progression) at each 
layer in the tree. Unfortunately, it means that 
hosts at layer d  in the tree can hope to converge 
on δ -bounds no better than exponential in d . 

A second strategy sends submissions for a δ -
wide window before the first time the host 
believes could be the deadline. The idea is that if 
δ  is bigger than the maximum network delay 
over an interval, then the window will 
accommodate the network delay, providing a 
measurement; if δ  is smaller, then the host 
already has good synchronization and does not 
mind missing a measurement opportunity. 
Unfortunately, hosts below the well-
synchronized host also miss out on a 
measurement, even if they need one. With our 



best variation on this scheme, we could ensure 
that all hosts in the tree converge, but to δ -
bounds no better than quadratic in d . 

3.2.3 Bad ideas for aggregation 
scheduling 

Suppose we use an unsynchronized schedule 
with a variable aggregation period. Smaller 
periods occur near the beginning of the 
measurement period P as measured on the global 
reference timeline, and larger ones fill out the 
later times. Poorly synchronized hosts will find 
their hashes waiting a long time during the 
infrequent period, but that time is still short 
enough that the host improves its 
synchronization so that future submissions are 
better-aligned with the high-accuracy (low-
delay) phase. This “optimization” offers both 
small aggregation-induced delays and  reduced 
total message traffic versus the periodic 
approach. However, that reduced traffic is 
arranged in a (deliberately) clumpy fashion that 
only reduces long-term average resource usage, 
but not peak load, making the optimization of 
questionable value. 

Suppose we execute an auxiliary protocol in 
which each parent informs its children when (in 
local time) it plans to aggregate, and the children 
use that local information to deliver hashes in a 
timely fashion. This approach requires coming 
up with another (local) synchronization scheme, 
and then reasoning about why it works reliably. 
Indeed, the problem is harder than one might 
guess: as described in Section 3.2.2, an 
adversary makes measurements of network 
behavior difficult to use. We suspect that this 
approach is doomed. 

3.3 Path selection 

In prior sections, we established a measurement 
protocol and a scheduling algorithm that keeps 
the protocol scalable with a small constant. We 
still have to address the problem that the path 
from a host to the global reference host involves 
some faulty host. 

The good news is that the faulty host cannot 
cause any host to compute incorrect bounds; it 
can only prevent a host from computing very 
tight bounds, perhaps no tighter than ( )∞∞− , . 

Because the victim host knows that its bounds 
are poor, however, it can attempt the protocol 
along an alternate path to the root. If its bounds 
improve, it can abandon the path that (because 
of a faulty participant) produced lousy bounds. 

Obviously, the protocol doesn’t scale if every 
host attempts to use every other host as a parent 
on each measurement, to maximize the 
likelihood of discovering a non-faulty path. A 
simple fix: let each correct host try two or three 
paths at any time, periodically discarding the 
worst-performing parent to test some other 
potential parent. Faulty hosts will observe no 
such restraint, of course; we expand this point 
shortly. 

Even a set of polite, restrained hosts can get into 
trouble using the present path-selection 
algorithm, however. Because each host is 
greedy, each will eventually discover that the 
shortest path to the root is to contact the root 
directly, forming a degenerate tree with only one 
layer. To preserve scalability, the protocol must 
enforce a limit on fanout. 

Perhaps we can enforce a tree by limiting the 
number of children each hosts accepts. Such 
behavior could cause our tree of correct hosts to 
self-organize into a tree with acceptable fanout. 
Unfortunately, it also presents a golden 
opportunity to faulty hosts: if the set of faulty 
hosts can clog all of the fanout slots at the root, 
they can impede access to the global reference 
clock by any of the correct hosts. 

We have not yet discovered a simple approach 
that can impose a well-shaped tree on a fully-
connected graph in the presence of faulty hosts. 
Instead, we rely on the application of the 
algorithm to provide an adversary-resistant 
scalable subgraph from which the greedy 
algorithm samples edges to construct correct 
paths. 

In Farsite, the subgraph follows from the natural 
structure of the file service. First, there is a 
hierarchy of BFT replicated-state-machine 
groups. The topmost group is the global 
reference host (see Section 4). If a group A 
delegates work to a group B, then every host 
comprising B is entitled to contact every host in 
group A. After all, the correct members of group 
A must trust that most members of group B are 



correct. Finally, if a host h is a client accessing 
resources managed by a group B, then h is 
allowed to contact members of B. If B is willing 
to provide file services to h, it should at least be 
willing to give h the time of day. 

Why is this subgraph sufficient to ensure 
effective clock synchronization in Farsite? If 
host h needs to synchronize with respect to B, 
then either it has some correct path to the root, if 
by no other means, then through a host in B, or 
else every member of some BFT group in the 
path from B to the root group is corrupt. If that is 
the case, then B is effectively faulty anyway. If 
B is faulty, then it is not important that h 
synchronize with it. 

4 The Global Reference 
Clock 

The Byzantine-fault-quantifying protocol can 
withstand faulty hosts in the system, but requires 
a trustworthy global reference clock. In our 
application and others, the reason for 
withstanding faulty hosts is that no particular 
host in the system is trustworthy. 

Hence we produce a trustworthy global clock 
from the set of untrusted hosts composing the 
root server group. To do so, we arrange for the 
BFT state machine to serve in the role of the 
reference host. 

First, the replicas composing the machine 
execute a Byzantine-fault-tolerant clock 
synchronization algorithm [6,9,2] to synchronize 
the correct hosts on a scalar time value 
consistent with real time. Then the state machine 
collects hashes, timestamps them, and signs its 
timestamp message so that it can be propagated 
back down the tree. 

Each individual host in the root server group 
belongs to the top layer of the communication 
tree. When each host performs an aggregation, it 
submits its hash into the BFT state machine by 
acting as a client to the same server group in 
which it is a server replica; the machine’s state 
thus collects the submitted hashes. 

To timestamp the hashes, the server group must 
execute an operation with an agreed-upon time 

value. Our BFT replication algorithm [1] 
timestamps operations as follows: when the 
primary replica proposes a request as the next 
operation to be performed by the state machine, 
it also proposes a timestamp value. Each correct 
replica vets the proposal, and a replica vets the 
proposed timestamp by ensuring that it agrees to 
within some established bound ε  of the 
replica’s notion of time. Such a bound must 
account for both precision limitations of the 
Byzantine clock synchronization algorithm and 
the message delay in delivering the proposal. If 
the proposal does not pass muster, correct 
replicas clamor for a view-change, to elect a new 
primary replica. Hence if ε  is tighter than the 
actual synchronization of the group, then the 
progress of the state machine will stall until the 
group’s synchronization converges. 

Now that we have a mechanism for 
timestamping BFT state machine requests, we 
can declare what the state machine does with the 
submitted hashes: it simply adds a hash,time  
record to its replicated state, and returns no 
value. 

As each replica decides that the timestamp 
deadline has passed, it gathers the set of 

hash,time  records stored in its view of the 
replicated state machine, signs them, and sends 
the signature out to each top-layer host in the 
communication tree. Each top-layer host collects 

1+f  signatures of its hash to form a “group-
signed timestamp:” effectively, a document 
signed by the BFT state machine. That signed 
timestamp is the message propagated back down 
the Merkle tree in the reply phase of the 
measurement protocol. 

The meaning of a group-signed hash,time  
record must be interpreted carefully. Because the 
time value was only known within a bound of 
ε , the value 2g  from Section 3.1.1 is actually a 
time bound: ( )εε +− gg , . 

5 Injecting bounds into 
server groups 

The previous section detailed how we use 
(conventional, unscalable) BFT clock 
synchronization and BFT state machines to 
produce a trustworthy global reference clock. In 



so doing, the root server group acquires a notion 
of time: it is in fact the reference for all time in 
the system. In this section, we address how to 
make time-bound measurements available to 
server groups other than the root group. 

The present task is to take the measurements 
computed by the possibly-faulty replicas that 
compose a server group, and aggregate them to 
produce a correct time-bound for each operation 
performed by the group. Once we have achieved 
the task, then operations that need to evaluate 
the validity of leases granted by or to the group 
have available as an input bounds on the current 
time. 

The solution is parallel to the proposal and 
acceptance of scalar time in the root group. A 
correct primary replica with time bounds 
( )21,bb  will propose bounds ( )εε +− 21 ,bb . A 
correct replica with bounds ( )43 ,bb will accept 
the proposed bounds if: 

εε
εε

+≤≤−
+≤≤−

242

131

bbb

bbb

 

To ensure liveness, we must ensure that replicas 
can synchronize to within ε . In the scalar 
proposal mechanism from the previous section, 
the choice of ε  accounts for the network delay 
and the relative synchronization of the replicas, 
which in that scenario were linked directly to 
one another by their participation in a BFT 
clock-synchronization protocol. Here, ε  must 
accommodate bounds that vary due to delays in 
the BFQ clock-synchronization tree, those 
convergence limits described in Section 3.2. 
Thus, to remain truly scalable, ε  must vary with 
the depth of the members in the BFQ 
communication tree (which happens to 
correspond to the BFT server group tree in our 
application), or be otherwise automatically 
tuned. For our application, where we assume 
total system size 510≤n , asymptotic scalability 
is not essential, and we can afford to select a 
very conservative ε . 

6 Related Work 

Haber and Stornetta’s time-stamping schemes 
exploit hashes to produce non-forgeable 
timestamps that scale to many clients [3]. The 

measurement step in our protocol acquires a 
timestamp, although the requirements on it are 
different: it is not important, for example, that a 
client be able to prove to a third party when its 
nonce was stamped. 

Lamport and Mann propose a scalable protocol 
for distributing time from a trusted time source 
using hierarchical synchronization. Their 
protocol propagates path information, and hosts 
use path information and computed time 
intervals to discard invalid data from faulty or 
corrupt intermediaries [5]. 

7 Summary 

We have presented a scalable protocol and 
algorithms for synchronizing clocks in a 
distributed system that produces as output 
conservative bounds on the accuracy of the 
synchronization. The protocol is Byzantine-fault 
quantifying in that the results of malicious 
behavior are apparent in the bounds output by 
the protocol, and those bounds may be used to 
prevent safety violations. 

The three central components of the protocol are 
the measurement protocol, the schedule that 
exploits aggregation, and the path-selection 
algorithm that helps correct hosts “route around” 
malicious behavior. We explored how to use 
various assumptions on oscillator behavior to 
improve the quality of the bounds. 

We presented a technique for building a virtual 
global reference clock from untrusted hosts 
using conventional, non-scalable Byzantine-
fault-tolerant clock synchronization. We 
presented a technique for gathering clock 
bounds computed by member replicas of a BFT 
state machine to produce a deterministic bounds 
pair useful inside the state machine. 

We discussed how this protocol fits into the 
context and engineering assumptions of the 
Farsite scalable filesystem. Farsite’s control 
structure provides an implicit graph for path 
selection. Non-critical timing in Farsite tolerates 
the modest quality bounds produced by a simple 
aggregation schedule. Farsite’s distrust of all 
hosts necessitates a virtual global reference 
clock and a mechanism for injecting bounds into 
a server group. 
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