
Scalable Byzantine-Fault-Quantifying Clock Synchronization

John Douceur

Jon Howell

October 15, 2003

Technical Report

MSR-TR-2003-67

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Scalable Byzantine-Fault-Quantifying Clock Synchronization

John Douceur and Jon Howell

Microsoft Research

October 15, 2003

1 Abstract

We present a scalable protocol for establishing
bounds on clock synchronization in the presence
of Byzantine faults. The worst a faulty
participant can do to a correct host is cause the
correct host to establish (arbitrarily) weak but
correct bounds; because the correct hosts knows
what those bounds are, we refer to the protocol
as Byzantine-fault quantifying. Correct hosts can
use the quantified bounds to inform path
selection, enabling them to route around
misbehaving hosts.

We describe how to employ the protocol in a
practical environment that makes use of
Byzantine-fault tolerant replicated state
machines.

2 Introduction

This paper describes a scalable clock-
synchronization protocol that withstands
malicious failures. We developed this protocol
in the context of Farsite, a distributed serverless
filesystem. Farsite uses replication and
encryption to produce reliable, private storage
from resources supplied by incompletely trusted
hosts. The hosts are desktop workstations, on the
scale of 100,000 machines. By “incompletely
trusted,” we mean that we expect only a small
fraction of the population of machines to be
Byzantine-faulty.

Farsite uses simple replication to ensure the
availability of file data. To ensure the
availability and consistency of directory
metadata, upon which the consistency of the
entire filesystem service depends, Farsite uses
Byzantine-fault-tolerant replicated state
machines. We call the set of hosts replicating a

BFT state machine a “server group,” because it
acts like a virtual trustworthy server.

A server group enforces consistency by doling
out leases to client machines. A lease is a lock
that expires: the lock is a promise that the host
holding the lease can access the data it protects
consistently; the expiration provides robustness
against failure [4]. If a lease-holder vanishes
(because of network failure, software crash or
malicious failure) and fails to return the lease,
the lease eventually expires so that it can be
given out to another host.

Achieving consistency in the presence of
expiration requires that the lessor and lessee
agree on the expiration time, at least
conservatively. The lessee cannot believe it
holds the lease once the lessor believes the lease
has expired. Clock synchronization is necessary
to accomplish this agreement.

Note that when we say “synchronize clocks,” we
don’t adjust the value of a (scalar) system clock,
which then becomes input to future rounds of
the algorithm, as does NTP [8]. Instead, we
compute and maintain bounds (a pair) on the
relationship between a local system clock and a
global reference clock. The bounds let lessees
behave conservatively: if a lease is set to expire
at 3:00 PM, and based on its local clock the
client can bound the global clock within
(2:57,3:02), then the client must assume that the
lease might have expired.

The purpose of the protocol presented in this
paper is to enable each participant in Farsite to
compute bounds relating its local clock to some
global reference clock. In Section 3, we describe
the protocol, treating the global reference clock
and each participant as a separate “host.” In
Section 4, we discuss how we implement a
trustworthy reference clock in Farsite, and in

Section 5 how time bounds are communicated
from individual hosts to server groups.

3 The Scalable Protocol

We present the scalable protocol in three steps.
First, we assume that the participating hosts are
arranged in a communication tree, and we
describe how to make a single measurement that
relates the local oscillator of each participating
machine to the reference clock; the key idea is to
make the measurement robust against
adversarial participants. Next, we discuss how to
schedule measurements to preserve scalability.
Finally, we address path selection, the problem
of establishing a communication tree.

3.1 Measurement

The first key idea is that we can enable every
participant in the system to make a measurement
of the global reference clock without trusting
other participants and performing only constant
work on any host, including the reference host.

The output of a measurement for a host h is a
triple 321 ,, hgh . Values 1h and 3h are in units
of the local oscillator on h, and value 2g is in
the units of the global oscillator. The
measurement triple indicates that the global
oscillator read 2g at the same moment that the
local oscillator read some value 2h , where

321 hhh ≤≤ .

3.1.1 Measurement algebra

For the measurement to be useful in the future,
we need some constraint on the relationship
between the local and reference oscillators, or
else we know nothing after the measurement is
complete. We assume that oscillators g and h
have rates differing by at most some bound λ :

() ()00 hghgh −≤−− λ

Or, solving for g :

00 1

1

1

1
hhghh +

−
≤≤+

+ λλ

Given our measurement, we can bound 0h in
terms of 321 ,, hgh :

12032 1

1

1

1
hghhg

λλ +
−≤≤

−
−

Into the future, at any time 3hh > , we can
bound the values of g by substituting minimum
and maximum values of 0h :

hghghgh
λλλλ +

−+
−

≤≤
−

−+
+ 1

1

1

1

1

1

1

1
232

3.1.2 Hierarchical synchronization

One way to make a scalable measurement of a
reference clock, adopted by the NTP protocol, is
to use hierarchical synchronization. Hosts in the
topmost layer of the communication tree
(stratum 1) directly measure the reference clock.
Each host in stratum 2 measures a host in
stratum 1, and computes information about the
reference clock from that measurement and
statistical information provided by the stratum 1
host. Hierarchical synchronization seems to
require a participant to trust each ancestor on the
path to the root to provide correct information
about its synchronization measurements; we
cannot afford that trust.

3.1.3 Hierarchical communication

To achieve scalability, however, hierarchy
seems like an indispensable tool. To exploit
hierarchy in the presence of adversaries, we
remove from the protocol reliance on the
purported computations of intermediate nodes.
Instead, we use intermediate nodes only to relay
communication to the global reference host; we
can use cryptographic techniques to immediately
verify whether an intermediate node has
faithfully performed its communication duties.

A simple manifestation of this idea is to use
signed communication between each participant
and the global reference host. Concatenating
signed messages on the way up the tree and
demultiplexing messages on the way down
clearly enables us to limit the number of packets
seen by each host to a constant (the tree fanout).
However, it leaves the problem that the number
of bytes seen by hosts high in the tree is)(nO ;

furthermore, the root host must verify
)(nO signatures and sign)(nO outbound

messages.

The problem is solved by observing that host h
does not require that it receive a personal
message from g, nor does it even require that g
even be aware of h’s existence. To achieve the
measurement property 321 hhh ≤≤ , h only
cares that for some message from g timestamped

2g , h can verify that 2g occurred after some
time 1h . Such a proof supports the left
inequality; the right inequality is supported
because of the causality of the universe and
because g is trusted never to sign a timestamp
that its oscillator has not yet produced.

The measurement protocol, then, works like this.
Host h produces a nonce at local time 1h , and
makes a note of that relationship. (We refer to
the nonce itself by the local time 1h that it was
created.) Host h forwards the nonce to its parent
in the communication tree.

That parent host p waits for other children to
submit their nonces 11 ki L , then it produces its
own nonce 1p . Host p computes a cryptographic
hash function to create a derivative hash ()1111 ,, pkihh L= , and forwards that hash to
its parent.

This process recurs up the tree, until the global
reference host g collects a set of hashes from the
nodes in the top layer. The global reference host
reads its oscillator as value 2g , and signs a
message containing 2g and the top-level hashes.
It relays that message to the top-level nodes.

The intermediate nodes relay the signed message
from g down the tree, along with the Merkle-tree
sibling data [7]: each node passes to its children
the list of hashes that composed the input to its
derivative hash.

When these data arrive at host h, h can verify
that the message from g is indeed from g
because of its signature. Furthermore, h can
verify that 2g must have occurred after 1h , for
if it had not, then either an adversary managed to
guess the value of nonce 1h , or an adversary
managed to invert the cryptographic hash
function to show how the top-level hash in 2g
can be computed as a function of input 1h .

As described, the protocol resists adversaries
tampering with communication. But if an
adversary merely mutes or delays
communication, the protocol has two
shortcomings. First, because intermediate nodes
wait for all of their children to participate, any
single failure would cause the protocol to halt.
We address this problem in Section 3.2. Second,
while a delay or drop in communication cannot
cause a participant to compute incorrect bounds
on the relationship between its clock and the
global clock, it certainly prevents the protocol
from tightening those bounds (or measuring
initial bounds). We discuss how to circumvent
this denial of service in Section 3.3.

3.1.4 Historical rate information

With only a bound on the rate deviation of the
clocks, our knowledge of the synchronization of
the clocks deteriorates (the bounds grow) as time
passes from 3h , the moment of measurement.
We bound rather than estimate the time, so
simply estimating rate, which can improve time
estimates, does not improve the resulting
bounds. There are two ways we could consider
using historical rate information to improve our
algorithm.

3.1.4.1 Second-derivative assumption

We could consider an assumption on the
deviation between the second derivative of the
local and reference clocks. Such an assumption
effectively enables us to use historical rate
information to reduce deterioration in the
bounds, since an observed rate would then be
known not to suddenly swing.

Carrying a laptop from a cooled office to a park
bench in the sunshine might suddenly change the
rate of the oscillator in the laptop. Thus this
assumption might be justified only if the thermal
mass of each oscillator in the system is insulated
from temperature changes in its environment.
Furthermore, because the new assumption
affects the squared term, its effectiveness at
limiting bounds drift is quickly subsumed by the
basic rate deviation assumption.

3.1.4.2 Mostly-constant rate assumption

Suppose that the rate deviation of any oscillator
from a nominal rate is determined by the sum of
two terms: one due to process limitations, which
remains constant once the oscillator is put into
service, and a second which varies due to
thermal fluctuations. If the magnitude of the first
term substantially dominates the second term,
then we can measure the long-term rate, add
conservative values reflecting the maximum
deviation due to thermal effects, and have a
dynamic bound on rate deviation that is much
more precise than the static bound.

Typical "AT cut" crystal oscillators used in
microprocessor circuits deviate in rate by a
factor less than 6105 −× across a temperature
range of 0-70ºC. The total variation, accounting
for both process deviation and temperature
deviation, is typically listed as 410− . Thus, by
measuring the constant term due to process
variation, we stand to improve the deterioration
rate of our bounds by more than an order of
magnitude.

Maintaining this long-term rate information
without loss requires maintaining a pair of
convex hulls and the tangents between them.
This task takes ()1O amortized time per
measurement. With adversarial input, it can
consume linear space; that is, we may need to
store every measurement ever made to ensure
optimal results. However, a simple greedy
algorithm (discarding minimum-angle points on
the convex hulls) saves space with minimal
impact on accuracy. In practice, since an
adversary controls the bounds we measure, we
would apply the greedy pruning algorithm to
maintain a constant number of points on the
convex hulls.

3.2 Scheduling

The basic description of the aggregated
measurement protocol in the previous section
had internal nodes in the communication tree
blocking until all of their children report in. That
description is clearly inadequate, because a
single faulty host can stall the entire protocol.

Instead, let a host accept a hash from its child at
any time, with each new hash displacing the last

one from that child. According to some
schedule, the host aggregates its children’s
hashes and its own nonce, and submits a new
hash to its parent. This protocol ensures that any
host submitting its hash “on time” will see its
nonce included in the measurement, while hosts
that abstain only harm themselves and their
children in the tree.

The challenge, then, is to identify a suitable
schedule for internal nodes to aggregate hashes,
and a schedule for the root node to sign
timestamps. First, the schedule should ensure
that any host with a path to the root composed of
non-faulty hosts succeeds in making enough
measurements and with minimal delay so that it
converges on “good” bounds. Second, a good
schedule is parsimonious, to save network traffic
and work by the aggregating hosts.

3.2.1 Unsynchronized aggregation

A simple schedule is for each host to aggregate
periodically, but without any particular
synchronization. The justification for this
approach is that relying on synchronization is
difficult, since that is what the entire protocol is
trying to achieve.

The tightness of the bounds computed by a
participant is limited by the total delay between
the construction of the nonce at 1h and the
receipt of the timestamp at 3h . If each host on
the path from h to g aggregates periodically and
without phase synchronization, then that delay
will include waiting time proportional to the
product of the aggregation period and the depth
of h in the communication tree.

Suppose that hosts make measurements with
period P . The clock-rate deviation λ requires
that in the duration of one inter-measurement
period, a host’s bounds must grow by Pλ , so
there is no point in performing a measurement
with precision much better than Pλ .

So, we can relate measurement accuracy of m ,
measurement period P , aggregation period q ,
network delay µ , and tree depth d with the
following two conditions:

() mqd

mP

<+
<
µ

λ

It is also clear that ()µλ +≈ qdP , for if one is
much bigger than the other, then one source of
error dominates the other, and we waste either
measurements or aggregations.

The cost of a measurement is that of sampling
the reference clock (which is expensive in our
environment) and performing a digital signature
(which is typically expensive). The cost of
aggregation is the computation of a hash and the
sending and receipt of a (hash-sized) packet,
once per participant in the system.

For our application, we expect 01.0=λ ,
ms1=µ , and 10<d ; we imagine s1=m will

be quite sufficient. Those choices lead to
s100=P and ms100≈q . The cost of P is a

digital signature and BFT-state-machine
operation every couple of minutes. The cost of
q is that each host aggregates and sends ten
packets per second, and hence receives some

f10 packets per second, where f is the tree
fanout.

We are reasonably satisfied with these values
from an engineering perspective: for our system,
we can tune the parameters and discover that the
resulting costs are acceptable. Ideally, however,
it would be nice if the system could self-tune,
milking out ideal bounds (within a constant
factor of µd). The present approach also wastes
work proportional to λ1 : better clocks allow
better synchronization, exploiting which requires
more aggregations per measurement. It would be
nice if the algorithm used resources constant in
the quality of the clocks.

3.2.2 Self-synchronized aggregation

It would be nice to improve the aggregation
schedule to not scale poorly with improved
synchronization quality. Indeed, it seems that the
aggregation tree should enable us to limit the
number of packets received and the work
performed by each host, including the reference
host, to be proportional to the fanout f .

The basic idea is to give each host a budget of k
hash submissions per measurement interval. The

host tries to use its budget to minimize the time
its hash spends waiting at the next level in the
tree. For example, if the host believes that the
next measurement occurs at 4:00, and its local
clock bounds (from prior measurements) give it
an accuracy of s5=δ , then the host can send a
packet every k5 seconds in that interval. If at
least one arrives on time, then his measurement
delay will be limited only by his parent’s delay
(unavoidable), network delay to and from his
parent (unavoidable), and the maximum kδ
wait time. Since the latter quantity is smaller
than the original δ , we can expect the host’s
bounds to converge to the sum of the
unavoidable delay terms.

There are a couple of problems with this basic
approach. The first is that the host cannot know
when the parent’s deadline is, since the parent
must send its hash before the global
measurement deadline to ensure it arrives on
time. The second, related problem is that the
host must anticipate the network delay, for if the
global 4:00 occurs at the early end of its bounds,
then a packet sent at exactly 4:00 will arrive too
late to provide synchronization. But measuring
network delay will not help, since an adversarial
network can offer fast delivery for delay
measurement and then poor performance when
the timeliness matters.

We have tried several approaches to mitigate
these problems, but each has its limitations. One
is to send a series of submissions before the
deadline with geometrically-dropping delays
between them. This approach “discovers” the
network delay to within a constant factor (the
base of the exponential progression) at each
layer in the tree. Unfortunately, it means that
hosts at layer d in the tree can hope to converge
on δ -bounds no better than exponential in d .

A second strategy sends submissions for a δ -
wide window before the first time the host
believes could be the deadline. The idea is that if
δ is bigger than the maximum network delay
over an interval, then the window will
accommodate the network delay, providing a
measurement; if δ is smaller, then the host
already has good synchronization and does not
mind missing a measurement opportunity.
Unfortunately, hosts below the well-
synchronized host also miss out on a
measurement, even if they need one. With our

best variation on this scheme, we could ensure
that all hosts in the tree converge, but to δ -
bounds no better than quadratic in d .

3.2.3 Bad ideas for aggregation
scheduling

Suppose we use an unsynchronized schedule
with a variable aggregation period. Smaller
periods occur near the beginning of the
measurement period P as measured on the global
reference timeline, and larger ones fill out the
later times. Poorly synchronized hosts will find
their hashes waiting a long time during the
infrequent period, but that time is still short
enough that the host improves its
synchronization so that future submissions are
better-aligned with the high-accuracy (low-
delay) phase. This “optimization” offers both
small aggregation-induced delays and reduced
total message traffic versus the periodic
approach. However, that reduced traffic is
arranged in a (deliberately) clumpy fashion that
only reduces long-term average resource usage,
but not peak load, making the optimization of
questionable value.

Suppose we execute an auxiliary protocol in
which each parent informs its children when (in
local time) it plans to aggregate, and the children
use that local information to deliver hashes in a
timely fashion. This approach requires coming
up with another (local) synchronization scheme,
and then reasoning about why it works reliably.
Indeed, the problem is harder than one might
guess: as described in Section 3.2.2, an
adversary makes measurements of network
behavior difficult to use. We suspect that this
approach is doomed.

3.3 Path selection

In prior sections, we established a measurement
protocol and a scheduling algorithm that keeps
the protocol scalable with a small constant. We
still have to address the problem that the path
from a host to the global reference host involves
some faulty host.

The good news is that the faulty host cannot
cause any host to compute incorrect bounds; it
can only prevent a host from computing very
tight bounds, perhaps no tighter than ()∞∞− , .

Because the victim host knows that its bounds
are poor, however, it can attempt the protocol
along an alternate path to the root. If its bounds
improve, it can abandon the path that (because
of a faulty participant) produced lousy bounds.

Obviously, the protocol doesn’t scale if every
host attempts to use every other host as a parent
on each measurement, to maximize the
likelihood of discovering a non-faulty path. A
simple fix: let each correct host try two or three
paths at any time, periodically discarding the
worst-performing parent to test some other
potential parent. Faulty hosts will observe no
such restraint, of course; we expand this point
shortly.

Even a set of polite, restrained hosts can get into
trouble using the present path-selection
algorithm, however. Because each host is
greedy, each will eventually discover that the
shortest path to the root is to contact the root
directly, forming a degenerate tree with only one
layer. To preserve scalability, the protocol must
enforce a limit on fanout.

Perhaps we can enforce a tree by limiting the
number of children each hosts accepts. Such
behavior could cause our tree of correct hosts to
self-organize into a tree with acceptable fanout.
Unfortunately, it also presents a golden
opportunity to faulty hosts: if the set of faulty
hosts can clog all of the fanout slots at the root,
they can impede access to the global reference
clock by any of the correct hosts.

We have not yet discovered a simple approach
that can impose a well-shaped tree on a fully-
connected graph in the presence of faulty hosts.
Instead, we rely on the application of the
algorithm to provide an adversary-resistant
scalable subgraph from which the greedy
algorithm samples edges to construct correct
paths.

In Farsite, the subgraph follows from the natural
structure of the file service. First, there is a
hierarchy of BFT replicated-state-machine
groups. The topmost group is the global
reference host (see Section 4). If a group A
delegates work to a group B, then every host
comprising B is entitled to contact every host in
group A. After all, the correct members of group
A must trust that most members of group B are

correct. Finally, if a host h is a client accessing
resources managed by a group B, then h is
allowed to contact members of B. If B is willing
to provide file services to h, it should at least be
willing to give h the time of day.

Why is this subgraph sufficient to ensure
effective clock synchronization in Farsite? If
host h needs to synchronize with respect to B,
then either it has some correct path to the root, if
by no other means, then through a host in B, or
else every member of some BFT group in the
path from B to the root group is corrupt. If that is
the case, then B is effectively faulty anyway. If
B is faulty, then it is not important that h
synchronize with it.

4 The Global Reference
Clock

The Byzantine-fault-quantifying protocol can
withstand faulty hosts in the system, but requires
a trustworthy global reference clock. In our
application and others, the reason for
withstanding faulty hosts is that no particular
host in the system is trustworthy.

Hence we produce a trustworthy global clock
from the set of untrusted hosts composing the
root server group. To do so, we arrange for the
BFT state machine to serve in the role of the
reference host.

First, the replicas composing the machine
execute a Byzantine-fault-tolerant clock
synchronization algorithm [6,9,2] to synchronize
the correct hosts on a scalar time value
consistent with real time. Then the state machine
collects hashes, timestamps them, and signs its
timestamp message so that it can be propagated
back down the tree.

Each individual host in the root server group
belongs to the top layer of the communication
tree. When each host performs an aggregation, it
submits its hash into the BFT state machine by
acting as a client to the same server group in
which it is a server replica; the machine’s state
thus collects the submitted hashes.

To timestamp the hashes, the server group must
execute an operation with an agreed-upon time

value. Our BFT replication algorithm [1]
timestamps operations as follows: when the
primary replica proposes a request as the next
operation to be performed by the state machine,
it also proposes a timestamp value. Each correct
replica vets the proposal, and a replica vets the
proposed timestamp by ensuring that it agrees to
within some established bound ε of the
replica’s notion of time. Such a bound must
account for both precision limitations of the
Byzantine clock synchronization algorithm and
the message delay in delivering the proposal. If
the proposal does not pass muster, correct
replicas clamor for a view-change, to elect a new
primary replica. Hence if ε is tighter than the
actual synchronization of the group, then the
progress of the state machine will stall until the
group’s synchronization converges.

Now that we have a mechanism for
timestamping BFT state machine requests, we
can declare what the state machine does with the
submitted hashes: it simply adds a hash,time
record to its replicated state, and returns no
value.

As each replica decides that the timestamp
deadline has passed, it gathers the set of

hash,time records stored in its view of the
replicated state machine, signs them, and sends
the signature out to each top-layer host in the
communication tree. Each top-layer host collects

1+f signatures of its hash to form a “group-
signed timestamp:” effectively, a document
signed by the BFT state machine. That signed
timestamp is the message propagated back down
the Merkle tree in the reply phase of the
measurement protocol.

The meaning of a group-signed hash,time
record must be interpreted carefully. Because the
time value was only known within a bound of
ε , the value 2g from Section 3.1.1 is actually a
time bound: ()εε +− gg , .

5 Injecting bounds into
server groups

The previous section detailed how we use
(conventional, unscalable) BFT clock
synchronization and BFT state machines to
produce a trustworthy global reference clock. In

so doing, the root server group acquires a notion
of time: it is in fact the reference for all time in
the system. In this section, we address how to
make time-bound measurements available to
server groups other than the root group.

The present task is to take the measurements
computed by the possibly-faulty replicas that
compose a server group, and aggregate them to
produce a correct time-bound for each operation
performed by the group. Once we have achieved
the task, then operations that need to evaluate
the validity of leases granted by or to the group
have available as an input bounds on the current
time.

The solution is parallel to the proposal and
acceptance of scalar time in the root group. A
correct primary replica with time bounds
()21,bb will propose bounds ()εε +− 21 ,bb . A
correct replica with bounds ()43 ,bb will accept
the proposed bounds if:

εε
εε

+≤≤−
+≤≤−

242

131

bbb

bbb

To ensure liveness, we must ensure that replicas
can synchronize to within ε . In the scalar
proposal mechanism from the previous section,
the choice of ε accounts for the network delay
and the relative synchronization of the replicas,
which in that scenario were linked directly to
one another by their participation in a BFT
clock-synchronization protocol. Here, ε must
accommodate bounds that vary due to delays in
the BFQ clock-synchronization tree, those
convergence limits described in Section 3.2.
Thus, to remain truly scalable, ε must vary with
the depth of the members in the BFQ
communication tree (which happens to
correspond to the BFT server group tree in our
application), or be otherwise automatically
tuned. For our application, where we assume
total system size 510≤n , asymptotic scalability
is not essential, and we can afford to select a
very conservative ε .

6 Related Work

Haber and Stornetta’s time-stamping schemes
exploit hashes to produce non-forgeable
timestamps that scale to many clients [3]. The

measurement step in our protocol acquires a
timestamp, although the requirements on it are
different: it is not important, for example, that a
client be able to prove to a third party when its
nonce was stamped.

Lamport and Mann propose a scalable protocol
for distributing time from a trusted time source
using hierarchical synchronization. Their
protocol propagates path information, and hosts
use path information and computed time
intervals to discard invalid data from faulty or
corrupt intermediaries [5].

7 Summary

We have presented a scalable protocol and
algorithms for synchronizing clocks in a
distributed system that produces as output
conservative bounds on the accuracy of the
synchronization. The protocol is Byzantine-fault
quantifying in that the results of malicious
behavior are apparent in the bounds output by
the protocol, and those bounds may be used to
prevent safety violations.

The three central components of the protocol are
the measurement protocol, the schedule that
exploits aggregation, and the path-selection
algorithm that helps correct hosts “route around”
malicious behavior. We explored how to use
various assumptions on oscillator behavior to
improve the quality of the bounds.

We presented a technique for building a virtual
global reference clock from untrusted hosts
using conventional, non-scalable Byzantine-
fault-tolerant clock synchronization. We
presented a technique for gathering clock
bounds computed by member replicas of a BFT
state machine to produce a deterministic bounds
pair useful inside the state machine.

We discussed how this protocol fits into the
context and engineering assumptions of the
Farsite scalable filesystem. Farsite’s control
structure provides an implicit graph for path
selection. Non-critical timing in Farsite tolerates
the modest quality bounds produced by a simple
aggregation schedule. Farsite’s distrust of all
hosts necessitates a virtual global reference
clock and a mechanism for injecting bounds into
a server group.

Acknowledgements

Our thanks to the Farsite team, of whose project
this protocol is only a sliver. Thanks to Mike
Sinclair and Tom Blank for sharing their
experiences with real-world oscillators (Section
3.1.4.2). Thanks to John Dunagan for discussion
about maintaining long-term rate information
(Section 3.1.4.2). Thanks to Dan Simon for
discussions about aggregation scheduling
(Section 3.2).

References

[1] M. Castro and B. Liskov, “Practical
Byzantine Fault Tolerance”, In Proc. 3rd
OSDI, USENIX, February 1999.

[2] Danny Dolev, Joseph Y. Halpern, Barbara
Simons, and Ray Strong. “Dynamic Fault-
Tolerant Clock Synchronization.” J. ACM
42(1) pp. 143–185, January 1995.

[3] S. Haber and W. S. Stornetta. “How to
timestamp a digital document.” J. of
Cryptology, 3(2), 1991.

[4] J. Howard, M. Kazar, S. Menees, D.
Nichols, M. Satyanarayanan, R.
Sidebotham, and M. West. “Scale and
Performance in a Distributed File System.”
ACM Transactions on Computer Systems,
6(1):51--81, February 1988.

[5] Leslie Lamport and Timothy Mann.
“Marching to Many Distant Drummers.”
Unpublished manuscript available at
http://research.microsoft.com/
users/lamport/pubs/pubs.html
#lamport-drummers, 1997.

[6] Leslie Lamport and P. M. Melliar-Smith.
“Byzantine Clock Synchronization.” PODC
’84, 1984.

[7] R. Merkle, “Protocols for Public Key
Cryptosystems.” IEEE Symposium on
Security and Privacy, 1980.

[8] David L. Mills. “Internet Time
Synchronization: the Network Time
Protocol.” In Zhonghua Yang and T.

Anthony Marsland (Eds.), Global States
and Time in Distributed Systems, IEEE
Computer Society Press, 1991.

 [9] Fred B. Schneider, “Understanding
Protocols for Byzantine Clock
Synchronization.” Cornell Department of
Computer Science TR 87-859, 1987.

