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I. INTRODUCTION

An efficient mechanism to estimate distance in the
Internet could benefit many large scale distributed ap-
plications. For example, the performance of overlay net-
works can be greatly improved by exploiting information
about the underlying network but the cost of sending
probe messages to estimate distances can be significant
(e.9., [1], [2], [3D).

This paper introduces PIC, a practical coordinate-
based mechanism to estimate distances in the Internet.
PIC assigns a point in a d-dimensional Euclidean space
to each node and uses the distance between two points
in the space as an estimate of the network distance
between the corresponding nodes. Nodes compute their
coordinates in the Euclidean space when they join the
system. Given the coordinates for two nodes, any node
can predict the distance between them. Our results show
that PIC can reduce the cost of overlay construction in
Pastry [2] by almost an order of magnitude.

In the last few years there has been much interest in
this area, but previous proposals for network distance
estimation suffer from problems that limit their practi-
cality. Most proposals [4], [5], [6], [7] rely on a small set
of infrastructure nodes that are a single point of failure
and can limit scalability if they become communication
bottlenecks. For example, GNP [5], which pioneered
coordinate-based distance estimation, uses a set of fixed
landmark nodes that are probed whenever a node joins
the system.

Other proposals [8], [9] use sets of peer nodes in
the system to compute each node’s coordinates but
they are vulnerable to malicious peers that can cause
coordinates to be arbitrarily wrong. While it may be
reasonable to secure a small set of infrastructure nodes, it
is unreasonable to assume that no peers will behave ma-
liciously. Additionally, the proposal in [8] incurs a large
communication overhead and both proposals appear to
be less accurate than GNP.

PIC addresses these problems. It scales well because
it does not rely on infrastructure nodes; any node whose
coordinates have already been computed can act as a
landmark. Therefore, it can distribute communication
and computation load evenly over all the nodes in a
system. Additionally, it computes coordinates efficiently
and we describe a technique for choosing landmark
nodes that can predict distances as accurately as GNP.
Finally, PIC can compute accurate coordinates even
when some peers are malicious.

The rest of the paper is organised as follows. Section Il
describes PIC and presents some results. Section Il
describes how to implement PIC efficiently. Section IV

describes and evaluates the PIC approach to security and
Section V discusses an application of PIC in proximity-
aware overlay construction. Section VI presents related
work and Section VII concludes.

I1. PIC COORDINATE COMPUTATION

PIC maps each node to a point in a d-dimensional
Euclidean space. When a node n joins the system, it
computes the coordinates of its corresponding point. It
probes the network distance to each element of a set of
landmarks, L, where L must have at least d+1 members.
Then it obtains the coordinates of each landmark, and
uses a multi-dimensional global optimization algorithm
(e.g., Simplex Downhill [10]) to compute its coordinates
such that the errors in the |L| predicted distances between
n and each node in L are minimized. The errors are
computed using the measured and estimated distances.
The probe could use ICMP, application-level round-trip
time, or number of IP hops. This is similar to GNP [5]
but GNP uses a fixed set L for all the nodes that join
the system.

In PIC, the joining node can pick any node whose
coordinates have already been computed to be a land-
mark. Let N be the set of nodes whose coordinates have
already been computed. When a node n joins the system,
it can select any set L that is a subset of N with size
|L| > d. We experimented with three different strategies
to choose L:

« random: pick the elements of L randomly with
uniform probability from NV;

« closest: pick the elements of L to be the elements
of N closest to n in the network topology;

« hybrid: pick some elements as in random and others
as in closest.

We define L for a node n to be the union of two sets
L, and L.. The elements in L, are chosen randomly
from N, whilst the elements in L. are the |L.| members
of NV which are closest to node n in the network.

When bootstrapping the behaviour of the system is
slightly different. If |[N| < |L| then n selects all the
nodes in N. Then it obtains the measured distances
between all pairs of nodes in N (a |N| x |N| matrix).
In this case, the global optimization algorithm computes
new coordinates for all the nodes in N by minimizing
the error in the predicted distances between all pairs of
nodes in NV U {n}.

We use the Simplex Downhill [10] algorithm to
compute coordinates as in [5]. We experimented with
several target error functions to minimize. The one that
performed the best was the sum of the squares of the
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where, d;" is the distance measured between node n and
the ith node in L and &2 is the distance predicted between
node n and the ith node in L.

The intuition behind the different strategies to choose
L in PIC is the following. The closest strategy should
provide the Simplex algorithm with better information
to position the joining node correctly in the Euclidean
space relative to nearby nodes in the network. The ran-
dom strategy should provide the Simplex algorithm with
better information to position the joining node correctly
in the Euclidean space relative to distant nodes in the
network. Therefore, the closest strategy should achieve
lower relative errors when predicting short distances
whereas the random strategy should achieve lower rel-
ative errors when predicting long distances. The hybrid
strategy should achieve something in the middle. The
experimental results in the next section confirm this
intuition and show that the hybrid strategy achieves lower
relative errors than the other strategies.

The current version of Lighthouses [9] uses the ran-
dom strategy to select L. The closest strategy is similar
to the approach used in Mithos [8].

The closest and hybrid strategies require a mechanism
to find the closest nodes to a node in the network. This
can be done in several ways, e.g., using expanding ring
multicast or the algorithms described in [11], [12], [8].
In Section Ill, we describe an efficient closest node
discovery algorithm. The algorithm to find the closest
nodes in Mithos is significantly more expensive than
ours.

A. Experimental evaluation

We ran a number of experiments to evaluate the
different strategies to pick landmarks in PIC and to
compare them with GNP.

1) Experimental setup: The experiments used net-
work distance data from the following three network
topologies. In each topology, there is a core set of routers
and we ran PIC on 40,000 end nodes that were randomly
assigned to routers in the core with uniform probability.
Each end node was directly attached by a LAN link with
a 1ms delay to its assigned router.

GATech is a transit-stub topology generated with the
Georgia Tech [13] random graph generator. This network
topology has 5050 routers arranged hierarchically. There
are 10 transit domains at the top level with an average of
5 routers in each. Each transit router has an average of

10 stub domains attached, and each stub has an average
of 10 routers. The network distance in this topology is
round-trip delay. The delay between routers is computed
by the graph generator and routing is performed using
the routing policy weights of the graph generator. As in
the real Internet, the triangle inequality does not hold for
all round trip times among end nodes in this topology.
Mercator is a topology with 102,639 routers and it was
obtained from real measurements of the Internet using
the Mercator system [14]. The authors of [15] used real
data and some simple heuristics to assign an autonomous
system to each router. The resulting AS overlay has
2,662 nodes. Routing is performed hierarchically as in
the Internet. A route follows the shortest path in the AS
overlay between the AS of the source and the AS of
the destination. The routes within each AS follow the
shortest path to a router in the next AS of the AS overlay
path. The network distance in this topology is the number
of hops in the route and we use shortest path routing.
CorpNet is a topology with 298 routers and is generated
using real measurements of the World-Wide Microsoft
Corporate network. The network distance in this topol-
ogy is the minimum round-trip delay.

We experimented with different values for the number
of landmarks and dimensions. Increasing the number
of dimensions improves accuracy for GNP and all PIC
strategies but we did not observe any benefit above 12
dimensions. Increasing |L| also improves accuracy for
GNP and the random strategy but has little effect for
closest and hybrid. The experiments described here used
d = 8 dimensions and |L| = 16 landmarks.

GNP relies on a fixed set of landmarks so its accuracy
is very sensitive to their placement in the network. To
provide a fair comparison between PIC and GNP, we
ran an optimization procedure to determine the best
landmark placement for GNP on each topology. We
ran 100 different GNP experiments with 1,000 nodes,
1,000 test distances, and different randomly picked sets
of landmarks L. The mean relative error in these exper-
iments varied significantly: it varied between 0.17 and
0.29 in GATech, between 0.17 and 0.23 in Mercator,
and between 0.11 and 0.32 in CorpNet. The results that
we present for GNP were obtained using the landmarks
that produced the minimum average relative error. The
average relative error obtained using PIC did not vary
significantly across these experiments, which is a desir-
able property.

2) Results: Figures 1, 3, and 2 show the cumulative
distribution of relative errors in 100,000 random test
distances for the GATech, Mercator, and CorpNet topolo-
gies. Each figure has lines for GNP and each of the PIC
strategies. The hybrid strategy used 4 nearby landmarks
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Fig. 2. Cumulative distribution of relative errors over random

distances in Mercator.

and 12 randomly selected ones. The results show that
PIC can match the accuracy of GNP with the hybrid
strategy but performs significantly worse using either the
random or closest strategies. It is interesting to note that
GNP is using an optimized landmark placement; PIC
with hybrid provided better accuracy than GNP before
we optimized landmark placement.

Figure 4 provides some intuition to explain the pre-
vious results. It shows the cumulative distribution of
relative errors for short test distances. For this experi-
ment, we randomly selected 2,000 nodes and for each

Relative error (%)

Fig. 4. Cumulative distribution of relative errors over short distances
in GATech.

node we generated test distances between the node and
the 50 closest nodes in the network. This generated a
test set of 100,000 test distances. The results show that
closest performs significantly better than GNP in this
range whereas random performs badly. They support
the intuition that picking landmarks that are close on
the network reduces relative errors in the prediction
of short distances. Since closest does worse than GNP
over random test distances, this also shows that using
distant random landmarks reduces relative errors in the
prediction of long distances. It is unclear why the GNP
curve has a discontinuity around 100%. We suspect that
this is due to the delay discontinuity between LAN and
inter-router links.

The results also show that hybrid performs similarly
to closest over short distances. Therefore, using 4 nearby
landmarks appears to be a good configuration; it achieves
the benefits of closest over short distances and matches
the performance of GNP over random test distances.

Table | shows summary metrics for the relative error
distributions of 100,000 random test distances in all
topologies for GNP and all PIC strategies. The results
are qualitatively similar across all topologies. They are
even gquantitatively very similar for the mean and 90-
th percentile of GNP and hybrid on the GATech and
Mercator topologies.
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GNP | random | closest | hybrid

GATech | Max | 19.11 | 391.60 1.62 2.13

90-th | 0.37 0.75 0.51 0.38

Mean | 0.17 0.41 0.26 0.17

Mercator | Max | 2.50 8.63 1.55 1.64

90-th | 0.37 0.58 0.57 0.37

Mean | 0.17 0.28 0.36 0.17

CorpNet | Max | 13.34 | 404.92 1.00 1.33

90-th | 0.23 0.60 0.47 0.23

Mean | 0.11 0.61 0.20 0.09
TABLE |

RELATIVE ERROR DISTRIBUTION SUMMARIES.




The results also show that the closest and hybrid
strategies reduce the maximum relative error signifi-
cantly relative to the random strategy and GNP, which is
not surprising given that this is likely to correspond to a
short distance and they perform well over short distances.

I1l. FINDING CLOSE NODES

The previous section shows that PIC performs best
using the hybrid strategy but this strategy requires some
mechanism to find the closest nodes in the network. In
the previous section, we used an oracle to find the closest
nodes with global knowledge. This section describes
algorithms that can be used to implement this oracle
efficiently in a distributed system. We also evaluate the
impact on PIC’s accuracy of replacing the oracle by one
of these algorithms.

PIC can replace the oracle by one of several algo-
rithms that have been proposed to find the closest node
to a particular node in a network, for example, [11], [12].
These algorithms all share a similar overlay structure.
Each node in the overlay maintains a set of pointers to
other nodes in the overlay that we call its neighbors.
These algorithms prescribe a particular mix of near and
far away neighbors to ensure that a node n can find the
closest node in the overlay in O(logIN') steps provided
the topology satisfies certain conditions. To find the
closest node, n starts by setting its estimate of the closest
node in the overlay, ¢, to a random overlay node. Then
it probes the distance to all of ¢’s neighbors and picks
the closest neighbor. If this closest neighbor is closest
than the current value of ¢, ¢ is updated to point to
this neighbor and the process is repeated. Otherwise, the
algorithm stops and ¢ is an approximation to the closest
node to n in the overlay. These algorithms can also find
the & closest nodes to n by keeping track of the & closest
nodes visited.

PIC could use one of these algorithms but they require
a significant number of probes to estimate the distance
between nodes. For example, the algorithm in [12]
requires approximately 250 probes for a 60,000 node
network.

We can reduce the overhead by using PIC to es-
timate distances rather than using probes to measure
the distances. The problem is that we need to find the
closest nodes to a node that does not have coordinates
yet. Our improved algorithm solves this problem as
follows. A joining node starts by using PIC with the
random strategy to generate a rough estimate of its
coordinates from a set of random overlay nodes. Then
these rough coordinates are used to estimate distances in
the algorithm to find the closest k& nodes. After finding

probed = Probe(random nodes)
alVisited = probed
CalculateCoordinates(probed)
numwWalks = 0
do
numwWalks++
nearNode = PickRandom(allVisited)
visited = nearNode
do
currentClosest = nearNode
visited += GetNeighbors(nearNode)
nearNode = GetPredictedClosest(visited+{ nearNode},1)
while(currentClosest != nearNode)
alVisited += visited
while (PredictedDistanceTo(nearNode) > ¢
and numWalks < maxWalks)

probed += Probe(GetPredictedClosest(alVisited, k))
CalculateCoordinates(probed)

Fig. 5. Optimized close node discovery algorithm.

the closest & nodes, the joining node uses the PIC hybrid
strategy to refine its coordinates.

We implemented and evaluated two variants of this
strategy. The pseudo code for the first one is in Figure 5.
In this variant, the joining node, n, computes rough
coordinates from a set of random nodes and performs
a series of greedy walks in the overlay towards the
closest node. It starts each walk from a random node
and uses the rough coordinates to estimate distances to
guide the walk. This search stops when the number of
walks reaches a maximum value or when the predicted
distance to the closest node found is below a threshold
t. Our current implementation sets the threshold to the
average distance to the closest neighbor computed over
the set of all nodes visited during the search process.
When the search stops, the node probes the & predicted
closest nodes and uses the measured distances and their
coordinates to recompute its coordinates. We use k& = 4
because our previous results indicate that PIC hybrid
performs well with this value.

The second variant is in Figure 6. It incurs a higher
overhead but it achieves better accuracy because nodes
refine their coordinates at each step of the search pro-
cess. More precisely, the joining node n probes the m
predicted closest neighbors at each step and it uses the
measured distance to select the closest neighbor. n also
recomputes its coordinates using all nodes probed so far.
Our current implementation uses m = 2. Additionally, n
probes the % predicted closest nodes at the end of each



probed = Probe(random nodes)
alVisited = probed
CalculateCoordinates(probed)
numwWalks = 0
do
numwWalks++
nearNode = PickRandom(allVisited)
visited = nearNode
probed += Probe(nearNode)
do
currentClosest = nearNode
visited += GetNeighbors(nearNode)
nodes = GetPredictedClosest(visited, m)
foreach node in nodes
probed += Probe(node)
nearNode = closerToM e(node,nearNode)
CalculateCoordinates(probed)
while (currentClosest != nearNode)
alVisited += visited
probed += Probe(GetPredictedClosest(all Visited,k))
CalculateCoordinates(probed)
while (DistanceTo(nearNode) > ¢
and numWalks < maxWalks)

Fig. 6. Optimized close node discovery algorithm with progressive
coordinate refinement.

walk (if not probed yet) and recomputes its coordinates.

It is also interesting to note that we can can improve
the accuracy of the algorithms to find close nodes, and
reduce their associated cost, by multicasting discovery
messages in a range of one or two network hops. This
simple mechanism will work very effectively when the
density of PIC nodes in the network is high. In the
particular case where all the nodes in the network are
part of the PIC system, a joining node can find the closest
nodes simply by broadcasting a discovery message over
all of its physical interfaces.

A. Experimental evaluation

We ran some experiments to evaluate PIC’s accuracy
when using both algorithms described above. Our ex-
periments ran on the Pastry overlay described in [12].
Each Pastry node keeps a set pointers to neighbors.
These pointers form the overlay that is used to locate
closest nodes. The results should be similar for the
overlay described in [11]. The experiments ran on the
GATech topology in the experimental setting described
in Section I1-A.1. We set the maximum number of walks
to 5, m = 2, and we use k = 4 to match the experiments
presented in previous sections. The pastry overlay was
configured with b =4 and [ = 16 [12].

Figure 7 shows the cumulative distribution of relative
errors for PIC using the oracle and the two algorithms
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to find close nodes. The line labeled PIC Simple cor-
responds to the version of the algorithm in Figure 5,
and the line labeled PIC Refine Coordinates corresponds
to the one in Figure 6. The line labeled PIC Optimal
corresponds to the version of PIC that uses the oracle to
find the closest node as in the previous section.

The results show that PIC’s accuracy is essentially the
same using the oracle or the algorithm with coordinate
refinement but the accuracy drops when using the algo-
rithm without refinement. This drop in accuracy is ex-
plained by the results in Figure 8. This figure shows the
cumulative distribution of absolute errors when finding
close nodes with both algorithms. The algorithm with
coordinate refinement is significantly more effective at
locating the closest node or a close approximation, which
explains the improved accuracy. This increased accuracy
comes at the cost of an increased number of probes: the
algorithm with refinement probes 55.6 nodes on average
and the algorithm without refinement only probes 21
nodes.

V. SECURE COORDINATE COMPUTATION

The version of PIC that we described in the previous
section and previous solutions to network distance esti-
mation are vulnerable to malicious nodes. If a malicious
node is selected as a landmark, it can lie about its



coordinates or interfere with the distance measurement.
The result of this attack is a set of coordinates that can
be arbitrarily wrong. For PIC to be practical, we need
to be able to compute accurate coordinates even when
some of the nodes chosen to be landmarks are malicious.

We devised a security test to eliminate malicious
nodes from the set of landmarks chosen to compute
the coordinates of each node n. The test relies on the
observation that the triangle inequality holds for most
triples of nodes in the Internet. Since the accuracy of
PIC and the other distance estimation proposals relies
on this condition [5], [4], it is a reasonable assumption
for our security test. Therefore, we assume that for most
triples of nodes a,b,c, dop + dpc > do., Where d; ;
denotes either the measured network distance between ¢
and j or the predicted distance.

The intuition behind the security test is as follows. An
attacker that lies about its coordinates or its distance to
the joining node is likely to violate triangle inequality.
The joining node uses the distances it measured to each
landmark node and the coordinates of the landmarks to
check for violations of the triangle inequality. It then
removes from L the nodes that most violate the triangle
inequality.

landmark
i

P
df

joining node landmark

gnm J

Fig. 9. Triangle inequality with measured and predicted distances.

Let L be the set of landmark nodes chosen to compute
n’s coordinates and let 7,5 be two distinct elements of
L. This is illustrated in Figure 9. If ;" is the distance
measured between n and ¢ and dp is the distance
predicted (using the coordinates) between 7 and 7, all
of the following should hold for a correct i:

m m /4
dr < dr+d? (1)

m m /4

dz’ > dj _dz’,j (2)

dp =t —d7 (3)

The first inequality imposes an upper bound on d;*
and the other two impose a lower bound of |d}" — v \

For each element ¢ in L, the security test checks
whether the upper bounds and lower bounds defined by

each element j in L are satisfied by i and computes the
following two metrics:

|L| ' ' y
dr — (d7 + dP )
upper; = ¢ J hJ
o ;%

if (@7 +d?,) < dp,

otherwise
‘L‘ | dm _ d _ dm |f | dm | > dm
lower; = Z J 2 i J
= 0 otherW|se

upper; is the sum of the deviations above the upper
bounds and lower; is the sum of the deviations below
the lower bounds.

The security test computes the maximum value of both
metrics for all nodes in L and removes the correspond-
ing node. Then, the joining node uses the Simplex to
compute its coordinates with the remaining landmarks.
This process is repeated a fixed number of times (less
than |L| — d — 1) or until the average relative error in
the predicted distances between the joining node and
the remaining landmarks is below a threshold (currently,
5%).

A. Experimental evaluation

We ran experiments to evaluate the accuracy of PIC
under attack with the security test.

1) Attacker model: We model a very powerful at-
tacker. We assume that a fraction f of the nodes in the
overlay is malicious and that all the malicious nodes
collude to cause the most damage to the system.

When a node joins the system, all malicious landmarks
collude to produce coordinates for the joining node that
are the furthest away possible from the correct ones. We
give the attacker total knowledge to achieve its goal;
all malicious landmarks know the distances between
all the landmarks and the joining node, n, and all the
landmark coordinates. The attacker uses this information
to compute a set of fake coordinates and distances for
all malicious landmarks that maximize the error in the
coordinates computed for the joining node.

We impose a restriction on the shortest distance pro-
vided by a malicious landmark. It cannot be shorter than
the distance between the joining node and the closest
attacker. This is a realistic assumption if probes include
a nonce (an unpredictable value that identifies the probe).
The nonce ensures that the closest point at which a
credible reply to a distance probe can be faked is the
position of the closest attacker.

Picking fake coordinates and distances that maximize
the error in the coordinates computed for the joining
node is a multi-dimensional optimization problem sim-
ilar to the coordinate computation problem in PIC. The
Simplex algorithm [10] is a good approach to solve this



type of problem. We implement the error maximizing
attack using simplex to minimize the following function:

f(Ca,Da){foo, if 3d € Dy: d < dea, |
/dist(peorrect, P(Ca, Do) Otherwise

Here, C, is the set of attacker coordinates, D, is
the set of attacker distances to the joining node, d.,
is the distance from the joining node to the closest
attacker, peorrect 1S the correct position of the joining
node, and p(C,, D,) is the position of the joining node
computed with the current values of C, and D, (and the
coordinates and distances of the correct landmarks that
are all known to the attacker).

When some malicious nodes are chosen as landmarks,
they compute the joining node’s correct position using
their correct coordinates and distances and the distances
and coordinates of the correct landmark nodes. Then
they find the minimum of the function above using the
Simplex Downhill algorithm and they supply the joining
node with the coordinate values C,, and distance values
D, at the minimum value of f(C,, D,).

We reiterate that this is a very powerful attacker.
In practice, we expect that it will be difficult for the
malicious nodes to learn the distances and coordinates
of the honest landmarks. Additionally, faking distances
to malicious landmarks equal to the distance to the
closest malicious node is hard because it requires the
closest attacker to intercept the probes to all malicious
landmarks. Finally, we give the attacker 10 minutes to
compute fake coordinates and distances that maximize
the error in the coordinates of the joining node. In
practice, the attacker would have only seconds or less
to run this computation.

2) Experimental results: We ran some experiments
to evaluate the accuracy of PIC under the attack model
outlined above. We also experimented with less power-
ful attacker models, for example, attackers that try to
attract joining nodes to their position by providing small
distances, and attackers that provide random distances
and coordinates. The attacker model discussed above was
significantly more effective than all of these.

Figure 10 shows the cumulative distribution of relative
errors for PIC hybrid with 32 landmarks, 4 of which
are nearby landmarks, and security. These results were
obtained with the GATech topology in the experimental
setting described in Section I1I-A.1 but with 2,000 end
nodes. The two topmost lines show the performance
of the system without attacks. They show that using
the security test does not result in any degradation on
accuracy.
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The lines labelled colluding attackers were obtained
using the attacker model described above when 10% and
20% of the nodes in the system are malicious. The results
show that the accuracy of PIC is very good even when
the fraction of malicious nodes is high and even with the
very powerful attacker that we modelled.

V. NETWORK-AWARE OVERLAY CONSTRUCTION
WITH PIC

Recently there has been much interest in structured
peer-to-peer overlay networks like CAN, Chord, Pastry,
Tapestry, and others [16], [17], [2], [3], [18], [19]. They
assign application-defined keys to overlay nodes and
provide a primitive to route a message to the node
responsible for a key. Structured overlays conform to
a specific graph structure that allows them to route in
O(log N) hops while maintaining at most O(log N)
routing state where N is the number of nodes in the
overlay.

It is important for overlay routing to exploit proximity
in the underlying network. Otherwise, each overlay hop
has an expected delay equal to the average delay between
a pair of random overlay nodes, which stretches route
delay by a factor equal to the number of overlay hops
and increases the stress in the underlying network links.
There are several techniques for proximity-aware routing
proposed in the literature [20], [3], [16], [2], [21], [22].
Recent work [23], [24], [25] identifies proximity neigh-
bor selection (PNS) as the most promising technique.
Tapestry, Pastry [12], and a recent version of Chord [25]
implement PNS.

PNS can be used to achieve low delay routes and
low bandwidth usage. It selects routing state entries
for each node from among the closest nodes in the
underlying topology that satisfy constraints required for
overlay routing. Currently, building the routing state of
each node requires probes to estimate network distances
when nodes join and while maintaining the overlay. This



contributes a significant overhead, for example, there are
approximately 297 distance probes on average when a
node joins a Pastry network with 20,000 nodes. These
overheads are lower than in other algorithms.

Using PIC to estimate network distances reduces this
overhead by almost an order of magnitude because
distance probes can be replaced by PIC distance esti-
mates. PIC only requires distance probes to compute
node coordinates. This technique can be applied to any
of the systems mentioned above. We implemented and
evaluated a version of PNS on Pastry that uses PIC to
estimate network distances.

We modified Pastry to use PIC as follows. Each Pastry
node already maintains a set with 16 other nodes (called
the leaf set) which are random and uniformly distributed
across the network. A joining node uses the leaf set of
its contact node as the set of landmarks L to compute
a rough estimate of its coordinates with random PIC.
Then it uses this rough estimate to find the closest node
in the Pastry overlay while refining its coordinates using
the algorithm in Figure 6. When it finds this node,
it uses the algorithm in [12] to join with the closest
node as seed. We modified the join and routing table
maintenance algorithms in Pastry to replace probes by
distances estimated with PIC.

A. Experimental evaluation

We ran an experiment to evaluate the impact of using
PIC on overhead and route delays. We used the GATech
topology model described before and we ran Pastry on
20,000 end nodes that were randomly assigned to routers
in the core with uniform probability. Each end node was
directly attached by a LAN link with a delay of 1ms
to its assigned router. We compare the version of Pastry
described in [12] with the version of Pastry that uses
PIC, which is labeled Pastry-PIC.

Figure 11 shows the number of distance probes per
node when building the overlay in both versions of Pas-
try. The results show that PIC can reduce the overhead by
almost an order of magnitude; Pastry-PIC requires only
an average of 32 probes per node while Pastry requires
an average of 297.

The second experiment routed 100,000 lookup mes-
sages from randomly chosen overlay nodes to randomly
chosen keys. Figure 12 shows the delay stretch relative
to the direct IP route between source and destination for
both versions of Pastry. The results show that PIC can
reduce the overhead dramatically while increasing route
delays by only 13% on average.

Furthermore, there are several applications built on top
of Pastry that can benefit from the coordinates generated
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using PIC. For example, they can reduce the cost of
the bottleneck remover in the Scribe [26] application
level multicast algorithm that currently requires probes
to estimate network distances. They can also improve the
performance of anycast on Scribe trees [27].

V1. RELATED WORK

Most mechanisms that have been proposed to estimate
network distances [4], [5], [6], [7], [28] rely on a set of
special infrastructure nodes that are a single point of
failure and that bear most of the communication load
required to predict distances. For example, GNP [5],
which pioneered coordinate-based distance estimation,
uses a set of fixed landmark nodes that are probed
whenever a node joins the system. These landmarks
can limit the scalability of the system if they become
communication bottlenecks and the system’s accuracy is
very sensitive to their placement. PIC does not require
any dedicated infrastructure and it matches the accuracy
of GNP with optimized landmark placement.

Mithos [8] does not rely on dedicated infrastructure
but it selects the closest nodes as landmarks. Therefore,
our results indicate that it is less accurate than GNP
and hybrid PIC. Additionally, the algorithm used by
Mithos to locate the closest nodes is expensive because
it requires a large number of probes to measure network
distance. We described an efficient algorithm to locate
the closest nodes using PIC. Mithos does not include
any defense against malicious landmarks.



Lighthouses [9] was designed concurrently with PIC.
It also does not rely on a fixed infrastructure but selects
landmarks randomly. Therefore, our results indicate that
it is less accurate than GNP and hybrid PIC. Lighthouses
computes coordinates differently from GNP and PIC. It
uses exactly d + 1 landmarks and solves a set of linear
equations to determine a nodes’s coordinates. It lacks
the robustness to measurement noise and malicious peers
of a multidimensional optimization algorithm with more
landmarks. The techniques that we describe to secure
PIC could potentially be used to secure Lighthouses.

VII. CONCLUSIONS

This paper described PIC, a coordinate-based mecha-
nism to estimate Internet network distance (i.e., round-
trip delay or network hops). PIC is scalable and robust
because it does not rely on infrastructure nodes and
spreads load evenly over all the nodes in the system. PIC
is also secure because it can compute accurate coordi-
nates even when some nodes are malicious. Therefore,
PIC can be used to improve the performance of many
large-scale distributed applications like network-aware
overlay construction and location of nearby resources
in the network. We modified Pastry to use PIC instead
of direct distance probing. Our results indicate that PIC
reduces the cost of joining the Pastry overlay by almost
an order of magnitude.
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