
Bumping Windows between Monitors

Tim Regan
Mary Czerwinski

Brian Meyers
Greg Smith

3/12/2003

Technical Report
MSR-TR-2003-13

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Bumping Windows between Monitors
Tim Regan, Mary Czerwinski, Brian Meyers, and Greg Smith

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052 USA
timregan@microsoft.com

Abstract: Users’ move from single to multiple monitors so that they can use more screen real estate. This increase enables
them to keep a greater number of windows open and visible at the same time. But there is a cost: arranging a window takes far
longer since there is more screen space to traverse and more relationships between windows to take into account. To address
this we added ‘bumping’ to an application and tested it in a user study. Bumping allowed users to automatically move a
window across multiple monitors. In this paper, we present our experiment contrasting three styles of bumping. We found less
window repositioning required when users were given bumping in contrast to their existing practices. However we also found
that simple implementations of intelligent bumping are not predictable, causing problems for our participants.

Keywords: Windows management, multimon, multiple monitors

1 Introduction
As increasing numbers of users turn to multiple monitors to
solve their problems of limited screen real estate, new
problems with windows management arise, problems not
dealt with by the operating system. To quote Grudin
(Grudin, 2001):
“Multimonitor development has focused on getting the
system display software and the application program
interface to work, with little attention to the human
computer interface or intelligent exploitation by system or
applications”
One such problem is the increased effort in arranging
windows. Multiple monitor users can (and do) keep more
windows open, but as they drag windows to arrange them
there is more screen space to traverse. The traditional single
monitor method of minimizing the window or moving it
further back in the z-order of open windows is often not
used on multiple monitors, as there is the space available to
keep the window visible. We know from Fitt’s law that the
time taken to move the cursor to an item on the screen is
proportional to the log of the distance to the item over the
items size.
To make windows arrangement faster and easier on
multiple monitors we added a new feature that we called
bumping to an application. Bumping took a window and
automatically moved it to a new position. We implemented
three different bumping methods:
1. Faithful bumping maintains the relative position of the
window. If the source and target screen are the same size
(in pixels squared) then no resizing will take place.
2. Dark-space bumping moves and resizes the window to
cover a currently unobscured region of the desktop.
3. Unobscured bumping moves and resizes the window to
cover only unobscured desktop or windows that are already
partially obscured.

To test the efficacy of these bumping methods against
users’ existing practices we conducted a user study, the
results of which are presented in this paper. Firstly we
present related work and give more detail of our design and
implementation.

2 Related Work
Data visualization techniques often have to deal with
packing a large number of visible items (data points) into a
limited screen space. For example, in Valence (Fry, 2002)
Fry looks at building representations that explore the
structures and relationships inside very large sets of
information in a limited space. But unlike generalized
visualizations, windows are simple objects: they are
rectangular, they need to be large enough for their contents
and surrounding tools to be legible, they live on a
rectangular background, and there are not that many of
them open at any one time. Hence we can restrict our
attention to algorithms for manipulating rectangles. In (Bell
and Feiner, 2000), Bell and Feiner detail the algorithms
they have used to manage the layout of rectangles, covering
notions of empty space and its dual, and how to add and
remove rectangles from each.
There are a number of interaction techniques and
representational metaphors that work on, and exploit, large
displays. Example display metaphors include fish-eyes
(Furnas, 1986), zoomable UIs (Bederson, 2000), and focus
plus context screens (Baudisch et al, 2001). Flow menus
(Guimbretière et al, 2001) and gestural interactions (Myers
et al, 2002) are good examples of large screen interaction
techniques. Whilst informative, these do not deal directly
with the problem of automatic layout of information or
windows.

One solution to the windows arrangement problem is to
swap from overlapping windows to other possibilities, for
example tiling windows (Bly and Rosenberg, 1986). Today,
innovative ways of handling windows are examined to
handle new tasks and new ways of working. For example in
(Kandogan and Schneiderman, 1996), Kandogan and
Shneiderman revisit tiled windows to address tasks like
photo sorting, where masses of images need to be addressed
by the user at once. A categorization of such windows
coordination actions is contained in (North and
Schneiderman, 1997). Similarly in (Beaudouin-Lafon,
2001), Beaudouin-Lafon proposes rotating and peeling back
windows as a way to address the increasing number of open
windows made possible by today’s powerful PCs. Through
our notion of bumping we seek to tackle the problem of
window arrangement without abandoning overlapping
windows, since they are the established norm.
The closest work we have found to our notion of bumping
is by Hutchings and Stasko in (Hutchings and Stasko,
2002). Their ‘expand and shove’ techniques allow users to
expand a window in such a way that other windows on the
screen are not further obscured or shrunk, though they may
be moved. Any movement maintains windows’ relative
positioning. Expand and shove work together to give more
screen space to the window that the user is currently
focused on, but they result in older windows collecting
towards the periphery of the display. While this may work
well on large homogeneous display surfaces, multiple
monitors are used differently. Multiple monitor users will
turn from one screen to another, changing their experience
of which screen is the focus and which peripheral. Expand
and shove never make a window (or its visible region)
smaller, thus leading to a number of large windows vying
for desktop space. Bumping allows users to take up unused
desktop with the bumped window – which may involve
making it smaller. Bumping is also useful for discarding
windows in such a way that they may be easily reacquired
later. In summary expand and shove are useful for
increasing the visible area of the window a user is currently
attending to without sacrificing relative positioning of
windows and without complex windows arrangement.
Bumping is useful when a user’s attention is swapping from
one window to another.

3 Arranging Windows
When people move windows aside, where do they want to
put the window? A field study to answer this question
accurately is beyond the scope of this paper, but we can
analyze the possibilities.
Move and refer to
Here the user wants to move a window away and start work
in another window, while keeping the first visible for
reference. Suppose that a user is working on a spreadsheet
and becomes stuck trying to perform a complex sequence of

data manipulation. He may turn to the web to find relevant
newsgroup threads and having read them; move the
newsgroup browser aside to return to my spreadsheet.
However he still needs to refer to the suggested solution, so
the browser must remain visible. The reference may be
purely visual or may involve transferring information (e.g.
through cut-and-paste or drag-and-drop) between open
windows.
Move and keep working
Here the user wants to move the window to a new position
and keep working on it there. For example, a user may turn
to his secondary screen and start writing an email, but if the
email becomes complicated he may want to move it to his
primary work area. This would be a semantic-move in that
it positions the window following the user’s semantic
designation of the screen space. Alternatively a user may
turn from some code one is writing on her new 21” monitor
to perform some SQL queries on her old 15” screen. As the
data becomes hard to view on the smaller screen she may
move the window to the larger screen. This would be a
quality-move in that it positions the window following
qualitative differences within the screen space. There is
overlap between the notions of semantic-move and quality-
move; users may designate one screen as their secondary
monitor on which they conduct peripheral tasks purely
because of qualitative differences between that and their
primary screen. These qualitative differences extend
beyond the technical specification of the screen and
graphics card. One of the participants in the experiment
described later in this paper who ran a three screen set-up
reported using the left hand screen for instant messaging
and emailing friends because the left monitor was not
visible to people walking past him, and thus maintained his
privacy.
Move and return to later
Single screen users often minimize windows they wish to
stop working on now but return to later. For example a user
may turn from authoring a report to answer incoming email.
Once the email is dealt with she returns to the report. There
are disadvantages with minimizing windows, disadvantages
associated with the limited size of the Microsoft Windows
start-bar or the Mac task-switcher. Because both are small
they quickly get crowded with icons if many applications
are running. Because they are small they cannot effectively
leverage users’ spatial navigation skills when users seek to
return to an application. Placing a window on another
screen allows users to get on with their work and more
easily go back and get the window when it is required.
Remove
Having become acquainted with using window moves in
preference to minimize, multiple monitor users may also
associate the ‘window move’ action with the ‘get window
out of the way’ intent, thus making use of fast muscle
memory. Hence some moves may in fact be in place of
closing windows.

Figure 1: Faithful Bumping

Figure 2: Dark-space Bumping

Figure 3: Unobscured Bumping

4 Bumping Functionality
In this section we will explain the bumping mechanism and
discuss our design choices.
As mentioned in the introduction we implemented three
bumping methods:

1. Faithful bumping,
2. Dark-space bumping, and
3. Unobscured bumping.

Faithful bumping is the easiest to understand and is shown
in Figure 1. The bumped window moves from one screen to
another, and maintains its relative position. In Figure 1 the
clear IE window on the left hand screen is moved as
indicated by the grey arrow to the same size and position on
the right hand screen. We implemented two styles of
faithful bumping: one that retains the absolute size of the
window and another that resizes the window so that it
occupies the same proportion of the new screen. This is
particularly useful for multiple monitor users who have

used an old discarded monitor as their second screen. This
second screen is often physically smaller and runs at a
lower resolution than the primary monitor. In these
conditions a faithful bump of a window, from the primary
to the secondary screen, may result in obscuring all of the
second screen without displaying the whole window.
Resizing during faithful bumping is also useful for users
with homogeneous screen who run their start bar as a wide
horizontal bar at the vertical edge of one of the monitors, as
this reduces the available desktop space on that monitor.
Dark-space bumping takes a bumped window and places it
inside the largest rectangle of unobscured desktop available
in the direction of the bump, resizing if necessary. Figure 2
shows the result of dark-space bumping. The clear IE
window on the left hand screen is bumped to the clear IE
window on the right hand screen, in order to avoid the two
open Windows Explorer windows, its size is reduced.
Like dark-space bumping, unobscured bumping searches
for new rectangles of unobscured space in which to position
the bumped window. In addition to uncovered desktop it
includes windows that are already partly obscured by other
windows. Figure 3 shows how the clear IE window on the
left hand screen will be bumped to the right hand screen
using unobscured bumping. Because one of the Windows
Explorer windows is partially obscured by the other, the
bumped IE window assumes its new position over a
combination of the already obscured window and
unobscured desktop space.
Note that if there is sufficient space available, a dark-space
or an unobscured bump may not result in the window
switching screens but moving on the current screen instead.
Our prototype application was a text editor with two
buttons added to a toolbar with arrows signifying ‘bump
left’ and ‘bump right’. In most windows based operating
systems (e.g. Microsoft Windows, Mac, and X Windows)
buttons associated with managing the positioning or size of
a window are placed in the window’s title bar. Most
systems provide alternatives to this. For example, on
Microsoft Windows PC the keyboard shortcut Alt-Space M
acquires a window for moving, so that pressing the arrow
keys will move the window until the user presses Enter to
leave the mode. Our bump buttons’ placed in the toolbar
just below the menus was a pragmatic choice for ease of
implementation.
Gestural interaction styles have been successfully applied to
large screens (Guimbretière et al, 2001) and to small
screens (Perlin, 1998). Instead of a button we could, for
example, have had users acquire a window and then flick
the mouse to send the window in the direction of the flick.
We decided against this in favour of a button push for three
reasons:

• Gestural input has not taken off for standard
personal computing size screens (i.e. 15” to 21”
diagonal screens) which multiple monitors extend

• Gestural input would be a substantial departure
from current window manipulation techniques and
hence less likely to be adopted

A keyboard shortcut to bump the window was also included
in our prototype.

5 Experiment
To test our bumping idea, both quantitatively and
qualitatively, we ran a user study. In this section we present
the study and discuss the results.

1.1 Research Questions
The specific questions we wished to address were:
1) Is the bumping button effective in reducing the amount
of window dragging required of users?
2) Does the bumping button improve productivity?
3) Do users prefer a bumping button?
With reference to the above questions we wanted to know
which bumping algorithm performed best.

1.2 Experimental Setup
Participants
17 volunteers (5 female and 12 male) from the greater
Puget Sound area were recruited from our company’s
usability database to participate in the study. Unfortunately
3 cancelled and 3 interpreted the screening question “Do
you currently use Windows XP with two or more
monitors?” differently from us, bringing our final number
of participants to 11 (2 female and 9 male). We wanted to
use only people experienced with multiple monitor use for
two reasons. Firstly, we have found that the learning effects
of multiple monitor use can dominate other factors in
studies. Secondly, we wanted to get suggestions from the
users on how a bump button should work in practice.
Participants’ jobs were mainly (but not all) technical.
Participants had been using multimon for an average of 2 ½
years (SD = 2 years 5 months). This was not evenly spread:
7 users had been using multiple monitors for less than 1 ½
years while the remaining 4 had been using multiple
monitors for more than 4 years. The participants were
screened to be intermediate to expert Windows and Office
users, as per validated internal screening tools.
Task & Design
We had participants do two tasks four times on a two
monitor PC. The two monitors were identical 21” CRTs
(i.e. not flat LCD screens) each at 1024 by 768 pixel
resolution with the start bar along the bottom edge of the
left hand screen. Participants completed a brief
questionnaire after each of the four sessions and a longer
one at the end. Before each pair of tasks the participants had
a short practice session to familiarize themselves with the
changes in behaviour of the bump button. The ordering of
the conditions was fully balanced across the subjects. The
four conditions were the three bumping methods discussed
already (faithful bumping, dark-space bumping, and

unobscured bumping) as well as a condition with the
bumping buttons removed.
The prototype application we chose was a simple text
editor, but with the minimize and the maximize buttons
disabled.
Task 1: The Reconstruction Task involved opening 9 Rich
Text Format (RTF) files. The contents of 5 of the files
were to be found, jumbled line by line, in 3 of the other
files. The files opened in the same place and with the same
size on left hand screen so that each file is initially obscured
by the previous one. The last file to be opened was the
instructions. Users had to reconstruct the missing contents
of the 5 files using the other 3. So, for example, the line
starting “H-10” is line 10 from file H and the user, having
located it, would cut-and-paste it back into position in file
H. After 3 minutes the users were stopped and asked to start
the second task.
Task 2: The Alphabet Task instructions gave users two
random lines of ten letters and asked them to recreate them
across the two screens using the letter files provided so that
the letters were not obscured. Figure 4 shows one screen
during the second task in progress.
The Reconstruction Task was designed to involve a lot of
switching back and forth between windows: 3 files were
required for repeated searching for lines to paste into the
other 5 files. The Alphabet Task was designed to require a
lot of careful window positioning and resizing. As we have
argued already, positioning windows so that they are
readable (unobscured) and so that they are available are key
windows management tasks on multiple monitor systems
and so our tasks are typical, if abstract, windows
management tasks.
These tasks abstract the two main behaviours encountered
when users move and refer to windows, as discussed in
Section 3. Task 2 abstracts visual reference (i.e. the task of
looking at the information in multiple windows
simultaneously). Task 1 abstracts transferring information
between open windows (e.g. cut-and-paste). We could
instead have chosen more realistic, domain specific, tasks
instead of abstract ones (e.g. building a stock report in
Word from a PowerPoint deck and a number of company
and financial websites, or predict tomorrow’s weather from
a number of current and recent weather charts). We chose
not to for two reasons, one pragmatic and one theoretical.
Pragmatically our bumping button was implemented as part
of an application (not added to an existing application) and
so sticking to a simple WordPad kept the programming
required manageable. Theoretically we believed that the
results from abstract tasks could more easily be generalised,
precisely because of the abstraction.

1.3 Experimental Results
Partly due to our small sample size the differences and
distinctions given in this section are mostly not significant
as shown by the test values reported. The tests are one-way

ANOVAs unless otherwise stated. The discussion therefore
hangs on trends inferred from the data and should not be
interpreted as statistically significant.

Figure 4: Task 2 in Progress
Preference was measured by the question “If you had to do
the tasks again, which version would you use?” 9 of the 11
participants choose a bumping case (χ2 (1, n=11) = 4.45, p
= 0.04). They were also asked “Which task did you enjoy
the most?” and 7 of the 11 participants choose a bumping
case (χ2 (1, n=11) = 0.82, p = 0.36). Although the presence
of a bumping button was preferred, the preference is not
entirely explained by enjoyment (perceived performance
gains etc. could be other factors considered by participants).
Of those who chose the bumping cases there was no
appreciable difference shown between the faithful, dark-
space, and unobscured bumping conditions. We also asked
if participants felt a bumping button to move a window
automatically was useful. On a seven point scale, with 1
representing “not at all” and 7 representing “yes very
much”, the average answer was 5.73 (STD 1.85).

0

5000

10000

15000

20000

25000

30000

Faithful Dark-space Unobscuring None

D
ra

g
 M

o
ve

m
en

t (
p

ix
el

s)

Figure 5: Reconstruction Task, Average Total Windows Dragging

0

5000

10000

15000

20000

25000

30000

35000

40000

Faithful Dark-space Unobscuring None

D
ra

g
 M

o
ve

m
en

t (
p

ix
el

s)

Figure 6: Alphabet Task, Average Total Windows Dragging
The basic purpose of the bumping button was to reduce the
amount of window dragging required. Figure 5 and Figure 6
show the average total number of pixels that windows are
dragged for the Reconstruction Task and the Alphabet
Task. The values for the Reconstruction Task are averages
of 7391, 7729, 6351, and 19039 pixels for the faithful,
dark-space, unobscured, and no bumping conditions
respectively (F(3,30)=1.82, p=0.17). The values for the
Alphabet Task are 9914, 9549, 8502, and 19039 pixels for
the faithful, dark-space, unobscured, and no bumping
conditions respectively (F(3,30)=1.97, p=0.14). In both
cases we see a difference between the case without a
bumping button and the cases with: there is more windows
dragging required without the bumping button. But this is
misleading. The reduction in window dragging was only of
benefit if the bumped window alighted in a position the user
was happy with. If the user had to immediately move their
cursor to the window and correct its position, then the
bumping did not reduce mouse movement.

0

5000

10000

15000

20000

25000

30000

Faithful Dark-space Unobscuring None

D
ra

g
 M

o
ve

m
en

t (
p

ix
el

s)

Figure 7: Reconstruction Task, Average Adjusted Total Windows
Dragging

0

5000

10000

15000

20000

25000

30000

35000

40000

Faithful Dark-space Unobscuring None

D
ra

g
 M

o
ve

m
en

t (
p

ix
el

s)

Figure 8: Alphabet Task, Average Adjusted Total Windows
Dragging
Figure 7 and Figure 8 show a similar measure: the average
total number of pixels windows are dragged for the
Reconstruction Task and the Alphabet Task, but this time
with position tweaking taken into account. Bumped window
moves that require immediate repositioning are added to the
total window dragging number. The values for the
Reconstruction Task are averages of 14498, 15120, 12511,
and 25877 pixels for the faithful, dark-space, unobscured,
and no bumping conditions respectively (F(3,30)=1.21,
p=0.32). The values for the Alphabet Task are 22311,
29600, 24398, and 25877 pixels for the faithful, dark-space,
unobscured, and no bumping conditions respectively
(F(3,30)=0.52, p=0.67). The prominent difference, between
the case without a bumping button and the cases with, is
retained in the Reconstruction Task as we go from the drag
figures to these adjusted drag figures but lost in the
Alphabet Task. It is replaced with a slight increase in the
dark-space dragging over the other conditions. In the
Reconstruction Task users needed to swap between
windows, but the windows positioning was left to the users’
own preferences. In this case the bumping buttons reduced
the amount of dragging required. The Alphabet Task was
about moving and resizing windows where their exact
placement was important and largely prescribed. Hence any
initial advantage gained by bumping for this task is lost as a
window’s positions and size are adjusted until perfect.

0

2

4

6

8

10

12

14

Faithful Dark-space Unobscuring None

N
u

m
b

er
 o

f L
in

es
 C

o
p

ie
d

Figure 9: Reconstruction Task, Average Number of Lines
Completed in 3 Minutes

0

1

2

3

4

Faithful Dark-space Unobscuring None

T
im

e
T

ak
en

 (m
in

u
te

s)

Figure 10: Alphabet Task, Average Time Taken
Figure 9 and Figure 10 show measures of task performance.
Figure 9 shows the number of lines cut-and-paste in the 3
minutes of the Reconstruction Task. The values are
averages of 10, 8, 8, and 12 lines for the faithful, dark-
space, unobscured, and no bumping conditions respectively
(F(3,30)=3.53, p=0.03). Figure 10 shows the time taken to
complete the Alphabet Task in minutes. The values are
averages of 3.45, 3.82, 3.82, and 3.27 minutes for the
faithful, dark-space, unobscured, and no bumping
conditions respectively (F(3,30)=1.32 p=0.29). Both charts
show an increase in productivity for the faithful and the no
bumping conditions over the dark-space and the unobscured
bumping conditions.
This distinction between the more complex conditions
(dark-space and unobscured) and the simple conditions
(faithful and no bumping) are reflected in the participants’
comments. Typical comments include:

• “made it quicker to move them, especially when I
knew where they would go”,

• “it is useful, but the bump button needs to place
the window in an expected place”, and

• “[it needs to be] simple to guess what it does”.
When asked where a bumping button should place the
window, the participants gave a variety of responses, but

many people wanted it to retain its size (of the 8
participants whose comments included sizing information,
7 of them suggested no resizing).
We observed some unexpected uses of the bumping
buttons, especially in the Alphabet task. One was the use of
the ‘bump left’ button. Windows were fixed to initially
open towards the left of the left hand screen. So whilst in
the conditions which allowed automatic resizing clicking
the bump left button had the effect of making the window
smaller. Although this did not save participants time,
several tended to prefer using it over manual resizing.
Another unexpected use was the sizing and positioning of a
window before clicking the bump button. Because of its
easy predictability, some users positioned and sized a
window on the left hand screen before bumping it over to
the right hand screen using in the faithful bumping
condition.

1.4 Discussion of Experimental Results
The bumping button was clearly a popular addition for
multimon users: our participants chose it above the no
bumping condition and enjoyed using it more. They
declared that the addition of a bumping button was useful.
It reduced the amount of dragging users needed to perform,
but the total amount of window management related cursor
movement was only reduced in the Reconstruction Task.
The Reconstruction Task was typical of tasks where
multiple windows provide the sources and targets for
content. The fine-grained windows positioning required in
the Alphabet Task exceeded our bump methods’ abilities.
Performance was better with the simple behaviours: without
bumping or using faithful bumping. Each version of the
bumping had been explained to participants and practiced
by them before the tasks, but dark-space bumping and
unobscured bumping was too complex for participants to
predict. It may be that longer term usage of the bump button
would allow users time to develop an effective mental
model of the more complex bumping algorithms. It also
seems that the single aspect of the more complex bumping
that participants found least useful was the resizing. One
participant suggested that we keep our algorithms for
intelligent placement of windows but just remove the
resizing element.
However, the best bumping button may be the most
complex. One participant’s advice to us on the best
bumping method to encode was that it should place the
window “where I want it to go”.

6 Conclusions
We have explained how the benefits afforded as users adopt
multiple monitors come with an associated cost in terms of
windows management. On single monitor PCs complex
window arrangements are not desirable since the resulting
windows are too small to work with. In multiple monitor
systems users may lay windows side by side, and allow

each window ample space to read or work in. This
arrangement involves users dragging and resizing windows
across large screen distances. We showed how automating
this arrangement by bumping windows can be an
advantage. We implemented three simple methods of
bumping and tested them in a user experiment. Bumping
reduced the amount of windows dragging required, though
not for all tasks: some tasks requiring exact windows
placement still need to be accomplished manually.
Bumping may be added to the multiple monitor UI in a
variety of ways. It could be implemented within an
application, in an OS, or as part of a set of windows
management functions (e.g. Ultramon
http://www.realtimesoft.com/ultramon/) has a notion
similar to our faithful bumping in their multiple monitor
management software). For those working on such
enhancements our recommendations are:

• Include bumping – we have shown that it can be
effective in reducing the windows drag required
for windows management.

• Keep it simple – we have shown that the semantics
of the bumping button must be transparent to users
for the benefits to emerge.

7 Next Steps
Although each bumping method we implemented was
obviously algorithmic, and hence predictable, two of the
algorithms proved too complex for the user to accurately
and quickly predict. To address this we intend to re-
implement similar algorithms but without the windows
resizing element. This implies that the bumped window
would obscure more of the screen (since we cannot make it
smaller) and so we will try new methods of determining
valid areas to obscure. For example we can analyze
windows bitmaps to find large areas of white-space
adjacent to a windows edge.
We will also add animation to the window bump to test if
that helps users gain an understanding of the underlying
mechanism and hence find the bump more predictable.
We intend to add the bumping button to a greater array of
applications (or all applications) so that we can study a
richer media mix of tasks in our experiment, for example
pasting pictures into reports or presentations or data
between spreadsheets. We can then install the enhancement
in participants’ workspaces to gain a longitudinal
understanding of the usage of bumping.

8 References
Baudisch, P., Good, N., and Stewart, P. (2001). Focus Plus

Context Screens: Combining Display Technology with
Visualization Techniques, in Proceedings of UIST2001.

Beaudouin-Lafon, M. (2001). Novel Interaction Techniques for
Overlapping Windows, in Proceedings of UIST2001.

Bederson, B. (2000). Jazz: an extensible zoomable user interface
graphics toolkit in Java, in Proceedings of UIST2000.

Bell, A.B. and Feiner, S.K. (2000). Dynamic Space Management
for User Interfaces, in Proceedings of UIST2000.

Bly, S.A. and Rosenberg, J.K. (1986). A Comparison of Tiled and
Overlapping Windows, in Proceedings of CHI86.

Furnas, G. (1986). Generalized Fisheye Views, in Proceedings of
CHI86.

Fry, B. (2002). Valence,
http://acg.media.mit.edu/people/fry/valence/

Grudin, J. (2001). Partitioning Digital Worlds: Focal and
Peripheral Awareness in Multiple Monitor Use, in
Proceedings of CHI2001.

Guimbretière, F., Stone, M., and Winograd, T. (2001). Off the
wall: Fluid interaction with high-resolution wall-size
displays, in Proceedings of UIST2001.

Hutchings D.R. and Stasko, J. (2002). QuickSpace: New
Operations for the Desktop Metaphor, in Proceedings of
CHI2002.

Kandogan, E. and Shneiderman, B. (1996). Elastic Windows:
Improved Spatial Layout and Rapid Multiple Window
Operations, in Proceedings of AVI96.

Myers, B.A., Bhatnagar, R., Nichols, J., Peck, CH., Kong, D.,
Miller, R., and Long, C.A. (2002). Input Devices:
Interacting at a distance, in Proceedings of CHI2002.

North, C. and Shneiderman, B. (1997). A Taxonomy of Multiple
Window Coordinations, Technical Report, University of
Maryland.

Perlin, K. (1998). Quikwriting: Continuous Stylus-Based Text
Entry, in Proceedings of UIST99

