

SmartMoveX on a Graph – An
Inexpensive Active Badge Tracker

John Krumm

Lyndsay Williams
Greg Smith

June 14, 2002

Technical Report
MSR-TR-2002-70

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Abstract. Measuring the locations of people and things in a building is an im-
portant part of ubiquitous computing. We present new hardware and software
for this purpose. The hardware, called SmartMoveX, is an active badge system
in which a small radio transmitter is attached to the person or thing being
tracked. Receivers placed in the building’s existing offices, connected to exist-
ing PCs, transmit signal strength readings to a central PC using the building’s
existing computer network. Combined with the low cost of the hardware, using
the existing network makes this active badge system much less expensive than
many others. To compute locations based on signal strength, we gathered signal
strength readings from predefined location nodes in the building. We defined a
graph on these nodes, which allowed us to enforce constraints on computed
movements between nodes (e.g. cannot pass through walls) and to probabilisti-
cally enforce our expectations on transitions between connected nodes. Model-
ing the paths with a hidden Markov model, we used the Viterbi algorithm to
compute optimal paths based on signal strengths over the node graph. The aver-
age location error was 3.05 meters, which compared favorably to a simple
nearest neighbor algorithm’s average location error of 4.57 meters.

1 Introduction

Knowing the indoor location of people and things is widely considered to be a key
enabler of ubiquitous computing applications. These applications include location-
sensitive messaging, location-based reminders, and activity inferencing. While the
location of static things such as furniture, big displays, and desktop computers can
reasonably be measured manually, the locations of things that move, including people,
demand automatic measurement. The Global Positioning System works well outdoors,
but there is not yet a comparably ubiquitous and inexpensive technology for measuring
location indoors.

This paper presents a new active badge system for measuring the location of people
and things indoors. The two hardware components of our system are shown in Figure
1. The active badge is the small device, slightly larger than a normal automobile re-
mote key. The badge is attached to objects to be measured, and it transmits radio fre-
quency (RF) signals to several receivers placed around the building. The receiver is the
larger device in the figure. The receivers measure the RF signal strength from the
badge transmissions. The signal strengths of the receptions are combined to compute
the location of the badge in a tracking algorithm based on a hidden Markov model
(HMM) defined on a graph of discrete locations in the building.

One of the system’s features is its low cost, partly due to its low parts cost. The
parts for a badge transmitter cost about US$ 6, for a receiver about US$ 16. The major
cost saving, however, comes from reusing the building’s existing computer network
instead of requiring a custom network as many active badge systems do. Each of the
receivers is connected to a normal PC via an RS-232 serial cable. When a receiver
receives a badge transmission, it sends data to its host PC, which in turn forwards the
data over the building’s existing network to a central PC for storage and analysis. In a
real implementation, the receivers would be placed in occupied offices and connected

to existing PCs. These PCs would each run our very light-weight data-forwarding
program in the background. By using the building’s existing network, the system
avoids the high cost of a custom network devoted to the badge system. In our imple-
mentation, we used four receivers to cover 350 square meters. Not counting the cost of
the badges nor any PCs, and considering the existing network infrastructure as free,
this works out to a cost of about US$ 0.18/square meter.

The location of the badge is measured based on the signal strength of the RF recep-
tions at all the receivers. In our case, each transmission results in a vector of four sig-
nal strength readings, one element from each of the four receivers. We match the live
signal strength vector with a set of calibration signal strength vectors taken from a set
of known, discrete positions (“nodes”) in the building, shown in Figure 3. We imple-
mented a simple nearest-neighbor algorithm that matched the live measurement vector
with the closest training vector. This gave a mean location error of 4.57 meters. We
implemented another algorithm that confined the badge’s path to the connections be-
tween the nodes shown in Figure 3. We formalized this algorithm as a hidden Markov

Fig. 1. The badge transmitter is on the left, with buttons for on, off, one-time transmit and
periodic transmit. The receiver, on the right, is powered externally and connects to a PC via
RS-232. The receiver measures the signal strength of transmissions from the badge. The pen
is just a pen.

model on a graph of nodes using the same training data as for the nearest neighbor
algorithm. The graph of connected nodes helps tracking by constraining the path to
physically possible transitions between nodes, e.g. paths cannot pass through walls.
The graph also encodes transition probabilities between nodes which help enforce our
a priori expectations of people’s movement between nodes. The HMM algorithm
reduced the average error of our location measurements to 3.05 meters. While we
show this algorithm working on signal strengths from our own badge hardware, it
would apply to many other forms of sensor-based tracking in a building, including
other active badge systems.

3 SmartMoveX Active Badge and Network Data Logger

The hardware for our active badge system is called SmartMoveX and was invented at
Microsoft Research in Cambridge, UK. SmartMoveX consists of a small radio trans-
mitter that transmits 433 MHz FM to multiple receivers as shown in Figure 1. Each
transmission packet contains an ID number of the transmitter, a measured physical
activity level, and an incrementing transmission counter to help detect missed trans-
missions. The transmitter uses a PIC microcontroller to read and control the functions
of a tilt switch, tilt angle sensor, the transmitter itself, and four outside buttons. The tilt
switch is used to shut off the transmitter after a minute of inactivity and to turn it on
again when it moves, thus saving battery power. The physical activity of the transmit-
ter is measured by how many times the tilt angle sensor measures an angle beyond a
preset threshold. Although we don’t use this information in our tracking application, it
could be used to infer users’ activities like running, walking, and sitting. The four
outside buttons are used to turn on the transmitter, turn off the transmitter, put the
transmitter in a periodic transmit mode, and trigger a one-time transmission. The de-
fault transmission mode is to transmit a data packet whenever the activity level ex-
ceeds a certain threshold. In our experiments, we used the periodic transmit mode
which gave a new transmission every one second. When the transmissions are either
periodic or triggered by the one-time transmit button, the activity level in the transmit-
ted message is overwritten with a special value so we can tell that the transmission was
triggered by a button and not activity. The cost estimate of US$ 6 per transmitter is
based on a transmitter without the tilt switch and tilt sensor, as they are not integral to
the location-tracking problem we address in this paper.

The SmartMoveX receiver is a small box with connections for DC power and RS-
232. It has a 15cm antenna with which to receive transmissions. Each transmission is
demodulated by a receiver chip which also generates a digital radio signal strength
indicator (RSSI). The transmission data (ID, physical activity level, transmission
counter) and RSSI are sent to a serial communications chip which forwards the data
out the RS-232 port to the host PC. With the addition of RSSI, each transmission re-
sults in the PC receiving a record consisting of the transmitter ID, activity level,
transmission count, and RSSI.

On each host PC we have a logging program listening to the receiver, as shown in
Figure 2. Upon receipt of a transmission record from the receiver, this program ap-

pends the name of the PC and the name of the RS-232 port to the data record and for-

wards it to a SQL Server database on a central PC. This PC collects such records from
all receiver PCs. To avoid clock synchronization issues on the PCs, the central PC is
responsible for appending a time stamp to each incoming record. Gathering all the
records in a database allows us to run queries and computations on the transmission
data and allows us to run offline experiments for tracking such as was done for this
paper.

3 Spatial Representation and Calibration

Each RF transmission from a mobile transmitter is heard by all the receivers in the
area, resulting in a column vector of signal strength readings, s . In our case we used

Fig. 2. This is a screen shot of our data logging program. Each receiver is connected to a
host PC running an instance of this program. The program retransmits data records to a
central SQL Server database. In a real system, this program would run in the background of
regular office PCs that were hosting a receiver.

four receivers, so each signal strength vector had four scalar elements. In open space
we might expect the signal strength to fall off with the square of the distance between
the transmitter and receiver. Unfortunately, even this simple relationship does not
necessarily hold, as shown by an experiment in [1] using hardware similar to ours.
Although this experiment was performed in a large, presumably open, room, the au-
thors found a significant deviation from the inverse square law which they attributed to
reflection and interference of the signal. In a continuation of this work, [2] went on to
use the more sophisticated path loss model of Seidel and Rapport[3], which was found
to fit the data better. This model was also used by [4] to account for attenuation due to
walls. However, it is still difficult to predict the effect of furniture, devices, and people
on signal strength, particularly if the locations of these things are unknown. In fact [4]
found that their analytical model of signal strengths worked significantly worse than
their pure empirical model for measuring locations within a multi-room building.

Based on the difficulty of analytically modeling signal strengths, we adopted an
empirical approach to predicting signal strengths similar to the RADAR system of [4].
For this approach we took a series of calibration signal strength readings at predefined
node locations in our building, shown in Figure 3. We manually picked the node posi-
tions, generally one for each office, one for each office-size rectangle in larger rooms,
and one outside each door in the hallways. For each of the 42=N nodes, we call the
calibration signal strength readings ()j

is , where i indexes the node (10 −= Ni K),

and j indexes the calibration sample at that node. iN is the number of readings we

took at node i , so for ()j
is , we have 10 −= iNj K . Each ()j

is is a vector of four signal

strengths, one from each receiver. We took a total of 1256 calibration signal strength
vectors. The number of calibration vectors taken for each node varied from 12 to 50,
with an average of 30.

We took the calibration readings in about 30 minutes by walking around with a lap-
top PC wirelessly connected to our building’s network running the calibration program
shown in Figure 3. At each node in the building the walker clicked on the correspond-
ing node on the map and then clicked the “I’m Here Now” button to send a time-
stamped and location-stamped marker to the same SQL Server database that was si-
multaneously collecting transmissions from the walker’s transmitter. The walker
clicked “Going Away Now” to send a marker indicating the end of calibration for a
particular node. This way we produced a database containing signal strength readings
bracketed by markers indicating which nodes the transmissions had come from. At
each node the walker rotated and moved in an effort to sample the likely positions and
orientations of a person wearing a transmitter near that node. For the hallway nodes he
merely spun around in place a few times. We note that our sampling of signal strengths
at the nodes was not meant to measure the frequency of occurrence of signal strengths.
Instead, we just tried to get a reasonable sampling of all the signal strength vectors that
we would likely measure at each node. For this reason, it did not make sense to try to
summarize the training data with a histogram or probability distribution function.

One interesting question is how the variation of signal strengths at a node compare
with the variation of signal strengths throughout the whole building. For measuring
location, we would prefer that location be the primary factor in the variation of signal
strengths, and that small variations of position and orientation at a node cause rela-

tively small variations in signal strengths. Unfortunately, this was not the case for us.
In fact, the maximum intra-node range of signal strengths was about 87% of the inter-
node range for the whole set of nodes. Thus, rotation and small motion at a node can
cause fluctuations in signal strength that are as large as fluctuations caused by moving
from node to node.

We gathered test data by walking on two prescribed paths through the nodes with a
transmitter pinned to the front of the walker’s shirt. The transmitter was set to periodi-
cally transmit at a one second interval, which resulted in a sequence of time-stamped

Fig. 3. This is a screen shot of our manual calibration program. It shows the layout of the
rooms, the nodes, and connections between the nodes. The locations of the four receivers are

shown with a . The position and name of the manually selected node are shown in text,
and the selected direction is shown as both text and a line coming from the selected node.
(We ignore direction in this paper.) Pressing “I’m Here Now” sends the coordinates of the
selected node and the direction to the same central database where the live receiver data is
stored. The nodes inside the oval in the lower right are shown in more detail in Figure 6.

signal strength vectors ()is . We computed the walker’s speed by summing the dis-

tances between the visited nodes and dividing by the elapsed time of the walk. Using
this speed and the distances between the nodes, we could estimate the walker’s nearest
node for each of the time-stamped test transmissions. In total, our ground truth data
consisted of 140 transmissions, each characterized by the closest node and a vector of
four signal strengths.

4 Nearest Neighbor Location Measurement

The general procedure for measuring the location of a transmitter is to compare its
latest signal strength vector s against the calibration signal strength vectors described
above. We implemented a simple nearest-neighbor location algorithm, similar to
RADAR[4], as a baseline against which to test our more sophisticated graph-based
algorithm described in the next section. The nearest neighbor algorithm simply finds
the ()j

is with the minimum Euclidian distance to s and declares the transmitter to be at

the node from which this ()j
is came. More formally, given a signal strength reading s ,

we compute the corresponding node n as

() 




 −=

−=−=

j
iNjNi i

n ss
1010

minminarg
KK

 (1)

As a reminder, ()j
is is the thj calibration vector from node i , iN is the number of

calibration vectors at node i , and N is the number of nodes.. This computation is
relatively fast with only 1256 calibration vectors to compare to, certainly fast enough
to keep up with the 1 Hz transmission rate of the transmitter.

We quantified the results by computing the Euclidian distances between the com-
puted and actual nodes. The average error for our 140 test nodes was 4.57 meters. The
distribution of error distances is shown in Figure 5.

Signal Strength vs. Time

110

120

130

140

150

160

170

180

190

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (sec)

S
ig

n
al

 S
tr

en
g

th

Fig 4. This is a plot of recorded signal strengths from four receivers as a person walked
around our building. We estimated the person’s position at each reception, which occurred at
one-second intervals.

One obvious omission from this algorithm is any enforcement of the fact that people

cannot move through walls and must traverse in-between nodes to get from place to
place. We include these constraints in the next method and show correspondingly
better results.

5 Tracking on a Graph

The nearest neighbor algorithm ignores any adjacency relationships between the nodes,
so it allows instantaneous transitions between nodes that are separated by a wall and/or
an arbitrarily large distance. We found we could improve the performance of the sys-
tem significantly by adding path constraints that only allow physically realizable paths
through the nodes. In fact, using this constraint reduced the mean error from 4.57 me-
ters in the nearest neighbor case to 3.05 meters, using the same calibration data.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

error in meters

nu
m

be
r

of
 o

cc
ur

re
nc

es
Error Histogram for Nearest Neighbor Method

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

error in meters

nu
m

be
r

of
 o

cc
ur

re
nc

es

Error Histogram for Graph Method

Fig. 5. These histograms show the distribution of errors measured in meters between the
actual nodes and computed nodes for 140 test nodes. The Graph Method, using the Viterbi
algorithm, makes fewer overall errors in picking the right node (0 column), and has a lower
mean error of 3.05 meters compared to 4.57 meters for the Nearest Neighbor method.

5.1 Graph and Transition Probabilities

We instantiated the constraints with the manually constructed graph of nodes shown
in Figure 3. The connections between the nodes show which paths we allow. This is an
easy way of preventing paths from going through walls and of preventing superhuman
transitions between distant nodes.

The allowable paths between nodes are hard constraints. We also attached transition
probabilities between connected nodes as a soft constraint on the likelihood of moving
between nodes or remaining at the current node. We assigned the transition probabili-
ties manually based on our assumptions about people’s behavior. For instance, we
assumed that the probability of moving from a node in an office to the node outside the
office’s door was 0.05 in the one-second interval between transmissions, with the
remaining 0.95 being the probability of remaining at the office node. We define jia →

as the probability of transitioning from node i to node j, and we pick the transition

probabilities such that 0≥→ jia and 1
1

0
=∑ −

= →
N

j jia , where N is the number of nodes.

We note that iia → indicates the probability of staying at node i, and it is never zero for

our model. To eliminate the possibility of transitioning between node i and j, we sim-
ply set 0=→ jia . Figure 6 shows some of the transition probabilities we used. These

nodes are from the lower right part of the map in Figure 3, where we have drawn an
oval around them. The transition probabilities give a principled way of incorporating
our prior beliefs about people’s behavior into the tracking algorithm. The transition
probabilities are balanced against the sensor measurements in an attempt to compute
paths that satisfy both.

Another a priori set of probabilities that we need is the probability of starting a path
at a given node. We denote the probability of a path starting at node i as iπ . Since we

have no prior knowledge of where a path starts, we set Ni
1=π , where N is the

number of nodes. This means the path can start at any node with equal probability.
Using the initial state probabilities and transition probabilities, the probability of a

path { }1210 ,,,, −Tnnnn K is
1221100 −− →→→ TT nnnnnnn aaa Kπ if we disregard the signal

strengths.

5.2 Hidden Markov Model

The graph, initial state probabilities, and transition probabilities represent our a priori
knowledge of people’s behavior. The remaining element in tracking location is the
signal strength data. The standard way to combine uncertain measurement data, dis-
crete states, and transition probabilities between the states is a hidden Markov model
(HMM)[5].

The “Markov” part of the HMM is manifested in our transition probabilities. We
will say the sequence of nodes in a person’s path up to time 1−i is { }1210 ,,,, −innnn K .

The first-order Markov assumption says that the probability of transitioning to some
node in at time i is a function only of node 1−in and not any of the other previous

nodes. This probability is what we represent in our transition probabilities, jia → .

Stated as an equation, the first-order Markov assumption is

() ()
ii nniiiii annPnnnnP →−−− −

==
11021 ,,, K (2)

The “hidden” part of the HMM has to do with the signal strength data. Since we are

not measuring the node sequence directly, we say that it is hidden from direct view,
and the only things we can see are the signal strength vectors. The signal strength
vector s is probabilistically related to the node in via the probability distribution

function ()inP s , which is called the observation probability function.

Ideally we would compute the observation probability with a carefully constructed
physics-based model including our hardware, radio wave propagation equations, and
the RF attenuation effects of objects and people. But this is too hard. The next best
approach would be to thoroughly sample signal strengths at all the nodes and empiri-
cally construct observation probabilities for each one. This is also too hard, as it would

hall
0.05

printer
0.3

0.45 0.7

office
0.95

0.05

0.05

hall
0.05

0.450.45

office
0.95

0.05

0.05

hall
0.05

0.32 0.45

0.320.45

0.32

0.45

Fig. 6. These are some of the transition probabilities that we assigned to our graph of nodes.
These nodes come from the lower right of Figure 3, where we have drawn an oval around
them. The circles are the nodes, and the numbers inside the nodes show the probability of
staying at that node. The curved arrows between the nodes are annotated with the transition
probability. The transition probabilities shown are rounded to two decimal places.

mean spending considerable time at each node and trying to mimic the behavior of a
typical user at that node, including turning, sitting, standing, bending, and moving, all
of which have a significant effect on signal strength. Not only would we have to an-
ticipate all these behaviors, we would have to anticipate their frequency of occurrence.

Our approach to computing the observation probability functions was to use the
training data we originally gathered for our nearest neighbor algorithm described in
Section 4. We gathered this data by stopping at every node, turning and slightly mov-
ing, while recording signal strengths. This was intended to capture a series of plausible
signal strength vectors, but not intended to capture their frequency of occurrence. To
compute ()inP s from this data, we first find the nearest neighbor calibration vector at

the node in :
()j
nn i

in
i

sss −=
−=

∗

1N0j
min
K

 (3)

Where, as a reminder,
inN is the number of calibration vectors at node in , and ()j

ni
s

are the calibration vectors at node in . The assumption here is that the calibration vec-

tor from node in that most closely matches s corresponds to the physical pose of the

walker at that node that produced s . The probabilistic part of the observation probabil-
ity function comes from the signal noise inherent in a series of signal strength readings
from a stationary transmitter, which we model as Gaussian. An experiment with our
hardware suggests that the noise standard deviation of signal strength is approximately
one unit. Taking ∗

ins as the mean and assuming statistical independence among the

four receivers, the observation probability function is

() ()
() ()∗−∗ −Σ−−

Σ
= in

T

in

enP i

ssss
s

1

2
1

5.04
2

1

π
 (4)

where the covariance matrix Σ is the 4x4 identity matrix scaled by the standard devia-
tion of the signal strength readings, which we measured to be approximately one.

With the initial state probabilities, transition probabilities, and observation prob-
abilities, we can compute the probability of a given path through the nodes given the
signal strength readings. The relevant parts are:

Transmission times { }1210 ,,,, −Ttttt K

Nodes along path { }1210 ,,,, −= Tnnnn KN

Measured signal strengths () () () (){ }1210 ,,,, −= Ttttt ssssS K

Data likelihood () ()()∏
−

=
→→→ −−

=
1

0
1221100

T

i
iinnnnnnn ntPaaaP

TT
sNS Kπ

Given a set of signal strengths S , we would like to find the path ∗N that maximizes
the data probability ()NSP . This path will conform to our a priori expectations about

the path as well as to the signal strength measurements. One inefficient way to do this

is to check all possible paths. The Viterbi algorithm, described next, gives a much
more efficient way of finding ∗N .

5.3 Viterbi Algorithm

The Viterbi algorithm is described nicely in [5], so we omit a complete description
here. The result of the Viterbi algorithm is the state sequence ∗N that maxi-
mizes ()NSP . It is based on a quantity Rabiner calls ()jiδ , where 10 −= Ti K is the

time index and 10 −= Nj K is the node index. For time 0=i :

() ()()jtPj j 00 sπδ = (5)

This is just the product of the probability of starting at node j (which is jπ) and the

probability of measuring ()0ts at node j (which is ()()jtP 0s). The estimate of the

first node in the sequence is simply the maximum of ()j0δ over the node index j , i.e.

()()jn

Nj
0

10
0 maxarg δ

−=

∗ =
K

 (6)

Subsequent values of ()jiδ are computed recursively as

() ()() ()()jtPakj ijki

Nk
i s→−−=

= 1
10

max δδ
K

 (7)

Where the time index ranges over 11 −= Ti K . At each time i the node estimate is

()()jn i

Nj
i δ

10
maxarg

−=

∗ =
K

 (8)

Thus the computations are simple, and each new signal strength reading gives a new
node estimate.

Using the Viterbi algorithm along with the transition probabilities and observation
probability function, we achieved an average location error of 3.05 meters compared to
an average error of 4.57 meters for the nearest neighbor algorithm described above.
The distribution of errors is shown in Figure 5. We attribute this improvement to three
factors:

1. The graph limits paths to only those that are physically possible.
2. The transition probabilities encourage paths that conform to our a priori

expectations of people’s behavior.
3. The Viterbi algorithm uses all the data up to and including the current time

to compute the most likely current node. The nearest neighbor algorithm
using only the current signal strength vector.

The third point is not obvious from Equation (8), but the Viterbi algorithm implic-
itly reoptimizes the path at every time step. The algorithm described in [5] shows how
to maintain auxiliary variables that can be used to compute the complete path at every
time step. We don’t use this part of the algorithm, because we are only interested in the
current best node. But it is the case that the best node computed at each time step by
Equation (8) may not end up being on the best path at subsequent time steps. At the
expense of some delay, we can slightly improve our performance by waiting to com-
pute the best node until a few more measurements have been recorded. We compared
the accuracy of computing the nodes one at a time with Equation (8) to computing the
single best path at the end of the walk. The average error for the single best path was
2.81 meters, slightly better than 3.05 meters reported above.

A potentially useful byproduct of the Viterbi algorithm is ()jiδ , which is the prob-

ability of being at node j at time i given the data up to and include time i . In equa-

tion form

() () () () ()()iii
nnnn

i ttttjnnnnnPj
i

ssss ,,,,,,,,,,max 2101210
,,,, 1210

KK
K

== −
−

δ (9)

Instead of reporting the single best estimate of the current node to a location-aware
application, ()jiδ could be used for reporting the probability of being at each node. If

the uncertainty were too high, an application could defer taking certain actions or it
could consult other sources of location information.

6 Comparisons to Similar Systems

Active badge location systems date back to the work of Olivetti Research Laboratory
in 1989[6], which used diffuse infrared to measure proximity. Other location meas-
urement systems since then have used ultrasound, RF signal strength, and RF time of
flight. An excellent taxonomy and survey of these systems can be found in [7].

We will compare our system against technologies with similar hardware or soft-
ware. The most similar existing hardware is from the company RFIDeas Inc. Their
“AirID” product allows users approaching a PC to be automatically logged on by vir-
tue of their wearing a badge transmitting RF[8]. The receiver connects to the PC via
RS-232, just like ours. Although this system was not designed to measure location in a
building, Hightower et al.[1] investigated its use for location measuring in a room.
They measured 3D location based on multiple receivers and an empirically derived
function giving signal strength as a function of distance to the receiver. The hardware
limited signal strength measurements to two bits, which in turn limited the system’s
resolution to a cube of three meters on a side. In addition, it took 10 to 20 seconds to
gather readings from all the receivers into the central database for the computation of a
single 3D location.

One of our system’s advantages is its low infrastructure cost, which in our test con-
sists of four inexpensive, statically mounted RF receivers connected to existing PCs
via RS-232. There are systems with theoretically even less expensive infrastructure

costs, such as the SpotOn hardware by Hightower et al. [1] and the “Positioning by
Diffusion” idea from Spratt[9]. Both these systems can theoretically operate with no
fixed base stations, although real world test results have not been published yet. MIT’s
Cricket[10] location-support system uses non-networked, ceiling-mounted ultrasonic
transmitters whose cost per unit is about the same as our RF receivers, making its
infrastructure cost similar to ours. Randell and Muller[11] describe a similar system
with much higher spatial resolution and low cost. Both the infrared Active Badge and
ultrasonic Active BAT[12] from AT&T Cambridge require their own dedicated net-
work to connect statically mounted base stations, which is expensive.

Another closely related system, both in terms of hardware and software, is
RADAR[4], which comes from our colleagues at Microsoft Research. RADAR’s
infrastructure cost is essentially zero, since it uses the building’s existing 802.11 wire-
less network to locate mobile wireless devices. RADAR used signal strength in a near-
est neighbor sense much as we do, and even used a rudimentary Viterbi-like algo-
rithm[13] to help smooth trajectories. Our infrastructure could be used to complement
RADAR where wireless access is not available.

The Nibble[14] system also uses 802.11 signals to compute locations in a building.
Interestingly, it uses the measured signal-to-noise ratio instead of absolute signal
strength. Nibble is based on a Bayesian network to compute the probability of being at
any of a set of discrete locations in the building, much like our system. Nibble’s
Bayesian network also supports the inclusion of transition probabilities between nodes.

7 Conclusion

The SmartMoveX transmitter and receiver hardware make an inexpensive basis for an
in-building location-tracking system. Besides being cheap to build, the hardware uses
existing office PCs and a building’s existing network, thus saving the cost of a network
dedicated to active badges. On top of SmartMoveX we have built a tracking algorithm
using signal strengths from four receivers placed around our building. Instead of trying
to analytically model signal strength as a function of location, we gathered signal
strength readings from a set of discrete location nodes in the building. We confined the
badge-wearer’s computed location to one of the nodes, and we further confined his
path to feasible connections between these nodes. In addition, transition probabilities
between the nodes give soft constraints on a person’s path. We combined the graph of
nodes and signal strength data in an HMM and used the Viterbi algorithm to compute
the most likely path, giving an average location error of 3.05 meters. This compares
favorably to a naïve nearest neighbor algorithm using the same data, which gave an
average error of 4.57 meters. Thus, by constraining the possible path with the node
graph, we were able to significantly improve performance. Our algorithm would apply
to other forms of in-building location tracking as well.

8 References

1. Hightower, J., G. Borriello, and R. Want, SpotOn: An Indoor 3D Location
Sensing Technology Based on RF Signal Strength, UW-CSE 2000-02-02,
University of Washington, 2000.

2. Hightower, J., et al., Design and Calibration of the SpotOn Ad-Hoc Location
Sensing System,
http://www.cs.washington.edu/homes/jeffro/pubs/hightower2001design/hight
ower2001design.pdf.

3. Seidel, S.Y. and T.S. Rapport, 914 MHz Path Loss Prediction Model for
Indoor Wireless Communications in Multifloored Buildings. IEEE Transac-
tions on Antennas and Propagation, 1992. 40(2): p. 207-217.

4. Bahl, P. and V.N. Padmanabhan. RADAR: An In-Building RF-Based Loca-
tion and Tracking System. in IEEE INFOCOM 2000. 2000. Tel-Aviv, Israel.

5. Rabiner, L.R., A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition. Proceedings of the IEEE, 1989. 77(2): p. 257-
285.

6. Want, R., et al., The Active Badge Location System. ACM Transactions on
Information Systems, 1992. 10(1): p. 91-102.

7. Hightower, J. and G. Borriello, Location Systems for Ubiquitous Computing.
Computer, 2001. 34(8): p. 57-66.

8. Inc., R., Proximity Acitivated Identification,
http://www.pcprox.com/Support/AIRID/airid.html.

9. Spratt, M., An Overview of Positioning by Diffusion, HPL-2001-207, HP
Laboratories Bristol, 2001.

10. Priyantha, N.B., A. Chakraborty, and H. Balakrishnan. The Cricket Location-
Support System. in 6th ACM International Conference on Mobile Computing
and Networking. 2000. Boston: ACM Press.

11. Randell, C. and H. Muller. Low Cost Indoor Positioning System. in Ubicomp
2001. 2001. Atlanta, GA, USA: Springer.

12. Harter, A., et al. The Anatomy of a Context-Aware Application. in 5th Annual
ACM/IEEE International Conference on Mobile Computing and Networking.
1999. Seattle, WA: ACM Press.

13. Bahl, P., V.N. Padmanabhan, and A. Balachandran, Enhancements to the
RADAR User Location and Tracking System, MSR-TR-2000-12, Microsoft
Research, 2000.

14. Castro, P., et al. A Probabilistic Room Location Service for Wireless Net-
worked Environments. in Ubicomp 2001. 2001. Atlanta, GA, USA: Springer.

