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Abstract  

We describe a punctuation insertion model 
used in the sentence realization module of a 
natural language generation system for 
English and German. The model is based on 
a decision tree classifier that uses 
linguistically sophisticated features. The 
classifier outperforms a word n-gram model 
trained on the same data. 

1 Introduction 

Punctuation insertion is an important step in 
formatting natural language output. Correct 
formatting aids the reader in recovering the 
intended semantics, whereas poorly applied 
formatting might suggest incorrect 
interpretations or lead to increased 
comprehension time on the part of human 
readers. 
In this paper we describe the intra-sentence 
punctuation insertion module of Amalgam 
(Corston-Oliver et al. 2002, Gamon et al. 2002), 
a sentence-realization system primarily 
composed of machine-learned modules. 
Amalgam’s input is a logical form graph. 
Through a series of linguistically-informed steps 
that perform such operations as assignment of 
morphological case, extraposition, ordering, and 
aggregation, Amalgam transforms this logical 
form graph into a syntactic tree from which the 
output sentence can be trivially read off. The 
intra-sentence punctuation insertion module 
described here applies as the final stage before 
the sentence is read off. 
In the data that we examine, intra-sentential 
punctuation other than the comma is rare. In one 
random sample of 30,000 sentences drawn from 
our training data set there were 15,545 commas, 

but only 46 em-dashes, 26 semi-colons and 177 
colons. Therefore, for this discussion we focus on 
the prediction of the comma symbol. 
The logical form input for Amalgam sentence 
realization can already contain commas in two 
limited contexts. The first context involves 
commas used inside tokens, e.g., the radix point 
in German, as in example (1), or as the delimiter 
of thousands in English, as in example (2). 

(1) Ich habe DM 4,50. 
“I have 4.50DM.” 

(2) I have $1,000 dollars. 

The second context involves commas that 
separate coordinated elements, e.g., in the 
sentence “I saw Mary, John and Sue”. These 
commas are treated as functionally equivalent to 
lexical conjunctions, and are therefore inserted 
by the lexical selection process that constructs the 
input logical form. 
The evaluation reported below excludes 
conjunctive commas and commas used inside 
tokens. We model the placement of other 
commas, including commas that indicate 
apposition (3), commas that precede or follow 
subordinate clauses (4) and commas that offset 
preposed material (5). 

(3) Colin Powell, the Secretary of State, said 
today that… 

(4) After he ate dinner, John watched TV. 
(5) At 9am, Mary started work. 

2 Related work 

Beeferman et al. (1998) use a hidden Markov 
model based solely on lexical information to 
predict comma insertion in text emitted by a 
speech recognition module. They note the 



difficulties encountered by such an approach 
when long distance dependencies are important 
in making punctuation decisions, and propose the 
use of richer information such as part of speech 
tags and syntactic constituency. 
The punctuation insertion module presented here 
makes extensive use of features drawn from a 
syntactic tree such as constituent weight, part of 
speech, and constituent type of a node, its 
children, its siblings and its parent. 

3 Corpora 

For the experiments presented here we use 
technical help files and manuals. The data 
contain aligned sentence pairs in German and 
English. The alignment of the data is not 
exploited during training or evaluation; it merely 
helps to ensure comparability of results across 
languages. The training set for each language 
contains approximately 100,000 sentences, from 
which approximately one million cases are 
extracted. Cases correspond to possible places 
between tokens where punctuation insertion 
decisions must be made. The test data for each 
language contains cases drawn from a separate 
set of 10,000 sentences. 

4 Evaluation metrics 

Following Beeferman et al. (1998), we measure 
performance at two different levels. At the token 
level, we use the following evaluation metrics: 

•  Comma Precision: The number of 
correctly predicted commas divided by 
the total number of predicted commas. 

•  Comma Recall. The number of correctly 
predicted commas divided by the total 
number of commas in the reference 
corpus. 

•  Comma F-measure. The harmonic mean 
of comma precision and comma recall, 
assigning equal weight to each. 

•  Token accuracy: The number of correct 
token predictions divided by the total 
number of tokens. The baseline is the 
same ratio when the default prediction, 
namely do not insert punctuation, is 
assumed everywhere. 

 
At the sentence level, we measure sentence 
accuracy, which is the number of sentences 

containing only correct token predictions divided 
by the total number of sentences. This is based on 
the observation that what matters most in human 
intelligibility judgments is the distinction 
between correct and incorrect sentences, so that 
the number of overall correct sentences gives a 
good indication of the overall accuracy of 
punctuation insertion. The baseline is the same 
ratio when the default prediction (do not insert 
punctuation) is assumed everywhere. 

5 Punctuation learning in Amalgam 

5.1 Modeling 

We build decision trees using the WinMine 
toolkit (Chickering, n.d.). Punctuation 
conventions tend to be formulated as “insert 
punctuation mark X before/after Y” (e.g., for a 
partial specification of the prescriptive 
punctuation conventions of German, see Duden 
2000), but not as “insert punctuation mark X 
between Y and Z”. Therefore, at training time, we 
build one decision tree classifier to predict 
preceding punctuation and a separate decision 
tree to predict following punctuation. The 
decision trees output a binary classification, 
“COMMA” or “NULL”. 
We used a total of twenty-three features for the 
decision tree classifiers. All twenty-three features 
were selected as predictive by the decision tree 
algorithm. The features are given here. Note that 
for the sake of brevity, similar features have been 
grouped under a single list number. 

1. Syntactic label of the node and its parent 
2. Part of speech of the node and its parent 
3. Semantic role of the node 
4. Syntactic label of the largest 

immediately following and preceding 
non-terminal nodes 

5. Syntactic label of the smallest 
immediately following and preceding 
non-terminal node 

6. Syntactic label of the top right edge and 
the top left edge of the node under 
consideration 

7. Syntactic label of the rightmost and 
leftmost daughter node 

8. Location of node: at the right edge of the 
parent, at the left edge of the parent or 



neither 
9. Length of node in tokens and characters 
10. Distance to the end of the sentence in 

tokens and characters 
11. Distance to the beginning of the sentence 

in tokens and in characters 
12. Length of sentence in tokens and 

characters 

The resulting decision trees are fairly complex. 
Table 1 shows the number of binary branching 
nodes for each of the two decision tree models for 
both English and German. The complexity of 
these decision trees validates the data-driven 
approach, and makes clear how daunting it would 
be to attempt to account for the facts of comma 
insertion in a declarative framework. 
 
Model English German 
Preceding punctuation 563 743 
Following punctuation 664 633 

Table 1 Complexity of the decision tree models 
in Amalgam 

At generation time, a simple algorithm is used to 
decide where to insert punctuation marks. 
Pseudo-code for the algorithm is presented in 
Figure 1. 

For each insertion point I 
For each constituent whose right boundary 
occurs at the token preceding I 

If p(COMMA) > 0.5 
Insert comma 
Do next insertion point 

End if 
End for each 

For each constituent whose left boundary 
occurs at the token following I 

If p(COMMA) > 0.5 
Insert comma 
Do next insertion point 

End if 
End for each 

End for each 

Figure 1 Pseudo-code for the insertion algorithm 

The threshold 0.5 is a natural consequence of the 
binary target feature: p(COMMA)>p(NULL) 
implies p(COMMA)>0.5. 

Consider the application of the Amalgam 
punctuation insertion module for one possible 
insertion point in a simple German sentence Er 
las ein Buch das kürzlich erschien “He read a 
book which came out recently”. The parse tree 
for the sentence is shown in Figure 2. 

DECL1

NP1

PRON1
Er

VERB1
las

NOUN1
Buch

ADJ1
ein

DETP1

NP2

RELCL1

AVP1NP3

PRON2
das

VERB2
erschien

ADV1
kürzlich

Insertion point

 

Figure 2 German parse tree 

The scenario illustrated in Figure 2  is relatively 
straightforward. According to German 
punctuation conventions, all relative clauses, 
whether restrictive or non-restrictive, should be 
preceded by a comma, i.e., the relevant insertion 
point is between the noun Buch “book” and the 
relative clause das kürzlich erschien “which 
came out recently.” 
When considering the insertion of a comma at the 
marked insertion point, Amalgam examines all 
constituents whose rightmost element is the 
token preceding the insertion point, in this case 
the noun Buch “book”. There is no non-terminal 
constituent whose rightmost element is the token 
Buch. The decision tree classifier for following 
punctuation is therefore not invoked. 
Amalgam next considers all constituents whose 
leftmost element is the token to the right of the 
insertion point, in this case das “which”.1 The 
constituents to be examined are NP3 (the 
projection of the pronoun), and RELCL1, the 
clause in which NP3 is the subject. 
Consulting the decision tree for preceding 
punctuation for the node NP3, we obtain 
p(COMMA) = 0.0001. Amalgam proceeds to the 
next highest constituent, RELCL1. Consulting 

                                                      
1 Note that many relative pronouns in German are 
homographic with determiners, a notable difficulty for 
German parsing. 



the decision tree for preceding punctuation for 
RELCL1 yields p(COMMA) = 0.9873. The 
actual path through the decision tree for 
preceding punctuation when considering 
RELCL1 is illustrated in Figure 3. Because the 
probability is greater than 0.5, we insert a comma 
at the insertion point. 

Label of top left edge is not RELCL and 
Label is RELCL and 
Part of speech of the parent is not Verb and 
Label of rightmost daughter is not AUXP and 
Label of leftmost daughter is not PP and 
Label of smallest following non-terminal node is 

not NP and 
Part of speech of the parent is Noun and 
Label of largest preceding non-terminal node is 

not PP and 
Label of smallest following non-terminal node is 

not AUXP and 
Distance to sentence end in tokens is < 2.97 and 
Label of top right edge is not PP and 
Distance to sentence end in token is < 0.0967 

Figure 3 Example of the path through 
the decision tree for preceding punctuation 

5.2 Evaluation 

In Table 2 we present the results for the Amalgam 
punctuation approach for both English and 
German. 

 English German 
Comma recall 67.64% 87.54% 
Comma precision 74.44% 85.44% 
Comma F-measure 70.88% 86.47% 
Token accuracy 98.02% 98.72% 
Baseline accuracy 96.44% 95.35% 
Sentence accuracy 76.90% 84.00% 
Baseline accuracy 56.44% 47.30% 

Table 2 Experimental results  
for comma insertion in Amalgam 

Amalgam’s punctuation insertion dramatically 
outperforms the baseline for both German and 
English. Interestingly, however, Amalgam yields 
much better results for German than it does for 
English. This accords with our pre-theoretical 
intuition that the use of the comma is more 
strongly prescribed in German than in English. 
Duden (2000), for example, devotes 

twenty-seven rules to the appropriate use of the 
comma. By way of contrast, Quirk et al.. (1985), 
a comparable reference work for English, devotes 
only four brief rules to the topic of the placement 
of the comma, with passing comments 
throughout the rest of the volume noting minor 
dialectal differences in punctuation conventions.  

6 Language modeling approach to 
punctuation insertion 

6.1 Modeling 

We employ the SRI language modeling toolkit 
(SRILM, 2002) to implement an n-gram 
language model for comma insertion.  We train a 
punctuation-aware trigram language model by 
including the comma token in the vocabulary. No 
parameters of the SRILM toolkit are altered, 
including the default Good-Turing discounting 
algorithm for smoothing. 
The task of inserting commas is accomplished by 
tagging hidden events (COMMA or NULL) at 
insertion points between word tokens. The most 
likely tagged sequence, including COMMA or 
NULL at each potential insertion point, 
consistent with the given word sequence is found 
according to the trigram language model. 

6.2 Evaluation 

The results of using the language modeling 
approach to comma insertion are presented in 
Table 3.  
 

  English German 
Comma recall 62.36% 74.62% 
Comma precision 78.20% 89.64% 
Comma F-measure 69.39% 81.45% 
Token accuracy 98.08% 98.40% 
Baseline accuracy 96.51% 95.30% 
Sentence accuracy 74.94% 78.56% 
Baseline accuracy 56.35% 47.26% 

Table 3 Experimental results 
for the language modeling approach 

to comma insertion2 

                                                      
2 Note that the baseline accuracies in Table 2 and 
Table 3 differ by a small margin.  Resource constraints 
during the preparation of the Amalgam test logical 
forms led to the omission of sentences containing a 
total of 18 commas for English and 47 commas for 



As Table 3 shows, the language modeling 
approach to punctuation insertion also 
dramatically beats the baseline. As with the 
Amalgam approach, the algorithm performs 
much better on German data than on English 
data. 
Note that Beeferman et al. (1998) perform 
comma insertion on the output of a speech 
recognition module which contains no 
punctuation. As an additional point of 
comparison, we removed all punctuation from 
the technical corpus. The results were marginally 
worse than those reported here for the data 
containing other punctuation in Table 3. We 
surmise that for the data containing other 
punctuation, the other punctuation provided 
additional context useful for predicting commas. 

7 Discussion and Conclusions 

We have shown that for all of the metrics except 
comma precision the Amalgam approach to 
comma insertion, using decision trees built from 
linguistically sophisticated features, outperforms 
the n-gram language modeling approach that uses 
only lexical features in the left context. This is 
not surprising, since the guidelines for 
punctuation insertion in both languages tend to be 
formulated relative to syntactic constituency. It is 
difficult to capture this level of abstraction in the 
n-gram language modeling approach. Further 
evidence for the utility of features concerning 
syntactic constituency comes from the fact that 
the decision tree classifiers do in fact select such 
features (section 5.1).  The use of high-level 
syntactic features enables a degree of abstraction 
over lexical classes that is hard to achieve with 
simple word n-grams. 
Both approaches to comma insertion perform 
better on German than they do on English. Since 
German has a richer repertoire of inflections, a 
less rigid constituent order, and more frequent 
compounding than English, one might expect the 
German data to give rise to less predictive n-gram 
models, given the same number of sentences.  
Table  shows the vocabulary sizes of the training 
data and the perplexities of the test data, with 
respect to the statistical language models for each 
language.  Despite this, the n-gram language 

                                                                                
German. 

model approach to comma insertion performs 
better for German than for English.  This is 
further evidence of the regularity of German 
comma placement discussed in Section 5.2. 
 
Language Vocab. Size Perplexity 
English 42084 96.128 
German 84770 145.352 

Table 4 Vocabulary size and perplexity  
for English and German 

One advantage that the Amalgam approach has 
over the n-gram language modeling approach is 
its usage of the right context.  As a possible 
extension of the work presented here and that of 
Beeferman et al. (1998), one could build a 
right-to-left word n-gram model to augment the 
left-to-right n-gram model.  Conversely, the 
language model captures idiosyncratic lexical 
behavior that could also be modeled by the 
addition of lexical features in the decision tree 
feature set.  
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