
Intra-sentence Punctuation Insertion
in Natural Language Generation

Zhu ZHANG†, Michael GAMON‡, Simon CORSTON-OLIVER‡, Eric RINGGER‡

†School of Information
University of Michigan
Ann Arbor, MI 48109
zhuzhang@umich.edu

‡Microsoft Research
One Microsoft Way

Redmond, WA 98052
{mgamon, simonco, ringger}@microsoft.com

30 May 2002

Technical Report
MSR-TR-2002-58

Microsoft Research
One Microsoft Way

Redmond WA 98052
USA

Intra-sentence Punctuation Insertion
in Natural Language Generation

Zhu ZHANG†, Michael GAMON‡, Simon CORSTON-OLIVER‡, Eric RINGGER‡

†School of Information
University of Michigan
Ann Arbor, MI 48109
zhuzhang@umich.edu

‡Microsoft Research
One Microsoft Way

Redmond, WA 98052
{mgamon, simonco, ringger}@microsoft.com

Abstract

We describe a punctuation insertion model
used in the sentence realization module of a
natural language generation system for
English and German. The model is based on
a decision tree classifier that uses
linguistically sophisticated features. The
classifier outperforms a word n-gram model
trained on the same data.

1 Introduction

Punctuation insertion is an important step in
formatting natural language output. Correct
formatting aids the reader in recovering the
intended semantics, whereas poorly applied
formatting might suggest incorrect
interpretations or lead to increased
comprehension time on the part of human
readers.
In this paper we describe the intra-sentence
punctuation insertion module of Amalgam
(Corston-Oliver et al. 2002, Gamon et al. 2002),
a sentence-realization system primarily
composed of machine-learned modules.
Amalgam’s input is a logical form graph.
Through a series of linguistically-informed steps
that perform such operations as assignment of
morphological case, extraposition, ordering, and
aggregation, Amalgam transforms this logical
form graph into a syntactic tree from which the
output sentence can be trivially read off. The
intra-sentence punctuation insertion module
described here applies as the final stage before
the sentence is read off.
In the data that we examine, intra-sentential
punctuation other than the comma is rare. In one
random sample of 30,000 sentences drawn from
our training data set there were 15,545 commas,

but only 46 em-dashes, 26 semi-colons and 177
colons. Therefore, for this discussion we focus on
the prediction of the comma symbol.
The logical form input for Amalgam sentence
realization can already contain commas in two
limited contexts. The first context involves
commas used inside tokens, e.g., the radix point
in German, as in example (1), or as the delimiter
of thousands in English, as in example (2).

(1) Ich habe DM 4,50.
“I have 4.50DM.”

(2) I have $1,000 dollars.

The second context involves commas that
separate coordinated elements, e.g., in the
sentence “I saw Mary, John and Sue”. These
commas are treated as functionally equivalent to
lexical conjunctions, and are therefore inserted
by the lexical selection process that constructs the
input logical form.
The evaluation reported below excludes
conjunctive commas and commas used inside
tokens. We model the placement of other
commas, including commas that indicate
apposition (3), commas that precede or follow
subordinate clauses (4) and commas that offset
preposed material (5).

(3) Colin Powell, the Secretary of State, said
today that…

(4) After he ate dinner, John watched TV.
(5) At 9am, Mary started work.

2 Related work

Beeferman et al. (1998) use a hidden Markov
model based solely on lexical information to
predict comma insertion in text emitted by a
speech recognition module. They note the

difficulties encountered by such an approach
when long distance dependencies are important
in making punctuation decisions, and propose the
use of richer information such as part of speech
tags and syntactic constituency.
The punctuation insertion module presented here
makes extensive use of features drawn from a
syntactic tree such as constituent weight, part of
speech, and constituent type of a node, its
children, its siblings and its parent.

3 Corpora

For the experiments presented here we use
technical help files and manuals. The data
contain aligned sentence pairs in German and
English. The alignment of the data is not
exploited during training or evaluation; it merely
helps to ensure comparability of results across
languages. The training set for each language
contains approximately 100,000 sentences, from
which approximately one million cases are
extracted. Cases correspond to possible places
between tokens where punctuation insertion
decisions must be made. The test data for each
language contains cases drawn from a separate
set of 10,000 sentences.

4 Evaluation metrics

Following Beeferman et al. (1998), we measure
performance at two different levels. At the token
level, we use the following evaluation metrics:

• Comma Precision: The number of
correctly predicted commas divided by
the total number of predicted commas.

• Comma Recall. The number of correctly
predicted commas divided by the total
number of commas in the reference
corpus.

• Comma F-measure. The harmonic mean
of comma precision and comma recall,
assigning equal weight to each.

• Token accuracy: The number of correct
token predictions divided by the total
number of tokens. The baseline is the
same ratio when the default prediction,
namely do not insert punctuation, is
assumed everywhere.

At the sentence level, we measure sentence
accuracy, which is the number of sentences

containing only correct token predictions divided
by the total number of sentences. This is based on
the observation that what matters most in human
intelligibility judgments is the distinction
between correct and incorrect sentences, so that
the number of overall correct sentences gives a
good indication of the overall accuracy of
punctuation insertion. The baseline is the same
ratio when the default prediction (do not insert
punctuation) is assumed everywhere.

5 Punctuation learning in Amalgam

5.1 Modeling

We build decision trees using the WinMine
toolkit (Chickering, n.d.). Punctuation
conventions tend to be formulated as “insert
punctuation mark X before/after Y” (e.g., for a
partial specification of the prescriptive
punctuation conventions of German, see Duden
2000), but not as “insert punctuation mark X
between Y and Z”. Therefore, at training time, we
build one decision tree classifier to predict
preceding punctuation and a separate decision
tree to predict following punctuation. The
decision trees output a binary classification,
“COMMA” or “NULL”.
We used a total of twenty-three features for the
decision tree classifiers. All twenty-three features
were selected as predictive by the decision tree
algorithm. The features are given here. Note that
for the sake of brevity, similar features have been
grouped under a single list number.

1. Syntactic label of the node and its parent
2. Part of speech of the node and its parent
3. Semantic role of the node
4. Syntactic label of the largest

immediately following and preceding
non-terminal nodes

5. Syntactic label of the smallest
immediately following and preceding
non-terminal node

6. Syntactic label of the top right edge and
the top left edge of the node under
consideration

7. Syntactic label of the rightmost and
leftmost daughter node

8. Location of node: at the right edge of the
parent, at the left edge of the parent or

neither
9. Length of node in tokens and characters
10. Distance to the end of the sentence in

tokens and characters
11. Distance to the beginning of the sentence

in tokens and in characters
12. Length of sentence in tokens and

characters

The resulting decision trees are fairly complex.
Table 1 shows the number of binary branching
nodes for each of the two decision tree models for
both English and German. The complexity of
these decision trees validates the data-driven
approach, and makes clear how daunting it would
be to attempt to account for the facts of comma
insertion in a declarative framework.

Model English German
Preceding punctuation 563 743
Following punctuation 664 633

Table 1 Complexity of the decision tree models
in Amalgam

At generation time, a simple algorithm is used to
decide where to insert punctuation marks.
Pseudo-code for the algorithm is presented in
Figure 1.

For each insertion point I
For each constituent whose right boundary
occurs at the token preceding I

If p(COMMA) > 0.5
Insert comma
Do next insertion point

End if
End for each

For each constituent whose left boundary
occurs at the token following I

If p(COMMA) > 0.5
Insert comma
Do next insertion point

End if
End for each

End for each

Figure 1 Pseudo-code for the insertion algorithm

The threshold 0.5 is a natural consequence of the
binary target feature: p(COMMA)>p(NULL)
implies p(COMMA)>0.5.

Consider the application of the Amalgam
punctuation insertion module for one possible
insertion point in a simple German sentence Er
las ein Buch das kürzlich erschien “He read a
book which came out recently”. The parse tree
for the sentence is shown in Figure 2.

DECL1

NP1

PRON1
Er

VERB1
las

NOUN1
Buch

ADJ1
ein

DETP1

NP2

RELCL1

AVP1NP3

PRON2
das

VERB2
erschien

ADV1
kürzlich

Insertion point

Figure 2 German parse tree

The scenario illustrated in Figure 2 is relatively
straightforward. According to German
punctuation conventions, all relative clauses,
whether restrictive or non-restrictive, should be
preceded by a comma, i.e., the relevant insertion
point is between the noun Buch “book” and the
relative clause das kürzlich erschien “which
came out recently.”
When considering the insertion of a comma at the
marked insertion point, Amalgam examines all
constituents whose rightmost element is the
token preceding the insertion point, in this case
the noun Buch “book”. There is no non-terminal
constituent whose rightmost element is the token
Buch. The decision tree classifier for following
punctuation is therefore not invoked.
Amalgam next considers all constituents whose
leftmost element is the token to the right of the
insertion point, in this case das “which”.1 The
constituents to be examined are NP3 (the
projection of the pronoun), and RELCL1, the
clause in which NP3 is the subject.
Consulting the decision tree for preceding
punctuation for the node NP3, we obtain
p(COMMA) = 0.0001. Amalgam proceeds to the
next highest constituent, RELCL1. Consulting

1 Note that many relative pronouns in German are
homographic with determiners, a notable difficulty for
German parsing.

the decision tree for preceding punctuation for
RELCL1 yields p(COMMA) = 0.9873. The
actual path through the decision tree for
preceding punctuation when considering
RELCL1 is illustrated in Figure 3. Because the
probability is greater than 0.5, we insert a comma
at the insertion point.

Label of top left edge is not RELCL and
Label is RELCL and
Part of speech of the parent is not Verb and
Label of rightmost daughter is not AUXP and
Label of leftmost daughter is not PP and
Label of smallest following non-terminal node is

not NP and
Part of speech of the parent is Noun and
Label of largest preceding non-terminal node is

not PP and
Label of smallest following non-terminal node is

not AUXP and
Distance to sentence end in tokens is < 2.97 and
Label of top right edge is not PP and
Distance to sentence end in token is < 0.0967

Figure 3 Example of the path through
the decision tree for preceding punctuation

5.2 Evaluation

In Table 2 we present the results for the Amalgam
punctuation approach for both English and
German.

 English German
Comma recall 67.64% 87.54%
Comma precision 74.44% 85.44%
Comma F-measure 70.88% 86.47%
Token accuracy 98.02% 98.72%
Baseline accuracy 96.44% 95.35%
Sentence accuracy 76.90% 84.00%
Baseline accuracy 56.44% 47.30%

Table 2 Experimental results
for comma insertion in Amalgam

Amalgam’s punctuation insertion dramatically
outperforms the baseline for both German and
English. Interestingly, however, Amalgam yields
much better results for German than it does for
English. This accords with our pre-theoretical
intuition that the use of the comma is more
strongly prescribed in German than in English.
Duden (2000), for example, devotes

twenty-seven rules to the appropriate use of the
comma. By way of contrast, Quirk et al.. (1985),
a comparable reference work for English, devotes
only four brief rules to the topic of the placement
of the comma, with passing comments
throughout the rest of the volume noting minor
dialectal differences in punctuation conventions.

6 Language modeling approach to
punctuation insertion

6.1 Modeling

We employ the SRI language modeling toolkit
(SRILM, 2002) to implement an n-gram
language model for comma insertion. We train a
punctuation-aware trigram language model by
including the comma token in the vocabulary. No
parameters of the SRILM toolkit are altered,
including the default Good-Turing discounting
algorithm for smoothing.
The task of inserting commas is accomplished by
tagging hidden events (COMMA or NULL) at
insertion points between word tokens. The most
likely tagged sequence, including COMMA or
NULL at each potential insertion point,
consistent with the given word sequence is found
according to the trigram language model.

6.2 Evaluation

The results of using the language modeling
approach to comma insertion are presented in
Table 3.

 English German
Comma recall 62.36% 74.62%
Comma precision 78.20% 89.64%
Comma F-measure 69.39% 81.45%
Token accuracy 98.08% 98.40%
Baseline accuracy 96.51% 95.30%
Sentence accuracy 74.94% 78.56%
Baseline accuracy 56.35% 47.26%

Table 3 Experimental results
for the language modeling approach

to comma insertion2

2 Note that the baseline accuracies in Table 2 and
Table 3 differ by a small margin. Resource constraints
during the preparation of the Amalgam test logical
forms led to the omission of sentences containing a
total of 18 commas for English and 47 commas for

As Table 3 shows, the language modeling
approach to punctuation insertion also
dramatically beats the baseline. As with the
Amalgam approach, the algorithm performs
much better on German data than on English
data.
Note that Beeferman et al. (1998) perform
comma insertion on the output of a speech
recognition module which contains no
punctuation. As an additional point of
comparison, we removed all punctuation from
the technical corpus. The results were marginally
worse than those reported here for the data
containing other punctuation in Table 3. We
surmise that for the data containing other
punctuation, the other punctuation provided
additional context useful for predicting commas.

7 Discussion and Conclusions

We have shown that for all of the metrics except
comma precision the Amalgam approach to
comma insertion, using decision trees built from
linguistically sophisticated features, outperforms
the n-gram language modeling approach that uses
only lexical features in the left context. This is
not surprising, since the guidelines for
punctuation insertion in both languages tend to be
formulated relative to syntactic constituency. It is
difficult to capture this level of abstraction in the
n-gram language modeling approach. Further
evidence for the utility of features concerning
syntactic constituency comes from the fact that
the decision tree classifiers do in fact select such
features (section 5.1). The use of high-level
syntactic features enables a degree of abstraction
over lexical classes that is hard to achieve with
simple word n-grams.
Both approaches to comma insertion perform
better on German than they do on English. Since
German has a richer repertoire of inflections, a
less rigid constituent order, and more frequent
compounding than English, one might expect the
German data to give rise to less predictive n-gram
models, given the same number of sentences.
Table shows the vocabulary sizes of the training
data and the perplexities of the test data, with
respect to the statistical language models for each
language. Despite this, the n-gram language

German.

model approach to comma insertion performs
better for German than for English. This is
further evidence of the regularity of German
comma placement discussed in Section 5.2.

Language Vocab. Size Perplexity
English 42084 96.128
German 84770 145.352

Table 4 Vocabulary size and perplexity
for English and German

One advantage that the Amalgam approach has
over the n-gram language modeling approach is
its usage of the right context. As a possible
extension of the work presented here and that of
Beeferman et al. (1998), one could build a
right-to-left word n-gram model to augment the
left-to-right n-gram model. Conversely, the
language model captures idiosyncratic lexical
behavior that could also be modeled by the
addition of lexical features in the decision tree
feature set.

References

Beeferman D., Berger A. and Lafferty J. (1998)
Cyberpunc: A lightweight punctuation annotation
system for speech. IEEE Conference on Acoustics,
Speech and Signal Processing. Seattle, WA, USA.

Chickering, D. Max. n.d. WinMine Toolkit Home
Page. http://research.microsoft.com/~dmax/
WinMine/Tooldoc.htm.

Corston-Oliver, S., M. Gamon, E. Ringger, R. Moore.
(2002) “An overview of Amalgam: A
machine-learned generation module”. In review.

Duden. (2000) Die deutsche Rechtschreibung.
Duden-Verlag: Mannheim, Leipzig, Wien, Zürich.

Gamon, M., S. Corston-Oliver, E. Ringger, R. Moore
(2002) “Machine-learned contexts for linguistic
operations in German sentence realization”. To be
presented at ACL 2002.

Quirk, R., S. Greenbaum, G. Leech and J. Svartvik.
1985. A Comprehensive Grammar of the English
Language. Longman: London and New York.

SRILM. (2002) SRILM Toolkit Home Page.
http://www.speech.sri.com/projects/srilm.

