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Abstract 
Amalgam is a novel system for sentence realization during natural language generation. 
Amalgam takes as input a logical form graph, which it transforms through a series of 
modules involving machine-learned and knowledge-engineered sub-modules into a 
syntactic representation from which an output sentence is read. Amalgam constrains the 
search for a fluent sentence realization by following a linguistically informed approach 
that includes such component steps as raising, labeling of phrasal projections, 
extraposition of relative clauses, and ordering of elements within a constituent.  

In this technical report we describe the architecture of Amalgam based on a complete 
implementation that generates German sentences. We describe several linguistic 
phenomena, such as relative clause extraposition, that must be handled in order to 
successfully generate German.  

1 Introduction 
We describe the architecture of a novel sentence realization component, Amalgam (“A 
Machine-Learned Generation Module”). Amalgam is a module within the German 
NLPWIN system at Microsoft Research. 

The need for a sentence realization module arose in the context of on-going research into 
machine translation (Richardson et al. 2001a, Richardson et al. 2001b). Sentences in a 
source language are analyzed to logical forms. These logical forms are transferred to the 
target language, and must then be realized as fluent sentences. 

For some target languages we already had mature, high quality knowledge-engineered 
sentence realization modules (Aikawa et al. 2001a, 2001b). For German, we did not 
already have a sentence realization module. We therefore embarked on the undertaking 
described in this technical report, namely to produce an empirically-based sentence 
realization module by employing machine learning techniques as much as possible. 

As a first step towards a generation module that is usable in machine translation contexts, 
we created a module that generates German output strings from German input strings by 
roundtrip of analysis and subsequent generation as a proof-of-concept. The main focus of 
this report is on the German-to-German generation approach, although we briefly discuss 
first results of the application of the Amalgam system in machine translation in section 10. 
The advantage of approaching the task from the German-to-German generation 
perspective is that evaluation of the system is straightforward. The input string goes 
through syntactic and semantic analysis, a logical form representation is produced, and an 
output string is generated from that logical form representation by Amalgam. If the 
output string is identical to the input string, Amalgam has performed flawlessly. The 
farther the output string is from the input string, the worse Amalgam has performed. This 
is, of course, an over-simplified view, given that there is often more than one good 
German sentence that would represent a logical form faithfully and fluently (see, for 
example, the discussion of relatively free constituent order in German in section 3.4). 
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Despite this caveat, the German-to-German approach has provided a good starting point 
for the development of the first prototype of Amalgam. 

Amalgam has been described in published papers (Corston-Oliver et al. 2002, Gamon et 
al. 2002a, Gamon et al. 2002b). Our goal in this technical report is to provide a complete 
description of the architecture and implementation of Amalgam, beyond the level of 
detail that is customary in conference proceedings or journal papers. We hope that this 
technical report will provide answers to some of the questions that inevitably arise when 
reading published descriptions of natural language processing systems, including the 
following questions: Exactly which features are used? How are the features extracted? 
How much work is performed by the knowledge-engineered module mentioned in 
passing?  

2 Prior work in sentence realization 
Reiter (1994) surveys the major natural language generation systems of the late 1980s 
through the mid-1990s: FUF (Elhadad 1992), IDAS (Reiter at al. 1992), JOYCE 
(Rambow and Korelsky 1992), PENMAN (Penman 1989) and SPOKESMAN (Meteer 
1989). Each of these systems has a different theoretical underpinning: unification 
grammar in the case of FUF (Kay 1979), a generalized reasoning system (Reiter and 
Mellish 1992) in the case of IDAS, Meaning-Text theory (Mel’čuk 1988) in the case of 
JOYCE, Hallidayan Systemic Functional Linguistics (Halliday 1985) and Rhetorical 
Structure Theory (Mann and Thompson 1988) in the case of PENMAN, Tree-Adjoining 
Grammar (Joshi 1987) in the case of SPOKESMAN. Despite their diverse theoretical 
underpinnings, Reiter draws attention to the fact that a consensus appeared to have 
emerged concerning the appropriate architecture for a natural language generation system. 
All systems had a module that performed content determination, mapping input 
specifications of content onto a semantic form, followed by a module that performed 
sentence planning. Output was performed by a surface generation module (what we refer 
to below as a sentence realization module) that made use of a morphology module and a 
module that performed formatting of the output text. All the systems that Reiter surveyed 
generate English text only. 

Reiter draws speculative analogies between the consensus architecture and the evidence 
for modularity of language in the human brain based on language impairment of 
individuals with various types of brain injury, and suggests that the engineering trade-offs 
made during system implementation might mirror evolutionary forces at work in the 
development of human language. 

The dominant paradigm for natural language generation systems up until the mid-1990s 
was that of knowledge engineering. Computational linguists would explicitly code 
strategies for stages ranging from planning texts and aggregating content into single 
sentences to choosing appropriate forms of referring expressions performing 
morphological inflection and formatting output. This research path has yielded several 
mature broad-coverage systems and is still being actively pursued today; see, for example, 
the sentence realization modules described in Aikawa et al. (2001). 
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Since the mid 1990s there has been increasing interest in the application of statistical and 
machine learning techniques to the various stages of natural language generation. This 
research has ranged from learning plans for high-level planning of texts and dialogues 
(Zukerman et al. 1998, Duboue and McKeown 2001) or ensuring that the macro 
properties of generated texts such as the distribution of sentence lengths and lexical 
variety mirror the properties of naturally occurring texts (Oberlander and Brew, 2000) to 
sentence planning (Walker et al., 2001), lexical selection (Bangalore and Rambow 
2000b), selection of the appropriate form for a referring expression (Poesio et al 1999), 
determining grammatical relations (Corston-Oliver 2000) and selecting the appropriate 
word order (Langkilde and Knight 1998a, Langkilde and Knight 1998b, Bangalore and 
Rambow 2000a). 

It is often the case in the natural language generation literature that descriptions of the 
higher level aspects of natural language generation gloss over issues associated with 
sentence realization. Walker et al. (2001), for example, characterize realization in this 
way: 

“During realization, the abstract linguistic resources chosen during sentence 
planning are transformed into a surface linguistic utterance by adding function 
words (such as auxiliaries and determiners), inflecting words, and determining 
word order. This phase is not a planning phase in that it only executes decisions 
made previously.” (Walker et al. 2001) 

In typical implementations, however, once the planning stages, sensu stricto, have 
finished there remain myriad encoding decisions to be made and selections among 
alternative formulations to be performed. Increasingly, machine-learned techniques are 
being brought to bear on these tasks. 

Two recent systems, the Nitrogen system (Langkilde and Knight 1998a, Langkilde and 
Knight 1998b) and the FERGUS system (Bangalore and Rambow 2000a) are sufficiently 
similar to Amalgam to warrant extended discussion. 

The Nitrogen system (Langkilde and Knight 1998a, Langkilde and Knight 1998b) uses 
word bigrams instead of deep symbolic knowledge to decide among alternative output 
sentences. The input to Nitrogen can range from rather abstract semantic representations 
to more fully-specified syntactic representations. Inputs are given in the Abstract 
Meaning Representation, based on the Penman Sentence Plan Language (Penman 1989). 
Two sets of knowledge-engineered rules operate on the input specification to produce 
candidate output sentences. One set of rules performs one-to-many mappings from 
underspecified semantic representations to possible syntactic formulations, fleshing out 
information such as definiteness and number that might be missing in practical generation 
contexts such as Japanese to English machine translation (Knight et al 1995). The second 
set of rules, which includes sensitivity to the target domain, transforms the 
representations produced by the first module to yield still more candidate sentences. The 
candidate sentences are compactly represented as a word lattice. Word bigrams are used 
to score and find the optimal traversal of the lattice, yielding the best-ranked output 
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sentence. Morphological inflection is performed by simple table lookup, apparently 
during the production of candidate sentences. 

Langkilde and Knight (1998a) present worked examples that illustrate the importance of 
the bigram filtering. One input semantic form includes five lexical nodes in such 
relationships as AGENT, DESTINATION, and PATIENT. The word lattice that results 
contains more than eleven million possible paths, with the top-ranked candidate “Visitors 
who came in Japan admire Mount Fuji.” Another worked example, for which the 
semantic representation is not given, appears to involve two content words that are 
transformed into a word lattice containing more than 155,000 paths to yield the top-
ranked candidate “I cannot betray their trust.” 

Clearly, there is an important interaction between the knowledge-engineered components 
that propose candidates and the bigram filtering. If the knowledge-engineered 
components are too conservative, an optimal rendering will not be proposed, forcing the 
bigram filtering component to choose among sub-optimal candidates. On the other hand, 
if the knowledge-engineered component proposes too many candidates, the search 
through the lattice may become so time-consuming as to be impractical. Unfortunately, 
Langkilde and Knight do not give more details about the knowledge-engineered 
components. One wonders how many rules there are, how many rules must be added for 
a new domain, and what level of expertise is required to write a rule. 

The use of bigrams is problematic, as Langkilde and Knight acknowledge. Bigrams are 
unable to capture dependencies among non-contiguous words, a fact that is perhaps 
mitigated by the observation that in practice, for English at least, syntactic dependencies 
most often obtain between adjacent elements (Stolcke 1997). Increasing the number of 
terms to trigrams or higher-order n-grams raises the familiar specter of paucity of data. 
Furthermore, as Langkilde and Knight observe, many linguistic relationships are binary 
in nature, and therefore not efficiently represented using trigrams. To overcome some of 
the deficiencies of the bigram language model applied to a word lattice, Langkilde (nd) 
proposes using a parse forest to represent the output candidates. The evaluation metric 
that she intends to develop would combine information from the syntactic representations 
and the language model. 

It is unclear how feasible it would be to generate candidate sentences and then filter them 
when generating German. For English, Langkilde and Knight use table lookup to add 
morphological variants of content words to the mix. Since English inflectional 
morphology is relatively simple, this does not adversely explode the search space. When 
we consider the richer inflectional morphology of German, however, this simple table 
lookup does not appear practical. Whereas English has a single definite article, the, 
German has six inflected forms (der, die, das, etc)1. Similarly, English adjectives can be 
inflected only for degree (e.g., big, bigger, biggest), whereas German adjectives 
additionally distinguish three lexical genders, four cases, and singular vs. plural. If the 
search space becomes large using table-based lookup to propose additional nodes in a 

                                                 
1 For a subset of all possible inflected German determiners, see the variants listed in Figure 34. 
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word lattice for English, it would become intractable for a language such as German with 
richer inflectional morphology. 

Recent research has demonstrated the usefulness of syntactic information in overcoming 
the inadequacies of bigrams. Ratnaparkhi (2000) demonstrates dramatic improvements in 
selecting appropriate output templates for the air travel domain when conditioning on 
syntactic dependencies versus conditioning on trigrams. 

Further validation of the usefulness of syntax during sentence realization can be seen in 
the FERGUS system (Bangalore and Rambow 2000a). Bangalore and Rambow augment 
the work of Langkilde and Knight by adding a tree-based stochastic model and a 
traditional tree-based syntactic grammar. Bangalore and Rambow take as input a 
dependency tree. A stochastic tree model chooses TAG trees for the nodes in the 
dependency tree. The resulting TAG analysis is then “unraveled” to produce a lattice of 
compatible linearizations. Selection among competing linearizations is performed by a 
“Linear Precedence Chooser” which selects the most likely linearization given a suitable 
language model. 

To date there have been no published descriptions of the application of machine learning 
to the problems of morphological realization or formatting for natural language 
generation, although presumably inflectional morphology that had been learnt 
automatically (e.g., Goldsmith 2001) could subsequently be applied during generation.  

3 Properties of German  
The German language exhibits a number of properties that are very different from 
English, despite the fact that the two languages are relatively closely related. These 
properties pose challenges to a sentence realization component which go beyond what an 
English sentence realizer would have to account for. For us, this poses the interesting task 
of making the overall design of Amalgam flexible enough to deal with these phenomena, 
and as a result, flexible enough to be applicable to more languages. It also protects us 
from the myopia of NLP solutions predicated on properties of English, such as the 
paucity of inflectional morphology and the relative rigidity of constituent order. 

In this section, we present a brief overview of the important characteristics of German. It 
should be understood that this is by no means a complete list of the properties in which 
German differs from English. We focus on a handful of properties crucial in sentence 
realization. We contrast these properties with English, to emphasize the typological 
differences between the two languages, particularly for the benefit of English speakers 
who are not familiar with German. 

3.1 The Position of the Verb in German 
One of the most striking properties of German, painfully familiar to anyone who has 
learned German as a foreign language, is the distribution of verbs in main and 
subordinate clauses. In fact, most descriptive accounts of German syntax are based on a 
topology of the German sentence that treats the position of the verb as the fixed frame 
around which other syntactic constituents are organized in a relatively free order (cf. 
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Eisenberg 1999, Engel 1996). The general frame of the German sentence is shown in 
Figure 1. 

Other constituents

Prefield PostfieldLeft
Bracket

Right
Bracket

Middle
Field

Verb positions

 

Figure 1: The topological model of the German sentence 

The important facts to note about this topological model are: 

 The Prefield contains at most one constituent 

 The Left Bracket contains: 

o the finite verb OR 

o a subordinating conjunction OR 

o a relative pronoun/relative expression 

 The Middle Field contains any number of constituents 

 The Right Bracket contains all the verbal material that is not present in the Left 
Bracket. If the finite verb is in the Left Bracket, then the Right Bracket contains 
the non-finite verbs. If the Left Bracket is occupied by a subordinating 
conjunction or relative expression, the Right Bracket contains all the verbs. 

 The Postfield contains: 

o clausal complements 

o subordinate clauses 

o extraposed material (e.g., relative clauses extraposed from the Middle 
Field) 

o other constituents 

The position of the verb in German is rigidly fixed. Errors in the positioning of the verb 
will result in gibberish, while most permutations within Prefield, Middle Field and 
Postfield will at worst result in less fluent output. Depending on the position of the finite 
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verb, German sentences and verb phrases are often classified as being “verb-initial”, 
“verb-second” or “verb-final”. In verb-initial clauses, the finite verb is in initial position 
(e.g., in the imperative example in Figure 2). Verb-second sentences contain material in 
the Prefield, and a finite verb in the Left Bracket. Verb-final sentences (such as the 
complement clause in Figure 2) contain no verbal element in the Left Bracket (usually 
because the Left Bracket is occupied by a subordinating conjunction or a relative 
pronoun). Figure 2 illustrates the above generalizations with some examples. German text 
is in italics, glosses are given below each word, and free translations are given in quotes. 

Prefield Left Bracket Middle Field Right Bracket Postfield 
Main clauses (declarative) 
Hans 
Hans 

sieht 
sees 

das Auto 
the car 

  

“Hans sees the car” 

Hans 
Hans 

hat 
has 

das Auto 
the car 

gesehen 
seen 

 

“Hans has seen the car” 

Hans 
Hans 

gibt 
gives 

das Buch 
the book 

ab 
PREFIX 

 

“Hans returns the book” 

Hans 
Hans 

wird 
will 

das Auto 
the car 

gesehen haben 
seen have 

 

“Hans will have seen the car” 

Hans 
Hans 

hat  
has 

das Auto 
the car 

gesehen 
seen 

das er kaufen 
möchte 
that he buy 
wants 

“Hans has seen the car that he wants to buy” 

Main clauses (interrogative) 

Was 
What 

sieht 
sees 

Hans 
Hans 

  

“What does Hans see?” 

 sieht 
sees 

Hans das Auto 
Hans the car 

  

“Does Hans see the car?” 
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Prefield Left Bracket Middle Field Right Bracket Postfield 
Main clauses (imperative) 
 sieh 

see 
das Auto 
the car 

  

“See the car!” 

Complement clauses 
 dass 

that 
Hans das Auto 
Hans the car 

gesehen hat 
seen has 

 

“that Hans has seen the car” 

Relative clauses 
 das 

which 
Hans 
Hans 

gesehen hat 
seen has 

 

“that Hans has seen” 

Figure 2: Examples of the topological model applied to German sentences 

3.2 Separable Prefixes 
A large percentage of German verbs fall in the class of separable prefix verbs (in the 
NLPWIN lexicon, roughly 8,000 of a total of 20,000 verbs fall in this category). The 
peculiarity of these verbs is that they form a semantic unit, but are separated syntactically 
into two parts, one of which is a finite verb stem, the other is a prefix that occupies the 
position of a non-finite verb in the topological model of the sentence. Consider the 
example abgeben which is the German verb meaning “return”. This verb consists of two 
parts, a prefix ab and a verb stem geben. The semantics is not compositional, although 
there certainly is at least some overlap between the meaning of the stem geben “to give” 
and the separable prefix verb abgeben. In verb-second clauses such as the declarative 
main clause in Figure 2, the stem and the prefix separate, with the stem occupying the 
Left Bracket, and the prefix occupying the Right Bracket: 

Hans gibtSTEM das Buch abPREFIX 
“Hans returns the book” 

The correct positioning of prefix and stem is an integral part of sentence realization in 
German. Any simple-minded mapping of word-to-word in machine translation, for 
example, will fail miserably if the target language is German unless some mapping from 
one verb in English to both a prefix and a stem in German is possible, and their correct 
positioning in the topological model is ensured. 

3.3 Morphological Case 
German has a rich system of inflectional morphology. Particularly important for sentence 
realization as well as parsing in German is case marking on noun phrases. There are four 
cases in German: nominative, accusative, dative, and genitive. Depending on a number of 
factors such as the morphological class of the lexical items, number, gender, and the 
choice of determiner, case can be morphologically realized on various elements of the 
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noun phrase: the noun itself, and (if present) determiners and adjectives. Case is often an 
important clue in determining the semantic role of a noun phrase in the clause. If an 
active clause contains a nominative and an accusative noun phrase, the nominative phrase 
can safely be assumed to be the subject, and the accusative phrase to be the object, 
independently of their linear order in the sentence string. 

3.4 Constituent Order 
The ordering of words and constituents varies across languages, and so does the rigidity 
with which the canonical order must be obeyed. We will restrict ourselves to the 
discussion of free constituent order, since neither English nor German can be reasonably 
claimed to exhibit any free word order in the real sense; i.e., neither English nor German 
show examples where individual words can be ordered freely, outside of the immediate 
constituent that they belong to.2 

English has a relatively rigid constituent order although a number of preposing and 
extraposing operations can alter that order, so that any simplistic claim about “fixed” 
constituent order in English is problematic. German, on the other hand, allows many 
major constituents to be rather freely distributed amongst Prefield and Middle Field, and 
to a somewhat lesser extent in the Postfield. At the same time, the position of the verb is 
fixed to the two bracket positions as described in section 3.1. Below are some examples 
to illustrate this point (English glosses at the bottom of the example): 

[Unter diesen Umständen] hat [die Firma] [weitere Lieferungen] bestellt, [ohne 
abzuwarten]. 

[Die Firma] hat [unter diesen Umständen] [ohne abzuwarten] [weitere Lieferungen] 
bestellt 

[Weitere Lieferungen] hat [die Firma] [unter diesen Umständen] bestellt, [ohne 
abzuwarten] 

[Ohne abzuwarten] hat [unter diesen Umständen] [die Firma] [weitere Lieferungen] 
bestellt 

Gloss: “Under these circumstances the company has ordered further shipments without 
waiting.” 

[ohne abzuwarten] = “without waiting” 
[unter diesen Umständen] = “under these circumstances” 
[die Firma] = “the company” 
[weitere Lieferungen] = “additional shipments” 
[... hat ... bestellt] = “has ordered” 

All of the above permutations and many more logically possible ones yield grammatical 
German sentences. At the level of predicate argument structure, the meaning of all the 
permutations is identical. At finer-grained levels of semantic/ pragmatic description, such 
as theme/rheme, topic/focus, background/foreground information, there clearly are 

                                                 
2 We disregard phenomena like floating quantifiers in order to keep the discussion simple. 
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differences, however. Since none of these finer grained distinctions are currently 
computable or representable in the NLPWIN framework, we will ignore them for the 
remainder of this report. 

3.5 Extraposition of Clauses 
In both German and English, it is possible to extrapose clausal material to the right 
periphery of the sentence, as the following examples illustrate. 

Relative clauses: 

English: The man entered the room who usually causes trouble right away. 
German: Der Mann hat den Raum betreten, der üblicherweise immer Ärger macht. 

Infinitival clauses: 

English: The possibility was considered to leave the country. 
German: Man hat die Möglichkeit erwogen, das Land zu verlassen. 

Complement Clauses: 

English: A rumor has been circulating that he is ill. 
German: Ein Gerücht ging um, dass er krank ist. 

Figure 3 shows that English and German differ in the frequency of this phenomenon. The 
results shown are based on automatic data profiling with NLPWIN, where the output of 
the parser has been postprocessed to indicate relative clauses (RELCL), infinitival clauses 
(INFCL), or complement clauses (COMPCL) that have been moved from their original 
position. The analysis is based on 100,000 aligned English-German sentence pairs from 
Microsoft technical manuals and a different German corpus of 62k sentences consisting 
of a mixture of news, grammar book examples, user input and other sources. 

Nearly one third of German relative clauses are extraposed in technical writing, while 
only 0.18% of English relative clauses are extraposed in the corresponding sentence set. 
For infinitival clauses and complement clauses the numbers are more comparable 
between English and German. The high number of extraposed relative clauses in German 
accords with the number reported in Uszkoreit et al. (1998), who observe 24% of relative 
clauses being extraposed in a hand-annotated German news corpus. 

  German 
technical corpus 
(100K sentences) 

English technical 
corpus 
(100K sentences) 

German balanced 
corpus 
(62K sentences) 

RELCL 32.96% 0.18% 24.06% 

INFCL 5.56% 0.82% 4.26% 

COMPCL 2.26% 4.61% 2.81% 

Figure 3: Percentage of extraposed clauses 
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Since extraposition is so rare in English, an English sentence realization module could 
safely ignore extraposition and still result in very fluent output. A complete German 
sentence realization module, however, will need to model extraposition. The modeling of 
extraposition is discussed further in Gamon et al. (2002b). 

4 The NLPWIN system 

4.1 The syntactic analysis: Sketch and Portrait 
NLPWIN produces two levels of syntactic output: an initial constituent analysis in which 
attachment ambiguities are represented in a packed tree (the “Sketch”), followed by a 
constituent analysis in which attachment ambiguities have been resolved (the “Portrait”).  

Syntactic trees in NLPWIN are “flattened” representations of a syntactic analysis in terms 
if binary augmented phrases structure rules (see Jensen et al. 1993 for more details on the 
formalisms). Each syntactic node in NLPWIN has a head, and it may have pre-modifiers 
and/or post-modifiers. Figure 4 illustrates a syntactic structure for a German sentence. 
Nodes in this structure correspond to attribute-value data structures of considerable 
complexity. Figure 5 shows the record for the node NP2 in Figure 4. 

 

Figure 4: Example of a syntactic structure produced by NLPWIN 
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Figure 5: Example of a syntactic record in NLPWIN 

4.2 The semantic representation: Logical Form 
Subsequent processing in NLPWIN computes a semantic representation, the “Logical 
Form” (LF). The Logical Form is a graph data structure that represents the core predicate 
argument structure and basic semantic relations. Semantic relations are encoded as 
labeled arcs between semantic nodes. Semantic nodes are “lexical” in the sense that they 
are derived from syntactic nodes and are labeled with the citation form of the head of the 
syntactic node from which they were derived. There are no abstract semantic nodes in the 
NLPWIN LF. An example of a logical form graph for the English sentence “You have to 
click on the tab in order to print the document on the printer” is given in Figure 6. 

 

Figure 6: An example of a Logical Form graph 
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Logical form nodes can carry many features, some of which are related to lexical 
properties of the associated lemma (e.g., Conc on “tab1” in Figure 6), others are semantic 
features based on the particular analysis (e.g., Pres for present tense on the node 
“click1”). Only content words are represented in logical form, where a content word is 
understood to be a word that cannot be represented as a small set of features or a label on 
a semantic arc. The total number of different semantic relations in the NLPWIN system is 
relatively small; the current system has about 40 semantic relations. Some examples of 
semantic relations are given below: 

o Basic predicate argument structure relations: 

Tsub, Tobj, Tind (for semantic subjects, objects, and indirect objects) 

o Other semantic relations: 

Means, Time, Duration, Locn (location), Cause, Mannr (manner), Purp (purpose), 
Result, Measure, Classifier, Equiv (equivalence), Possr (possessor), LTopic 
(topic), Props (propositions), Mod (unspecified modifiers) 

Semantic nodes in logical form contain pointers to the syntactic nodes they were derived 
from. This is an important bookkeeping device, enabling us to train models on the 
correspondences between syntactic and semantic nodes in order to learn the conditions 
for the operations necessary to transform one into the other. 

5 The procedural flow 

5.1 The Major Stages of the Amalgam Pipeline 
The Amalgam pipeline consists of eight stages, which perform linguistically distinct sets 
of operations, as shown in Figure 7.  
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1. Pre-Processing (preparing the LF graph for further processing) 
 Degraphing 
 Addition of lexical information through dictionary lookup 
 Simplification of German compounds 

2. Flesh-out (adding syntactic information to the LF graph) 
 Addition of syntactic labels 
 Insertion of function words such as determiners, auxiliaries, semantically 

empty prepositions, relative pronouns, reflexive pronouns, etc. 
 Assignment of spellout probabilities for NPs in subject or object position 
 Assignment of morphological case features 
 Assignment of verb-position features 

3. Conversion to basic tree: 
 Reading off a syntactic tree structure from the degraphed LF 
 Splitting of separable prefixes from their stems 
 Introduction of syntactic representation of coordination 
 Reversing of certain syntactic dominance relations 

4. Global movement: 
 Raising, Wh-movement and movement of relative pronouns 
 Extraposition 
 Setting of underspecified verbal inflectional features (agreement, participial 

features, etc.) 
5. Intra-constituent ordering (establishment of linear order) 
6. Surface cleanup: 

 Surface realization of determiners, relative pronouns and reflexive pronouns 
 Deletion of duplicated material in coordination (syntactic aggregation) 

7. Punctuation 
8. Inflectional generation 

Figure 7: Overview of the Amalgam pipeline 

In general, the order of the stages reflects dependencies in the pipeline. For example, 
punctuation depends on an established order of constituents, and so does deletion of 
duplicated material in coordination. Movement, as we treat it in Amalgam, is an 
operation that moves a constituent out of its parent constituent and attaches it higher in a 
syntax tree without establishing linear order so the ordering of constituents has to follow 
hierarchical movement. Assignment of case features, verb-position features, and syntactic 
labels is best performed before the basic tree is established, in order to provide a 
complete syntactic representation and helpful information for following stages. Syntactic 
labels in particular are an important source of information for models downstream in the 
pipeline.3  

 

                                                 
3 Clearly, the downstream models could also pick up on the set of features that were predictive of the 
syntactic label. The use of the syntactic label as input to subsequent models, however, results in more 
parsimonious decision trees, e.g., for the case assignment model, as experimentation reveals. 
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A few steps could be performed equally well at different points in the Amalgam pipeline. 
Function words, for example, are inserted during Flesh-out in Stage 2. We decided that 
the insertion of function words was conceptually similar to the other operations 
performed during Flesh-out that augment the Logical Form with syntactic information.  

We believe that the order of the major stages is highly language-independent. The order 
of operations within each stage is not significant.  

In section 5.1.1-5.1.8 we will illustrate the workings of these eight stages through 
screenshots of the corresponding structures/strings on the basis of the example sentence 
Hans isst die Kartoffeln auf, die er gestern geernet hat “Hans eats up the potatoes which 
he has harvested yesterday”. Not all of the individual operations are performed in this one 
sentence, but it serves as a general illustration of the kinds of operations in the Amalgam 
pipeline. In sections 6 and 7 we discuss each of the procedural and machine-learned 
operations in more detail. 

For this example, the input LF graph to the generation component is given in Figure 8. To 
simplify the display of the graph, the display algorithm attempts to minimize crossing 
lines. The node Kartoffel1 is displayed twice in the graph but is in fact the same node, i.e. 
Kartoffel1 is dependent on aufessen1 and ernten1. Similarly, Hans1 is dependent on 
aufessen1 in the Tsub relation and is a possible intrasentential coreferent of er1. 

 

Figure 8: LF structure for the sentence Hans isst die Kartoffeln auf, die er gestern geernet hat 

5.1.1 Pre-Processing 
In the Pre-Processing stage, the LF graph is degraphed; i.e., a structure is created in 
which each node has at most one parent node. This operation creates a tree structure that 
facilitates conversion into a syntactic tree in the subsequent stages. Nodes that needed to 
be duplicated in order to create a tree from the graph bear coindices which link them to 
their counterparts. In addition, a lexical lookup in the German NLPWIN dictionary is 
performed on the lexical items present in the graph, and the dictionary information is 
stored in an attribute on the records in the graph (not displayed in Figure 9). Finally, 
compound nouns that have been analyzed into components in LF are reconverted into an 
un-analyzed compound string for training and generation purposes.  

The output of the pre-processing stage is illustrated in Figure 9. Note that the nodes 
Kartoffel1 and Hans1 which have previously been in two dependency relations have each 
been duplicated. Kartoffel1, for example, is now only dependent on aufessen1. Kartoffel1 
has been cloned to produce Kartoffel2, which is dependent on ernten1. The coindices are 
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shown in Figure 9. A positive coindex denotes the node from which another node was 
cloned. A negative coindex indicates that the node was originally cloned from the node 
whose coindex is the corresponding positive integer, e.g., Karotoffel1 (coindex of 2) is 
the node from which Kartoffel2 (coindex of -2) was derived. 

 

Figure 9: The output of the pre-processing stage 

5.1.2 Flesh-out 
During the Flesh-out stage, information is added to the degraphed LF. Typically, these 
are details about syntactic realization that have been normalized at the more abstract LF 
level of representation. First, syntactic labels are assigned to the nodes in the degraphed 
LF, based on a decision tree classifier (the new syntactic labels are present in an attribute 
on the nodes, but are not displayed in Figure 10 below). Function words that carry no 
semantic information are not present at LF. These function words are inserted next and 
include: 

1. An abstract determiner: “Defdet” for definite determiners, “Indefdet” for 
indefinite determiners, “Whdet” for Wh determiners, and “Proxldet” and 
“Distldet” for demonstrative determiners. The surface form of these determiners 
is determined later, during the “surface cleanup” stage. 

2. Auxiliaries. 

3. Prepositions which have a purely syntactic function. In German, this includes the 
prepositions von and durch used in the passive construction. 

4. The infinitival marker zu. 

5. Negation nicht, which is marked in the LF as the feature [+Neg]. 

6. Subordinating conjunctions dass and ob. 

7. Expletive subjects, i.e. the semantically empty grammatical subject es. 

8. An abstract relative pronoun “Relpro” which receives its surface realization 
during stage 6, “surface cleanup”. 
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9. Reflexive pronouns. 

10. The Wh adverbial wie “how”. 

The function words given in 1-7 are inserted based on a decision tree classifier for each 
of the insertion tasks. The function words given in 8-10 are inserted by simple functions. 
In addition to the insertion operations, a function contracts LF nodes of prepositional 
proforms such as dadurch, damit ("through that", "with that") etc. to their surface string. 
Logical subjects and objects are assigned a probability for “spellout” by a decision tree 
classifier, i.e., a probability of their being realized in the surface string. Logical subjects 
of infinitival clauses, for example, should not be overtly represented in the string. Finally, 
case features and verb position features are assigned by decision tree classifiers. Figure 
10 shows the result of the flesh-out operations on our sample LF. 

 

Figure 10: The degraphed LF after Flesh-out 

5.1.3 Conversion to basic tree 
During conversion to a “basic” tree, the first operation is the actual removal of logical 
subjects and objects which have a low probability of overt realization (as assigned by a 
decision tree classifier during Flesh-out). The degraphed LF at this point is transformed 
into a syntactic tree structure. The syntactic labels on nodes in the degraphed LF that 
were assigned during Flesh-out are copied over to the corresponding non-terminal nodes 
in the basic tree. Separable prefixes are split from their stem, based on verb-position 
features assigned in the previous stage, and based on lexical information about the 
boundary between the prefix and the stem obtained from the dictionary during Pre-
processing. In the next two steps, the representation of coordination is mapped from the 
way it is handled in LF (see section 4 and section 6.2.9) to a more surface oriented 
structure in which the coordinating conjunction is the syntactic head. The last step in the 
conversion to basic tree is an operation based on a decision tree classifier which reverses 
syntactic dominance relations in those contexts where syntactic and semantic dominance 
relations are at odds, particularly in cases involving quantification, e.g., viele der Leute 
“many of the people” where viele “many” is the syntactic head, but Leute is the semantic 
one. Figure 11 shows the basic tree structure for the example sentence. In parentheses on 
the far-right, the LF relations of the nodes to their semantic parent are displayed, relations 
starting with a tilde denote “pseudo-relations”, i.e., inserted material that had no original 
place in the LF and hence no original LF relation. The presence of the LF relations is a 
reminder that the new syntactic nodes in the basic tree bear references to the LF nodes 
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from which they were constructed. The LF features continue to be accessible to 
downstream modules. 

 

Figure 11: Basic tree structure for the example sentence 

5.1.4 Global movement 
During Global Movement, non-local movement operations are performed. Non-local here 
means movement beyond the limits of the immediate parent. All “local” movement in 
Amalgam is treated as an ordering phenomenon within one constituent, not as genuine 
movement. Raising, Wh-movement, and the movement of relative pronouns/relative 
expressions are handled by three simple functions. While this seems strangely at odds 
with the attention that these operations have received in linguistic research, it is important 
to note that the more involved examples of multiple Wh-movement, long distance Wh-
movement, parasitic gaps, etc., which are important phenomena from a theoretical point 
of view, are extremely rare in real-life texts. Given the rarity of these phenomena in our 
training set, we decided to deal with these phenomena with rules. In principle, a machine-
learned approach could be applied, given sufficient training examples.  

The next movement step, extraposition of relative, infinitival and complement clauses, is 
based on a decision tree classifier which decides for each instance of such a clause 
whether it should move up one step and attach to the parent of its parent. Once reattached 
there, the next “hop” is evaluated, until a position is found where the probability of 
further movement is less than the probability of no further movement (and hence less 
than 0.5). A trace is left behind in the original position, with a pointer to the extraposed 
clause (and vice versa). 

The final steps in the global movement stage are two functions which assign 
morphological features for verbs based on the information present in the tree nodes. 
Tense information is copied to the finite verb which might be an auxiliary inserted during 
flesh-out. Participial information is copied onto the non-finite verb, and agreement of the 
finite verb with the subject is established. The surface subject is identified as the first 
nominative NP in the domain of the finite verb (case features having been assigned 
during flesh-out by a decision tree classifier). In our example, as shown in Figure 12, 
extraposition of the relative clause RELCL3 has taken place. 
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Figure 12: The tree after Global Movement 

5.1.5 Intra constituent ordering 
During this stage, a generative language model of syntax tree structure is applied in a 
beam search to establish the linear order of the nodes within each constituent, and 
consequently the tree. The model consists of n-gram probabilities (currently, n=2) on the 
order of the labels of the nodes and the semantic relations of the nodes (from the LF), 
conditioned on constituent features, such as parent and head nodetypes (for more details 
see section 7.2 below). Currently, we apply a “fix-up” function after the application of 
the model to correct the positions of the verbs, based on the verb position features 
assigned by a decision tree classifier in the Flesh-Out stage. We plan to eliminate this 
function as work on the order model progresses. As currently structured, verb position 
cannot be reliably established by the order model, due to the limitations of an n-gram 
window unconditioned on verbal features. For any given n, an n-gram is inadequate for 
capturing the generalizations about verb position where the finite verb and non-finite 
verbs in a verb-second structure can be separated by a theoretically unlimited number of 
constituents. One possible extension to the model that we envision is the addition of a 
separate model of the verb position. 

At the end of the ordering stage we apply a function that assembles compounds from LFs 
containing nouns with non-possessive noun modifiers. This function is currently only 
used in machine translation contexts (recall from section 5.1.1 that we simplify 
compounds when processing German-to-German generation). In our example, ordering 
results in the tree in Figure 13. 
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Figure 13: The ordered tree 

5.1.6 Surface cleanup 
It is obvious from Figure 13 that some work still needs to be done to that structure in 
order to arrive at a correct surface string. Both the abstract relative pronoun “Relpro” and 
the abstract determiner “Defdet” need to be converted to their surface realization. These 
tasks are achieved during surface cleanup by two decision tree classifiers which decide 
on the most probable surface form. Note that in German this is not a trivial task: during 
training, the model has picked up on no less than 55 different determiner forms from the 
training corpus, and 23 different forms of relative pronouns. Reflexive pronouns, which 
also received an abstract form during insertion in flesh-out, are converted into their 
surface form by a simple function. The result of these operations for our example 
sentence is shown in Figure 14. 

 

Figure 14: The tree after surface cleanup 

Surface cleanup contains an additional step not illustrated in the example sentence: the 
reduction of duplication in coordinated constituents, also called syntactic aggregation in 
the generation literature. Consider a sentence like Hans hat die Kartoffeln gekocht und 
gegessen “Hans has cooked and eaten the potatoes”. The LF for this sentence correctly 
establishes semantic relations between each of the verbs kochen and essen and the subject 
Hans and object die Kartoffeln. Mapped to a tree through Amalgam, the surface string 
will faithfully encode all the relations that were present in the input LF, resulting in 
duplication: Hans hat die Kartoffeln gekocht und Hans hat die Kartoffeln gegessen “Hans 
has cooked the potatoes and Hans has eaten the potatoes”. Although this is a perfectly 
grammatical German sentence, it is not the desired fluent output we would wish to 
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produce. Surface cleanup contains two operations dealing with syntactic aggregation. The 
first operation is based on a decision tree classifier which establishes a probability of 
being overtly realized for each of the duplicated nodes in a coordination structure. Each 
of the duplicated nodes with p(overtly realized) > 0.5 will be retained, while the 
duplicated nodes with lower probability are eliminated. In case there is not a single 
duplicated node that reaches the probability threshold, the node with the highest 
probability of being realized is retained as a safeguard against truncation. The second 
operation is a function that eliminates duplicated function words such as prepositions and 
auxiliaries. 

5.1.7 Punctuation 
After the creation of an ordered and fully spelled-out tree, punctuation needs to be 
inserted to ensure fluent and readable output. Punctuation rules are notoriously difficult 
in German, and although some simplification has been achieved in the spelling reform, 
there are still 26 different rules for the correct positioning of the comma alone. Since 
punctuation conventions are typically in the form “insert punctuation X after Y” or 
“insert punctuation X before Y”, we decided to build two different decision tree 
classifiers for preceding and for following punctuation. We only train and apply these 
models for sentence internal punctuation, since sentence final punctuation can be inserted 
with a simple function.4 At each terminal node in the tree, the left edge of that terminal 
node and the right edge of the preceding node are passed into the classifier for preceding 
and following punctuation, respectively. The verdicts from both classifiers are collected 
and if there is any strong prediction (>0.5) for the insertion of punctuation, the strongest 
such prediction wins and the predicted punctuation mark is inserted. In our example, one 
comma is inserted before the extraposed relative clause, as shown in Figure 15. 

 

Figure 15: Tree with inserted punctuation 

5.1.8 Inflectional generation 
The final stage in the Amalgam pipeline is inflectional generation. The records in the tree 
structure at this stage in the pipeline contain all necessary information to be passed into a 

                                                 
4 The technical texts do not contain many examples of imperatives with exclamation marks, rhetorical 
questions, or other cases in which sentences would not end in a period. 
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rule-based inflectional morphology component for German. This component has been 
developed for use in the German grammar checker in the Microsoft Word word processor. 
Features passed into the inflectional generation component include case, gender, number, 
person, etc. To give an example, the record of the node STEM1 in the tree in Figure 15 is 
shown in Figure 16. Based on the features Pers2, Sing, Pres, and Indicat, the verb form 
“isst” can be generated from the Lemma “essen”. 

 

Figure 16: Attribute-value data structure for the finite stem in the example sentence 

Figure 17 contains the final result of the generation process on the example sentence, 
including the inflected forms of the verbs essen, ernten, and haben and of the noun 
Kartoffel. 

 

Figure 17: The final inflected tree 

A string is read off this final tree structure, and in our case, the output string corresponds 
exactly to the input string: Hans isst die Kartoffeln auf, die er gestern geerntet hat. 
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5.2 A Detailed Flowchart of the Amalgam Pipeline 
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Figure 18: A detailed flowchart of the Amalgam pipeline 
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6 The rule-based operations in Amalgam 

6.1 Degraphing 
We begin with a logical form graph as input to the generation process. The first step in 
producing a linear sequence of words is to disentangle the logical form graph to produce 
a degraphed logical form. 

Each node in the input logical form contains a list of pointers to parent nodes, stored in 
the attribute Parents. A parallel list of atoms, ParentAttrs, stores the corresponding labels 
on the arcs to those parent nodes. These attributes are updated during the degraphing. 
When the degraphing is complete, every node but the root has exactly one parent. The 
root has no parent, by definition. 

Nodes that are replicated during degraphing are assigned a numerical index, stored in the 
CoIndex attribute. One node is assigned a positive integer, while the duplicates are 
assigned a negative integer. 

During the degraphing operation, certain logical form attributes are ignored (i.e., their 
values are not cloned). These fall into three classes: 

1. System-internal bookkeeping attributes of no linguistic interest, e.g., CopyOf, 
a pointer to the record that the current record was copied from during 
construction of the logical form. The other bookkeeping attributes are Originl, 
Clones, CopyLFCopiedTo, Rules, Constits, CopyOf, BoxCodeChecks, and 
LexNode. 

2. Attributes that used to encode the restructured logical form. These are 
ParentAttrs, Parents, and CoIndex. 

3. Attributes used only for advanced semantic processing, but not yet considered 
reliable or useful for generation. These include attributes indicating intra-
sententential coreference (Refs, RefOf) and the attributes used for MindNet, a 
semantic knowledge base (Richardson et al. 1998), namely WeightedPaths, 
MatchPaths, Topicl, Simples, AmbRecs, ExpandSCs, AmbGCs, Counts, 
Masses, Coordnode,  HypSynLems, Emph, and Nominf. 

Figure 19 shows the logical form for the sentence Alle Artikel und Publikationen jeder 
ausgewählten Datenbank werden übertragen und aktualisiert “All articles and 
publications of each selected database are transmitted and updated”. This logical form 
contains a fair number of nodes with multiple parents, which require degraphing in 
Amalgam. Figure 20 illustrates the same logical form after degraphing. 
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Figure 19: German logical form before degraphing 
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Figure 20: German logical form after degraphing 

6.2 Miscellaneous rule-based operations 

6.2.1 Creation of lexnodes 
The function create_lexnodes performs a lookup of the lemma of a node in the logical 
form. It then stores the information retrieved from the dictionary in an attribute on that 
node. The purpose is to make lexical information (such as subcategorization information) 
available to the subsequent processing stages. 

For hyphenated words or compounds, the function performs analysis of the word and 
returns lexical information of the head of the compound or hyphenated item. 
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6.2.2 Simplification of compounds 
German compounding (especially nominal compounding) is very productive. The 
German analysis system contains a compounding analysis module, which tries to identify 
the parts of a compound such as “Eingangsbereich” (entry area) by using lexical 
information, word frequency information and syllable structure restrictions. The correct 
analysis in this example is “Eingang” + “s” + “Bereich”, where “s” is what is called a 
linking morpheme. At the level of logical form, the head of the compound forms a node 
in the LF graph (in this case “Bereich”), and the other meaning-bearing parts of the 
compound are linked to that node through the “Mods” attribute. For the purposes of 
Amalgam training, we ignore the internal structure of compounds, which is part of 
morphological generation, not syntactic generation. For training purposes, we simplify 
the logical form representation, effectively undoing the compound analysis. The result of 
that process on a node of a compound word is a single node with the complete compound 
string. 

6.2.3 Contracting PPs 
German has an array of PP proforms such as “damit”, “dafür”, etc. These forms contain a 
preposition (“mit”, “für” in the example) and a pronominal element “da”. At LF, we 
currently decompose these words into a representation similar to that of a full PP “mit 
das” (with that), “für das” (for that). This analysis is of little impact at the moment, but 
could pave the way for determining the referent of the pronominal part. For the purposes 
of Amalgam, we simply reconstruct the string of the proforms from the representation at 
LF, undoing the analysis step. 

6.2.4 Insertion of relative pronouns 
Relative pronouns in our logical form analyses have been replaced by a copy of the 
semantic node they are referring to. In order to produce correct output in generation, this 
copy has to be replaced by a relative pronoun. For an illustration of this, see Figure 9 and 
Figure 10 above. All the relevant information for this replacement is present during the 
flesh-out stage: we need to know that the node in question is a copy of a node in the 
parent chain (this information is encoded in the CoIndex attribute), we need to know that 
the node in question is inside a relative clause (the label RELCL must have been assigned 
to the parent), and we need to know that the RELCL in question modifies the original 
node that the copy was made from (this information is directly encoded as a semantic 
relation in LF). 

6.2.5 Insertion of reflexive pronouns 
Reflexive pronouns are used in two contexts in German: there are inherently reflexive 
verbs, where the reflexive pronoun does not carry any semantic role, and there are normal 
transitive verbs used reflexively. In the first context, the reflexive does not appear as a 
node in logical form at all (but the verb is marked with a special feature ReflexSens), in 
the second context, it appears as a copy of the node that it refers to. Insertion of reflexive 
pronouns picks up on these two different contexts and inserts a reflexive pronoun in the 
first context, and replaces the copy with a reflexive pronoun in the second context. 
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6.2.6 Insertion of “wie” 
“Wie” is a Wh adverb, like its English counterpart “how”. It is not represented as a node 
at logical form, since its only function is to carry the Wh feature. Insertion of “wie” is a 
simple operation that is triggered if there is a Wh feature on a node, but no other Wh-
carrying element is present or has been inserted yet. 

6.2.7 Converting the fleshed-out LF to a basic tree 
This is a recursive transformation of the degraphed LF tree into a syntactic tree structure, 
such that the LF node label becomes the head of a constituent, and LF modifier nodes 
become syntactic modifiers. The syntactic labels that have been assigned during the 
flesh-out stage are copied onto the corresponding nodes in the syntactic tree (by the 
function adjust_labels). 

6.2.8 The splitting of separable prefixes 
Splitting a verb into a stem and a separable prefix is triggered when the verb is actually a 
separable prefix verb (as indicated by a lexical feature ) and the verb occurs in a context 
where the stem should be separated, i.e., either in a verb-initial or in a verb-second 
structure with no auxiliary or modal verb present that would carry the finiteness features. 

If these conditions hold, lexical information on the verb determines where the split 
between stem and prefix should be made. The node is split into a STEM and a PREFIX 
node (see Figure 11 for illustration). Verbal inflectional features are copied over to the 
stem. 

6.2.9 Introduction of coordination 
Coordination, one of the notoriously difficult aspects of natural language, is represented 
in different ways at the logical form level and during syntactic analysis. Syntactically, we 
treat a conjunction as the head of a coordinated construction, with the coordinated 
phrases and additional conjunctions in the pre- and postmodifiers of that head. 
Semantically, there is no single node for the coordinated phrase (see Figure 19 for an 
example). Rather, each of the coordinated phrases has its own node, and enters into 
semantic relations by itself. In addition, each of the coordinated nodes maintains pointers 
to the semantic nodes of the other phrases with which it is coordinated in an attribute 
CoCoords. This mismatch in representation is remedied by two functions which adapt the 
syntactic tree structure that has been built directly from the degraphed logical form. In 
essence, the functions convert CoCoords into coordinated syntactic nodes, with the 
conjunction as the head. 

6.2.10 Rule-based movement operations 
Raising, Wh movement and movement of relative pronouns/expressions are handled in a 
rule-based manner in Amalgam, as opposed to the extraposition of clauses, which 
employs a decision tree classifier. This is by no means a necessary design feature, but 
given the sparsity of data and the simplicity of a rule-based approach, we decided to 
adopt this strategy in our prototype. We are well aware of the complexity of long distance 
movement phenomena across languages, and we do not suggest that the simplistic 
treatment we have chosen is a linguistically adequate solution. However, it is also a fact 
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that long-distance movement is a rare phenomenon in the data that we currently work 
with, so that we have no basis in the data for a machine learned approach. 

There are currently two raising functions. One function raises nodes out of adjective 
phrases and noun phrases to the level of the copular verb in predicative contexts, the 
other function raises subjects of raising verbs. The latter function is a prototype that 
hasn't been tested, since in the data we don't find enough instances of raising verbs to 
learn the correct syntactic labels for them. Without correct labeling, this function is not 
triggered. 

Wh movement is triggered if the structure contains a phrase marked by the Wh feature 
that is not dominated by another Wh or WhQ phrase (a direct or indirect Wh question) 
and if that phrase has an ancestor higher up in the tree that is marked as WhQ. Once this 
context is detected, the Wh phrase is moved up to the WhQ node. 

Relativizer movement works very similarly to Wh movement, except that the triggering 
context here is the presence of a relative pronoun that is not dominated by a relative 
clause. In this context, the relative pronoun moves up to the first relative clause in its 
parent chain. 

6.2.11 Placement of inflectional features on verbs 
Two functions distribute inflectional features to the correct verbal targets. The first 
function identifies the finite verb (which can be an inserted auxiliary or a modal) and 
shifts the tense, mood, and finiteness features to that verb. It also marks the non-auxiliary 
verb as past participle if the construction is marked as perfective or passive, and it marks 
verbs as infinitives if a modal verb is present and there is no passive or perfective context. 
The second function identifies the grammatical subject as the first nominative noun 
phrase that is in the domain of the verb. It then copies person and number features of that 
noun phrase onto the finite verb. If no grammatical subject is found, a default assignment 
of 3rd person singular is made. 

6.2.12 Fixing up surface order 
Given the current limitation of the generative language model employed for ordering, we 
employ a “fix up” function which deals with the current inability of the order model to 
account reliably for the position of the verb. This function adjusts the verb positions 
according to the verb position features that have been assigned by a decision tree 
classifier in the Flesh-out stage. The function shifts the finite verb to the left bracket 
position in verb-second and verb-initial structures, and ensures that all non-finite verbs 
are lined up in the right bracket position. Needless to say, we consider this fix up function 
a temporary solution that will become obsolete as work on the order model progresses. 

6.2.13 Compound generation 
Compound nouns are very common in German. In order to provide fluent output, 
Amalgam needs to be able to provide compounded nouns where the input Logical Form 
contains a noun modifying another noun directly (i.e. without the presence of a 
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preposition). This scenario exists especially in the context of machine translation, where 
input Logical Forms are created from Logical Forms of another language such as English.  

Compound generation in Amalgam is rule-based: nominal modifiers on a noun are strung 
together into one single word string. Information about the linking morpheme (letters that 
are inserted between nominal parts, depending on lexical information on the left-hand 
word) is retrieved from the lexicon and taken into account. If no linker information is 
available in the lexicon, a hyphen is inserted between the parts of the compound as a 
back-off strategy to facilitate intelligibility. 

6.3 Inflectional generation 
For inflectional generation, the terminal nodes in the syntactic tree with their inflectional 
bits and case information (on nouns) are passed into NLPWIN’s generation function, 
which has been developed for the Office grammar checker projects. This generation 
function utilizes NLPWIN's finite-state morphology, developed with the other analysis 
components of NLPWIN. 

7 The machine-learned components of Amalgam 
We provide in-depth descriptions of each of the machine-learned components, beginning 
with the decision tree classifiers and proceeding to the generative language model of 
syntactic constituent structure. 

7.1 Decision Tree Classifiers 
All of the machine-learned modules in Amalgam, with the notable exception of the order 
model, are based on decision tree classifiers. We use the WinMine toolkit (Chickering, 
nd.) to build and view our decision trees. For each classification task, we build decision 
trees at varying levels of granularity (by manipulating the prior probability of tree 
structures to favor simpler structures) and selected the model with maximal accuracy on 
the corresponding parameter tuning data set.. Reported accuracy numbers are based on 
that selected model. 

In this section, we discuss each of the decision tree classifiers in turn, providing 
information on the motivation for the classifier, the input features, and the features 
actually selected by WinMine. We evaluate the accuracy of each classifier and perform 
failure analysis. 

If not otherwise specified, the decision tree classifiers are built on a set of 100K sentences 
from the technical domain (computer manuals). The set is split 70/30 for training versus 
prameter tuning, respectively. We report overall accuracy and baseline accuracy of each 
model, as well as precision/recall/F-measure for each value of the target feature on the 
parameter tuning set. The baseline accuracy number is the accuracy resulting from 
applying the most frequent value of the target feature across the board. Work on the 
individual models is ongoing, and the numbers reported in this report are from December 
2001. Considerable improvements have been made since then. For more recent results, 
see (Corston-Oliver et al. 2002). 
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We use standardized sets of features for the training of the classifiers, with special 
features used sparingly and only with linguistic motivation. To simplify the discussion of 
the features in the individual sections on decision trees, we will use the following set of 
terms: 

Standard bits: 

An inclusive set of features present on records in NLPWIN. These include 
subcategorization features, semantic features, tense features, Wh etc. The total 
number of features in this set is 193. The value of these features is binary: either 
the bit is present, or it is not. 

Standard attributes: 

An inclusive set of attributes present at logical form. The total number of 
attributes is 33. The value of these features is binary: either the attribute is present, 
or it is not. 

ParentAttrs: 

An attribute denoting the semantic relation of a node to its Parent. The value of 
this feature is an atom, there are as many values as there are logical form standard 
attributes. 

Cat: 

The part of speech 

Crds and CoCoords: 

Coordination-related attributes. CoCoords is a list with references to the other 
nodes with which a semantic node is coordinated. Crds has the same function, but 
is used in root node contexts. 

The following is a list of those standard bits that ended up being used in any of the 
decision tree classifiers: 

Person/number bits: 

Sing, Plur, Pers3, Pers2 

Verb-related bits: 

Pass (passive), Pres (present), Indicat (indicative), Futr (future), Perf 
(perfective), Imper (imperative), Condition (conditional clause), Modal (modal 
verb), Continuous (aspectual feature), Completed (aspectual feature), Resultat 
(aspectual feature), Possibl (modal feature), YNQ (yes/no question), WhQ (Wh 
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question), Etreaux (verb takes “sein” to form the perfect tense)5, I3 (intransitive 
verb with infinitival clause),  

Noun-related bits: 

N_ung (noun derived from verb by suffix “ung”), Fem, Masc, Neut, Def 
(definite), Indef (indefinite), Univ (universal quantification), Proxl 
(demonstrative, indicating something near to the speaker), Quant (quantified), 
CompPart (part of a compound), ExstQuant (existential quantification), Wh, 
Reflex (reflexive), Rel (relative),  

Subcategorization bits: 

I0 (intransitive), T1 (transitive), T5 (transitive with that-clause), T1dat (transitive 
with dative object), T1acc (transitive with accusative object), T1gen (transitive 
with genitive object), D1 (ditransitive verb), D5 (ditransitive verb with that-
clause), L1 (copular verb with NP predicate), Extrap3 (with infinitival 
complement that can be extraposed), V3 (takes an NP and an infinitival 
complement), B3 (adjectives/adverbs that take infinitival complements), F5 
(adjectives/adverbs that take that-clause complements), V2 (takes a bare infinitive 
as a complement), T6 (transitive, takes a Wh-clause as complement), T3 
(transitive, takes an infinitival clause as complement), V2comp (takes a verb-
second complement clause) 

Miscellaneous bits: 

Neg (negated), Proposition (has propositional content), Time (time expression) 

Standard attributes: 

PrpCnjLem (Lemma of prepositional element), Classifier (classifier expression), 
LOps (operators), Modals, DegreeMods (modifiers of degree), Intnsifs 
(intensifiers), Cause, Locn (location), Props (propositions), SMods (sentence 
modifiers), Time, Manner, Equiv (equivalence relation), Measure, Tsub 
(subject), Tobj (object), Tind (indirect object), Benef (beneficient), Matr 
(material), Duration, Possr (possessor), Mod (unspecified modifier), Part (part 
relation), Means, Purp (purpose), Result, Source, Goal, Attrib (attributive 
relation), LAgent (agent), CoAgent, PrepRel (unspecified prepositional relation), 
Appostn (apposition) 

A special notation is used in the composition of the feature names to indicate if the 
feature is tested on the Parents, or Parents of the Parents, and in the case of special 
features, to indicate whether the feature value is an atom or a continuous value. To give 
some examples: 

                                                 
5 Originally used to denote French verbs that form the passé composé with the verb être. 
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 1~I0 = the I0 bit on the node itself 

 1~I0~Parents = the I0 bit on the first of the Parents (technically, the Parents 
attribute is a list, but in a degraphed LF there is (by definition) only one element 
in that list 

 1~I0~Parents~Parents = the I0 bit on the first of the Parents of the first of the 
Parents (i.e., on the grandparent) 

 A~myfeature = a special feature myfeature that has an atom as its value 

The 1~ prefix simply indicates that only one record is examined to compute this feature. 
Since this is the case for all features in Amalgam, it can be ignored. 

To give some ballpark figure for the total number of features that are emitted for each of 
the classification tasks, there are 193 standard bits in addition to the 33 standard attributes. 
For those models where we test the standard bits and attributes on a node itself, its parent 
and its grandparent, we emit a total of (193 + 33) * 3 = 678 features. 

All the models in the flesh-out stage are trained on (and applied to) logical form nodes, 
all the models after flesh-out are trained on (and applied to) syntactic nodes in the basic 
tree. If logical form information needs to be accessed from the basic tree, it is accessed 
through the SemNode attribute which refers to the corresponding semantic node. 

7.1.1 Syntactic labeling 

Motivation 
In Amalgam, sentence realization is mediated through a syntactic stage. Logical form is 
converted step by step into a syntactic structure, with the output being very similar to an 
analysis tree structure. Syntactic labels (especially on non-terminal nodes) are an 
important part of any syntactic tree, and many linguistic phenomena can be best 
described with reference to syntactic labels. 

Input features 
o Cat and ParentAttrs on the node itself, the parent, and the grandparent 

o Standard bits and attributes on the node itself, its parent, and grandparent 

o Two special features: 

o HasWhDaughter: 1 if the node has a daughter that is marked +Wh, 0 
otherwise 

o Pers2~Tsub: the Tsub is Pers2 

Features selected 
A total of 48 features were selected for this model: 
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1~Cat, 1~ParentAttrs, 1~PrpCnjLem, 1~Pers3~Parents, 1~Pass~Parents, 1~LOps, 
1~ParentAttrs~Parents~Parents, 1~Continuous~Parents, 1~Time~Parents, 
1~Pres~Parents, 1~Resultat~Parents, 1~Pers3, 1~CoCoords, 1~Indicat, 1~Cat~Parents, 
1~Tsub~Parents, 1~Proposition, 1~Tsub, 1~ParentAttrs~Parents, 1~T1~Parents, 
1~LOps~Parents~Parents, 1~Pres, 1~Tobj, 1~Quant~Parents, 1~I0~Parents, 1~CnjLem, 
1~Quant, 1~Def, 1~CoCoords~Parents~Parents, 1~PrpCnjLem~Parents, 1~Crds, 
1~CoCoords~Parents, 1~Condition, 1~Indef, 1~Pers2~Tsub, 1~Rel, 1~Plur, 
1~T1~Parents~Parents, 1~Attrib, 1~Resultat, A~HasWhDaughter, 1~Sing, 1~Completed, 
1~Modal~Parents, 1~Proposition~Parents, 1~Quant~Parents~Parents, 1~T5~Parents, 
1~Plur~Parents~Parents 

Classifier accuracy and complexity 
This classifier is built on 10,000 sentences (with a 70/30 split training versus parameter 
tuning/test). Since the classifier is trained on each semantic node that has a corresponding 
syntactic node, the number of data points obtained from 10,000 sentences is already very 
large. The accuracy for this model is 98.27%. The baseline for the model is .35. Precision, 
recall, and F-measure for each of the values of the target feature are given in Figure 21. 
The DT classifier has 121 branching nodes. 

Key Precision Recall F-measure 
DETP 0.9929(140/141) 0.9396(140/149) 0.9655 
COMPCL 0.9276(141/152) 0.8545(141/165) 0.8896 
VP 0.9807( 1928/ 1966) 0.9954( 1928/ 1937) 0.9880 
QUANP 0.9856(618/627) 0.9968(618/620) 0.9912 
AVPNP 0.0000(0/0) 0.0000(0/ 12) 0.0000 
IMPR 0.9835(298/303) 1.0000(298/298) 0.9917 
AVP 0.9982( 1658/ 1661) 0.9846( 1658/ 1684) 0.9913 
LABEL 0.9296( 66/ 71) 0.9041( 66/ 73) 0.9167 
NAPPOS 0.9838(426/433) 0.9660(426/441) 0.9748 
QUES 0.0000(0/0) 0.0000(0/5) 0.0000 
AUXP 0.9902(906/915) 1.0000(906/906) 0.9951 
NREL 0.7143( 30/ 42) 0.5882( 30/ 51) 0.6452 
AJP 0.9909( 3582/ 3615) 0.9942( 3582/ 3603) 0.9925 
ABBCL 0.0000(0/0) 0.0000(0/8) 0.0000 
RELCL 0.9871(686/695) 0.9985(686/687) 0.9928 
NP 0.9755(10906/11180) 0.9957(10906/10953) 0.9855 
POSS 0.9734( 1535/ 1577) 0.9672( 1535/ 1587) 0.9703 
PRPRTCL 0.0000(0/0) 0.0000(0/2) 0.0000 
COMMENT 0.2500(6/ 24) 0.8571(6/7) 0.3871 
INFCL 0.9007(136/151) 0.9645(136/141) 0.9315 
PP 0.9923( 5791/ 5836) 0.9585( 5791/ 6042) 0.9751 
SUBCL 0.9915(585/590) 0.9701(585/603) 0.9807 
DECL 0.9959( 1695/ 1702) 0.9953( 1695/ 1703) 0.9956 
PTPRTCL 0.0000(0/0) 0.0000(0/4) 0.0000 

Figure 21: Precision, recall, and F-measure for the syntactic label model 
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Failure analysis 
As is apparent from Figure 21, a few of the syntactic labels used in NLPWIN are very rare 
in the training data used, so that the model is not able to correctly pick up on the 
determining factors for these labels. The problematic labels include: AVPNP (noun 
phrase used adverbially), QUES (question), ABBCL (absolute clause), PRPRTCL 
(present participle clause), and PTPRTCL (past participle clause). 

7.1.2 Determiner insertion 

Motivation 
Function words that are resolved as features at the level of logical form need to be re-
inserted during sentence realization. 

Input features 
o Nodetype on the node itself, parent and grandparent 

o Cat, ParentAttrs on the node itself and the parent 

o Cat of the possessor of the node itself 

o Standard bits and attributes on the node itself and the parent 

Features selected 
Fourteen features were selected for this model: 

1~Def, 1~Nodetype, 1~Indef, 1~Wh, 1~Proxl, 1~Cat~Possr, 1~Nodetype~Parent, 1~Plur, 
1~PrpCnjLem, 1~Sing, 1~Quant, 1~Cat~Parents, 1~Resultat~Parents, 1~Cat 

Classifier accuracy and complexity 
The classifier accuracy is 97.63%. The baseline is 0.58. Figure 22 shows the numbers for 
each of the five observed values of the target feature. The determiner insertion model has 
nineteen branching nodes. 

Key Precision Recall F-measure 
NoDet 0.9905 (11284/11392) 0.9719 (11284/11610) 0.9811 
Whdet 1.0000 (22/22) 0.9565 (22/23) 0.9778 
Proxldet 0.9922 (508/512) 0.9203 (508/552) 0.9549 
DefDet 0.9433 (6068/6433) 0.9859 (6068/6155) 0.9641 
Indefdet 1.0000 (1765/1765) 0.9893 (1765/1784) 0.9946 

Figure 22: Precision, recall, and F-measure for the determiner insertion model 

Failure analysis 
The majority of incorrect classifications in this model stems from coordinated noun 
phrases, where (at least for German) the determiner is often only spelled out once. 
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Feature extraction for this model should be refined, so that either coordination is taken 
into account, or coordinated NPs are consistently ignored during feature extraction. 

7.1.3 Auxiliary insertion 

Motivation 
Function words that are resolved as features at the level of logical form need to be re-
inserted during sentence realization. 

Input features 
o ParentAttrs and Cat on the node itself 

o Standard attributes and bits on the node itself and the parent 

o Crds and CoCoords on the node itself and the parent 

o Standard bits on the LexNode of the node itself 

o Etreaux bit on the LexNode of the node itself 

Features selected 
Thirteen features are selected. 

1~Pass, 1~Perf, 1~Completed, 1~Proposition, 1~Pres, 1~Condition, 1~CnjLem, 
1~Etreaux~LexNode, 1~Past, 1~D1~LexNode, 1~T1, 1~ParentAttrs, 1~Tsub 

Classifier accuracy and complexity 
The accuracy of this classifier is 99.86%. The baseline is 81.36%. The classifier has 14 
branching nodes. 

Key Precision Recall F-measure 
 sein_werden 1.0000( 59/ 59) 0.6413( 59/ 92) 0.7815 
sein 0.9800(147/150) 0.8698(147/169) 0.9216 
 haben 0.9713(744/766) 0.9960(744/747) 0.9835 
werden 0.9967(15223/15274) 0.9969(15223/15271) 0.9968 
none 0.9993(71048/71098) 0.9997(71048/71068) 0.9995 

Figure 23: Precision, recall, and F-measure for the auxiliary insertion model 

Failure analysis 
Recall is somewhat poor with the combination of the two auxiliaries “sein” and “werden” 
(in passive perfective). Although we have not performed any detailed failure analysis, it 
seems to be no accident that the combination of “sein” and “werden” is also the rarest in 
the data. 
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7.1.4 Preposition insertion 

Motivation 
In German, the prepositions “von” and “durch” in passive contexts are semantically 
vacuous and are not represented at the level of logical form. During sentence realization, 
they need to be inserted under the appropriate circumstances. 

Input features 
o Standard bits and attributes on the node itself and the parent 

o Standard bits on the grandparent 

o ParentAttrs and Cat on the node itself 

o Lexical bits (subcategorization and nominal derivational bits) on the LexNode of 
the parent and the grandparent 

Features selected 
Nineteen features were selected. 

1~Tsub~Parents, 1~Pass~Parents, 1~N_ung~LexNode~Parents, 1~Continuous~Parents, 
1~Cat, 1~Sing, 1~ParentAttrs, 1~T1~Parents, 1~Def, 1~Indef, 1~Proposition, 1~Attrib, 
1~Quant, 1~Tobj~Parents, 1~Possr, 1~Tobj, 1~Plur~Parents~Parents, 
1~Proposition~Parents, 1~Pers2 

Classifier accuracy and complexity 
Accuracy is 99.15%. The baseline was 97.04%. The model has 20 branching nodes. This 
model was trained on 10k sentences, since each nominal node was taken into 
consideration, which yielded a large number of data points. 

Key Precision Recall F-measure 
 von 0.8559(202/236) 0.7953(202/254) 0.8245 
none 0.9951(10502/10554) 0.9996(10502/10506) 0.9973 
 durch 0.7500( 27/ 36) 0.4091( 27/ 66) 0.5294 

Figure 24: Precision, recall and F-measure of the preposition insertion model 

Failure analysis 
It is not surprising that it is not easy for the model to predict the choice of prepositions 
“von” and “durch”. The choice of prepositions in the German passive is governed by 
intricate semantic details in interpretation, which generally go beyond the level of 
granularity of our logical form representation. A cursory failure analysis on the model 
confirmed that the most important factor in mis-classifications is indeed the distinction 
between those two prepositions. 



Amalgam—40 

 

7.1.5 Insertion of infinitival marker 

Motivation 
As with other function words like auxiliaries and determiners, the infinitival marker is 
semantically vacuous and therefore is not represented as a semantic node at the level of 
logical form. During sentence realization, it needs to be inserted under the appropriate 
circumstances. 

Input features 
o ParentAttrs, Cat and Nodetype on the node itself 

o Standard bits and attributes on the node itself and on the parent 

o Crds and CoCoords on the node itself and the parent 

o Standard bits on the grandparent 

Features selected 
Fourteen of the input features were selected: 

1~Nodetype, 1~Pres, 1~PrpCnjLem, 1~I0, 1~Tobj, 1~Tsub~Parents, 1~Modal, 
1~ParentAttrs, 1~V2~Parents, 1~PrpCnjLem~Parents, 1~CnjLem, 1~Past, 1~T1, 
1~CnjLem~Parents 

Classifier accuracy and complexity 
The accuracy of the classifier is 99.77%. The baseline was 95.66%. The decision tree has 
15 branching nodes. The model was trained on 10k sentences since every verbal node 
was a data point. 

Key Precision Recall F-measure 
zu 0.9634(342/355) 0.9856(342/347) 0.9744 
none 0.9993( 7630/ 7635) 0.9983( 7630/ 7643) 0.9988 

Figure 25: Precision, recall, and F-measure for the classifier for insertion of infinitival markers 

Failure analysis 
Cursory failure inspection reveals that faulty parses (yielding erroneous LFs) are an 
important factor in mis-classifications. Once the overall analysis of the sentence is 
incorrect, proper identification and marking of infinitivals becomes very difficult. 

7.1.6 Negation insertion 

Motivation 
Negation is represented at the level of logical form as a feature Neg. The decision as to 
where to insert negation during sentence realization is not a completely straightforward 
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one, though, because during analysis, the Neg feature can percolate up in the tree under 
various circumstances. 

Input features 
o ParentAttrs on the node itself 

o Cat and Nodetype on the parent and grandparent 

o Standard attributes and bits on the node itself and the parent 

o Standard bits on the grandparent 

o Crds and CoCoords on the node itself, parent, and grandparent 

o Two special features: 

o Negquant: is 1 if any of the descendants has the ExstQuant bit, indicating 
that it is in the scope of a negative operator 

o NegquantSister: is 1 if any of the sister nodes has a descendant which 
bears the ExstQuant bit 

Features selected 
Fifty-eight features were selected: 

1~Cat,1~Neg, 1~Nodetype, 1~ParentAttrs, F~NegquantSister, 1~Nodetype~Parents, 
F~Negquant, 1~Sing, 1~Mod, 1~Pass~Parents, 1~Quant, 1~PrepRel, 1~Tobj, 
1~Cat~Parents, 1~Nodetype~Parents~Parents, 1~BndPrp, 1~Tsub, 1~Time, 
1~Mod~Parents, 1~SMods, 1~Pass, 1~CompPart, 1~Pres, 1~Cat~Parents~Parents, 
1~Modals~Parents, 1~Plur, 1~Pers3, 1~ExstQuant, 1~Proxl, 1~Resultat~Parents, 
1~Modal, 1~PrepRel~Parents, 1~LAgent~Parents, 1~Proposition, 1~Tsub~Parents, 1~I0, 
1~Plur~Parents, 1~Sing~Parents, 1~Indef, 1~CoCoords~Parents, 1~Tobj~Parents, 
1~I0~Parents, 1~Def, 1~Condition, 1~Indicat~Parents, 1~Pres~Parents, 1~Univ, 
1~Indicat, 1~T1~Parents~Parents, 1~Proposition~Parents, 1~Condition~Parents, 
1~Sing~Parents~Parents, 1~Modal~Parents, 1~Def~Parents, 1~Plur~Parents~Parents, 
1~Modals, 1~Indef~Parents, 1~Quant~Parents 

Classifier accuracy and complexity 
The accuracy is 90.94% with a baseline of 80.79%. The resulting model has 138 
branching nodes. 

Key Precision Recall F-measure 
Insert_neg 0.7969( 2648/ 3323) 0.7058( 2648/ 3752) 0.7486 
none 0.9319(15100/16204) 0.9572(15100/15775) 0.9444 

Figure 26: Precision, recall, and F-measure for insertion of negation 
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Failure analysis 
It is not surprising that for each given node, the decision of whether negation should be 
overtly realized at that very position is far from trivial. Since we know from the 
properties of our logical forms that each Neg feature corresponds to an overtly realized 
negation at that node or any descendant of that node, we apply the negation insertion 
model in the following way: If a Neg feature is encountered at node X, a probability for 
insertion of negation is assigned by the model for X and all its descendants. Whichever 
node receives the highest probability for insertion will be the target for insertion. 

7.1.7 Insertion of subordinating conjunctions 

Motivation 
The subordinating conjunctions “dass” and “ob” are not represented at logical form as 
nodes, and hence need to be inserted during sentence realization. 

Input features 
o Standard attributes and bits on the node itself, the parent, and the grandparent 

o ParentAttrs, Cat and Nodetype on the node itself 

o Subcategorization bits on the LexNode of the parent and the grandparent 

Features selected 
Twenty-two features were selected: 

1~Proposition,1~ParentAttrs,1~Pres~Parents~Parents,1~Pers3~Parents~Parents,1~Propo
sition~Parents~Parents,1~Equiv,1~Proposition~Parents,1~Pers3~Parents,1~T1acc~LexN
ode~Parents,1~V2comp~LexNode~Parents,1~Mod,1~Tobj,1~Pres~Parents,1~Pass~Pare
nts,1~D5~Parents,1~T1~Parents,1~L1,1~Pass,1~I0~Parents,1~T1, 
1~T1acc~LexNode~Parents~Parents, 1~Plur~Parents 

Classifier accuracy and complexity 
The accuracy of the classifier for the insertion of subordinating conjunctions is 95.47%. 
The baseline is 54.55%. The model contains 27 branching nodes. 

Key Precision Recall F-measure 
dass  0.95( 1251/ 1323)  0.92( 1251/ 1353)  0.93 
none  0.95( 2003/ 2106)  0.97( 2003/ 2075)  0.96 
ob  1.00(432/432)  1.00(432/433)  1.00 

Figure 27: Precision, recall and F-measure for the classifier for insertion 
of subordinating conjunctions 

Failure analysis 
It is to be expected that the insertion of “ob” is very reliable, given the nature of our 
logical form representation, where “whether” type clauses are marked with the YNQ 
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feature. The insertion of “dass” is less straightforward in German: a subset of verbs 
which take complement clauses actually allow complementizer-less complement clauses 
(with the same verb position as main clauses). For these verbs, then, there is a genuine 
choice between a complement clause with “dass” and one without. The numbers in 
Figure 27 bear out that prediction. 

7.1.8 Insertion of expletive subjects 

Motivation 
Expletive (or pleonastic) subjects are semantically empty subjects that are necessary on 
purely grammatical grounds. They serve as placeholders for other constituents that have 
been displaced from the subject position. In some constructions, the insertion of expletive 
subjects is the only option, for example in the existential construction in German: “es gibt 
verschiedene Möglichkeiten” (there are different possibilities), which cannot be 
expressed grammatically without the presence of the “es” subject. By definition, a 
semantic representation such a the logical form in NLPWIN will not encode purely 
grammatical markers such as the expletive subject “es” in German. This makes it 
necessary to decide where to insert expletive subjects during sentence realization. 

Input features 
o ParentAttrs, Cat and Nodetype on the node itself 

o Standard bits and attributes on the node itself, and the parent 

o Standard bits on the grandparent 

o Standard bits and attributes on the Tobj (semantic object) 

o Subcategorization bits on the LexNode of the node itself, the parent, the 
grandparent, and the Tobj 

o Special features: 

o Cat of the Tobj 

o “Geben”: i.e. is the Lemma of the node “geben” or not (this feature allows 
the model to zero in on the existential construction) 

Features selected 
Twenty-seven features are selected: 

1~B3~LexNode~Tobj, geben, 1~Tsub~Tobj, 1~ParentAttrs, 1~Nodetype, 1~I3~LexNode, 
1~PrepRel, 1~Indicat, 1~T1acc~LexNode~Parents~Parents, 1~Def~Tobj, 
1~T1acc~LexNode, 1~I0~LexNode, 1~F5~LexNode~Tobj, 1~V3~LexNode, 
1~T3~LexNode, 1~Extrap3~LexNode~Tobj, 1~Possibl, 1~Pers3~Parents~Parents, 
1~Sing~Tobj, 1~T1~LexNode, 1~T1dat~LexNode, 1~Modals, 1~L1~LexNode, 
1~PrepRel~Parents, 1~T1acc~LexNode~Parents, 1~Proposition, 1~Props~Tobj, 1~Mod 
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Classifier accuracy and complexity 
The accuracy is 99.69%, with a baseline of 99.0%. The classifier has 8 branching nodes. 

Key Precision Recall F-measure 
no 0.9971(79613/79846) 0.9998(79613/79632) 0.9984 
yes 0.9116(196/215) 0.4569(196/429) 0.6087 

Figure 28: Precision, recall and F-measure for the expletive subject insertion model 

Failure analysis 
It is obvious from Figure 28 that the recall for insertion of “es” with a value of about 
0.4569 is currently still problematic. Since the precision is rather high, there is indication 
that some grammatical contexts for the insertion of “es” are missed, something that will 
require more detailed failure analysis. 

7.1.9 Assignment of probabilities for the spellout of NPs 

Motivation 
Semantic nodes at the level of logical form are not always overtly realized in the sentence 
string. The prototypical examples are the subjects of infinitival clauses, which are 
logically present and part of the interpretation of the sentence, but are not part of the 
surface string. In our logical form representation, there is a variety of other scenarios 
where arguments of predicates are present as semantic nodes (and linked to other 
semantic nodes), but are not present in the corresponding surface string. Our strategy for 
dealing with these phenomena is to employ a decision tree classifier which will produce a 
probability for surface realization for any given (subject or object) node. These 
probabilities are then stored in an attribute on the node in question. During the conversion 
to the basic tree, within a set of subject/object nodes that are related to each other, the 
probability values are examined. All nodes with a probability of overt realization below 
0.5 are deleted from the tree, with the safeguard that among each set at least one node 
must be realized (to avoid truncation). 

Input features 
o ParentAttrs on the node itself and the parent 

o Cat on the node itself 

o Nodetype of the parent 

o Standard bits on the node itself, the parent, and the grandparent 

o Standard attributes on the parent 

Features selected 
Fifty-six features are selected for this model: 
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1~Nodetype~Parents, 1~Sing, 1~ParentAttrs~Parents, 1~Pres~Parents, 1~Cat, 1~Pers2, 
1~Plur, 1~Def, 1~Proxl, 1~Pass~Parents, 1~Indef, 1~Proposition~Parents, 1~I0~Parents, 
1~CompPart, 1~Quant, 1~Pers3, 1~T1~Parents, 1~Imper~Parents, 
1~Continuous~Parents, 1~Modal~Parents, 1~Plur~Parents~Parents, 1~T5~Parents, 
1~T1~Parents~Parents, 1~Sing~Parents~Parents, 1~Condition~Parents, 
1~Indicat~Parents, 1~Indef~Parents~Parents, 1~Perf~Parents, 
1~BndPrp~Parents~Parents, 1~Proposition, 1~Def~Parents, 1~L1~Parents~Parents, 
1~L1~Parents, 1~Past~Parents, 1~Pers3~Parents, 1~Imper~Parents~Parents, 
1~Pers3~Parents~Parents, 1~Univ, 1~I0~Parents~Parents, 1~CnjLem~Parents, 
1~Modal~Parents~Parents, 1~Pass~Parents~Parents, 1~Sing~Parents, 
1~Proposition~Parents~Parents, 1~Def~Parents~Parents, 1~D1~Parents~Parents, 
1~Indicat~Parents~Parents, 1~Condition~Parents~Parents, 1~V2~Parents~Parents, 
1~Pres~Parents~Parents, 1~CompPart~Parents, 1~T3~Parents~Parents, 
1~CnjLem~Parents~Parents, 1~Futr~Parents, 1~Plur~Parents, 1~V3~Parents~Parents 

Classifier accuracy and complexity 
The accuracy is 88.59%. The baseline is 68.19%. There are 447 branching nodes in the 
decision tree, making it the most complex classifier in Amalgam. 

Key Precision Recall F-measure 
no 0.8951 (23473/26224) 0.7263 (23473/32319) 0.8019 
yes 0.8827 (66540/75386) 0.9603 (66540/69291) 0.9198 

Figure 29: Precision, recall and F-measure for the subject/object realization model 

Failure analysis 
This model is one of the most complex in Amalgam, indicating that the task at hand is 
very difficult. While the precision and recall numbers are satisfactory, there is still room 
for improvement. One possible strategy is to train the model on non-fitted parses only (i.e. 
only on those parses that have a spanning analysis for the whole input string), to have it 
focus on true grammatical generalizations, and not be distracted by faulty parses and 
noise in the input. 

7.1.10 Assignment of Case 

Motivation 
Case is an important feature in the German grammar. Recall from Section 3.3 that there 
are four different cases in German (accusative, nominative, dative, and genitive).  
Constituent order is relatively free in German, and often only the case-marking on a noun 
phrase will indicate whether it is to be interpreted as the subject, object, or indirect object 
in a sentence. During sentence realization, case serves as a proxy for grammatical 
subjecthood etc. For surface realization it is therefore imperative to identify the case of a 
given noun phrase properly, in order to produce intelligible output. 

Input features 
o ParentAttrs on the node itself, the parent and the grandparent 
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o Nodetype of the node itself, the parent and the grandparent 

o Pred (logical form equivalent of lemma) on the parent 

o Cat on the node itself, the parent and grandparent 

o Standard bits on the node itself (with the exception of person and number bits) 

o Standard bits on the parent and grandparent 

o Standard attributes on the node itself, the parent and the grandparent 

o Lexical subcategorization bits on the LexNode (containing the information after 
lexical lookup) of the parent and the grandparent 

o Five special features: 

o Parent_lemma_geben: 1 if the lemma of the parent is “geben” 

o Prep_lemma: the lemma of the governing preposition 

o PrepandPrepdat: 1 if there is a governing preposition and it is marked as 
Prepdat (governs the dative) 

o PrepandPrepacc: 1 if there is a governing preposition and it is marked as 
Prepacc (governs the accusative) 

o PrepandPrepgen: 1 if there is a governing preposition and it is marked as 
Prepgen (governs the genitive) 

Features selected 
Seventy-two features were selected by the model building process: 

A~PrepandPrepdat, 1~Pred~Parents, 1~ParentAttrs, 1~Nodetype, A~Prep_lemma, 
A~PrepandPrepacc, 1~Pass~Parents, A~PrepandPrepgen, 1~CoCoords, 
1~Nodetype~Parents, 1~Neg, 1~Tobj, 1~T1~Parents, 1~Nodetype~Parents~Parents, 
1~Indef, 1~Tind~Parents~Parents, 1~ParentAttrs~Parents, 1~Continuous~Parents, 
1~BndPrp, 1~Attrib, 1~Resultat~Parents, 1~T1gen~LexNode~Parents, 
1~D1~LexNode~Parents, A~Parent_lemma_geben, 1~X7~Parents~Parents, 
1~ParentAttrs~Parents~Parents, 1~I0~Parents, 1~Def, 1~Imper~Parents~Parents, 
1~CompPart, 1~Cat~Parents, 1~L1~Parents, 1~Sing~Parents, 1~Tobj~Parents~Parents, 
1~T5~Parents, 1~Sing~Parents~Parents, 1~Plur~Parents~Parents, 1~Tind~Parents, 
1~CoCoords~Parents~Parents, 1~Quant, 1~Past~Parents, 1~Mod, 1~Indef~Parents, 
1~Possr, 1~Cat, 1~T1dat~LexNode~Parents~Parents, 1~Proposition~Parents, 1~LOps 
1~Plur~Parents, 1~Proposition, 1~Adjdat~LexNode~Parents, 1~T1~Parents~Parents, 
1~Modals~Parents, 1~PrepRel~Parents, 1~I0~Parents~Parents, 1~Tobj~Parents, 
1~T1dat~LexNode~Parents, 1~Def~Parents, 1~PrepRel, 1~Completed~Parents, 
1~PrpCnjLem~Parents, 1~Pass~Parents~Parents, 1~Cat~Parents~Parents, 
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1~PrepRel~Parents~Parents, 1~Condition~Parents, 1~T1acc~LexNode~Parents 
1~Indicat~Parents, 1~Tsub~Parents~Parents, 1~Pres~Parents, 
1~T1acc~LexNode~Parents~Parents, 1~Pers3~Parents~Parents, 1~Pres~Parents~Parents 

Classifier accuracy and complexity 
Accuracy is 96.02%. The baseline is 0.46. The model has 226 branching nodes. 

Key Precision Recall F-measure 
Dat 0.9562 (17575/18380) 0.9797 (17575/17940) 0.9678 
 Acc 0.9257 (5132/5544) 0.8783 (5132/5843) 0.9014 
 Gen 0.9883 (9950/10068) 0.9796 (9950/10157) 0.9839 
 Nom 0.9563 (4576/4785) 0.9460 (4576/4837) 0.9512 

Figure 30: Precision, recall and F-measure for the case model 

Failure analysis 
In German, it is often very difficult during analysis to determine exactly which noun 
phrases belong together and which do not. Since any number of noun phrases can be 
strung in a sequence in the middle field of the German sentence, misanalyses are 
common especially with out-of-vocabulary nouns. Not surprisingly, “stranded” or 
misanalyzed noun phrases cannot be reliably assigned case, accounting for many of the 
errors that the case model makes. 

7.1.11 Assignment of verb position features 

Motivation 
As discussed at length in section 3.1, one of the most important aspects of constituent 
order in German is the correct positioning of the verb. Our strategy in Amalgam is to use 
a decision tree classifier to assign features that indicate the verb-positioning pattern in the 
constituent. Downstream models and functions (such as the order model, the order fix-up 
functions, syntactic aggregation etc.), can then utilize the information present in these 
features. 

Input features 
o ParentAttrs on the node itself 

o Nodetype of the node itself, the parent, and the grandparent 

o Standard bits on the node itself, the parent, and the grandparent 

o Standard attributes on the parent, the parent, and the grandparent 

o Lexical subcategorization bits on the parent, and the grandparent 

o Two special features: 
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o A~NTlabelCoordmother: the Nodetype of the parent if the node is 
coordinated 

o A~EmptySubject: 1 if the subject lemma is “_X” (indicating an empty, un-
controlled subject) 

Features selected 
Forty-one features were selected: 

1~ParentAttrs, 1~Nodetype, A~EmptySubject, 1~Imper, 1~Tobj, 1~Props~Parents, 
1~Proposition, 1~Modals, 1~Indicat, 1~T3, 1~CoCoords, 1~T5~Parents, 1~T5, 
1~PrepRel, 1~T6, 1~Tsub, 1~Pass, 1~T1, 1~Mod, 1~I0, 1~PrpCnjLem, 1~Modal, 1~Neg, 
1~Proposition~Parents, 1~Condition, 1~Perf, 1~CnjLem, 1~V2comp~LexNode~Parents, 
1~L1, 1~Mod~Parents, 1~Pres~Parents, 1~Def~Parents, 1~Tind, 1~Props, 
1~Nodetype~Parents, 1~Time, 1~Modal~Parents, 1~WhQ, 1~Modals~Parents, 1~YNQ, 
1~Tsub~Parents 

Classifier accuracy and complexity 
The accuracy is 94.66%, with a baseline of 0.42. The resulting model has 115 branching 
nodes. 

Key Precision Recall F-measure 
 initial 0.9650 (7107/7365) 0.9818 (7107/7239) 0.9733 
 final 0.9374 (16669/17782) 0.9750 (16669/17097) 0.9558 
 undefined 0.5946 (776/1305) 0.3673 (776/2113) 0.4541 
 second 0.9721 (18637/19172) 0.9719 (18637/19175) 0.9720 

Figure 31: Precision, recall and F-measure of the verb position model 

Failure analysis 
It is reassuring that the determination of verb-second, verb-final, and verb-initial patterns 
can be made at a fairly high level of precision and recall. There are, however, quite a few 
cases where the verb position is determined to be “undefined”. A legitimate example of 
indeterminacy of verb position is a simple construct of the form “er geht” (he goes). This 
verb phrase can be either a verb-second verb phrase (as witnessed by the fact that it can 
stand alone as a declarative sentence), and a verb-final verb phrase (if, for example, 
preceded by a subordinating conjunction which requires verb-final position as in “dass er 
geht” (that he goes). For these “undefined” cases, the only way to determine the correct 
verb-position pattern is by linguistic generalization as in “this verb phrase is used as a 
declarative sentence, so in this case it has to be a verb-second structure according to the 
grammar of German”. Since this line of reasoning is not applicable by a purely data-
driven model, we will always have a set of data that will escape complete classification 
into a verb-position pattern. 
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7.1.12 Inversion of dominance 

Motivation 
There are grammatical constructions where syntactic dominance is the opposite of 
semantic dominance. For German as we treat it in NLPWIN, the only example is a 
quantified expression of the form “viele der Leute” (many of the people), where “viele” 
is the syntactic head of the noun phrase, but semantically it is “Leute” which is the head, 
with NLPWIN “viele” as an operator modifying it. While this phenomenon is rather 
limited in German, we found that in the NLPWIN analysis of French, modal verbs are 
treated as syntactic heads (because modals in French pattern syntactically with main 
verbs rather than with non-modal auxiliary verbs), with a reversal of dominance at the 
level of logical form. In order to prepare for porting Amalgam to French, we decided to 
face this issue right away, even though the effect in German is very limited due to data 
sparsity, and very straightforward since there is only one particular construction which 
exhibits this property. The approach we have taken is to learn in a decision tree classifier 
the circumstances under which the reversal of dominance between syntactic and semantic 
relations takes place, and then perform a reversing operation in the basic tree accordingly. 

Input features 
o Nodetype and Cat of node itself and parent 

o Standard attributes and bits on the node itself, the parent, and the grandparent 

Note that the switch model and all following models are trained on, and operate on the 
basic tree, not the logical form. Only the flesh-out models are applied to logical form 
structures. Therefore, features of the form 1~X~SemNode mean the presence of feature X 
on the logical form node (SemNode) of the current node, whereas features of the form 
1~X mean the presence of X on the current node. 

Features selected 
For German, only two features were selected: 

1~Nodetype~SemNode, 1~LOps~Parents~Parents~SemNode 

Classifier accuracy and complexity 
The accuracy is 99.69%. The baseline is 92.0%. The model for German is exceedingly 
simple, with only 3 branching nodes. 

Key  Precision Recall F-measure 
 no 0.9998( 5974/ 5975) 0.9968( 5974/ 5993) 0.9983 
 yes 0.9645( 516/ 535) 0.9981( 516/ 517) 0.9810 

Figure 32: Precision, recall and F-measure for the dominance switching model 
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Failure analysis 
As stated above, this model is of an exploratory nature, in preparation for other languages. 
It is not surprising that for the one simple construction in German that exhibits 
dominance switching, it is easy to learn the triggering factors reliably. 

7.1.13 Extraposition 

Motivation 
See the detailed discussion of the importance of extraposition phenomena in German in 
section 3.5 and the discussion in Gamon et al. (2002b). Our approach to extraposition is 
to determine for each extraposable node (INFCL, COMPCL, RELCL) whether the node 
should move up one step from its current attachment (its parent node) to the next higher 
node (its grandparent). From the new position, another assessment is made for the next 
possible movement step and so on. For training, we extract the value “Yes” for the target 
feature for each intermediate node between the source position of a clause and its 
extraposed position - meaning that the answer to the question “should the clause move up 
one step?” is “Yes”. Similarly, we extract the value “No” for the extraposed position 
(since the clause obviously has not moved higher from there). In the case of non-
extraposed clauses we extract a “No” for the parent node of the clause, meaning that there 
is no movement from the current position6. 

Input features 
o Nodetype of cargo node 

o Nodetype of the potential origination node for movement, of its parent, and its 
grandparent 

o ParentAttrs of the potential origination node for movement, of its parent, and its 
grandparent 

o Vfinal feature on the potential origination node for movement, on its parent, and 
its grandparent 

o Vsecond feature on the potential origination node for movement, on its parent, 
and its grandparent 

o HasSepfix (indicating a separable prefix verb) on the potential origination node 
for movement, on its parent, and its grandparent 

o Standard attributes and bits on the the potential origination node for movement, 
on its parent, and its grandparent 

                                                 
6 We have also explored a different strategy for modeling extraposition: instead of “successive cyclic” one-
step movements, it is possible to ask for each ancestor node of the parent of the cargo node whether it is a 
suitable target or not. At the current stage, both approaches yield comparable results. For a more detailed 
discussion of the two different strategies, see Gamon et al. (2002b). 
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o Standard attributes and bits on the cargo node (the RELCL/INFCL/COMPCL that 
could potentially be extraposed), its parent, and grandparent 

o Nodetype of the cargo node 

o ParentAttrs on the cargo node 

o Six special features zeroing in on the relevant aspects of verb position and 
“heaviness” as triggers for extraposition: 

o F~NumTokens: number of tokens of the cargo node 

o F~SentenceLengthInToken: length of whole sentence in tokens 

o F~NumChars: number of characters of the cargo node 

o F~SentenceLengthInChar: length of whole sentence in characters 

o A~inVfinalVP: “yes” if any ancestor of the cargo node is a Vfinal VP, 
“no” otherwise 

o A~inVsecondVP: “yes” if any ancestor of the cargo node is a Vsecond VP, 
“no” otherwise 

Features selected 
Sixty features were selected during the model building process (features with the “1~” 
prefix are extracted on the node under consideration for the “movement one step up yes 
or no” classification, features with the “2~” prefix are extracted on the extraposable node): 

1~Tsub~SemNode, 1~HasSepfix~LexNode~SemNode~Parent, 1~ParentAttrs~SemNode, 
A~inVfinalVP, 1~Modals~SemNode~Parent, 
1~HasSepfix~LexNode~SemNode~Parent~Parent, 1~Pass~SemNode~Parent, 
1~Pass~SemNode~Parent~Parent, 1~Modals~SemNode~Parent~Parent, 
F~SentenceLengthInChar, 1~ParentAttrs~SemNode~Parent~Parent, 
2~Pass~SemNode~Parent~Parent, 2~Proposition~SemNode, 1~Nodetype~Parent, 
1~Pers3~SemNode~Parent, 1~Vsecond~Parent, 2~Modals~SemNode, 1~Nodetype, 
2~T1~SemNode~Parent~Parent, 1~Mod~SemNode~Parent, 
1~PrepRel~SemNode~Parent, A~inVsecondVP, 1~PrepRel~SemNode, 
1~Tobj~SemNode~Parent, 1~Vfinal, 1~Tsub~SemNode~Parent, 
2~Tsub~SemNode~Parent~Parent, 2~Attrib~SemNode~Parent, F~NumChars, 
1~BndPrp~SemNode, 1~Nodetype~Parent~Parent, 1~ParentAttrs~SemNode~Parent, 
2~Mod~SemNode~Parent~Parent, 2~Indicat~SemNode~Parent~Parent, F~NumTokens, 
2~ParentAttrs~SemNode, 2~Nodetype, 1~T1~SemNode~Parent~Parent, 
2~Proposition~SemNode~Parent~Parent, 2~CoCoords~SemNode~Parent, 
2~Indef~SemNode~Parent 1~Def~SemNode, 1~PrepRel~SemNode~Parent~Parent, 
2~PrepRel~SemNode, 1~Mod~SemNode~Parent~Parent, 1~Pers3~SemNode, 
1~PrpCnjLem~SemNode~Parent, 1~Plur~SemNode~Parent, 
2~PrepRel~SemNode~Parent~Parent, 1~Sing~SemNode~Parent, 
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2~Def~SemNode~Parent, 1~Plur~SemNode~Parent~Parent, 
2~Tobj~SemNode~Parent~Parent, 2~PrpCnjLem~SemNode~Parent, 2~T1~SemNode, 
1~Sing~SemNode, 2~I0~SemNode~Parent~Parent, 2~Pers3~SemNode~Parent, 
2~Plur~SemNode~Parent, 1~Plur~SemNode 

Classifier accuracy and complexity 
The accuracy is 88.16% with a baseline of 0.67. The model has 116 branching nodes. 

Key  Precision Recall F-measure 
No 0.9181 (4720/5141) 0.9051 (4720/5215) 0.9115 
Yes 0.8094 (2102/2597) 0.8331 (2102/2523) 0.8211 

Figure 33: Precision and recall of the extraposition model 

Failure analysis 
Extraposition is a non-trivial linguistic phenomenon with a complicated array of 
triggering factors, including some not completely understood notion of “heaviness” 
(where in general a “heavier” clause tends to extrapose more easily than a “lighter” 
clause - see the discussion in Uszkoreit et al 1998). Additionally, the failure to extrapose, 
or extraposition in a situation where there should not be any often results not in 
ungrammatical sentences, but in sentences with varying degrees of unnaturalness and 
lack of fluency. Detailed error analysis in this context would benefit greatly from 
correlation with human judgements, an experiment that we have not yet undertaken. 

7.1.14 Realization of determiners 

Motivation 
There are 55 different determiner forms observed in the training data. While the 
realization of the determiner could be determined by rule, we decided to train a decision 
tree qualifier for the task. 

Input features 
o Lemma 

o ParentAttrs on the SemNode 

o Gender and number bits on the parent 

o Case on the parent 

o Standard attributes on the parent 

Features selected 
Eighteen features were selected. 

F~ParentCase, 1~ParentAttrs~SemNode~Parent, 1~Lemma, 1~Fem~Parent, 
1~Masc~Parent, 1~Neut~Parent, 1~Plur~Parent, 1~ParentAttrs~SemNode~Parent~Parent, 
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1~Sing~Parent, 1~Mod~SemNode~Parent, 1~Tobj~SemNode~Parent, 
1~LOps~SemNode~Parent, 1~PrepRel~SemNode~Parent, 
1~PrpCnjLem~SemNode~Parent, 1~Attrib~SemNode~Parent, 
1~Appostn~SemNode~Parent, 1~Possr~SemNode~Parent, 1~Tsub~SemNode~Parent 

Classifier accuracy and complexity 
The accuracy is 90.77% with a baseline of 21.65%. The resulting decision tree classifier 
has 266 branching nodes. 

Key Precision Recall F-measure 
 derjenigen 0.0000( 0/ 0) 0.0000( 0/ 3) 0.0000 
 denselben 0.0000( 0/ 0) 0.0000( 0/ 45) 0.0000 
 meiner 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 dieselben 0.0000( 0/ 0) 0.0000( 0/ 40) 0.0000 
 ein_und_derselbe 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 meines 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 desselben 0.0000( 0/ 0) 0.0000( 0/ 13) 0.0000 
 sein 0.3333( 12/ 36) 0.8000( 12/ 15) 0.4706 
 derselbe 0.0000( 0/ 0) 0.0000( 0/ 4) 0.0000 
 das 0.9148( 3531/ 3860) 0.8768( 3531/ 4027) 0.8954 
 die 0.9432( 13327/ 14129) 0.9091( 13327/ 14659) 0.9259 
 dem 0.9003( 7402/ 8222) 0.9426( 7402/ 7853) 0.9209 
 den 0.8894( 4320/ 4857) 0.8171( 4320/ 5287) 0.8517 
 einem 0.8134( 1539/ 1892) 0.8927( 1539/ 1724) 0.8512 
 einen 0.8409( 1438/ 1710) 0.8489( 1438/ 1694) 0.8449 
 der 0.9042( 14292/ 15807) 0.9504( 14292/ 15038) 0.9267 
 des 0.9771( 3378/ 3457) 0.9740( 3378/ 3468) 0.9756 
 dasselbe 0.0000( 0/ 0) 0.0000( 0/ 17) 0.0000 
 einer 0.8931( 1954/ 2188) 0.8890( 1954/ 2198) 0.8910 
 eines 0.9089( 1067/ 1174) 0.9744( 1067/ 1095) 0.9405 
 dies 0.0000( 0/ 0) 0.0000( 0/ 3) 0.0000 
 diesem 0.8551( 655/ 766) 0.9590( 655/ 683) 0.9041 
 diesen 0.7409( 266/ 359) 0.8837( 266/ 301) 0.8061 
 demselben 0.0000( 0/ 0) 0.0000( 0/ 63) 0.0000 
 denjenigen 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 derselben 0.0000( 0/ 0) 0.0000( 0/ 57) 0.0000 
 meine 0.0000( 0/ 0) 0.0000( 0/ 7) 0.0000 
 dieser 0.7526( 791/ 1051) 0.9295( 791/ 851) 0.8318 
 dieses 0.9296( 581/ 625) 0.9222( 581/ 630) 0.9259 
 diese 0.9057( 1248/ 1378) 0.8820( 1248/ 1415) 0.8937 
 seinem 0.2857( 6/ 21) 1.0000( 6/ 6) 0.4444 
 welche 0.9118( 124/ 136) 0.8671( 124/ 143) 0.8889 
 seinen 0.0000( 0/ 0) 0.0000( 0/ 12) 0.0000 
 diejenige 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 ihr 0.8039( 123/ 153) 0.8913( 123/ 138) 0.8454 
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Key Precision Recall F-measure 
 seiner 0.5313( 17/ 32) 0.7083( 17/ 24) 0.6071 
 seines 0.0000( 0/ 0) 0.0000( 0/ 9) 0.0000 
 ihrem 0.8974( 175/ 195) 0.8663( 175/ 202) 0.8816 
 ihren 0.7818( 86/ 110) 0.7748( 86/ 111) 0.7783 
 welchem 0.5833( 14/ 24) 0.9333( 14/ 15) 0.7179 
 welchen 0.0000( 0/ 0) 0.0000( 0/ 15) 0.0000 
 ihrer 0.8296( 112/ 135) 0.8682( 112/ 129) 0.8485 
 mein 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 ihres 0.8082( 59/ 73) 0.9077( 59/ 65) 0.8551 
 welcher 0.4627( 31/ 67) 0.9118( 31/ 34) 0.6139 
 ihre 0.9012( 155/ 172) 0.8031( 155/ 193) 0.8493 
 welches 0.0000( 0/ 0) 0.0000( 0/ 20) 0.0000 
 dieselbe 0.0000( 0/ 0) 0.0000( 0/ 41) 0.0000 
 ein 0.8845( 2511/ 2839) 0.9003( 2511/ 2789) 0.8923 
 ein_und_demselben 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 diejenigen 0.0000( 0/ 0) 0.0000( 0/ 7) 0.0000 
 eine 0.9606( 3823/ 3980) 0.8926( 3823/ 4283) 0.9253 
 ein_und_derselben 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 meinem 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 seine 0.8148( 22/ 27) 0.5946( 22/ 37) 0.6875 

Figure 34: Precision, recall and F-measure for determiner realization 

Failure analysis 
Figure 34 shows that not all determiners can be realized with the same accuracy. While 
the numbers are high for the common determiners such as the definite (der/die/das) and 
the indefinite determiner (ein/eine), the numbers degrade the rarer the form of the 
determiner is. It is worth noting that there is a fair amount of linguistic ambiguity: some 
nouns have more than one gender (stemming from different senses), some nouns can be 
both singular and plural. Additionally, the level of granularity of the features used to 
describe the semantic import of determiners at logical form is not sufficient in all cases to 
uniquely determine the particular lexical choice of determiner. 

7.1.15 Realization of relative pronouns 

Motivation 
Twenty-three different forms of relative pronouns are present in the training set. As with 
the realization of determiners, we have chosen to build a model for the correct choice, 
instead of hand-crafting a selection process. 
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Input features 
o Lemma of the grandparent and the great-grandparent 

o Case 

o Nodetype 

o ParentAttrs on the SemNode and on the SemNode of the grandparent 

o Gender and number features on the grandparent and the great-grandparent 

o Standard attributes on the grandparent and great-grandparent 

Features selected 
Nineteen variables were selected: 

F~RelproCase, 1~Masc~Parent~Parent, 1~Fem~Parent~Parent, 1~Plur~Parent~Parent, 
1~Nodetype, 1~Neut~Parent~Parent, 1~Sing~Parent~Parent, 1~Lemma~Parent~Parent, 
1~ParentAttrs~SemNode, 1~ParentAttrs~SemNode~Parent~Parent, 
1~CoCoords~SemNode~Parent~Parent, 1~Fem~Parent~Parent~Parent, 
1~Masc~Parent~Parent~Parent, 1~Sing~Parent~Parent~Parent, 
1~Possr~SemNode~Parent~Parent, 1~Plur~Parent~Parent~Parent, 
1~Lemma~Parent~Parent~Parent, 1~Attrib~SemNode~Parent~Parent~Parent, 
1~Tobj~SemNode~Parent~Parent 

Classifier accuracy and complexity 
The accuracy is 87.79%. The baseline is 53.59%. There are 77 branching nodes in the 
decision tree classifier. 
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Key Precision Recall F-measure 
 wozu 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 dessen 1.0000( 46/ 46) 0.8214( 46/ 56) 0.9020 
 die/der 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 was 1.0000( 10/ 10) 0.4167( 10/ 24) 0.5882 
 welche 0.0000( 0/ 0) 0.0000( 0/ 13) 0.0000 
 wo 0.7000( 7/ 10) 1.0000( 7/ 7) 0.8235 
 deren 0.9406( 95/ 101) 0.9896( 95/ 96) 0.9645 
 derer 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 das 0.9202( 369/ 401) 0.7953( 369/ 464) 0.8532 
 dem 0.8122( 480/ 591) 0.8743( 480/ 549) 0.8421 
 die 0.9225( 3248/ 3521) 0.9425( 3248/ 3446) 0.9324 
 womit 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 den 0.8875( 142/ 160) 0.6544( 142/ 217) 0.7533 
 der 0.8400( 882/ 1050) 0.7854( 882/ 1123) 0.8118 
 woraus 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 welcher 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 welches 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 woher 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 warum 0.0000( 0/ 0) 0.0000( 0/ 2) 0.0000 
 wobei 0.6907( 67/ 97) 1.0000( 67/ 67) 0.8171 
 das/der 0.0000( 0/ 0) 0.0000( 0/ 1) 0.0000 
 denen 0.6727( 298/ 443) 0.9113( 298/ 327) 0.7740 
 wodurch 0.0000( 0/ 0) 0.0000( 0/ 26) 0.0000 

Figure 35: Precision, recall and F-measure for the realization of relative pronouns 

Failure analysis 
Similar to the situation with the realization of determiners, it is mostly the rarer forms of 
relative pronouns that cannot be accurately determined, due to data sparsity. The same 
caveats with respect to linguistic ambiguity hold for both determiners and relative 
pronouns. 

7.1.16 Syntactic aggregation 

Motivation 
Any semantic representation of coordination has to encode more than may be present in 
the syntactic structure. Consider a simple sentence such as “John cooked and ate the 
steak”. Semantically, there are two conjoined propositions, “John cooked the steak” and 
“John ate the steak”. There is nothing grammatically wrong with spelling out those two 
conjoined propositions in the lengthy form “John cooked the steak, and John ate the 
steak”. Natural language, however, tends to employ strategies to reduce redundant 
material in coordination by deleting some of the duplicates. This is generally viewed as a 
sub-area of aggregation in the generation literature (Wilkinson 1995, Shaw 1998, Reape 
and Mellish 1999, Dalianis and Hovy 1993). In Amalgam, we only deal with sentence-
based realization tasks currently, so the approach we take is strictly intra-sentential, along 
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the lines of what has been called conjunction reduction in the linguistic literature 
(McCawley 1988). While this may seem a fairly straightforward task compared to inter-
sentential, semantic and lexical aggregation, it should be noted that the cross-linguistic 
complexity of the phenomenon makes it much less trivial than a first glance at English 
would suggest. In German, for example, position of the verb in the coordinated VPs plays 
an important role in determining which duplicated constituent can be omitted. 

In Amalgam, we try to arrive at a reasonable level of fluency in our output, which makes 
it necessary to model these reduction phenomena in coordination. The model is trained on 
and applied to the logical form representation that corresponds to the syntax tree. 

Input features 
o Cat of the node itself, the parent and the grandparent 

o ParentAttrs of the node itself, the parent and the grandparent 

o Nodetype of the node itself, the parent and the grandparent 

o Standard bits and attributes on the node itself, the parent and the grandparent 

o Vsecond and Vfinal features on the node itself, the parent and the grandparent 

o Two special features: 

o F~HeadMod: indicates whether the node in question is a premodifier or a 
postmodifier of the head of its parent 

o F~AllVerbpos: indicates for VP-coordination if all coordinated VPs are 
Vfinal or Vsecond 

Features selected 
Fifteen features are selected during the construction of the model: 

A~HeadMod, 1~Proposition~Parents, A~AllVerbpos, 1~Tobj~Parents, 
1~Nodetype~Parents, 1~Nodetype, 1~ParentAttrs, 1~ParentAttrs~Parents, 1~CoCoords, 
1~T1~Parents, 1~ParentAttrs~Parents~Parents, 1~Cat, 1~Plur~Parents, 
1~Proposition~Parents~Parents, 1~CoCoords~Parents~Parents 

Classifier accuracy and complexity 
The accuracy is 96.93%, with a baseline of 0.85. The resulting model has 21 branching 
nodes. The values of the target feature are last, first, and middle: last indicates that the 
node in question is spelled out in the last of the coordinated constituents, first indicates 
that it is spelled out in the first of the coordinated constituents, and middle indicates that 
it is spelled out in a coordinated constituent that is neither first nor last. 
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Key Precision Recall F-measure 
Last 0.9164 (986/1076) 0.8851 (986/1114) 0.9005 
First 0.9786 (6022/6154) 0.9854 (6022/6111) 0.9820 
Middle 0.0000 (0/0) 0.0000 (0/5) 0.0000 

Figure 36: Precision, recall and F-measure for the syntactic aggregation model 

Failure analysis 
The data confirm the initial linguistic hypothesis that coordination reduction is a matter 
of spelling out a constituent either at the beginning or at the end of coordination, but not 
somewhere in the middle. 

Cursory error inspection shows that most of the misclassifications seem to result from 
either bad analyses, or situations where the verb position has not been uniformly 
determined as Vsecond or Vfinal in all coordinated VPs. 

7.1.17 Punctuation 

Motivation 
Clearly, punctuation is different from the previously discussed phenomena: it is not a 
core linguistic phenomenon, but rather a matter of orthographic convention. There are 
two reasons, however, why we believe that punctuation should be part of Amalgam: 

o without appropriate punctuation, the output of generation - especially for real-life, 
complex sentences - is difficult to read and hard to parse for a human consumer. 

o even though punctuation is an orthographic convention, it is based on linguistic 
structure: most punctuation rules make reference to constituenthood, types of 
constituents etc. 

Based on the observation that most (if not all) punctuation conventions which we are 
aware of are of the form “insert punctuation mark X before/after Y”, but none is of the 
form “insert punctuation mark X between Y and Z”, we decided to build two different 
models for “preceding punctuation” and “following punctuation”. At runtime, at each 
juncture between two words, both models are queried for each non-terminal node in the 
parent chain. If one of them indicates a high probability of a certain punctuation mark, 
that vote wins out and the punctuation mark is inserted. 

Input features 
The features for the punctuation models are different from the feature sets used in other 
models. Most of the features are special features, checking the tree configuration: 

o Nodetype and Nodetype of the head  

o Nodetype of the parent and Nodetype of the head of the parent 

o ParentAttrs on the SemNode  
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o SentenceLengthInToken and SentenceLengthInChar 

o AtRightEdgeOfParent/AtLeftEdgeOfParent: indicating whether the node is at the 
right/left edge of its parent node 

o NumTokens and NumChars: number of tokens/chars of the node 

o DistanceToSentenceInitialInToken and DistanceToSentenceFinalInToken 

o DistanceToSentenceInitialInChar and DistanceToSentenceFinalInChar  

o FirstLemma and LastLemma  

o NodetypeOfLeftMostDaughter and NodetypeOfRightMostDaughter 

o NodetypeOfTopRightEdge and NodetypeOfTopLeftEdge: Nodetype of the largest 
ancestor node with the same right/left edge 

o NodetypeOfLargestPreceedingNT and NodetypeOfSmallestPreceedingNT: 
Nodetype of the largest/smallest preceding non-terminal node 

o NodetypeOfLargestFollowingNT and NodetypeOfSmallestFollowingNT: 
Nodetype of the largest/smallest following non-terminal node 

Features selected 
In the model for preceding punctuation, all of the features listed above were selected, 
with the exception of NodetypeOfTopRightEdge. In the model for following punctuation, 
two features were not selected: DistanceToSentenceFinalInToken and SentenceLength-
InToken. 

Classifier accuracy and complexity 
The accuracy of the model for preceding punctuation is 98.65%, with a baseline of 
89.61%. 

Key Precision Recall F-measure 
 COMMA 0.9500( 29727/ 31293) 0.9228( 29727/ 32213) 0.9362 
 OTHERS 0.0000( 0/ 0) 0.0000( 0/ 23) 0.0000 
 DASH 0.0000( 0/ 0) 0.0000( 0/ 83) 0.0000 
 SEMICOLON 0.0000( 0/ 0) 0.0000( 0/ 33) 0.0000 
 NULL 0.9907( 280067/ 282705) 0.9945( 280067/ 281610) 0.9926 
 COLON 0.8153( 203/ 249) 0.7123( 203/ 285) 0.7603 

Figure 37: Precision, recall, and F-measure for the preceding punctuation model 

The accuracy of the model for following punctuation is 98.48% with a baseline of 
94.98%. 
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Key Precision Recall F-measure 
 COMMA 0.8795( 12462/ 14169) 0.8084( 12462/ 15416) 0.8425 
 DASH 0.0000( 0/ 0) 0.0000( 0/ 45) 0.0000 
 SEMICOLON 0.0000( 0/ 0) 0.0000( 0/ 27) 0.0000 
 NULL 0.9897( 294194/ 297241) 0.9943( 294194/ 295884) 0.9920 
 COLON 1.0000( 125/ 125) 0.7669( 125/ 163) 0.8681 

Figure 38: Precision, recall and F-measure for the following punctuation model 

Failure analysis 
Figure 37 and Figure 38 show that predictions are reliable for commas, and somewhat 
reliable for colons. For other punctuation, such as dash and semicolon, data are simply 
too sparse. 

7.2 The Order Model 

7.2.1 Motivation 
Word order plays a crucial role in establishing the fluency and the intelligibility of a 
sentence. As section 3 explains, word order can make the difference between sensibility 
and gibberish, especially in a German sentence. Given a syntax tree for a sentence with 
unordered constituents, such as the tree in Figure 39, the goal of the Amalgam ordering 
stage is to establish linear order within each constituent, so that the head and each 
modifier are placed in their proper position. The ordering stage handles each constituent 
independently and in isolation, but the net effect is to establish linear order among all 
leaves of the tree. In our example, the constituent DECL3 has head PREFIX1 (head 
denoted in the figure by the asterisk ‘*’) with modifiers VP2, NP5, NP6, and RELCL3. 
The ordering stage places these in order independently of the head and modifiers of other 
constituents, such as RELCL3, for example. 

 

Figure 39: The syntax tree for the sentence Hans isst die Kartoffeln auf, die er gestern geernet hat 
before ordering 

Figure 40 displays the tree after being ordered. The ordering stage has placed the children 
of DECL3 in the order NP5, VP2, NP6, PREFIX1, and RECLCL3. 
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Figure 40: The syntax tree after ordering 

7.2.2 Model and Features 
The Amalgam ordering stage employs a generative statistical model of syntactic tree 
structure to score possible orders among a head and its modifiers. The term “generative” 
refers to the fact that the distributions in the model could be sampled to generate or build 
actual syntax trees from scratch, in distribution consistent with the model. It is a useful 
conceptual framework, even though we are not actually creating the tree at this point in 
the sentence realization process. 

For a given constituent, the model assigns a probability to modifier sequences in the 
context of several relevant features. Many features can be used as relevant context; in 
practice, our implemented model currently employs the following features: 

•  nodetype of the parent of the head (i.e., the constituent type), 

•  nodetype of the head (i.e., head part-of-speech) 

Other possible contextual features include: 

•  lemma of the head 

•  verb position bits on the parent of the head 

•  nodetype of the grandparent of the head 

•  presence of an auxiliary in the constituent 

Given the context features, the model assigns probability to a modifier sequence. 
Currently each modifier consists of two features: 

•  semantic relation (from the logical form) of the modifier to the head 

•  nodetype (part-of-speech) of the modifier 

Other possible features of a modifier include: 
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•  lemma of the modifier 

The model is currently constructed to approximate modifier sequence probabilities with 
an n-gram model. Given a particular context, the model assigns a probability to the 
semantic relation (from logical form) of each modifier, in the constituent’s context and in 
the context of the preceding n-1 neighbors, and it assigns a probability to the nodetype 
(syntactic category) of the modifier. In the current system, the number of preceding 
neighbors currently considered is only one; hence, the order model employs a context-
dependent bigram. Here is a schematic for a constituent that illustrates the context of 
parent and head as well as the pre-modifiers and post-modifiers: 

 

Figure 41: Constituent order schematic 

The model is split into a model of head pre-modifier order (on the left of Figure 41) and 
of head post-modifier order (on the right of the figure). Included in the notion of modifier 
are explicit pseudo-modifiers for marking the beginning and end of the pre-modifiers 
(<Pr> and </Pr>, respectively) and for marking the endpoints of the post-modifiers (<Ps> 
and </Ps>), as shown in the figure. Hence, for any Parent/Head context, the model 
includes an n-gram distribution for pre-modifiers and an n-gram distribution for post-
modifiers. All such distributions are encoded in a single model file. Figure 42 contains a 
fragment of a model file for illustrative purposes: 

[356/563] ( DECL VERB ) </Pr> </Pr> Time : AVP 
[16/563] ( DECL VERB ) </Pr> </Pr> Time : AVPNP 
[10/563] ( DECL VERB ) </Pr> </Pr> Time : NP 
[168/563] ( DECL VERB ) </Pr> </Pr> Time : PP 
[13/563] ( DECL VERB ) </Pr> </Pr> Time : SUBCL  

Figure 42: Model file fragment for the nodetype feature of a pre-modifier 
with semantic relation Time 

It shows the context with a DECL (declarative sentence node) as parent and a VERB as 
head. The fragment shows the distribution for the nodetype feature of a pre-modifier with 
semantic relation “Time” preceding the “</Pr>“ marker (working out from the head). As 
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indicated, such a modifier has probability 356/563 of being an AVP, 16/563 for AVPNP, 
10/563 for NP, 168/563 for PP, and 13/563 for SUBCL in that context. 

7.2.3 Search and Complexity 
The ordering stage must search among all possible orders or at least among the most 
promising orders. The search proceeds by considering all possible incomplete orderings 
of length one, then two, and so on, up to all possible complete orderings of length n. Each 
step in the search can be pruned to consider only those incomplete order hypotheses for 
which the model assigns a sufficiently high score. This search is capable of producing as 
many scored order hypotheses as one cares to retrieve from the final step of the search 
and is commonly called a “beam search,” since the threshold for determining a 
“sufficiently high score” is often termed the “beam.” 

For n members (counting the head and its modifiers), there are n! possible orderings; 
hence the search space can be overwhelmingly large for a heavy constituent. The beam 
search constrains the complexity of the complete search and is nearly optimal. 

8 Performance 
Performance of Amalgam was evaluated on a 550MHz PC. On a set of 260 sentences 
from the technical domain (computer manuals), generation time from logical forms 
(without the analysis part) was 0.30 seconds per sentence or 3.25 sentences per second. 
The sentences in the test file had an average length of 15 words per sentence. 

9 Evaluation 
In April 2002, we evaluated the overall system by parsing a blind and randomized test set 
of 564 German sentences7 to produce logical forms and then applying Amalgam to 
generate output strings from those logical forms. For this sample, 71.1% of the words are 
correctly inflected and occur in the correct position in the sentence. We also compute the 
word-level string edit distance of the generated output from the original reference string: 
the number of errors (insertions, deletions, and substitutions) is 44.7% of the number of 
words in the reference string. 

String edit distance is a harsh measure of sentence realization accuracy. Because string 
edit distance does not consider movement as an edit operator, movements appear as both 
deletions and insertions, yielding a double penalty. Furthermore, as observed earlier, 
some edits have a greater impact on the intelligibility of the output than others, especially 
the position of the German verb. Work in progress on a tree edit distance metric 
addresses both of these issues (Ringger et al., in preparation). Closely related work 
includes that of Bangalore, Rambow and Whittaker (2000). 

It is possible that generated sentences might differ from the reference sentences and yet 
still prove satisfactory. We therefore had five independent human evaluators assess the 

                                                 
7 We extract a random sample of generated sentences. We take the first n sentences in the sample necessary 
to ensure 500 sentences that differ from the reference sentence. 
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quality of the output for that same blind and randomized test set of 564 sentences. These 
sentences had been analyzed to yield logical forms from which Amalgam generated 
output sentences. The evaluators assigned an integer score to each sentence, comparing it 
to the reference sentence using the scoring system given in Table 1.8 

The average score was 2.96 with a standard deviation of 0.81. The mode was 4, occurring 
104 times, i.e. 104/564 sentences, or 18.4% received the maximum score. In 63 of these 
cases, the score of 4 had been automatically assigned because the output sentence was 
identical to the reference sentence. In the other 41 cases, all five human evaluators had 
assigned a score of 4, i.e., the output differed from the reference sentence, but was still 
“Ideal”. 

1. “Unacceptable”. Absolutely not comprehensible and/or little or no information transferred 
accurately. 

2. “Possibly Acceptable”. Possibly comprehensible (given enough context and/or time to work it 
out); some information transferred accurately. 

3. “Acceptable”. Not perfect (stylistically or grammatically odd), but definitely comprehensible, 
AND with accurate transfer of all important information. 

4. “Ideal”. Not necessarily a perfect translation, but grammatically correct, and with all 
information accurately transferred. 

Table 1: Evaluation guidelines 

10  Using Amalgam in Machine Translation: First Results 
After we had implemented the German-to-German Amalgam prototype, we started using 
it in a machine translation context. In machine translation, the logical form representation 
that serves as input to Amalgam is not produced from the analysis of a German sentence, 
but is transferred through learned mappings between source language logical forms and 
German logical forms. For our first machine translation experiments the source language 
was English. For details of the mapping process and the setup of the machine translation 
system see (Richardson et al. 2001a) and (Richardson et al. 2001b). 

A first adaptation that was necessary to make Amalgam work properly in this context was 
to reduce the features used in learning the models to those that are actually available on 
transferred logical forms. The result of retraining our Amalgam models on this smaller 
set of features was very encouraging: none of the models exhibited any significant drop 
in accuracy. 

The challenge of using Amalgam in machine translation is that Amalgam is trained on 
“native” German logical forms. To the extent that transferred logical forms correspond 
closely to native target language logical forms, the results are close to what we saw in 
German-to-German generation. Problems arise, however, when the transferred logical 
forms exhibit properties that are not found in native logical forms. Ideally, of course, the 
transfer component of the machine translation system should produce perfectly native-

                                                 
8 These guidelines were originally intended for assessing the quality of machine translation, measuring 
fluency and transfer of semantic content from the source language. Evaluating the sentence realization 
component is conceptually a case of German-to-German translation. 
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like logical forms, but this is an area of ongoing research - especially in a multi-lingual 
machine translation setup where the transfer component should not be fine-tuned to a 
specific language-pair, but should be broad and general enough to accommodate 
languages as different as Chinese, Japanese, German, English, French and Spanish. We 
are currently researching the possibilities of learning filters that post-process the 
transferred logical forms and adjust certain feature values to what we would expect in a 
native German logical form before those logical forms are input to the Amalgam module. 

First results on the quality of Amalgam output in machine translation compared to state-
of-the-art commercially available English-to-German machine translation systems are 
encouraging. In April 2002, an independent agency (the Butler Hill Group) conducted a 
first baseline evaluation of our English-to-German translation system compared to the 
Saillabs system. Six evaluators compared the output of both systems (in randomized 
order and with anonymized source) to a reference translation. Two hundred fifty 
sentences from the technical domain were evaluated. The raters ranked each sentence 
according to a three-way distinction: 1 if the Nlpwin system was better, -1 if the 
comparison system was better, and 0 if both systems were equally good or bad. The result 
of this evaluation was that the output of both systems, while relatively poor, is rated 
equally: the average score was -0.069 with a +/-0.11 confidence interval at a 0.89 
significance level. 

After implementing a prototype of the filter discussed above, adding a compound 
generation function and after some low-level bug-fixes, we conducted a second 
evaluation one month later. At this time, the average score was 0.13 with a confidence 
interval of +/- 0.12 at the 0.99 significance level. The number of sentences that were rated 
as being better in the Nlpwin system jumped from 103 in April to 131 in the second 
evaluation. 

11  Conclusion 
We have described the current state of our ongoing research into sentence realization, 
blending machine-learned and knowledge-engineered approaches. 

We are currently working with colleagues to implement Amalgam for French sentence 
realization. This will serve as a useful test of the extent to which the Amalgam 
architecture is language-independent. 

We continue to refine the decision tree classifiers and the ordering model. We are also 
experimenting with machine-learned approaches to resolving underspecified or noisy 
logical forms that Amalgam encounters in the context of machine translation. 

Finally we intend to experiment with a beam search throughout the sentence realization 
process, propagating the top hypotheses from each decision tree classifier rather than 
applying a greedy search as is presently the case. 
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