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Abstract— while throughput may be the most important metric for software

We investigate the problem of inferring the packet loss characteristics of download servers. In our study, we primarily focus on the packet
Internet links using server-based measurements. Unlike much of existing loss rate because it is the most direct indicator of network con-
work on network tomography that is based on active probing, we make _— . . .
inferences based omassiveobservation of end-to-end client-server traffic. ~ gestion: We view the packet loss rate and RTT metrics as being

We start with a brief analysis of end-to-end packet loss rate over wide- more fundamental than throughput since the latter is affected by
area Internet paths, as observed from a busy Web site. We find that the factors such as the workload (e.g., bulk transfers versus short
end-to-end packet loss rate correlates poorly with topological distance (i.e., - .
hop count), remains stable for several minutes, and exhibits a limited degree Web tranSferS) and the tran_sport projtocol (e.g., the speCIfIC Va!’I-
of spatial locality. These findings suggest that passive network tomography ant of TCP). Furthermore, it is possible to obtain a rough esti-
would be both interesting and feasible. mate of throughput knowing the packet loss rate and RTT, using

Our work on passive network tomography focuses ondentifying lossy gp analytical model of TCP such as [17]_
links (i.e., the trouble spots in the network). We have developed three tech-

niques for this purpose based on Random Sampling, Linear Optimization, nge is an overview of the res.t of this paper. . In Section ”_’
and Bayesian Inference using Gibbs Sampling, respectively. We evaluatewe discuss related work. In Section Ill, we describe our experi-
the accuracy of these techniques using both simulations and Internet packet 1antal setup and methodology. We present details of the packet
traces. We find that these techniques can identify most of the lossy links in h d he busi : ft.comiVeb si
the network with a manageable false positive rate. For instance, simulation traces we gathered at the busycrosoit.comAep site.
results indicate that the Gibbs sampling technique has over 80% coverage  We begin our analysis in Section IV by seeking answers to
with a false positive rate under 5%. Furthermore, this technique provides three questions pertaining to the end-to-end packet loss rate ex-
a confidence indicator on its inference. In the case of Internet traces, val- . . . .
idating the inferences is a challenging problem. We present a method for per_|ence_d by clients: (a) how well loss rat(_a correlates with topo-
indirect validation, which suggests that the false positive rate is manage- logical distance between the server and client, an ow stable
indi lidati hich hat the fal iti i logical dist bet th dclient, and (b) h tabl
able. the loss rate is over time, and (c) how strong the spatial local-
ity in loss rate is. We find the correlation between end-to-end
|. INTRODUCTION loss rate anq hop count is weak, which suggests that the end-
o ) to-end path is dominated by a few lossy links. The end-to-end
The Internet has grown rapidly in terms of size and hetergsss rate is stable for several minutes, suggesting that lossy links
geneity in recent years. The set of hosts, links, and netwogiinain so for several minutes. Finally, there is a limited degree
that comprise the Internet is diverse. This presents interestfigpatial locality in end-to-end loss rate (especially at the sub-
challenges from the viewpoint of an Internet server, such ag |evel), but in general the locality is not very strong. This
Web site, whose goal is to provide the best possible servicesigygests that while in some cases lossy links may be shared
its clients. A significant factor that the server must contend Witle_ " sych links may lie on the path from the server to multi-

is the dissimilar and changeable network performance eXP&ie clients), often they are non-shared (e.g., the “last-hop” link

enced by clients. to clients). These findings suggest that it would be interesting to
The goal of our work is to investigate ways to infer the perfokry and identify the lossy links.

mance of the Internet byassivelymonitoring existing network s sets the stage for our main foc®assive Network To-

traffic between a server and its clients. Our goal is to go beyoﬁﬂ)graphy which we present in Section V. The goal here is to

characterizing end-to-end network performance by developi'&mify the lossy links in the interior of the network tpas-

techniques to infer the performance of interior links in the ”eéTver observing the end-to-end performance of existing traf-
work. fic between a server and its clients. This is in contrast to the
There are a number of ways in which the server could beﬁ‘revious work on network tomography (e.g., [4]) that has been
efit from such characterization and inference. Information ¢fsed on active probing. We develop three techniques for pas-
the stability or predictability of network performance to one Ofjye network tomography: Random Sampling, Linear Optimiza-
more clients could be used to adapt content for speedy delign, and Bayesian Inference using Gibbs Sampling. We evalu-
ery to the client(s) [21]. Information on bottlenecks or other hejfte these techniques using extensive simulations and find that
spots within the network could be used to direct clients to repligg are able to identify more than 80% of the lossy links with a
servers so that they avoid the hot spot. Such information coglgse positive rate under 5%. We also apply these techniques to
also be used by a Web site operator to have the hotspot probig@ raffic traces gathered at thecrosoft.consite. Validation
resolved in cooperation with the concerned ISP(s). The focusi@thallenging in this setting since we do not know the true loss
this paper, however, is on the inference of network performanggie of Internet links. We present a method for indirect valida-
not on its applications. tion, which suggests that the false positive rate is manageable.
One question is what “network performance” means. Clearly,

t_he performance metrics thaF _mat_ter depend on the app“C"’lWe have also done some characterization of the round-trip time (RTT) metric,
tion. Latency may be most critical in the case of game serveis we do not present those results in this paper.



Finally, we present our conclusions in Section VI. Date Duration # packets | # clients
Dec 20, 2000| 2.12 hours| 100.0 million | 134,475
Il. RELATED WORK Jan 11, 2002| 2.21 hours| 125.0 million | 945,986

There have been numerous studies of Internet performance.
We can broadly classify these studies as eithaive or pas-
sive Active studies involve measuring Internet performance by
injecting traffic (in the form of pings, traceroutes, TCP connec-
tions, etc.) into the network. In contrast, passive studies analyze
existing traffic obtained from server logs, packet sniffers, e

TABLE |
SUMMARY OF THE TWO TRACES ANALYZED IN THIS PAPER

our study i . tﬁrobe packets into the network. Such active probing imposes
ur study’1s a passive one. an overhead on the network and runs the risk of altering the link

Several studies (e.g., [18], [23]) have examined the tempQy, 5 teristics, especially when applied on a large scale (e.g., on

ral stability of Internet performance metrics through active me e path from a busy server to all of its clients).

surements. In [18] Paxson reports that observing (no) pac e, [20] and [13], the authors take a passive approach in de-

loss along a path is a good predictor that we will continue }&:ting shared bottlenecks. The former requires senders to co-

observe (no) packet loss along the path. However, the mag(%'erate by time stamping the packets while the latter requires

tude of the packet IOS.S ratg is a lot less predictable. Zm%“g a]n observer that receives more than 20% of the output traffic of
al. examines the stationarity of packet loss rate and availahle

. : o e bottleneck (i.e., light background traffic). Tsang et al. [22]
bandwidth [23]. They find that the correlation in the loss proe;%imate loss rate for each link by passively observing closely

cess mainly comes only from back-to-back loss episodes, g aced packet-pairs. A problem, however, is that existing traf-

not from “nearby” losses. Throughput has a close coupling Wiﬁji‘J often may not contain enough such packet-pairs to make an

the loss process, and can often be modeled as a stationary. . L
P . Yintérence. Furthermore, their evaluation is based on very small
process for periods of hours.

: . o topologies containing a dozen (simulated) nodes, and it is not
Several studies have also examined similar issues by StUdy&rllgar how well their technigque would scale to large topologies.

traces gathered passively using a packet sniffer. The authors
in [2] used traces from the 1996 Olympic Games Web site to I
analyze the spatial and temporal stability of TCP throughput.
Using traceroute data, they constructed a tree rooted at the servé¥e now describe the experimental setup and methodology
and extending out to the client hosts. Clients were clusterggied in our study. The packet traces were gathered anihe
together based on how far apart they are in the tree. The authmgsoft.comsite, which is a busy corporate Web site that sees
report that clients within 2-4 tree-hops of each other tend to haadarge number of long TCP connections (e.g., software down-
similar probability distributions of TCP throughput. They alstoads) from users across the globe. We used¢pdumptool
report that throughput to a client host tends to remain stable (iJ82] on a Pentium-Ill 550 MHz PC running the Windows 2000
within a factor of 2) for time scales of many tens of minutes. Server OS to do the packet capture. This machine was con-

Packet-level traces have also been used to characterize offe@ted to the spanning (replication) port of a Cisco Catalyst
aspects of network traffic. In [1] Allman uses traces gather&$09 switch via a 100 Mbps Ethernet link. With port replication
at the NASA Glenn Research Center Web server to study isstiggied on, our packet sniffer saw traffic to/from several server
such as TCP and HTTP option usage, RTT and packet size digdes that were connected either to the same Catalyst switch or
tributions, etc. Mogukt al. uses packet-level traces to study thto a sister switch in a two-switch cluster. The packet drop rate
effectiveness of delta compression for HTTP [15]. on the replicated port on the switch was no more than 0.3%.

Our study is similar to [2] in that it is based on packet sniffer For our study, we only captured (the headers of) TCP pack-
traces gathered passively at a busy server. However, our analgéissince we are able to estimate packet loss rate by observing
is different in many ways. We focus on packet loss rate rathBCP data packets and the corresponding ACKs. With the setup
than TCP throughput for the reasons mentioned previously. Glascribed above, we were able to capture a portion of the traffic
analysis of spatial locality considers operationally meaningfahtering and leaving thmicrosoft.consite. This included Web
entities such as autonomous systems (ASes) and BGP préfaffic, software download traffic, and streaming media traffic
clusters [14] rather than treating the network as an undifferenincluding streaming media over TCP to traverse firewalls). Due
ated tree. And, most importantly, we try to infer the characteie cluster-level load balancing, our packet sniffer did not neces-
istics of internal links in the network rather than just the end-tsarily see all connections to/from a particular client. For a par-
end characteristics. ticular connection, however, it either sal of the packets or

This last aspect of our work lies in the areaNdtwork To- none at all. So we are able to derive meaningful estimates of
mographywhich is concerned with the inference of the internglacket loss rate from the subset of connections that were cap-
network characteristics based on end-to-end observations. Tred. Table | summarizes the two traces we analyze in this
observations can be made througgttive probing (either uni- paper.
cast or multicast probing) grassivemonitoring. MINC [4] and We used thdraceroute[11] tool to determine the network
[19] base their inference on loss experienced by multicast prgiegh from themicrosoft.comnsite to each of the clients seen in
packets while [6], [7] use closely-spaced unicast probe pack#te traces. The traceroute data was collected in the few days fol-
striped across multiple destinations. A common feature of th@ving the trace capture. Due to security and administrative con-
above techniques is that they are basedhctive injection of cerns, the packet sniffer machine located in the data center was

. EXPERIMENTAL SETUP AND METHODOLOGY



configured to be in “listen-only” mode. So the traceroutes weAS number for even one router. 31.6% of paths were ignored as
run from a FreeBSD PC located on a separaterosoft.com a result of this.) Likewise, we used BGP prefix information to
network. While the first few hops within the corporate networletermine the address prefix (AP) corresponding to each router
were different, the entire external path was identical to the pathd thus computed the AP hop count of each path. Since BGP
that packets from the server nodes located in the data cemesfixes tend to be more fine-grained than ASes, the AP hop
would have taken. So these traceroutes help us determinedbent for a path is generally larger than the AS hop count but
wide-area Internet path from the server cluster to the clients. smaller than the router hop count.

Since our packet sniffer is located very close to the serverFigure 1 shows the average end-to-end loss rate experienced
nodes, we detect packet losses by looking for packet retransnig-clients for various values of router hop count, AP hop count,
sions by the sender. The underlying assumption is that the T&kd AS hop count (Dec 2000 trace). We find that there is little
sender only retransmits a packet if the original transmission wasrrelation between loss rate and hop count. The correlation co-
lost, which is reasonable since TCP is conservative about edficients between loss rate and router hop count, AP hop count,
transmissions. We compute the loss rate for client node as #ml AS hop count are 0.05, 0.03, and 0, respectively. (Note that
ratio of the number of retransmitted packets to the total numbbe correlation coefficient is computed using the entire raw data
of packets sent to it within a window of time. As explained iset whereas Figure 1 only plots the average loss rate for legibil-
Section IV, we varied the window size when studying temporéy,.) Filtering out the IP addresses that have loss rate below 10%
locality. improves the correlation coefficient somewhat. The correspond-

Our analysis shows that clients experience widely differeimg correlation coefficients become 0.112, 0.104, and 0.011, re-
loss rates. In the Dec. 2000 trace, around 40% of the cliesfsectively. The correlation is still pretty weak, which implies
experience no loss, and 6% of the clients suffer from more thdrat the hop count is not a reliable indicator of end-to-end packet

20% loss, when the loss rate is computed using the entire trémss rate.

period, while in the Jan. 2002 trace, half the clients have no loss,
and above 10% of the clients encounter over 20% loss.

IV. ANALYSIS OF END-TO-END LOSSRATE

In this section, we analyze the end-to-end loss rate informa-
tion derived from the traffic traces with a view to answering
three questions: (a) how well loss rate correlates with topologi-
cal distance between the server and client, and (b) how stable the
loss rate is over time, and (c) how strong spatial locality in loss
rate is. This analysis is not the primary objective of this paper;
indeed, some of our findings confirm previous findings albeit
in a different setting (i.e., server-based passive measurements
rather than active or client-based measurements). Our goal here
is to motivate the primary focus of our work, Passive Network
Tomography, which is presented in Section V.

A. Correlation between Topological Distance and Loss Rate

We begin by studying the correlation between the topologi-
cal distance between the server and a client and the end-to-end
loss rate experienced by the client. We consider several differ-
ent notions of topological distance between the server and client:
(i) router hop count, (i) AS hop count, and (iii) address prefix
(AP) hop count. To compute these hop counts from a traceroute
path, the AS associated with a router is determined by querying
Whoisand the AP is determined using address prefix informa-

tion [14] from a BGP routing table dump [3] obtained on Jan 01 x * * x
24, 2001. Our goal is to understand if such static topological o * x X x
metrics correlate well with end-to-end loss rate. For instance, s oor|

can such distance metrics be used to select the best replica for g oo x

a particular client as is done by the Cisco Distributed Director
[5]?

As explained in Section Ill, we determined the network path
from the server to each client using traceroute. For each client,
we determined the number of router hops. We determined the
AS number corresponding to each router by querying/Meis
database and thereby computed the AS hop count of each path.
(We ignored paths for which we were unable to determine the
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One reason why the correlation between topological distance
and loss rate is weak is that all links are not “equal” (which is
in contrast to the implicit assumption made in metrics such as
router hop count that all hops are the same). In other words, it
is likely that poor end-to-end performance is caused by a few
lossy links. If the network path from the server to a client tra-
verses one or more of the lossy links, then it is likely that the
client would see poor performance (e.g., a high packet loss rate)
even if the number of hops in the path is small. Therefore it is
important to identify the lossy links. This motivates our network

tomography work presented in Section V. 0 I ]
‘10 SEC: t;lOOO |

B. Temporal Locality of Loss Rate 0 500 1000 1500 2000 2500 3000 3500
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We now turn to the. question Of how '0“9 the end'to'enﬁg. 2. CDF of the time period in which a host’s loss rate remains in the same
packet loss rate experienced by clients remains stable. We uSéss category.

the methodology developed in [23] to analyze the constancy of
Internet path properties based on active measurements in the
NIMI testbed. Basically, we partition loss rates into the followcluster see similar loss rates.
ing categories: 0 - 0.5%, 0.5 - 2%, 2 - 5%, 5 - 10%, 10 - 20%, We consider the following clustering schemes: (i) clients
and 20+%. According to the classification in [23], these catelustered by subnet address assuming a 24-bit subnet prefix,
gories correspond to “no loss”, “minor loss”, “tolerable loss(ii) clients clustered by the address prefix (AP) in BGP routing
“serious loss”, “very serious loss”, and “unacceptable loss”. Wables [14], (iii) clients clustered by autonomous system (AS)
study how long a client’s loss rate remains stable, i.e., remaingimmber, (iv) clients clustered randomly.
the same category. In our analysis, from each trace we pick then addition, we also examine a new clustering scheme, which
top 1000 hosts in terms of the total number of packets sent amd call DNS-based clustering. The basic idea is to cluster the
received to avoid biasing the result due to lack of data sampletients that share the same set of authoritative name servers.
Figure 2 plots the cumulative distribution (CDF) of the maxSuch clustering is cheap to perform: we just need to do a DNS
imum duration for which loss rate remains stable based on thene transfer, and obtain the mapping between IP addresses and
Dec 2000 trace. The curve is weighted by the size of the stati@uthoritative name servers. It is likely to be more coarse-gained
ary interval as in [23]. When computing the loss rate, we onthan BGP address prefix clustering, as different BGP prefixes
consider clients that have received at least a threshold numimaty share the same authoritative name server. An alterative ap-
of packets within a 10-second time interval. We use two thregbroach is to cluster the clients that share the same local name
olds: 100 and 1000 packets. As we can see, about 50% of tireerver. This may be better in terms of network locality. How-
the stability period is less than 10 minutes using 1000 as teeer, the mapping between client IP addresses and their local
threshold, and about 70% of time, the stability period is les@me servers is not easily obtainable. In our study, we use the
than 10 minutes using 100 as the threshold. To test for pos$#ta obtained from a DNS zone transfer done in October 2001
bility of binning effects, we also use a different set of cutpoint® perform DNS-based clustering.
for the loss categories, each falling in the middle of the aboveln our analysis, we use the top 20000 clients from the Dec
cutpoints, as suggested in [23]. The results are very similar 82000 trace, and the top 50000 clients from the Jan 2002 trace.
are omitted in the interest of space. We cluster them using the above schemes. Then from each clus-
The above analysis results suggest that loss rate is stableerrwe randomly pick two groups, each containing 3 clients, and
the time scale of several minutes, which is consistent with teempare the difference in their average loss rates (we only con-
findings in [23]. This consistency is interesting considering thaider groups that received at least 1000 packets to keep the loss
our data set is different from that studied in [23] in several reate computation meaningful). We repeat this five times for each
spects: passive, server-based measurements of a much lasiyster.
and more heterogeneous set of end hosts. We use the same categorization of loss rates as detailed in
The stability of end-to-end loss rate over a time scale of seSection IV-B. Instead of comparing the absolute difference in
eral minutes suggests that the underlying cause of packet losgwverage loss rate between the two groups, we compare the num-
i.e., the lossiness of network links — is also likely to persist faser of loss categories the two groups are away from each other.
a significant length of time. So trying to identify the lossy linkso, for example, the difference between the loss rate values
using network tomography would be a worthwhile goal. 0.3% (“no loss”) and 4% (“tolerable loss”) is quantified as a
difference of 2 loss rate categories.
Figure 3 and Figure 4 plot CDF of the loss rate difference
Finally, we analyze the spatial locality of end-to-end packetithin clusters for the Dec 2000 and Jan 2002 traces, respec-
loss rate. We would like to answer the question of whethdvely. We find that spatial locality is greatest in the case of
clients that are topologically close to each other experience sisubnet-based clustering. The probability of the loss rates of two
ilar loss rates. Toward this end, we cluster clients using vagroups drawn from the same cluster being in the same loss rate
ous schemes and examine whether clients belonging to the saategory is 40-60%. The corresponding probability for the AP

Cumulative Probability

C. Spatial Locality of Loss Rate



and AS based clustering schemes is around 30%. However, we
also find that even random clustering yields a 25% probability
of a match in loss rate categories. So the question is how signif-
icant the apparent spatial locality in the case of subset, AP, and
AS based clustering is.

Random clustering exhibits a significant degree of spatial lo-
cality because many clients see little or no loss (i.e., lie in the
“no loss” category) and thereby skew our results. However, our
main interest is in determining how much locality exists when
there is packet loss. Therefore we introduce a loss threshold and
only consider samples of loss rate difference between the two
groups when the loss rate eithergroup exceeds the threshold.
We vary the loss threshold from 0 to 10%.

With a loss threshold of 10%, we find that probability of loss
rates within a subnet lying within the same category is nearly
80% in the Dec 2000 trace and about 30% in the Jan 2002 trace.
However, the correponding probability for random clustering is
almost zero. This suggests that there is indeed some spatial lo-
cality, especially at the subnet level. However, the degree of
spatial locality varies and is in some cases (e.g., Jan 2002 trace)
quite limited.

We repeat the same analysis using a set of cutpoints for the
loss categories that are in the middle of the above cutpoints, as
was done in [23], and the results are very similar.

Our observation of a limited degree of spatial locality in loss
rate, especially at the subnet level, suggests that there may in
some cases be a shared cause (i.e., lossy link(s) shared by all
clients in the cluster) for the end-to-end packet loss experienced
by clients. At the same time, however, our results suggest that
often there is low degree of locality in loss rate among clients in
a cluster. This leads us to believe that often the cause of packet
loss is a non-shared link (e.g., the “last-hop” link). It would be
interesting to see if network tomography could shed more light
on this issue.

D. Summary

In summary, our analysis of end-to-end loss rate indicates that
(a) the correlation between loss rate and hop count is weak, (b)
loss rate tends to be stable over a period of several minutes, and
(c) clients that are topologically close to each other experience
more similar loss rate than clients picked at random, which indi-
cates that there is a limited degree of spatial locality in loss rate.
These finding suggest that a few lossy links, whether shared
or non-shared, dominate the end-to-end loss rate and that the
link loss rate tends to be stable for a significant length of time.
This sets the stage for our work on passive network tomogra-
phy, where we develop techniques to provide greater insight into
some of these conjectures.

V. PASSIVE NETWORK TOMOGRAPHY

In this section, we attempt to identify lossy links in the net-
work based on observations made at the server of end-to-end
packet loss rates to different clients. As noted in Section Il,
much of the prior work on estimating the loss rate of network
links has been based on the active injection of probe packets
into the network. In contrast, our goal here is to base the infer-
ence orpassiveobservation of existing network traffic. We term
this passive network tomography
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Figure 5 depicts the scenario of interest: a server transmitting
data to a distributed set of clients. By passively observing the
client-server traffic, we can determine the number of packets
transmitted by the server to each client. Based on the feedback
from the clients (e.g., TCP ACKs, RTCP receiver reports), we
can also determine how many of those packets were lost in the
network.

We assume that the network path from the server to each
client is known. In the experiments reported in this paper, the
path to each client was determined using treeceroutetool
[11]. While these traceroutes do constitatdivemeasurement,
this need not be done very frequently or in real time. (Indeed
previous studies have shown that end-to-end Internet paths gen-
erally tend to be stable for significant lengths of time. For in-
stance, [24] indicates that very often paths remain stable for at
least a day.) Moreover, it may be possible determine the server-
to-client path “pseudo-passively” by invoking the record route
option (IPv4) or extension header (IPv6) for a small subset of
the packets.

The set of paths from the server to its clients is likely to form
a tree (as depicted in Figure 5) and so our explanations here
are couched in terms of tree-specific terminology. However, we
do recognize that the topology may not strictly be a tree (for
instance, because of transient route fluctuations), so our tech-
nigques do not depend on the topology being a tree. We elaborate
on this point in Section V-B.

server

Py P> Ps Pa Ps
clients

Fig. 5. A sample network topology as viewed from a server. The link loss rates
are denoted by; and the end-to-end loss rate at the clients are denoted by

Dj-

A. Challenges

Identifying lossy links is challenging for the following rea-
sons. First, network characteristics change over time. With-
out knowing the temporal variation of the network link perfor-
mance, it is hard to correlate performance observed by different
clients. Second, even when the loss rate of each link is con-
stant, it may not be possible to definitively identify the loss
rate of each link. Given\/ clients andN links, we haveM
constraints (corresponding to each servelient path) defined
over N variables (corresponding to the loss rate of the individ-
ual links). For each client’;, there is a constraint of the form
1= [Ler, (1 — i) = p; whereT; is the set of links on the path
from the server to client’;, I; is the loss rate of link, andp; is
the end-to-end loss rate between the server and dlignthere
is not a unique solution to this set of constraintd4f < N, as
is often the case.



To make the problem tractable, we make the simplifying aBom the server to the clier®’; for which a loss rate has been
sumption that the loss rate of each link is constant. Althougissigned. Then we repeat the procedure to compute the loss rate
this is not a very realistic assumption, it is a reasonable simpdit the next level of the tree by considering the residual loss rate
fication in the sense that some links consistently tend to haseeach client in place of its original loss rate. At the end, we
high loss rates whereas other links consistently tend to have lbave one sample solution fog.
loss rates. Zhang et al. [23] reported that the loss rate remaingve iterateR times to produce? random solutions fol;,. We
operationally stable on the time scale of several minutes. Qiraw conclusions based on the statistics of the individual link
temporal locality analysis in Section IV-B also confirms it.  |oss rates];, across the? random solutions. For instance, if the

There is still the problem that we may not, in general, be akd@erage loss rate assigned to a link across all samples is higher
to determine a unique assignment of loss rate to network linkisan a threshold, we conclude that the link is lossy.

We address this issue in several ways. Note that we compute a loss rate only for those clients to

First, we collapse a linear sections of a network path with Rghom the server has transmitted at least a threshold number of
branches into a singleirtual link?. This is appropriate since packets. Only this subset of the clients and the topology induced
it would be impossible to determine the loss rates of the COply them is considered in the random sampling algorithm.
stituent physical links of such a linear section using end-to-endthe sampling procedure outlined above is biased because the
measurements. _ . order in which links are picked matters. As we assign loss rates

Second, although there may not be a unique assignmeng@hn increasing number of links, the loss rate bound on the re-
loss rate to network links, two of our techniques seek a parsimgaining links gets tighter. So links that are picked early in an
nious explanation for the observed end-to-end loss rates. (Tiiation are likely to be assigned a higher loss rate than ones
bias is implicit in the case of Random Sampling and explicit igicked later. Thus in the above algorithm, links higher up in
the case of Linear Optimization.) So given a choice between g tree (i.e., close to the server), which are picked early in the
assignment of high loss rates to many links and an assignmgpycess, tend to get assigned a higher loss rate. Of course, the
of high loss rates to a small number of links, they would pr¢gss rate bound on a link higher up in the tree might be tighter to
fer the latter. The underlying assumption is that a lossy link jggin with because of there is a greater chance that one or more
relatively uncommon. If most of the links are lossy, network tqiownstream clients will have experienced a low loss rate.
mography may not be very useful any way since there are notryiq pias however, has a positive side-effect in that it favors

specific trouble spots to pinpoint. On the other hand, our GibBSsimonious solutions (i.e., ones in which the observed client
Sa"_‘p"”g technique uses a umf_orm prior and s_mbla_l_sed_ loss rates can be accounted for by assigning a high loss rate to
_ Finally, we set our goal to primarily be the identification Ofger jinks). If many clients are experiencing a high loss rate,
links that are likely to have a high loss rate rather than |nferr|r‘1jg1 explanation that involves one shared, lossy link higher up in

a s'pecific loss rate for egch I!nk. We believe that the idemiﬁie tree is more plausible than one that involves a large number
cation of the most lossy links in itself would be very useful fog independently lossy links.

applications such as network diagnosis and server selection.
We now describe the three different techniques we have
plored and developed for passive network tomography.

Note that our random sampling algorithm would work the
ime way even if the topology were not a tree. In fact, at any

. ! . Cl Fage in an iteration, we can pick an arbitrary link, determine
present these in roughly increasing order of SOph'St'Cat'O[H'e bounds on its loss rate by examining all servelient paths
However, as the experimental results in Section V-E indica{

. . . fat traverse the link, and then randomly assign it a loss rate.
even the simplest technique, yields good results. Just like in a tree topology, we could start by picking links close
B. Random Sampling to the server and then working our way towards the clients.

The random sampling algorithm has the advantage of being
. . i ple. However, it is quite susceptible to estimation errors in
space of feasible solutions for the set of link loss rates. ( e client loss rate. Due to a statistical variation, a single client

dﬁrll.of "’!Sl‘t’ﬁc'{'c S(I)|UtI0n ?_f] :bUZEL.lé whefreL 'Z the set Ofl. that is downstream of a true lossy link could experience a low
all links in the topology.) The basic idea of random samplin ss rate. This would cause the random sampling algorithm to

is to repeatedly sample the solution space at random and m gign a low loss rate to the link even if all of the other down-

inferences based on the statistics of the sampled solutions. Th&_ . ionts experience a high loss rate. The alternative algo-

solution space is sampled as follows. We first assign a loss rmﬁ : :
. ) : ms for passive network tomography that we describe below
of zero to each link of the tree (Figure 5). The loss rate of link b grapny

is bounded by the minimum (s@§*‘") of the observed loss rateare robust o such errors.
at the clients downstream of the link. We pick the loss rate
of the link i to be a random number between 0 dfid*. We
define the residual loss rates of a client to be the loss rate thaiVe formulate the network tomography problem as a linear
is not accounted for by the links whose loss rates have alregafggram (LP). As noted in Section V-A, we have a constraint of
been assigned. We update the residual loss rate of a Cligtat the form1—[], . (1-1;) = p; corresponding to each clie@.
1- ﬁ whereT is the subset of links along the pathWe can turn this into a linear constraii,. . L; = P; where
ert L; = log(1/(1 — 1;)) andP; = log(1/(1 — p;)). Note that the

2In the rest of the paper, we use the term “link” to refer to both physical IinlgansmrmecI variables; and Pj are monotonic functions df

and virtual links. andp;, respectively.

The set of constraints mentioned in Section V-A define

' C. Linear Optimization



To be robust to errors or aberrations in client loss rate dsis in our case). An indirect approach is to ugente Carlo
timates, we allow the above constraints to be violated (a litegration The idea here is to sample underlying posterior
tle). We do so by introducing a slack variabk;, in the con- distribution and use the sample mean as an approximation of
straint corresponding to client; yielding a modified constraint: E(f(0)|D). One way of doing the appropriate sampling is to
>ier; Li + 55 = P;. In addition, we have the constraintsconstruct a Markov chain whose stationary distribution exactly
L; > 0. equals the posterior distribution of intere$t(f|D)). (Hence

The objection function to minimize i& }_, L; + >_,|S;|. the nameMarkov Chain Monte Carlo (MCMCJ9], [10] was
This reflects the objectives of finding a parsimonious solutiagiven to this class of techniques.) When such a Markov chain
(hence the) , L; term) and minizing the extent to which theis run for a sufficiently large number of steps (termedtiben-
original constraints are violated (hence Fj?;j |S;| term). The in period), it “forgets” its initial state and converges to its sta-
weight, w, allows us to control the relative importance of findtionary distribution. It is then straightforward to obtain samples
ing a parsimonious solution versus satisfying the original cofrom this stationary distribution.
straints well; we setv to 1 by default. Note that theS;| term  The challenge then is then to construct a Markov chain (i.e.,
means that this is not strictly a linear program in its presegiéfine its transition probabilities) whose stationary distribution
form. However, it is trivial to transform it into one by defin-matchesP(6|D). Gibbs sampling9] is a widely used technique
ing auxiliary variables,S’ and adding constraints of the formto accomplish this. The basic idea that at each transition of the
S; > S; andS} > —S;. The objective function to minimize is Markov chain, only a single variable (i.e., only one component
thenw ), L; + 3, 5. of the vectord) is varied. Rather than explain Gibbs sampling

The linear optimization approach also has its drawbackf.general, we now switch to modeling network tomography as
First, like the random sampling approach, it depends on théBayesian inference problem and explain how Gibbs sampling
client lossrates p;, to be computed. However, the loss rate mayorks in this context.
be meaningfully computed only when a sufficiently large num-
ber of packets are sent to the client (we use a minimum thregh2 Application to Network Tomography
old of 500 or 1000 packets in the experiments presented in Sec- o
tion V-F). This limits the applicability of this technique. Second, T0 model petwork tomography as a Bayesian inference prob-
while the objective function listed above intuitively conforms té¢m. we defineD and ¢ as follows. The observed datd),
our goals, there is no fundamental justification for its specifie defined as the number of successful packet transmissions to
form. Indeed the solution obtained would, in general, be diffep@ch client {;) and the number of failed (i.e., lost) transmis-
ent if the objective function were modified. This then motivatedons (f;). (Note that it is easy to compute by subtractingy;

the statistically rigorous technique we describe next. from the total number of packets transmitted to the client.) Thus
D =J;(sj, f;)- The unknown parametéris defined as the set
D. Bayesian Inference using Gibbs Sampling of links’ loss rates, i.e.§ = I = [J,c l: (Section V-B). The

We model passive network tomography as a Bayesian inféfelinood function can then be written as:
ence problem. We begin by presenting some brief background
information; for details, please refer to [10]. P(D|l;) = H (1 _pj)sjpfj (1)

j€Eclients

D.1 Background

Let D denote the observed data ahdenote the (unknown) Recall from Section V-A thap; = 1 — [, (1 — ;) and
model parameters. (In the context of network tomograghy, represents the loss rate observed at cignt
represents the observations of packet transmission and loss, arkhe prior distributionP(I1,), would indicate prior knowledge
0 represents the ensemble of loss rates of links in the networddout the lossiness of the links. For instance, the prior could be
The goal of Bayesian inference is to determinegbsteriordis- defined differently for links that are known to be lossy dialup
tribution of §, P(9|D), based on the observed data, The in- links as compared to links that are known to be highly reliable
ference is based on knowingdor distributionP(#) and dike- OC-192 pipes. However, in our study here, we only use a uni-
lihood P(D|#). Thejoint distribution P(D, §) = P(D|9)P(6). form prior,i.e. P(i1) = 1.
We can then compute the posterior distributior afs follows: The object of network tomography is the posterior distribu-

p tion, P(l.|D). To this end, we use MCMC with Gibbs sam-

(0)P(D|0) ! . . A .
pling as follows. We start with an arbitrary initial assignment

Jo P(6)P(DI9)do of link loss rates/;,. At each step, we pick one of the links,

Any features of the posterior distribution are legitimate fggay i, and compute the posterior distribution of loss rate for
Bayesian inference: moments, quantiles, etc. All of these quéhat link alone conditioned on the observed datand the loss
tities can be expressed as posterior expectations of functiongaies assigned to all other links (i.¢l;} = ,,.; lx). Note that

P(O|D) =

0: {L;} U {l;} = I1.. Thus we have
f(0)P(0)P(D|6)
E(f(9)| ) = f P(9)P(D|9)d9 3Note that we are only computing the likelihood of the specific observation
0 we made. We araotinterested in counting all possible ways in which clignt

- : could have had; successes anfl; failures, so the equation does not include
In general, itis hard to compu@(f(0)|D) dlrectly because such a combinatorial term. We offer this clarification since a few readers have

of the complex integrations, especially whens a vector (as been confused at first blush.
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range. In the second moddl /), the loss rate ranges for good
and bad links were 0-1% and 1-100%, respectively.

P(I;|D, {l;}) = P(DI{l:} U {lj})P(li) Once each link has been assigned a loss rate, we use one
J,, P(D{L:} U {l:}) P(l:)dl; of two alternative loss processes at each link: Bernoulli and
Gilbert. In the Bernoulli case, each packet traversing a link is
SinceP(I;) = 1and{l;} U {l;} = i1, we have dropped with a fixed probability determined by the loss rate of
the link. In the Gilbert case, the link fluctuates between a good
PLID.{i}}) = P(DllL) (2) State and a bad state. At the good state, no packets are dropped
Tu J,, P(Dlir)dl; while at the bad state all packets are dropped. As in [16], we

. . . chose the probability of remaining in the bad state to be 35%

l.Jsmg equa'Flons 1 and 2, we numerically compute the P9Sased on Paxson’s observed measurements of the Internet. The
te'r|o.r d|§tr|but|opP(li|D7.{li}) and draw a sample from thISother state transition probability is picked so that the average
d|str|but_|orf. This then gives us the new valug, for the 10Ss |55 rate matches the loss rate assigned to the link. Thus the
rate of link:. In this way, we cycle through all the links and asg;ipert |oss process s likely to generate more bursty losses than
sign each a new loss rate. We then iterate this procedure sevg{algemoulii loss process. In both cases, the end-to-end loss rate
times. After the burn-in period (which in our experiments 1asts@ computed based on the transmission of 1000 packets from the
few hundred iterations), we obtain samples from the desired digyt (server) to each leaf (client). Unless otherwise indicated,
tribution, P(I1| D). We use these samples to determine whict),r simulation experiments use thg\f, loss model together
links are likely to be lossy. with the Bernoulli loss process.

We have chosen these somewhat simplistic loss models over
simulating real congestion losses because it gives us greater flex-
The Bayesian approach outlined above is based on solid thiity in terms of being able to explicitly control the loss rate of
oretical foundations. Another advantage of this approach owich link. Furthermore, to the extent that the loss rate of Internet
the random sampling and the linear optimization approachestghs is operationally stationary for significant lengths of time,

that it only requires th@umberof packets sent to and lost atthese models offer a reasonable approximation.
each clienthot the loss rate. So it can be applied even when We repeated our experiment 6 times for each simulation con-
the number of packets sent to a client is not large enough for #iuration, where each repetition has a new topology and loss

D.3 Discussion

packet loss rate to be meaningfully computed. rate assignments. In each repetition of an experiment, a link is
) . inferred to be lossy as follows. For random sampling, we com-
E. Simulation Results pute the mean loss rate of the link over 500 iterations (Section V-

In this section, we show results of our experimental evaluati®). We infer the link to be lossy if the mean exceeds a loss rate
of the three passive network tomography techniques discus#@@shold. Likewise, for the linear optimization (LP) approach,
above. We begin with a discussion of our simulation expenve compare the (unique) inferred link loss rate to the loss rate
ments and results. The main advantage of simulation is that theeshold. In the case of Gibbs sampling, since we numerically
true link loss rates are known, so validation of the inferences @@mpute the posteriatistribution, we apply a somewhat more
the tomography algorithm is easy to do. sophisticated test. We infer a link to be lossy if more than 99%

The simulation experiments are performed on topologies @f the loss rate samples for the link exceed the loss rate thresh-
different sizes using multiple link loss models. The topolaeld. For theLM; model, the loss rate threshold was set to 3%
gies considered are randomly constructed trees with the nujive., the midpoint between the 1% and 5% range delimiters dis-
ber of nodes() ranging from 20 to 3000. (Note that the nod€ussed above) while for theA; model it was varied in the
count includes both interior nodes (i.e., routers) and leaves (i@nge of 5-20%.
clients).) The number of links in each topology is roughly equal We report the true number of lossy links, and the number of
to the number of nodes (modulo the slight reduction in linkorrectly inferred lossy linkscpveragg and the number of in-
count caused by the collapsing of linear chains, if any, into vigorrectly inferred lossy linkddlse positivek all being averaged
tual links). The degree of each node (i.e., the number of chilver the 6 runs of the experiment for each configuration.
dren) was picked at random between 1 and an upper bcd)ndé )
which was varied from 5 to 50. -1 Random Topologies

In addition, we also consider a real serveslients topology e present simulation results for different settings of tree size
constructed from our traceroute data set. This topology spgn§, maximum node degreel) and fraction of good links{).
123166 clients drawn from the Dec 20, 2000 data set. We repeated our experiments 6 times for each setting, of

Afraction f of the links were classified as “good” and the resind f. The results presented in this sub-section are based on the
as “bad”. We used two different models for assigning loss ratgg//; loss model with the Bernoulli loss process.
to links in these two categories. In the first loss modelf;),  Figure 6 shows the simulation results for 100-node topologies
the loss rate for good links was picked uniformly at random iandd = 10, and f varying from 0.5 to 0.95. We note that in
the 0-1% range and that for bad links was picked in the 5-10§eneral, random sampling has the best coverage. In most cases,
4Since the probabilities involved may be very small and could well cauit 's able to identify over 90-95% of the lossy links. However,

iﬁe high coverage comes at the cost of a very high false posi-

floating point underflow if computed directly, we do all our computations iry ) ; e
the logarithmic domain. tive rate — ranging from 50-140%. Such a high false positive
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100-node random topologies (d=10) 1000-node random topologies (d=10, f=0.95)

160
140

120 A
100 -

80 -

#links

60 -

40 4 ] .
] L L
0
Random LP Gibbs
[="# true lossy links” m"# correctly identified lossy links" 0"# false positive" |
[B7# true lossy links” "% correctly identified lossy links" 0"# false positive”] Fig. 7. 1000-node random topologies with maximdaygree = 10 and f =
Fig. 6. Varyingf: 100-node random topologies with maximum degree = 10. 095.
1000-node random topologies (d=10, f=0.5)
rate may be manageable when there are few lossy links in the 600

network (i.e..f is large) since we can afford to run more expen-
sive tests (e.g., active probing) selectively on the small number
of lossy links inferred. However, the large false positive rate is
unacceptable when there are a large number of lossy links in the
network. For instance, whefi = 0.5, random sampling cor- 200 |
rectly identifies 46 of the 47 lossy links. In addition, however, it
generates 24 false positives, which makes the inference almost

500 -

400 +

300 -

# links

100 -

worthless since there are only about 100 links in all. 0
. Random LP Gibbs
One reason why random sampling generates a large number
of false positives is its susceptibility to statistical fluctuations in (B s oy ke W% corcty et ossy i 5 e pose|

the end-to-end loss rate experienced by clients (Section V-Bj}y. g. 1000-node random topologies with maximdayree = 10 and f =
For instance, instead of correctly identifying a lossy link high 0.5.
up in the tree, random sampling may incorrectly identify a large

number of links close to individual clients as lossy. . )
In contrast to random sampling, LP has relatively poor cov- Figure 10 shows the how accurate the inference based on

erage (30-60%) but an excellent false positive rate (rarely oy@toPs sampling is when the links inferred as lossy are rank or-
5%). (In some cases, the false positive bar in Figure 6 is h4}gred based on our “confidence” in the inference. We quantify
to see because the number of false positives is close to or edi§iconfidence as the fraction of Gibbs samples that exceed the
to zero.) As explained in Section V-C, LP is less susceptible &S rate thre;hold sgt for lossy links. Th_e 983 Ilnks in the topol-
statistical fluctuations in the end-to-end loss rates since it allo®@Y aré considered in order of decr_ea3|r_1g confldencg. We plot
some slack in the constraints. This cuts down the false positR&Urves: the true number of lossy links in the set of links con-
rate. However, the slack in the constraints and the fact that f{dered up to that point, the number of correct inferences, and
objective function assigns equal weights the link loss variablf humber of false positives. We note that the confidence rating
(L;) and the slack variables{) causes a reduction in coverage2ssigned by Gibbs sampling works very well. There are zero
Basically, a true lossy link (especially one near the leaves) mi@se Positives for the top 33 rank ordered links. Moreover, each
not be inferred as such because the constraint was slackened@u?€ first 401 true lossy links in the rank ordered list is cor-
ficiently to obviate the need to assign a high loss rate to the link.

In Section V-E.3, we will examine different weights in LP on 3000-node random topologies

the inference.

Finally, we observe that Gibbs sampling has a very good cov-
erage (over 80%) and also an excellent false positive rate (well
under 5%). We believe that the excellent performance of this
technique arises, in part, because the Bayesian approach is bas
on observations of packet lossentsand not the (noisy) com-
putation of packet lossates

Figures 7 and 8 show the corresponding results for experi-
ments on 1000-node topologies. Figure 9 shows the results fo

# links

3000-node topologies. We observe that the trends remain qual d=10, =0.95| d=10, f=0.8 |d=20, f=0.95| d=20, f=0.8
itatively the same even for these larger topologies. Gibbs sam-
p|l|"|g Contlnues to have good Coverage W|th IeSS than 5% faISE ‘I:I#true lossy links W # correctly identified lossy links O# false posmve‘

positive. Fig. 9. 3000-node random topologies.
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Gibbs sampling for a 1000-node 1b, used to decide whether a link is lossy. We observe that the

g0o random topology (d =10, =05) coverage is well over 80% for all the algorithms. As the loss

500 1 threshold is increased, the false positive rate decreases while the
,, 400 coverage remains high. This suggests that the inference can be
£ 300 1 more accurate if we are only interested in highly lossy links.
* 200 -

100 1000-node random topologies

| with LM2 Bernoulli link loss model
0 T T T T

Fig. 10. The performance of Gibbs sampling when the inferences are rank or-
dered based on a confidence estimate. (1000-node random topology, maxi-
mumdegree = 10, andf = 0.5)

rectly identified as lossy (i.e., none of these true lossy links is
“missed”). These results suggest that the confidence estimate
IfOI' Gl?bi Samtpfimtgﬂfarl]: befuse_d ;0 rank the orde;r of t:]e mfferred \I:ITrue lossy links B# correctly identified lossy links O # false positive\
ossy links so that the top few inferences are (almost) perfec

Y his is likel pb ful i ( | .)p h Ey 12. A LM Bernoulli loss model for 1000-node random topologies with
accurate. This IS Tikely to be useful in a practical setting WRNETE" maximumdegree = 10 and f = 0.95. We vary the loss threshold, and
we may want to identify at least a small number of lossy links only the links with loss rate higher thabare considered lossy.

with certainty so that corrective action can be taken.

LM, and LM, Gilbert loss models: Figure 13 and Fig-

100-node random topologies (f=0.95) ure 14 show the performance of inference fav/; and LM
3 1 Gilbert loss models. The relative performance of different infer-
6 ence schemes remains the same. The Gibbs sampling continues
v 51 to be the best performer: it has around 90% coverage with the
X .
£ 4 lowest false positive among all the schemes.
* 3
2 1000-node random topologies
14 with LM1 Gilbert loss model
0 -
£ 180
3 160 -
& 140 1
120 4
9]
[2"# true lossy links” m"# correctly identified lossy links" O"# false positive”] E lgg )
Fig. 11. Varying degree: 100-node random topologies with 0.95. * 60 -
40 A
Finally, we evaluate the impact of node degree on the accu- 20 1
0

racy of the inference. Figure 11 shows the results for a 100-node
topology andf = 0.95. We consider 3 settings for the maxi-
mum node degree; 5, 10, and 20. The qualitative trends across _ o
the three techniques are the same as discussed above. How5\9err}13' _ALM, Gilbert loss model for 1000-node random topologies with
L. . " aximumdegree = 10 and f = 0.95.
it is interesting to observe that the false positive rate for random
sampling decreases as the node degree increases. We believe
this happens because a larger node degree implies that a lakg@r Different Weights in LP
proportion of the nodes are leaves. So end-to-end loss rate inforre  jinear optimization algorithm aims to minimize
mation im.poses a Ia}rger number of qonstraint_s on the link '9&;52, L; + 3, |S;|, where the weighty, reflects the relative
rates. This results in a smaller feasible solution space, Whﬁ?ﬁ‘pc;rtance between finding a parsimonious solution versus sat-
makes random sampling of this space more accurate. isfying the end-to-end loss constraints. So far in our experi-
. ments, we usev = 1. In this section, we vary and examine

E.2 Alternaiive Loss Model its effect on the performance of the inference.

So far, we have consideredM; loss model with the Figure 15 and Figure 16 show the LP performance for 1000-
Bernoulli loss process. In this section, we evaluate the effectiveade random topologies under Gilbéi/; and LM, loss mod-
ness of inference using alternatives for both (i.e., the LM2 losts, respectively. As we can see, the lower thethe better
model and the Gilbert loss process) in various combinations. coverage the inference achieves, but at the cost of higher false

L M> Bernoulli loss model: Figure 12 shows the results forpositive rates. This is because when we decrease the weight, we
1000-node random topologies with= 10 and f = 0.95 using emphasize more on satisfying the constraints than finding a par-
the L M5 Bernoulli loss model. We vary the loss rate thresholgjmonious solution; as a result, we are more likely to attribute

Random LP Gibbs

\IZI# true lossy links B # correctly identified lossy links O # false positive\
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1000-node random topologies 1000-node random topologies
with LM2 Gilbert loss model with LM2 Gilbert loss model
100
90 -
70
£ 60
En 3
* 30 4
20 A
10 A
0 -
‘I:I# true lossy links B # correctly identified lossy links O# false positive‘ [@# true lossy links W# correctly identified lossy links C1# false positive |
Fig. 14. A LM, Gilbert loss model for 1000-node random topologies withrig. 16. Effects of different weights in LP: AM5 Gilbert loss model for 1000-
maximumdegree = 10 and f = 0.95. We vary the loss threshold, and node random topologies with maximufagree = 10 and f = 0.95. We
only the links with loss rate higher thdhare considered lossy. vary the loss thresholtb, and only the links with loss rate higher thén
are considered lossy.
loss to several non-shared links than a single shared link in order Real topology (random sampling)
to satisfy the constraints more closely. Moreover itis interesting 554
that the performance of LP is less sensitive to the weights in the 30000 4
LM, loss model than in thé AM; loss model.
25000 4
1000-node random topologies g 20000 -
with LM1 Gilbert loss model = 15000 4
80 10000 +
70 7 5000 -
60 ’7
0 -
2 %09 f=0.95 =09 f=0.8 =07 =06  {=0.5
£ 40 A
H* 30 A \I:I"# true lossy links" W "# correctly identified lossy links" O"# false positive"\
20 Fig. 17. Real topology from the Dec 2000 traceroute.
10 -
0 h—\
LP(0.5) LP(1) LP(2) whether clients downstream of an inferred lossy link do in fact
\D#true lossy links W # correctly identified lossy links CJ# false positive\ experience hlgh loss rates.
Fig. 15. Effects of different weights in LP: AM; Gilbert loss model for 1000- ~ The evaluation we present here is based on the Dec 2000
node random topologies with maximufagree = 10 andf = 0.95. trace. To compute loss rate, we only consider clients that re-

ceive at least a threshold number of packeétsyhich is set to

500 or 1000 packets in our evaluation.
E.4 Real Topology

We also evaluate the effectiveness of inference using a rEal Consistency across different schemes

topology (constructed from traceroute data) spanning 123166si we examine the consistency in the lossy links identi-
clients. We assign a loss rate to each link based onlth  fieq py the three tomography techniques. Figure 18 shows the
Bernoulli loss model with different settlngs gf. Flg'ure 17 amount of overlap when we consider the fopossy links found
shows the performance of random sampling. As with the ragy gifferent schemes. Gibbs sampling and random sampling
dom topologies, random sampling has very good coverage byt@q very similar inferences, with an overlap that is consistently
significant false positive rate. _above 95% whenV is varied from 1 to 100° The overlap be-

We were unable to evaluate the performance of LP and Gibgen LP and the other techniques is also significant — over
sampling over the real topology because of computational Cogy,
plexity.

F.2 Characteristics of Inferred Lossy Links

F. Internet Results
In this section, we examine the characteristics of the inferred

. . : X qgésy links. We are interested in knowing the location of the
nigues using the Internet traffic traces fromcrosoft.com Val-
idating our mference.s IS Cha."engmg since we only have e_nd5This overlap is higher than we had expected, since random sampling has a
to-end performance information and do not know the true linklatively high false positive rate in our simulations. As we describe in Sec-

loss rates. The validation approach we use is to (i) check cdigo V-F.2, most lossy links terminate at leaves and most internal links are not
logsy. So clients whose last hop links are not lossy experience little or no loss.

sistency in the 'n.ferences. made by the three teChn'quS’ (if) I places tighter constraints on the space of feasible solutions, which makes
at the characteristics of inferred lossy links, and (iii) examinendom sampling more accurate.
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Fig. 18. Overlap in the top N lossy links identified by different schemes. Rjgd 1500000 4212 ;g

LP 500 | 106 | 77

inferred lossy links in the Internet topology. As shown in Fig-

ure 19, more than 95% of lossy links detected through random
sampling and Gibbs sampling terminate at leaves (i.e., clients).
In other words, these are non-shared links that include the phys-
ical last-hop link to clients. (Recall from Section V-A that the

tomography techniques operate on virtual links, which may span
multiple physical links.) Even though the linear optimizatiof: 3 Trace-driven Validation
technique is biased toward ascribing lossiness to shared links, ) S .
more than 75% of the inferred lossy links are non-shared links'/& NOW consider the problem of validating our inferences
terminating at clients. These findings are consistent with tePre directly than the intuitive arguments made in Section V-
common belief that the last mile to clients is often the bottlé=2- This is a challenging problem since we do not know the
neck in Internet paths [8]. Since many losses happen at nHH—‘? loss rates of Internet Ilqks. (All the mferen.ces were made
shared links, it is not surprising that there is only a limited d@_fflme. So we could not validate the results using active prob-

gree of spatial locality in end-to-end loss rate, as reported'ﬁg')

TABLE Il
TRACE-DRIVEN VALIDATION FOR RANDOM SAMPLING AND LINEAR
OPTIMIZATION.

Section IV-C V\/_e_ have dev_eloped the following approach for validation. We
partition the clients in the trace into two groups: tomography

Number of leaves among the top 100 set and validation set. The partitioning is done by clustering

identified lossy links all clients according to BGP address prefixes and dividing each

100 cluster into two sets. One set is included in the tomography

set and the other in the validation set. This partitioning scheme
ensures that there is a significant overlap in the end-to-end path
to clients in the two sets.

We apply the inference techniques to the tomography set to
identify lossy links. For each lossy link that is identified, we ex-
amine whether clients in the validation set that are downstream

#links terminate at leaves

Random LP Gibbs of that link experience a high loss rate on average. If they do,
we deem our inference to be correct. Otherwise, we count it
Fig. 19. Number of lossy links that terminate at leaf nodes. as a false positive. Clearly, this validation method can only be

applied to shared lossy links. We cannot use this method to val-

We also examine how many of the links inferred to be losdgate the many “last-hop” lossy links reported in Section V-F.2.
cross AS boundaries since such crossings (such as peer_in'ﬁable II.show's ourvalldatl_on results for random sampling and
points) are thought to be points of congestion. We find thipear optimization, Where_‘Zl is the_ I(_)ss rate threshold we used
among all the virtual links in our topology (each of which maj° deem alink to be lossyis the minimum number of packets a
include multiple physical links), around 45% cross AS boundlient sho.uld haye received to be_con3|dered in the tomography
aries, and 45% have roundtrip delay (i.e., the delay between figgnputation N; is the number of inferred (shared) lossy links,
two ends of the virtual link as determined from the traceroufd Ne is the number of correct inferences according our vali-
data) over 100 ms. When we consider only the inferred los&tion method. In most cases random sampling and linear opti-
virtual links, the percentage of links that cross AS boundaries®#Zation have a false positive rate under 30%. Gibbs sampling
have long delay is considerably higher. For example, if we onfjentified only 2 shared lossy links, both of which are deemed
consider those links with an inferred loss rate above 10%, 7d#@Tect according to our validation method.
cross AS boundaries, and 80% have one-way delay over 100
ms. Some examples of such links we found include the connec-
tion from AT&T in San Francisco to Indointernet in Indonesia In this paper, we present a study of wide-area Internet per-
(inter-ISP and transcontinental), from Sprint to Trivalent (intefermance as observed from the busycrosoft.comWeb site.
ISP), and an international link in ChinaNet from U.S. to ChinaWe characterize the end-to-end loss rate experienced by clients

VI. CONCLUSIONS
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and present techniques to identify lossy links within the netwop¥ telnet://ner-routes.bbnplanet.net.

based on passive monitoring of existing client-server traffic. [4] R.Caceres, N. G. Duffield, J. Horowitz, D. Towsley, and T. Bu. Multicast-
. based inference of network internal characteristics: Accuracy of packet
We find that the end-to-end packet loss rate correlates poorly |ss estimation. IProceedings of IEEE INFOCOM'98arch 1999.

with topological distance (i.e., hop count), remains stable f{sl http://www.cisco.com/warp/public/cc/pd/cxsr/dd/index.shtml.

several minutes, and exhibits a limited degree of spatial localit§} ﬁbﬂ°§.'§é'oﬁi}|”f’gggth°har to estimate internet link characteristics. In

These findings suggest that passive network tomograpfy N. G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring link loss
would be both useful and feasible. We develop and evaluate using striped unicast probes. Rroceedings of IEEE INFOCOM'2001

; ; ; . April 2001.
three different teChmqueS for passive network tomography. I’:’:[QJ- C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi. Packet-level traffic

dom sampling, linear optimization, and Bayesian inference Us- measurements from a tier-1 ip backboneUimder submissigrNovember
ing Gibbs sampling. In general, we find that random sampling 2001.

. L S. Geman and D. Geman. Stochastic relaxation, gibbs distributions and the
has the best coverage but also a high false positive rate, WH‘ h bayesian restoration of images. IEEE Trans. Pattn. Anal. Mach. Intel.

can be problematic when the number of lossy links is large. Lin- 1984,
ear optimization has a very low false positive rate but 0n|y [#0] W.R. Gilks, S. Richardson, and D. J. Spiegelhali¢arkov Chain Monte

: . Carlo in Practice 1996.
modest coverage. Gibbs sampling offers the best of both worlgls; \,_""Jrfcgbsg?f ?reaceroute software. 1989.

a high coverage (over 80%) and a low false positive rate (bel@u2] V. Jacobson, C. Leres, and S. McCanne. tcpdump - dump traffic on a
5%). network.

L . L . 13] D. Katabi, I. Bazzi, and X. Yang. A passive approach for detecting shared
On the flip side, however, Gibbs sampling is computatlonaliy ] bottlenecks, October 2001. AP PP 9

the most expensive of our techniques. On the other hand, réid} B. Krishnamurthy and J. Wang. On network-aware clustering of web
dom sampling is the quickest one. Therefore, we believe tg]{:é] clients. InProceedings of ACM SIGCOMM'200August 2000.

. . . . L . J.C. Mogul, F. Douglis, A. Feldman, and B. Krishnamurthy. Potential
random sampling may still be useful in practice despite its hi benefits of delta-encoding and data compression for httProneedings

false positive rate. For instance, when the number of lossy links of ACM SIGCOMM 97 Sept. 1997.

; ; ; ; ; . [16] E. M. Nahum, C.-C. Rosu, S. Seshan, and J. Aimeida. The effects of
in (the portion of) the network of interest is small, it may be fing wide-area conditions on server performancePioceedings of ACM

to apply random sampling since the number of false positives (in  sIGMETRICSJune 2001.
absolute terms) is likely to be small. Furthermore, if the numbEy] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp through-

. . . o " . put: A simple model and its empirical validation. Rroceedings of ACM
of lossy links is large (for instance, thfe= 0.5 configurations SIGCOMM'98 August 1998.

in Section V-E), it is a moot question as to whether network tgeg] V. Paxson. Measurements and analysis of end-to-end internet dynamics.

In addition to si lati h lied f t é19] S. Ratnasamy and S. McCanne. Inference of multicast routing trees and

naddi 'Or? 0 simulation, we have applied some o Qur OMOY- " pottleneck bandwidths using end-to-end measuremenBrokeedings of

raphy techniques to Internet packet traces. The main challenge IEEE INFOCOM 19991999.

is in validating our inferences. We validate the inference by fir€f] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared congestion of
. 9 . . y flows via end-to-end measurementHAroceedings of ACM SIGMETRICS

checking consistency across the results from different schemes. 5qqq.

We find over 95% overlap between the top 100 lossy links ideiai] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared passive network

i i i ; o/ performance discovery. IRroceedings of 1st Usenix Symposium on Inter-
tified by random sampling and Gibbs sampling, and over 60% het Technologies and Systems (USITS, BEcember 1997,

overlap between LP and the other two techniques. We also fiag} v. Tsang, M. J. Coates, and R. Nowak. Passive network tomography using

that most of the links identified as lossy are non-shared links em algorithms. IrProceedings of the IEEE International Conferenceon
inati i inh i i ; ; Acoustics, Speech, and Signal Processigy 2001.

te.rmmatmg at clients, th.Ch IS cqn5|§tent with common be“egZS] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the constancy of

Finally we develop an indirect validation scheme, and show the internet path properties. Proceedings of ACM SIGCOMM Internet Mea-

false positive rate is manageable (below 30% in most cases and surement WorkshoiNovember 2001. o '

often much lower) [24] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of internet path
. . . . properties: Routing, loss, and throughput. AG@IRI Technical Report

We are presently investigating an approach based on selective mMay 2000.

active probing to validate the findings of our passive tomography
techniques. To this end, we are working on making inferences
in real time.
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