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1 Introduction

Consider the problem of detecting a known watermark w originally embedded in a host signal s.
The watermarked signal x = s+w is subjected to attacks. The corrupted signal y is made available
to the watermark detector, together with the reference watermark w.

Assume there is a list of possible attacks, each parameterized by some parameter θ ∈ Θ. For
instance, consider

• addition of independent and identically distributed (i.i.d.) noise with probability density
function pθ; e.g., a Gaussian density function with mean zero and variance θ.

• compression using a particular algorithm with quality factor θ;

• delay of the watermarked signal by θ units of time;

• warping of the watermarked signal using a warping function (time-varying delay) θ(t);

• time-varying gain θ(t).

In these problems, θ is a scalar, a vector, or even a function.

While basic results of detection theory have been applied to watermarking [1], current water-
marking literature does not provides satisfactory answers to complex but realistic problems such as
those listed above. One approach is to use a heuristic detector (e.g., a simple correlator combined
with an estimator of the unknown θ) and study its performance under a list of attacks. A more
principled approach is to construct a detector that satisfies optimality properties under the same
list of attacks. An attractive consequence of such an approach is that one could construct opti-
mal watermarks. This is the approach undertaken in this paper. We focus on desynchronization
attacks, but the theory is general enough to be applicable to a larger list of attacks.

2 Watermark Detection as a Composite Hypothesis Testing Prob-
lem

Statistical hypothesis testing provides a general approach to detection problems involving unknown
parameters. In the absence of watermark, the received signal y is assumed to follow a particular
probability distribution p0(y). In the presence of the watermark, y follows a distribution pθ(y) which
depends on the choice of the nuisance parameter θ ∈ Θ by the attacker. Under these assumptions,
the watermark detection problem may be formulated as a composite hypothesis test [2]:{

H0 : y ∼ p0

H1 : y ∼ pθ, θ ∈ Θ.
(1)

Three classical techniques have been used in the detection literature to solve such problems:
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1. Bayesian approach: a prior probability measure P is assumed over the attack channel param-
eter space Θ. Then integrating out θ yields a known distribution

p1(y) =
∫

Θ
pθ(y)dP (θ). (2)

where dP (θ) = π(θ) dθ if a density π exists. The Bayesian detection rule is a likelihood ratio
test (LRT):

p1(y)
p0(y)

H1

>
<
H0

η, (3)

where η is the threshold of the test.

2. Neyman-Pearson approach: one seeks the detection test δ = δ(y) that minimizes the prob-
ability of miss subject to a constraint on the maximum allowable probability of false alarm.
The NP rule is a randomized LRT.

3. Minimax approach: one seeks the detection test δ = δ(y) that minimizes maxθ R(θ, δ), where
R(θ, δ) is the risk of δ conditioned on θ. The minimax rule is a randomized LRT.

4. Generalized Likelihood Ratio Test (GLRT): one first estimates θ as θ̂(y), and then applies the
LRT

pθ̂(y)
p0(y)

H1

>
<
H0

η. (4)

The first three tests have clear optimality properties but may be computationally intractable due
to the need to integrate out θ in (2). The minimax approach is arguably realistic in the presence of
an adversary. The GLRT has asymptotic optimality properties [3], may be computationally simple,
and has been known to work reasonably well in some applications – and this even though the GLRT
has generally no optimality properties for finite samples. The mean-value theorem provides a useful
conceptual link between (3) and (4): if pθ varies smoothly with θ, then given y, there exists θ̃ ∈ Θ
such that p1(y) = pθ̃(y) [2]. In other words, the Bayes test (3) may be written in the form (4) for
a particular estimator θ̂(Y ) = θ̃(Y ).

3 Warping Attacks

This paper focuses on a fairly challenging composite hypothesis testing problem in which the attack
takes the form of a time warping of the watermarked signal. Such desynchronization attacks can
disable empirically designed detectors [5]. We formulate the warping model either in a discretized or
in a continuous time domain and use one or the other depending on which one is more convenient.
For mathematical convenience, we assume that all signals are periodic with period equal to T in
the continuous case and N in the discrete case. The host signal s(t) is a periodic white Gaussian
noise (WGN) process with covariance Rs(t, t′) = E[s(t)s(t′)] = σ2

Sð(t − t′) for t, t′ ∈ R, where
ð(t) = 1

T

∑
k∈Z δ(t − kT ) is an infinite train of Dirac impulses (also known as the shah function).
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The white noise assumption for s(t) may seem restrictive, but the white noise model is often
applicable in a transform domain (e.g., wavelet coefficients, lapped orthogonal transform, etc.)

Two models are considered for data collection. In each case, the watermark w(t), t ∈ [0, T ]
is a periodic and continuous function (w(0) = w(T )). The warping function is real-valued and is
denoted by θ(t), t ∈ [0, T ] for the continuous-time model, and by θ(n), n ∈ {0, · · · , N − 1} for the
discrete-time model. 1

Discrete-Time Data:{
H0 : y(n) = s(n) , n ∈ {0, 1, · · · , N − 1}
H1 : y(n) = w(n− θ(n)) + s(n− θ(n)) , n ∈ {0, 1, · · · , N − 1}. (5)

Continuous-Time Data:{
H0 : y(t) = s(t) , 0 ≤ t ≤ T
H1 : y(t) = w(t− θ(t)) + s(t− θ(t)) , 0 ≤ t ≤ T.

(6)

The attack channel parameter is a slowly-varying sequence θ(n) (discrete case) or function θ(t)
(continuous case). For instance, we may assume that the rate of variation of θ is no greater than
some specified ε:

Θ = {θ : |θ(n)− θ(n− 1)| ≤ ε} (discrete case) (7)
Θ = {θ : |θ′(t)| ≤ ε} (continuous case). (8)

For instance, in audio watermarking, we would typically have ε = 0.04 [5]. If ε = 0, the warping
attack reduces to a fixed (but unknown) delay.

We would further like to assume that the statistics of s(t) are indistinguishable from those of
s(t−θ(t)). Otherwise the host signal itself would serve as a synchronization signal, thereby helping
the detector. Strictly speaking, this assumption is incompatible with our above assumption on the
statistics of s(t). Hence, to make the analysis tractable, we have decided to study the hypothesis
test {

H0 : y(t) = s(t) , 0 ≤ t ≤ T
H1 : y(t) = w(t− θ(t)) + s(t) , 0 ≤ t ≤ T,

(9)

which serves as an approximation to the original detection problem.

4 Relation to Communication Problems

The communication literature contains a rich variety of signal detection problems closely related
to the watermarking problem. Detection of a known signal (without any unknown parameter θ) is
a coherent detection problem. When signals undergo delays or time-varying delays (same as time
warping [6]), the detection problem is said to be noncoherent [7, 2]. If partial information about
the delay or time-varying delay is available, the detection problem is said to be partially coherent.

1To qualify as a warping function, θ should have the property that t−θ(t) is strictly increasing, i.e., θ′(t) > −1 for
all t. This condition is not imposed in our analysis, so we sometimes end up considering a broader class of attacks.
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Much of the signal detection theory developed in the communication literature has been applied
to narrowband signals. Noncoherent detection of wideband signals (such as in spread-spectrum
applications) is much more elaborate, and techniques such as transmission of a known training
sequence are often used to facilitate detection. Such techniques are not applicable to watermarking,
so we shall develop solutions based on first principles rather than specific techniques from spread-
spectrum communications.

5 Analysis of Delay Attacks

We first ask how well the warping function θ can be estimated, and what are the effects of estimation
errors on detection performance. High estimation accuracy does not necessarily translate into high
detection performance, because the sensitivity to estimation errors may be high.

Consider first the case of a simple delay θ ∈ [0, T ]. The likelihood functional for θ is [2]

l(θ, y) = − 1
2σ2

S

∫ T

0
(y(t)− w(t− θ))2 dt.

5.1 Coherent Detector

If the delay θ is known, we have a coherent detection problem [2].
Define the normalized, deterministic autocorrelation function of the watermark as

Rw(t) =
1
T

∫ T

0
w(t′)w(t′ + t) dt′, (10)

which has a maximum at t = 0. Observe that

R′′
w(0) =

1
T

∫ T

0
w(t′)w′′(t′) dt′ =

1
T

∫ T

0
|w′(t′)|2 dt′ (11)

where the second equality is obtained using integration by parts.
Under our model assumptions, if θ is known, the LRT becomes a simple correlation test [2]:

cθ =
∫ T

0
y(t)w(t− θ) dt

H1

>
<
H0

η (12)

where the correlation statistic cθ has mean 0 and TRw(0) under H0 and H1, respectively, and has
variance σ2

STRw(0) under both H0 and H1. For Bayesian detection under equal priors on H0 and
H1, the threshold of the LRT is η = T

2 Rw(0), and the probability of error is

Pe = Q

(
1
2

√
SNR

)
. (13)

Here we have defined Q(u) =
∫∞
u φ(v) dv, and φ(u) = (2π)−1/2 exp{−u2

2 }. Also

SNR
4
=

TRw(0)
σ2

S

, (14)

where the numerator represents total watermark energy. Note that detector performance (13)
depends on the energy of the watermark and not on its spectral contents.
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5.2 Estimation Accuracy

The Fisher information for estimation of θ is given by [2]

J(θ) = EY |θ

[
∂l(θ, Y )

∂θ

]2

=
1
σ2

S

∫ T

0
|w′(t− θ)|2 dt

=
1
σ2

S

∫ T

0
|w′(t)|2 dt. (15)

Also (15) yields

J(θ) =
TR′′

w(0)
σ2

S

. (16)

The Fisher information is independent of θ in this case. It is inversely proportional to the
noise variance σ2

s and proportional to the total energy ‖w′‖2 in the watermark derivative (typically
increases proportionally to T ). Hence high estimation accuracy might be achieved if T is large, or
if w(t) possesses significant high-frequency content. 2

5.3 Mismatched Detector

If the correlation detector uses a mismatched value θ + δ instead of the true θ, then the correlation
statistic cθ+δ has means 0 and TRw(δ) under H0 and H1, respectively, and variance σ2

STRw(0)
under both H0 and H1. If η = T

2 Rw(0) again (as would be the GLRT choice), then

Pe(δ) =
1
2

[
Q

(√
TRw(0)
2σS

)
+ Q

(
TRw(δ)− TRw(0)/2

σS

√
TRw(0)

)]

which is necessarily greater than Pe(0) in the matched case. If SNR is large and Rw(δ) << Rw(0),
then Pe(δ) ≈ 1

2 , and the mismatched detector is effectively disabled.

The performance under small errors (δ → 0) is tractable and particularly insightful. We derive

dPe(δ)
dδ

= −T

2
R′

w(δ)φ

(
TRw(δ)− TRw(0)/2

σS

√
TRw(0)

)
dPe(δ)

dδ

∣∣∣∣
δ=0

= 0 (17)

d2Pe(δ)
dδ2

∣∣∣∣
δ=0

= −T

2
R′′

w(0)
1

σS

√
TRw(0)

φ

(√
TRw(0)
2σS

)
> 0. (18)

Equation (18) shows that detector sensitivity to mismatches is greatest when Rw(t) has a narrow
peak at t = 0. But this is precisely the condition required for accurate estimation of θ, see (16).

2Recall that the variance of any unbiased estimator of θ is lower bounded by 1/J(θ), and that this bound is
achievable by the maximum-likelihood estimator under standard asymptotic conditions (here T →∞).
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Commonly-used pseudo-random white noise watermarks are in this category. Conversely, detectors
for lowpass watermarks [5] have lower sensitivity to mismatch errors, but are more likely to make
large estimation errors.

To complete the analysis, we must relate δ to our statistical model. If δ is the error of the
maximum-likelihood estimator (MLE) of θ, then δ is random with mean zero and variance ap-
proaching J−1(θ) (Fisher information) as SNR →∞ [2]. Using (16), (18) and (11), we obtain an
increase in probability of error of

∆Pe =
1
2
E

[
δ2 d2Pe(δ)

dδ2

∣∣∣∣
δ=0

]
=

1
2
J−1(θ)

d2Pe(δ)
dδ2

∣∣∣∣
δ=0

=
1
2
SNR−1/2φ

(
1
2

√
SNR)

)
∼ 1

4
Q

(
1
2

√
SNR

)
(19)

where the last expression follows from the asymptotic relation Q(u) ∼ u−1φ(u) as u →∞. Observe
that ∆Pe is independent of the spectral characteristics of w. The performance of the mismatched
detector is somewhat worse than that of the matched detector, see (13). In particular, this conclu-
sion applies to the GLRT.

5.4 Bayesian Detector

Assume that the unknown delay θ is random with a p.d.f. π(θ), θ ∈ [0, T ). Then from (2) and (3),
we obtain the LRT

L(y) =
1
T

∫ T

0
L(θ, y)π(θ) dθ

H1

>
<
H0

η (20)

where

L(θ, y) = exp
{

1
σ2

S

[∫ T

0
y(t)w(t− θ) dt− Rw(0)

2

]}
= exp

{
1
σ2

S

[
cθ −

Rw(0)
2

]}
.

The integral (20) is intractable, but asymptotic (SNR →∞) approximations can be derived based
on Laplace’s integral expansion technique [13, 14]. The general idea is that only a narrow range of
values of θ contribute to the mixture integral (20), which may be approximated as [13, 14]

p̂1(y) = pθ̂(y)
π(θ̂)√
J(θ̂)

where θ̂(y) = argmaxθ∈Θpθ(y) is the maximum-likelihood estimate of θ. The LRT (3) takes the
form

pθ̂(y)
p0(y)

H1

>
<
H0

η

√
J(θ̂)

π(θ̂)
= η

T 3/2
√

R′′
w(0)

σS
.
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For our delay problem, applying this technique to (20) assuming that π(θ) is the uniform
distribution over [0, T ] yields the approximation

L̂(y) = L(θ̂, y)
σS

T 3/2‖w′‖
.

The LRT takes a simplified form: it has the same structure as the GLRT, but uses a threshold
η′ = TRw(0)

2 + ln T 3/2‖w′‖
σS

:

c =
∫ T

0
y(t)w(t− θ̂) dt

H1

>
<
H0

η′. (21)

We can then derive the asymptotic probability of error,

Pe ∼ aQ

(
1
2

√
SNR

)
as SNR →∞

where a is some constant larger than 1; compare with (13).

5.5 Quadratic Noncoherent Detector

The optimal Bayesian test (3) is expensive to implement due to the need to compute the correlation
statistic cθ for all values of θ. A suboptimal but often good approach consists of using a quadratic
detection test [8]. The benefits of this approach in the context of detection of narrowband signals
with drifting phase have been demonstrated in papers by Foschini et al. [9] and Veeravalli and
Poor [10]. We first define the quadratic detection statistic and derive the deflection criterion which
serves as a performance index for the detection test. The deflection criterion is then used to derive
properties of optimal watermarks.

5.5.1 Decision Statistic

Assume θ is random over the interval [0, T ], with a distribution π(θ). We further assume that θ is
independent of s(t), t ∈ [0, T ]. The test statistic cθ in (12) cannot be used because θ is unknown,
but consider its mean-square average:

z =
∫ T

0
c2
θ π(θ) dθ (22)

=
∫ T

0

∫ T

0

∫ T

0
y(t)y(t′)w(t− θ)w(t′ − θ) dt dt′ π(θ) dθ

which can be written in the form

z =
∫ T

0

∫ T

0
y(t)y(t′)Rw(t, t′) dt dt′ (23)

where

Rw(t, t′) =
∫ T

0
w(t− θ)w(t′ − θ) π(θ) dθ (24)
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is a weighted watermark autocorrelation sequence. Computation of (23) is attractive because inte-
gration over θ is done offline via (24).

Note the following properties of Rw:

Symmetry: Rw(t, t′) = Rw(t′, t);

Maximum value: |Rw(t, t′)| ≤ Rw(t, t);

Uniformly distributed θ: If π(θ) is the uniform distribution over the interval [0, T ], then
Rw(t, t′) = Rw(t− t′) depends only on the difference between the time arguments.

Random watermarks: If w(t) is a realization of a periodic, wide-sense stationary random process
with correlation sequence rw(t), then EW [Rw(t, t′)] = rw(t− t′). Moreover, if T is large and
the support of π(θ) is sufficiently broad 3, then Rw(t, t′) ≈ EW [Rw(t, t′)].

Also note that if π(θ) is a distribution concentrated near some time t0, then Rw(t, t′) represents a
local correlation function.

Instead of (23), we may want to consider the more general quadratic test statistic

z =
∫ T

0

∫ T

0
y(t)y(t′)K(t, t′) dtdt′ (25)

where K(t, t′) is an arbitrary symmetric Hilbert-Schmidt kernel. Let us derive a test based on (25).

5.5.2 Deflection Criterion

Computing the first two moments of Z in (25) under H0 and H1, we obtain

E[Z|H0] =
∫ T

0

∫ T

0
E[y(t)y(t′)|H0]K(t, t′) dt dt′

=
∫ T

0

∫ T

0
Rs(t, t′)K(t, t′) dt dt′

= σ2
S

∫ T

0
K(t, t) dt, (26)

E[Z|H1] =
∫ T

0

∫ T

0
E[y(t)y(t′)|H1]K(t, t′) dt dt′

(a)
=

∫ T

0

∫ T

0
[Eθ[w(t− θ)w(t′ − θ)] + Rs(t, t′)]K(t, t′) dt dt′

=
∫ T

0

∫ T

0
[Rw(t, t′) + Rs(t, t′)]K(t, t′) dt dt′

=
∫ T

0

∫ T

0
Rw(t, t′)K(t, t′) dt dt′ + σ2

S

∫ T

0
K(t, t) dt, (27)

3Additional technical conditions apply.
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where equality (a) is due to the independence of θ and s(t), t ∈ [0, T ]. After some algebraic
manipulations, one can derive [10]

V ar[Z|H0] = V ar[Z|H1] = 2σ4
S

∫ T

0

∫ T

0
K2(t, t′) dt dt′. (28)

The quadratic test takes the form

z

H1

>
<
H0

η =
1
2

∫ T

0

∫ T

0
Rw(t, t′)K(t, t′) dt dt′. + σ2

S

∫ T

0
K(t, t) dt. (29)

The deflection criterion (also termed deflection coefficient or generalized signal-to-noise ratio)
for quadratic detection is defined as [11]

d2 =
(E[Z|H1]− E[Z|H0])2

V ar[Z|H0]
=

(
∫ T
0

∫ T
0 Rw(t, t′)K(t, t′) dt dt′)2

2σ4
S

∫ T
0

∫ T
0 K2(t, t′) dt dt′

. (30)

This criterion would determine the probability of error of the test (29) if the distributions of Z under
H0 and H1 were Gaussian. Of course they are not Gaussian in this problem, and the deflection
coefficient only serves as a tractable measure of separability of the two distributions.

By application of the Cauchy-Schwarz inequality, the choice of K(t, t′) that maximizes d2 turns
out to be αRw(t, t′) where α is an arbitrary nonzero constant. Hence the optimal quadratic decision
statistic is (22), and leads to the deflection criterion

d2 =

∫ T
0

∫ T
0 R2

w(t, t′) dt dt′

2σ4
S

. (31)

5.5.3 Optimal Watermark Design

The use of d2 in (31) as a performance criterion for quadratic detection also suggests its use as a
criterion for watermark design. The dependency of d2 on w is via the correlation function Rw(t, t′).
Assume either that π(θ) is uniform over [0, T ], or that the stochastic model of Sec. 5.5.1 for the
watermark can be used. Hence Rw(t, t′) = Rw(t− t′), and (31) becomes

d2 =
T
∫ T
0 R2

w(t) dt

2σ4
S

. (32)

Assume the fixed energy constraint

Rw(0) =
1
T
‖w‖2 ≤ σ2

w. (33)

Maximizing (32) over Rw subject to the constraint (33), we obtain

Rw(t, t′) = σ2
w, ∀t, t′.

The maximum is achieved by the constant watermark w(t) ≡ σw. For this watermark,

d2
opt =

T 2σ4
w

2σ4
S

=
1
2
SNR2. (34)

Of course, a constant watermark does not convey any information about the value of θ.
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5.5.4 Discussion

Remark #1. For a sinusoidal watermark w(t) =
√

2σw cos(2πkt/T + φ), where k ∈ N0 and φ is
an arbitrary phase factor, we have Rw(t) = σ2

w cos(2πkt/T ) and d2 = 1
2d2

opt, independently of the
values of k and φ.

Remark #2. For narrowband watermarks, d2 ≈ 1
2d2

opt.

Remark #3. In order to make d2 ∝
∫ T
0 R2

w(t) dt large, efficient watermarks should have a long
correlation time. Correlation time may be defined as the smallest Tc such that |Rw(t)| ≤ βRw(0)
for all t ∈ [Tc, T/2], where β < 1 is some fixed constant.

Remark #4. Among all watermarks with correlation time Tc and β = 0, the optimal choice is

Rw(t) =
{

σ2
w : 0 ≤ t < Tc

0 : Tc ≤ t < T,
(35)

leading to

d2 = T
Tcσ

4
w

2σ4
S

=
Tc

T
d2

opt. (36)

While there is a substantial reduction of performance if Tc << T , the deflection criterion is still
increasing (linearly instead of quadratically) with T .

Remark #5. The use of a sinusoidal watermark is unrealistic in watermarking applications
because a clever attacker would identify its presence and filter it out (instead of implementing
a delay operation). Nevertheless the above analysis demonstrates the advantages of watermarks
with long correlation time, because such watermarks spread out Rw(t, t′) over the entire square
[0, T ]2, leading to a large value of the deflection coefficient (22). Conversely, for watermarks with a
short correlation time, Rw(t, t′) is concentrated near the vicinity of the main diagonal of the square
[0, T ]2, leading to a smaller value of the deflection coefficient.

Remark #6. If w(t) is a realization from a periodic, wide-sense stationary random process
with correlation rw(t) = E[w(t′)w(t′ + t)], then d2 is a random variable which converges almost
surely to

d2 =
T
∫ T
0 r2

w(t) dt

2σ4
S

as T →∞, by the strong law of large numbers. Hence the previous remarks about the benefits of
long correlation times apply to the stochastic case as well.

Remark #7. If σ2
S is known only approximately (say is estimated from the data), the detection

test (29) can be used with the approximate σ2
S , with little performance loss in the case of large

SNR. Indeed, comparison of (26) and (27) shows that E[Z|H1]
E[Z|H0] ∼ SNR when SNR is large.

Remark #8. The various test statistics considered so far may be written in the form
z = maxθ cθ (GLRT statistic), z =

∫ T
0 exp{cθ/σ2

s}π(θ) dθ (sufficient statistic used by Bayes test),
or z =

∫ T
0 c2

θπ(θ) dθ (quadratic statistic). All these statistics may be thought of as measures of
peakness of the function cθ.
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6 Analysis of Warping Attacks

This section extends the results of Sec. 5 to more general warping attacks of the form (6). Warping
destroys long-term correlations, so it will not come as a surprise that warping attacks are much
more effective than delay attacks.

6.1 Quadratic Noncoherent Detector

When y(t) is given by the warping model (9), the test statistic (25) can still be used for quadratic
detection. The mean and variance of Z are still given by (26), (27) and (28), with the correlation
function now given by

Rw(t, t′) =
∫ T

0

∫ T

0
w(t− θt)w(t′ − θt′) π(θt, θ

′
t) dθtdθt′ (37)

where π(θt, θ
′
t) now denotes the joint p.d.f. of θt and θt′ . Examples of computation of Rw(t, t′) can

be found in the optical-communications literature, when w(t) is a sinusoid and θt is a Brownian
motion (model for phase noise). Then the warped sinusoid w(t − θt) has a Lorentzian spectrum
[9, 10]. In our problem, w(t) is neither a sinusoid nor even a narrowband signal.

We model θt as a periodic stationary stochastic process. The kernel K in (25) that maximizes
the deflection coefficient is still Rw. To gain some insight into this problem, make two fairly mild
assumptions:

A1.
∫ T
0 w(t− θt) π(θt) dθ = 0 for all t,

A2. θt and θt′ are independent for Tc ≤ |t− t′| < T .

The parameter Tc is large if the warping functions vary slowly. According to Assumption A2, the
correlation time of θt is at most Tc. Then for all such t, t′ such that Tc ≤ |t− t′| < T , we have

Rw(t, t′) =
∫ T

0
w(t− θt)w(t′ − θt′) π(θt)π(θ′t) dθtdθt′

=
(∫ T

0
w(t− θt) π(θt) dθ

)(∫ T

0
w(t′ − θt′)π(θ′t)dθt′

)
= 0.

Hence the warped watermark also has correlation time limited to Tc. Under the watermark energy
constraint (33), it is easily seen that the optimal correlation function and deflection coefficient are
given in (35) and (36).

Piecewise-Constant “Warping” Functions. Consider the following piecewise-constant
model for the warping function. Let tk = k

K T for 0 ≤ k < K, and assume that θt is equal to
θtk for all t ∈ [tk, tk + 1). Here θtk , 0 ≤ k < K are independent random variables with a uniform
distribution over [0, T ]. (Hence θt is nonmonotonic and is an interval permutation function rather
than a warping function: this is a broader class of attacks than the one we originally considered.)
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Each interval has length Tc = T/K. Then Rw(t, t′) = 0 if t and t′ do not belong to the same
interval, and so

d2 =

∫ T
0

∫ T
0 R2

w(t, t′) dt dt′

2σ4
S

=

∑K−1
k=0

∫ tk+1

tk

∫ tk+1

tk
R2

w(t, t′) dt dt′

2σ4
S

≤
∑K−1

k=0 (tk+1 − tk)2R2
w(0)

2σ4
S

=
TTcR

2
w(0)

2σ4
S

, (38)

where the right side is the upper bound on d2 for warping functions with correlation time Tc, and
watermarks with energy constraint (33). The bound can be nearly attained by letting w(t) be a
narrowband signal over each interval [tk, tk + 1), with possibly a different center frequency in each
interval.

Randomized basis functions. The watermark should be randomized for security purposes,
and be difficult to estimate. We propose a watermark construction based on randomized basis
functions which nearly achieves the upper bound (36) on the deflection coefficient. The security of
this design remains to be investigated. Assume K = T/Tc is an integer, and consider a distribution
p(u), 0 ≤ u ≤ Tc which is concentrated near u = Tc. Specifically, assume that E[U ] = αTc and
V ar[U ] = βT 2

c , where α ≈ 1 and β << 1. Let t−1 = 0 and generate i.i.d. random variables
u0, u1, u2, · · ·. Generate the increasing random sequence tk = tk−1 + uk for k = 0, 1, 2, · · ·, and stop
as soon as Tk ≥ T . Let K denote the final value of k. Note that the random variables K and∑K−1

k=0 (tk+1 − tk)2 converge almost surely to T
αTc

and αTTc(1 + β
α2 ), respectively, as T

Tc
→∞.

Assume again a piecewise-constant model for θt. For simplicity, assume that θt is constant over
each interval [tk, tk+1] (a similar analysis applies if θt is constant over a different set of intervals, of
average length Tc.) Then from (38), we obtain

d2 ≤
∑K−1

k=0 (tk+1 − tk)2R2
w(0)

2σ4
S

≈ TTc(α + β/α)R2
w(0)

2σ4
S

(39)

where the approximation is accurate if T >> Tc. This example illustrates the fact that little
optimality is lost using randomized basis functions.

6.2 Estimation of Warping Functions

Estimating a warping function is considerably more involved than estimating a simple delay. The
fact that the warping function varies slowly suggests that accurate estimation is still possible.
Sec. 6.2.2 outlines a possible approach in which the warping function is modeled as a Markov
random process.
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6.2.1 Fisher Information

In order to derive bounds on the estimation accuracy of the warping function θ(t), we use a
parametric model:

θ(t) =
K−1∑
k=0

θkϕk(t), 0 ≤ t ≤ T. (40)

Now the Fisher information matrix for estimation of the K-vector [θ0, · · · , θK−1] is given by [2]

Jkl(θ) = −EY |θ

[
∂2l(θ, Y )
∂θk∂θl

]
=

1
σ2

S

∫ T

0
|w′(t− θ(t))|2ϕk(t)ϕl(t) dt, 0 ≤ k, l < K. (41)

The expression (15) is a special case of (41). If the basis functions {ϕk} are nonoverlapping, or at
least are orthogonal with respect to |w′(t − θ(t))|2, then J(θ) is diagonal. If w′(t) is a wide-sense
stationary process with mean zero, variance σ2

w′ , then Jkl(θ) is a random variable whose expectation
is σ2

w′
∫ T
0 ϕk(t)ϕl(t) dt. Moreover, if the support of the basis functions {ϕk} is “long enough” (this

notion will not be formalized here), the distribution of Jkl(θ) is concentrated in the vicinity of its
average. As in Sec. 5.2, the dependency of J(θ) on θ is mild or even inexistent.

If the vector [θ0, · · · , θK−1] is random with p.d.f. π(θ), define

Jπ
kl(θ) = −∂2 lnπ(θ)

∂θk∂θl
, 0 ≤ k, l < K. (42)

If π(θ) is a Gaussian p.d.f. with mean zero and covariance matrix R, then Jπ(θ) = R−1.

For any unbiased estimator θ̂(Y ) of θ, we have [15]

Cov( ˆθ(Y )) ≥ (Jπ(θ) + J(θ))−1, (43)

where the inequality indicates that the difference between the left and rides sides is a nonnegative
definite matrix.

Example. To illustrate (43), assume that K = 2M is a power of 2. Consider a system of
(scaled) Haar basis functions:

θ(t) = θ00 +
M∑

m=1

2M−m∑
l=0

θlmϕlm(t), 0 ≤ t ≤ T.

Here Tc = 2−MT , ϕ0(t) ≡ 1, and {ϕlm} are scaled Haar wavelets at resolutions 2mTc, for 0 ≤ m ≤
M . Specifically,

ϕlm(t) =


1 : 2m(l − 1)Tc ≤ t < 2m(l − 1

2)Tc

−1 : 2m(l − 1
2)Tc ≤ t < 2mlTc

0 : 0 ≤ t < 2m(l − 1)Tc or 2mlTc ≤ t ≤ T

for 0 ≤ l < 2M−m and 1 ≤ m ≤ M . Assume that {θlm} are independent Gaussian random variables
with mean 0 and variance ∞ if k = 0 and C2mDTc if k ≥ 1. This models a warping function with
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fractal characteristics and smoothness determined by the exponent D. The mean value θ00 of this
warping function (average delay) is completely unknown a priori. Then

J(θ) = σ2
w′TcI

Jπ(θ) = (CTc)−1diag{0, 2−D, 2−D, · · · , 2−MD}.

The resulting Fisher information matrix J(θ)+Jπ(θ) is diagonal. The Cramer-Rao lower bound on
the variance of any unbiased estimator of θ00 is equal to (σ2

w′Tc)−1. The Cramer-rao lower bound
on the variance of any unbiased estimator of θlm is equal to (σ2

w′Tc + (C2mDTc)−1)−1 if m ≥ 1. So
θlm may be easy to estimate even though θ00 is hard to estimate.

6.2.2 Tracking

Assume that
θ(n) = θ(n− 1) + u(n), n ∈ {0, 1, · · · , N − 1} (44)

where u(n) is a white noise process with mean zero and variance σ2
u. (so the process (44) has

independent increments.) Also assume that s(n) satisfies the first-order autoregressive model

s(n) = ρs(n− 1) + v(n), n ∈ {0, 1, · · · , N − 1} (45)

where |ρ| < 1, and v(n) is a white noise process with mean zero and variance σ2
v .

The warping sequence θ is related to the observations y via the nonlinear model

y(n) = w(n− θ(n)) + s(n), n ∈ {0, 1, · · · , N − 1} (46)

which is a discrete-time equivalent of (9). We view θ and s as the state of a dynamic system whose
observations are given by (46). The model (44), (45), (46) suggests the use of an extended Kalman
filter (EKF), or a recursive Bayesian filter.

Extended Kalman filter. The basic idea is to linearize the observation model (46) in θ(n)
around θ(n− 1):

ỹ(n)
4
= y(n)− [w(n− θ(n− 1)) + θ(n− 1)w′(n− θ(n− 1))] (47)
≈ −θ(n)w′(n− θ(n− 1)) + s(n). (48)

For simplicity, we first assume that the signal process s(n) is white, in which case ρ = 0 and
σ2

v = σ2
S . (If s is not white, we may consider whitening the observations as a preprocessing step.

The effects of this whitening on the warping have to be determined.)

The predicted value of θ(n) based on observations up to time n−1 is the same as the estimated
value of θ(n−1) based on the same observations and is denoted by θ̂(n) = θ̂(n|n−1) = θ̂(n−1|n−1).
This prediction is updated as follows:

θ̂(n) = θ̂(n− 1) + K(ỹ(n)− hθ̂(n− 1)) (49)

where
K =

Σn−1h

h2Σn−1 + σ2
S

(50)
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is the Kalman gain, h = −w′(n − θ(n − 1)) is the state transition parameter, Σn is the variance
of θ̂(n), and the term that multiplies K is the innovation in y(n). The variance Σn satisfies the
Riccati-type equation

Σn =
Σn−1

h2Σn−1/σ2
S + 1

+ σ2
u. (51)

Recursive Bayesian Filter. The linearization (48) is accurate for lowpass watermarks, but
its validity is highly questionable for pseudo-noise sequences. Moreover, the performance of Kalman
and EKF filters can be poor when noise statistics are strongly non-Gaussian. This suggests the
use of more advanced recursive estimation methods such as particle filtering, which have recently
gained popularity in the signal processsing literature [16].
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