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1 Introduction

Researchers and application developers have long been interested in the
promise of performing automatic and semi-automatic recognition of activity
and context from multiple perceptual cues. Developing methods for learning
and reasoning about streams of perceptual evidence from visual, acoustic, and
kinesthetic channels could accelerate the development of a variety of compelling
applications and services that hinge on the identification of rich, human-centric
notions of context. We believe that creating more robust learning and mod-
eling methods for reasoning over multiple channels will unleash a great deal
of creativity in such realms as multimodal human—computer interaction (HCI),
intelligent environments, and visual surveillance.

We address in this paper the challenge of performing inferences that take
as inputs raw signals coming from multiple sensors and that yield high-level
abstract descriptions of the human activities. The task of moving from low-
level signals to more abstract hypotheses about activity brings into focus a
consideration of a spectrum of approaches. Potentially valuable methods include
template matching, context-free grammars, and various statistical methods.

In this paper, we introduce a hierarchical statistical technique for detecting
and recognizing human activities based on multiple streams of sensory informa-
tion. The method is based on a formulation of dynamic graphical models which
we refer to as a Hierarchy of Hidden Markov Models (HHMMs). Our research
on HHMMs is motivated by the challenge of building robust context-recognition
systems that can handle multiple levels of time granularity. Straightforward
modeling techniques can be very sensitive to subtle variations in a target envi-
ronment and can require extensive retraining when moved to another similar en-
vironment. As we shall describe below, our hierarchical statistical models allow
a factoring of the learning and inference problems into multiple sub-problems,
that produce a decomposition along the lines of variation and stability.

The paper is organized as follows: We shall review relevant prior work in
the Section 2. In Section 3 we describe the learning and inference algorithms
for our Hierarchy of Hidden Markov Models. Section 4 reviews the application
of our hierarchical representation in the context of Seer, a real-time multimodal
activity-recognition prototype. Experimental results are presented in Section 5,
and finally Section 6 summarizes our work and highlights several conclusions
and future directions of research.

2 Previous Work

Multiple research teams have explored the fusion of multiple sources of in-
formation to reason about higher-level abstractions of context. Recent work
on probabilistic models for reasoning about a user’s location, intentions, and
focus of attention have highlighted opportunities for building new kinds of ap-
plications and services [13, 14]. A portion of the work on leveraging perceptual
information to recognize human activities has centered on the identification of
a specific type of activity in a particular scenario. Many of these techniques are
targeted at recognizing single, simple events, e.g., 'waving the hand’ or ’sitting
on a chair’. However, less effort has been applied to research on methods for
identifying more complex patterns of human behavior, extending over longer
periods of time.



Dynamic models of periodic patterns of people’s movements are used by
Davis et al. [7] to capture the periodicity of activities such as walking. Other
approaches to the recognition of human activity employ graphical models. A
significant portion of work in this arena has made use of Hidden Markov Mod-
els (HMMs) [22]. Starner and Pentland in [24] use an HMM for recognizing
hand movements used to relay symbols in American Sign Language. The differ-
ent signs are recognized by computing the probabilities that models for different
symbols would have produced the observed visual sequence. More complex mod-
els, such as Parameterized-HMM (PHMM) [25], Entropic-HMM [2], Variable-
length HMM (VHMM) [12] and Coupled-HMM (CHMM) [3, 20], have been used
to recognize more complex activities such as the interaction between two people.
Bobick and Ivanov [17], propose the use of a stochastic context-free grammar to
compute the probability of a temporally consistent sequence of primitive actions
recognized by HMMs. Clarkson and Pentland model events and scenes from au-
diovisual information in [6]. They have developed a wearable computer system
that uses a hierarchy of HMMs for recognizing the user’s location, e.g., in the
office, at the bank, etc. Brand and Kettnaker in [2] propose an entropic-HMM
approach to organize the observed video activities (office activity and outdoor
traffic) into meaningful states. They illustrate their models in video monitoring
of office activity and outdoor traffic. In [23], a probabilistic finite-state automa-
ton (a variation of structured HMMs) is used for recognizing different scenarios,
such as monitoring pedestrians or cars on a freeway. Although HMMs appear to
be robust to changes in the temporal segmentation of observations, they suffer
from a lack of structure, an excess of parameters, and an associated over-fitting
problem when applied to reason about long and complex temporal sequences
with insufficient training data. Finally, in recent years, more complex Bayesian
networks have also been adopted for the modeling and recognition of human
activities [1, 5, 14, 16, 19, 15, 10].

To date, however, there has been little research on methods for exploiting
statistical methods to fuse multiple sensory streams that address problems with
robustness and training effort. We deal with these issues by means of a hierar-
chical probabilistic representation that allows us to make critical decompositions
of the model and associated learning parameter space.

3 Hierarchical Hidden Markov Models (HHMDMs)

Our hierarchical approach to learning human activities from data employs
directed acyclic graphs (DAGs), also referred to as Dynamic Bayesian Networks
or Dynamic Graphical Models. Statistical DAGs [8] can provide a computa-
tionally efficient and sufficiently expressive solution to the problem of human
activity modeling and recognition. HMMs and their extensions, e.g. CHMMs,
PHMMs, VHMMs, including the architecture proposed in this paper, HHMMs,
can be viewed as particular cases of temporal DAGs.

DAGSs consist of a set of random variables represented as nodes as well
as directed edges or links between them. They define a mathematical form
of the joint or conditional Probability Distribution Function (PDF) between
the random variables. More importantly, from a human behavior perspective,
DAGs are important because they constitute a graphical representation of causal
dependencies among variables. The absence of directed links between nodes



implies a conditional independence. Moreover a family of transformations can
be performed on the graphical structure that has a direct translation in terms
of mathematical operations applied to the underlying PDF. Finally they are
modular, i.e., one can express the joint global PDF as the product of local
conditional PDFs.

DAGs present several important advantages that are relevant to the problem
of human behavior modeling from multiple sensors: they can handle incomplete
data as well as uncertainty; they are trainable and provide means for avoiding
overfitting; they encode causality in a natural way; algorithms exist for doing
predictive inference; they offer a framework for combining prior knowledge and
data; and finally they are modular and parallelizable.

Hidden Markov Models are one of the most popular examples of DAGs for
modeling processes that have structure in time. They have a clear Bayesian
semantics, efficient algorithms for state and parameter estimation, and they
automatically perform dynamic time warping. An HMM is essentially a quanti-
zation of a system’s configuration space into a small number of discrete states,
together with probabilities for transitions between states. A single finite discrete
variable indexes the current state of the system. Any information about the his-
tory of the process needed for future inferences must be reflected in the current
value of this state variable. Graphically HMMs are often depicted ’rolled-out in
time’ as DAGs, such as in Figure 1.
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Figure 1: Graphical Representation of HMMs rolled-out in time (top) and
Graphical Representation of Hierarchical HMMs. Note how each level handles
a different temporal granularity (bottom)

We have explored a hierarchical representation for reasons of robustness,
training efficacy, and naturalness. In developing systems that can make infer-



ences about context from multiple streams of perceptual information, we faced
the challenge of carrying out learning and inference that are robust to typical
variations within office environments (e.g., lighting and acoustics differences).
Beyond robustness in a single office, we desired a representation that would
allow the models to perform well when transferred to new office spaces with
minimal tuning through retraining.

We converged on the use of a multilevel representation of observations that
allows for explanations at different granularities of time, by capturing different
levels of temporal detail. For example, in the domain of office awareness, one
level of description is the analysis and classification of the raw sensor signals.
This level corresponds to a fine time granularity on the order of milliseconds.
Another level of description is the detection of the user’s presence, by use of
audio, keyboard, mouse, and video. In this case, the time granularity is of
several seconds. At another level, one could describe what the user has done
in the last IV minutes. Finally, one could provide an explanation of the user’s
activities during the day. The graphical structure of our HHMMSs architecture
is displayed in Figure 1.

In addition, employing a hierarchical structure provides several valuable
properties. A hierarchical formulation makes it feasible to decouple different
levels of analysis for training and inference. As it is further explained below,
each level of our hierarchy is trained independently, with different feature vec-
tors and time granularities. Once the system has been trained, inference can
be carried out at any level of the hierarchy. One could retrain the lowest (most
sensitive to variations in the environment) level, for example, without having to
retrain any other level in the hierarchy.

3.1 Learning

For an HMM, the problem of learning the model parameters is solved by the
forward-backward or Baum-Welch algorithm. This algorithm provides expres-
sions for the a and (3 variables, whose product leads to the likelihood of a se-
quence at each instant of time. In particular, the a variable is given by a; 41 =
[Efil ai’tPj‘i]pj(ot) s and the ,8 variable by ,Bi,t = [ZNzl Bj7t+1Pj\ipj(0t+1)] s
where N is the number of hidden states, F;; is the prof)ability of state i given
state j and p;(o;) is the probability for state i of the observation at time ¢. From
the a and S variables one can obtain the model parameters, i.e. the observation
and transition probabilities.

A formulation for hierarchical HMMs is first proposed in [11] in work that
extends the standard Baum-Welch algorithm and presents an efficient estimation
procedure of the model parameters from unlabeled data. A trained model is
applied to an automatic hierarchical parser of an observation sequence as a
dendrogram. Because of the computational complexity of the original algorithm,
the authors suggest an efficient approximation to the full estimation scheme.
The approximation could further be used to construct models that adapt both
their topology and parameters. The authors briefly illustrate the performance
of their models on natural written English text interpretation and in English
handwriting recognition.

Our HHMMs algorithm differs in fundamental ways from the hierarchical
approach explored in [11]. For HHMMs, each layer of the architecture is con-
nected to the next layer via its inferential results (log likelihoods). In contrast,



in [11], each state of the architecture is another HMM, and therefore represents
a time sequence of the raw signals. Moreover, rather than training all the levels
at the same time, the parameters for each level of our HHMMSs can be trained
independently by means of the Baum-Welch algorithm. The inputs (observa-
tions) of each level are the outputs of the previous level. At the lowest level, the
observations (the leaves of the tree) are the feature vectors extracted directly
from sensor signals.
3.2 Inference

The Viterbi algorithm [22] yields the most likely sequence of states S within
a model given the observation sequence O = {o01,...,0,}. This most likely
sequence is obtained by S = argmazsP(S|0).

In the case of HMMs the posterior state sequence probability P(S|0) is given
by

T
P(S|O) _ Pslpsl(ol)Htpz(Q()p)St(ot)Pst\st_l (1)

where S = {ai,...,an} is the set of discrete states, s; € S corresponds to the
state at time t. P;; = Ps,—q,]s,_,=a, 18 the state-to-state transition probability
(i.e. probability of being in state a; at time ¢ given that the system was in state
a; at time ¢ — 1). The prior probabilities for the initial state are P; = Ps,—,, =
Py, . And finally p;(0;) = ps,—a;(0¢) = ps,(0) are the output probabilities for
each state, (i.e. the probability of observing o; given state a; at time t).

For HHMMs, inference can be performed at each level of the hierarchy by
means of the same Viterbi algorithm as the one used for HMMs. Each level en-
codes a different temporal abstraction, going from the finest time granularity, at
the leaves, to the lowest time granularity (highest level of temporal abstraction),
at the root of the tree.

4 Sample Application: HHMMs and Office Awareness

We tested HHMMs within an office-awareness application, and built a system
named Seer, that exploits the HHMM representation to learn about and detect
activities in an office. Seer is composed of a three-layer HHMM, as it is displayed
in Figure 2:

(1) At the lowest level, the sensor signals (described in section 4.1), i.e.,
images, audio and keyboard and mouse activity, are captured and processed,
resulting in a feature vector for each modality. The time granularity at this
level is of windows of duration less than 100 milliseconds.

(2) In the middle layer, the sound is classified using discriminative HMMs
1. Typical office sounds, such as human speech, music, silence, ambient noise,
phone ringing and keyboard typing, are trained and learned in real time, with
one HMM per type of sound. The source of the sound is also localized using a
technique based on the Time Delay of Arrival (TDOA) [4]. The video signals are
classified using discriminative HMMs to implement a person detector. At this
level, the system detects whether one person is present in the room (semi-static),
one active person is present, multiple people are present or there is nobody in

1By discriminative HMMs we denote HMMs that have been trained to recognize a partic-
ular sound in this case. When classifying the sounds, inference is performed in all the models
in parallel. At each instant, the model with the highest likelihood is selected.



the office. The inferential results from this layer (audio and video classifiers),
the derivative of the sound localization component, and the history of keyboard
and mouse activities constitute a feature vector that is passed to the next higher
(third) layer in the hierarchy. The time granularity at this level is of less than
3 seconds.

(3) The third layer handles concepts that have longer temporal extent. Such
concepts include the user’s high-level activities in or near an office, correspond-
ing to a time granularity of about 10 — 15 seconds. The behavior models are
HMDMs whose observations are the inferential outputs of the previous level. Of-
fice activities recognized by Seer include PHONE CONVERSATION, FACE TO FACE
CONVERSATION, PRESENTATION, DISTANT CONVERSATION, NOBODY IN THE OFFICE and
USER PRESENT, ENGAGED IN SOME OTHER ACTIVITY. Some of these activities have
been proposed in the past as indicators of a person’s availability [18].
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Figure 2: Architecture of the multimodal Seer system.

4.1 Perceptual Input

Seer is multimodal, accessing perceptual information from the following
sources: (1) Binaural microphones: Two mini-microphones (20 — 16000 Hz,
SNR 58 dB) are being used. The audio signal is sampled at 44100 KHz. The mi-
crophones are used for sound classification and localization; (2) USB camera:
The video signal is obtained via a standard USB camera (Intel), sampled at 30
f.p.s. The video input is used to determine the number of persons present in
the scene; (3) Keyboard and mouse: The system keeps a history of keyboard
and mouse activities during the past 5, 60 and 600 seconds.
4.2 Feature Extraction and Selection

The raw sensor signals are preprocessed to obtain feature vectors (i.e. obser-
vations) for the lowest-level HMMSs. On the audio side, Linear Predictive Coding
(LPC) coefficients [9] are computed. Feature selection is applied on these coeffi-
cients by means of principal component analysis (PCA). The number of features
is selected such that more than 95% of the variability in the data is maintained,



which is typically achieved with no more than 7 features. Other higher-level fea-
tures are also extracted from the audio signal, such as the energy, the mean and
variance of the fundamental frequency over a time window and the zero crossing
rate (ZCR) [21], given by Zero(f) = % Zf:é:i)xurl |sign(s(i+1)g—sign(s(i))l w(n—1)
, where f is the frame number, L is the frame length, w is a window function
and s(7) is the digitized speech signal at an index indicator 1.

On the video side, three features are computed: the density of skin color in
the image (obtained via a discriminative histogram between skin and non-skin in
HSV space), the density of motion in the image (obtained by image differences),
and the density of foreground pixels in the image (obtained by background
subtraction, after having learned the background). Finally, a history of the last
5, 60 and 600 seconds of mouse and keyboard activities is logged.

The source of the sound is localized using the Time Delay of Arrival (TDOA)
[4] method. In TDOA, the measure in question is not the acoustic data received
by the sensors, but rather the time delays between the signals coming from
each sensor. Typically, TDOA-based approaches have two steps: the time delay
estimation (TDE) and the sound source localization (SSL). Let s(n) be the
source signal and be z;(n) the i-th sensor received signal. If we assume no
reverberation, we have z;(n) = a;s(n —t;) + b;(n). To the model reverberation,
we add the non-linear reverberation function: z;(n) = g;xs(n—t;)+b;(n), where
a; is the attenuation factor, b; is additive noise and g; is the response between the
source and the sensor. Seer includes multiple approaches for estimating the time
delay of arrival between the left and right audio signals. We have obtained the
best performance by estimating the peak of the time cross-correlation function
between the left and right audio signals over a finite time window [Ny, No], i.e.:
rin(d) = 2N H(m)r(n = d).

5 Experiments with Seer

We have been running Seer in multiple offices, with different users and re-
spective environments for several weeks. In our preliminary tests, we have found
that the high-level layers of Seer are quite robust to changes in the environment.
In all the cases, when we moved Seer from one office to another, we obtained
nearly perfect performance without the need for retraining the higher levels of
the hierarchy. Only some of the lowest-level features (such as the ambient noise,
the background image, and the skin color threshold) required re-training to tune
the lowest level to the new conditions. In summary, the hierarchical structure
greatly contributes to the overall robustness of the system given changes in the
environment.

In a more quantitative study, we compared the performance of our model
with that of single, standard HMMs. The feature vector in the latter case
results from the concatenation of the audio, video and keyboard /mouse activities
features in one long feature vector. We refer to these HMMs as the Cartesian
Product HMMs. Note that a five-state HMM with single Gaussian observations
of dimensionality 16 would have 5% 16 % (16 4+ 1) = 1360 parameters to estimate.
An equivalent HHMM with 2 levels, two five-state HMMs at the lowest level
(audio and video, with dimensionalities 10 and 3 respectively) and one five-
state HMM at the highest level (of dimensionality 3), would have 5% 10 % (10 +
1)+ 5%«3%x(3+1)+5%x3x%(3+1) = 670 parameters. Note how encoding




prior knowledge about the problem in the structure of the models significantly
reduces the dimensionality of the problem. Therefore, for the same amount of
training data, it is expected for HHMMs to have superior performance than
HMMs. Our experimental results confirm such expectation.

Figure 3 illustrates the per-frame normalized likelihoods on testing in real-
time both HMMs and HHMMs with the different office activities. By ‘normal-
ized’ likelihoods, we denote the likelihoods whose values have been bounded
between 0 and 1. They are given by: NormLike; = mazil(Tiik;ST%gizﬁ?ilej), for
i=1,..,N,j=1,..N, and N models. We only plot the likelihoods for the last
half of the testing data to avoid instabilities in the transitions.

The accuracies of both HMMs and HHMMs when tested on 8 real-time
sequences of each class were of 72.68% (STD 8.15) and 99.5% (STD 0.95) re-
spectively.

Finally, we compared the performance on 30 minutes of office activity data
(5 minutes per activity and 6 activities) of HHMMs and HMMs. The results
are summarized in table 1. The HMMSs were specifically tuned to the particular
testing data. Their performance was otherwise so poor that we could not make
any meaningful comparison with the equivalent HHMMs. On the other hand,
the HHMMSs had been trained many days before, under different office conditions
than that of testing.

| Confusion Matrix for highly-tuned HMMs |

PC FFC P 0] NA DC
PC | 0.8145 | 0.0679 | 0.0676 0.0 0.0 0.05
FFC | 0.0014 | 0.9986 0.0 0.0 0.0 0.0

P 0.0 0.0052 | 0.9948 0.0 0.0 0.0

0] 0.0345 | 0.0041 | 0.003 | 0.9610 0.0 0.0
NA | 0.0341 | 0.0038 | 0.0010 | 0.2524 | 0.7086 0.0
DC | 0.0076 | 0.0059 | 0.0065 0.0 0.0 0.98

| Confusion Matrix for generic HHMMs |

PC FFC P 0O NA DC
PC 1.0 0.0 0.0 0.0 0.0 0.0
FFC 0.0 1.0 0.0 0.0 0.0 0.0
P 0.0 0.0 1.0 0.0 0.0 0.0
0) 0.0 0.0 0.0 1.0 0.0 0.0
NA 0.0 0.0 0.0 0.0 1.0 0.0
DC 0.0 0.0 0.0 0.0 0.0034 | 0.9966

Table 1: Confusion matrix for highly-tuned HMMs and generic HHMMSs on 30
min of real data, where PC=Phone Conversation; FFC=Face to Face Conversa-
tion; P=Presentation; O=Other Activity; NA=Nobody Around; DC=Distant
Conversation.

5.1 Discussion
From our experiments we would highlight:



(1) For the same amount of data, the accuracy of HHMMs is significantly
higher than that of HMMs. There are several reasons for the better performance
of HHMMSs when compared to HMMs: (a) The number of parameters of HMMs
is about double that of HHMMs for the office activities being modeled in our
experiments. As a consequence, for the same amount of training data, HMMs
have many more parameters to estimate than HHMMs. Therefore HMMs are
more prone to overfitting and worse generalization than HHMMs, especially
when trained with limited amounts of data. (b) HMMs carry out high-level
inferences about the user’s activity, directly from the raw sensor signals. HH-
MDMs, on the other hand, isolate the sensor signals in different sub-HMMs for
each input modality. The inferential results of these models feed the HMMs
in the next layer, that characterizes the office activities. Due to its hierarchi-
cal structure, HHMMs are more robust to noise in the sensor signals and have
better generalization performance than HMMs.

(2) HHMMs are more robust to changes in the environment than HMDMs.
We could not obtain any reasonable performance on HMMs had they not been
highly tuned to the particular testing environment and conditions. We had to
retrain the HMMSs every time we needed to test them on some particular data.
On the contrary, HHMMs did not require retraining, despite the changes in
office conditions.

(3) The discriminative power of HHMMs is notably higher than that of
HMMs. By discriminative power, we mean the distance between the log-likelihood
of the two most likely models. The log likelihoods for the HMMs tend to be
much closer to each other, making them prone to instability and errors in the
classification. Note in Figure 3 how the normalized likelihoods between the two
best models in HMMs are much closer than that in HHMMs. This phenomenon
is particularly noticeable in the PRESENTATION, FACE TO FACE CONVERSATION,
DISTANT CONVERSATION and NOBODY AROUND activities.

6 Summary and Future Directions

In this paper we have introduced hierarchical probabilistic representations
—in particular a Hierarchy of Hidden Markov Models (HHMMs)—, for sensing,
learning, and inference. The representation was motivated by the challenge of
building reasoning systems that infer context from multiple sensory streams. We
believe that our representation provides a natural means for doing learning and
inference at multiple levels of temporal granularity and abstraction. Moreover,
we have sought a representation that maps naturally onto the problem space.
Psychologists have found that human behaviors are hierarchically structured in
many cases [26]. We have pursued a representation that could capture such
hierarchical properties in an elegant manner.

We have found that HHMMs provide promising means for making inferences
about context and activity from perceptual signals. After presenting key proper-
ties of the representation, we have reviewed experiments with HHMMs applied
in an office-awareness prototype. Some important characteristics of HHMMs
when compared to HMMs are: (1) HHMMs encode the hierarchical temporal
structure of the discrimination problem; thus, the dimensionality of the state
space that needs to be learned from data is much smaller than that of their
corresponding Cartesian Product HMMs; (2) HHMMs are easier to interpret,



and, thus, easier to refine and improve, than the corresponding Cartesian Prod-
uct HMMs; (3) HHMMs can encode different levels of abstraction and time
granularities that can be linked to different levels of representation for human
behaviors; (4) the modularity of HHMMSs allows the selective retraining of the
levels that are most sensitive to environmental or sensor variation, minimizing
the burden of training during transfer among different environments.

We have demonstrated the performance of HHMMs in Seer, a real-time
system for recognizing typical office activities. Seer can accurately recognize
when a user is engaged in a phone conversation, giving a presentation, involved
in a face-to-face conversation, or doing some other work in the office—or when
a distant conversation is occurring in the corridor. We believe that HHMMs
can be used to enhance a variety of applications that rely on the identification
of contexts from perceptual cues.

We are currently exploring several theoretical and engineering challenges
with the refinement of HHMMs, including efforts to understand the influence
of the hierarchical decomposition on the size of the parameter space, and the
resulting effects on learning requirements and accuracy of inference for differ-
ent amounts of training. Alternate decompositions lead to layers of different
configurations and structure; we are interested in understanding better how to
optimize the decompositions. We are also exploring the use of unsupervised
and semi-supervised methods for training one or more layers of the HHMMs
without explicit training effort. Finally, we are exploring several applications of
inference about context.
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Figure 3: Log Likelihoods for each of the activity models over time when tested
in real time



