
Unexpected Complexity: Experiences
Tuning and Extending CAN

Michael B. Jones, Marvin Theimer,

Helen Wang, Alec Wolman

December 2002

Technical Report
MSR-TR-2002-118

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Unexpected Complexity: Experiences Tuning and Extending CAN

Michael B. Jones, Marvin Theimer, Helen Wang, Alec Wolman

Microsoft Research, Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

{mbj, theimer, helenw, alecw}@microsoft.com

Abstract
As part of evaluating options for the design and

implementation of a scalable application-level multi-
cast system, we produced an independent implemen-
tation of CAN, experimented with tuning it, and also
extended it to improve its performance and in some
cases, correctness. We were able to reproduce most
of the results in the original CAN paper, providing
independent validation of their results. However, we
encountered far more complexity with tuning and
extending CAN than anticipated. The best set of pa-
rameter choices appeared to be highly scenario-
specific and non-intuitive, at least for some of the
parameters supported. Tuning CAN involved a lot of
trial-and-error navigation through the CAN parame-
ter space. Furthermore, the “anycast” semantics pro-
vided by CAN turned out to make our application
design more complex than was originally anticipated.

1. Introduction
The Content Addressable Network (CAN) [Rat-

nasamy et al. 01a] is a self-organizing, peer-to-peer
overlay network that can be used to build scalable
distributed applications. Other such overlay net-
works currently in use include Chord [Stoica et al.
01], Tapestry [Zhao et al. 01], and Pastry [Rowstron
and Druschel 01].

Scalable application-level multicast is a function
that can take advantage of the capabilities provided
by such overlay networks. As part of evaluating op-
tions for the design and implementation of a scalable
application-level multicast system we experimented
with both CAN and Pastry, with results reported in
[Castro et al. 03]. This paper reports on the lessons
we learned from trying to tune CAN for our applica-
tion as well as improve its performance and, in some
cases, correctness.

One of our earliest steps was to produce an inde-
pendent implementation of CAN. To validate our
implementation we then set about reproducing the
results presented in the original CAN paper. In
nearly all cases we were able to reproduce these re-

sults within a few percent of the original values,
thereby providing independent validation of their
results.

We then set about tuning CAN for our multicast
application. Our original validation efforts involved
tuning CAN for simple unicast message-passing and
we had intended to use the resultant parameter set-
tings as a starting point for tuning two different mul-
ticast designs. Unfortunately these settings did not
provide much help, as it turned out that the best set of
parameter choices appeared to be highly scenario-
specific and changes in parameter settings resulted in
non-linear performance effects.

Along the way we discovered and fixed a bug in
the published CAN multicast flooding algorithm
[Ratnasamy et al. 01b] and also extended the design
with three additional features in an effort to increase
CAN’s performance. Two of the three features, net-
work-based routing metric and transit-stub topologi-
cal node placement, ended up improving perform-
ance while one, corner neighbors did not.

An unexpected complication we encountered
concerned itself with the fact that some of CAN’s
more important parameter settings, multiple nodes
per zone and multiple realities, cause it to deliver
messages in anycast-style to any of a set of eligible
nodes, rather than to a single destination node. As a
result, we ended up having to add an extra layer of
distributed synchronization to our application.

The net result of our efforts and experiments was
that we were able to validate the overall performance
claims that have been published in the prior literature
but that we encountered an unexpectedly large
amount of complexity while trying to tune CAN for
our application as well as when extending it to im-
prove its performance and correctness. The remain-
der of this paper briefly summarizes the CAN design,
describes the new features we added to it, describes a
bug in the published CAN flooding algorithm and
our fix for the bug, and our experiences with trying to
tune and use CAN.

 2

2. CAN Design
2.1 Basic Design

The Content Addressable Network (CAN) [Rat-
nasamy et al. 01a] overlay network design organizes
nodes of an overlay into a d-dimensional hypercube.
Each node takes ownership of a specific hyper-
rectangle in the space, such that the collection of hy-
per-rectangles covers the entire space. Each node
tracks who its immediately adjacent neighbors are
and routes messages to them. Nodes join the hyper-
cube by routing a join message to a randomly chosen
point in the space, causing the node owning that re-
gion of space to split its region into two, giving half
to the new node and retaining half for itself. Mes-
sage routing consists of choosing one of the current
node’s neighbors closer in CAN space to the destina-
tion than the current node is, and forwarding the
message to that neighbor, repeating this process until
the message reaches the node whose region contains
the destination address.

2.2 Previously Published CAN Features
Beyond the basic CAN algorithm, described

above, CAN adds a number of “knobs” that can be
used to improve its routing performance. While
these were described in [Ratnasamy et al. 01a], we
summarize them here:

Dimensions: The number of dimensions of the
CAN hypercube.

Ratio-Based Routing: Vanilla CAN routes to
the neighbor closest to the destination in CAN space.
Ratio-based routing examines the ratio between the
network delay to each neighbor and the progress
made in CAN space by routing to that neighbor,
choosing to route to the neighbor with the best ratio
of CAN distance progress to network cost.

Multiple Nodes per Zone: This knob allows
more than one node to inhabit the same hyper-
rectangle. CAN delivers messages to any one of the
zone inhabitants in an anycast manner.

Multiple Realities: This knob allows multiple
CAN hypercubes to co-exist at once, with the same
nodes occupying each, but with completely different
assignments of hyper-rectangles to nodes in each.
Messages can switch between realities at each hop.
Messages are delivered to a zone containing the des-
tination CAN address in any one of the realities.

Uniform Partitioning: If enabled, when a node
joins the CAN network, once its join message
reaches a node containing its target CAN address,
rather than immediately splitting the region in two,

all the node’s neighbors are examined. If a
neighbor’s zone is larger than the current zone, the
join message is forwarded to the neighbor, which will
then apply the same test. Once a local maximum
neighbor size is reached that zone is split in two, with
the new node obtaining half the split zone.

Landmark-Based Placement: Landmark-based
placement causes nodes, at join time, to probe a set
of well known “landmark hosts”, estimating each of
their network distances. Each node measures its
round-trip-time to the landmark machines, and orders
the landmarks from the nearest to the most distant in
the underlying network. Nodes with the same land-
mark ordering are clustered into a bin. Rather than
choosing a random CAN addresses at which to join,
the CAN space is divided into evenly sized bins, and
the CAN join address is then chosen from within the
bin area. The effect is that nodes with the same
landmark ordering end up closer to each other in
CAN space.

2.3 New CAN Features
In the course of our investigations we developed

several additional knobs beyond those previously
published in an attempt to further improve the
achievable CAN performance along several dimen-
sions. We summarize them here:

Network-Based Routing Metric: Network-
based routing chooses to route a message to the
neighbor with least network cost, subject to the mes-
sage still being closer to the destination. This is like
the previously-published Ratio-Based Routing except
that only network cost is factored into the routing
decisions.

Corner Neighbors: We extended the CAN im-
plementation to support routing through corner
neighbors. Our motivation for adding corner
neighbors was to increase the number of available
routing choices. In a traditional CAN, a node is only
considered a neighbor if the coordinate spans overlap
along d-1 dimensions and are adjacent along 1 di-
mension. With our extension, a node will be consid-
ered a corner neighbor if the coordinate spans are
adjacent along 2 or more dimensions, and overlap
along all remaining dimensions. In CANs with a
large number of dimensions, the number of corner
neighbors has the potential to grow extremely large.
To offset this effect, we implement an option where
nodes can randomly select a fixed number of corner
neighbors from the set of possible corner neighbors.

Transit-stub Topological Node Placement:
The basic CAN construction is ignorant of the under-

 3

lying network topology, namely, two adjacent nodes
in the CAN coordinate space may be far from each
other in terms of the IP network distance. One of our
key interests was to understand how much perform-
ance benefit there is to constructing overlays using
network topology information. Consequently we
wanted to see how alternative assignment strategies
would perform. In addition to the landmark-based
placement described above, we constructed a place-
ment technique based on the Georgia-Tech transit-
stub Internet topology model supported by our simu-
lator [Zegura et al. 96]. Here, we divide the CAN
space into T equal sized bins, where T is the total
number of transit networks in the topology. Within a
given bin, we randomly choose CAN addresses for
each stub network that attaches to the corresponding
transit network. This ensures that all stubs that con-
nect to the same transit network will be relatively
near each other in CAN space. Furthermore, nodes
connected to the same stub network will also end up
close to each other in CAN space.

2.4 CAN Flooding as Previously Published
The multicast algorithm we implemented for

CAN is based on the efficient flooding algorithm de-
scribed in [Ratnasamy et al. 01b], with some signifi-
cant modifications. We begin by summarizing the
published algorithm, and then we present our modifi-
cations.

The naive approach to implement flooding for a
CAN overlay network is for each node that receives a
message to forward that message to all of its
neighbors. Nodes filter out duplicate messages by
maintaining a cache of previously received message-
ids. The problem with the naive strategy is that it can
lead to a large number of duplicate messages. To
reduce the number of duplicates, the [Ratnasamy et

al. 01b] study presents an efficient flooding algo-
rithm that exploits the structure of the CAN coordi-
nate space to limit the directions in which each node
will forward messages. Nodes use the following five
rules to decide whether to forward a message, and to
decide to which neighbors to forward the message.
1. Origin Forwarding Rule: The multicast origin

node forwards the message to all neighbors.
2. General Forwarding Rule: A node receives a

message from a neighboring node adjacent along
dimension i. The node forwards that message to
all adjacent neighbors along dimensions 1
through i-1. The node also forwards the message
to those adjacent neighbors along dimension i in
the opposite direction from where it received the
message.

3. Duplicate Filter Rule: A node caches the mes-
sage-ids of all received messages. When a node
receives a duplicate, it does not forward the mes-
sage.

4. Half-Way Filter Rule: A node does not forward a
message along a particular dimension if that
message has already traveled at least half-way
across the space from the origin coordinate in
that dimension.

5. Corner Filter Rule: Along the lowest dimension
(dimension 1), a node N only forwards to a
neighbor A if a specific corner of A (CA) is in
contact with N. CA is defined to be the corner of
A that is adjacent to N along dimension 1 and has
the lowest coordinates along all other dimen-
sions. Note that this rule eliminates certain mes-
sages that would otherwise be sent according to
the two forwarding rules.

2.5 Improvements to CAN Flooding
We discovered and fixed two flaws with the

above algorithm. The first flaw is an ambiguity in
the half-way filter rule specified above. The authors
state that the above algorithm ensures there will be
no duplicate messages if the CAN coordinate space is
evenly partitioned (i.e. all CAN nodes have equal
sized zones). The following change to the half-way
filter rule is needed to ensure that this property actu-
ally holds. When deciding whether or not to forward
to a neighbor N, if N contains the point that is half-
way across the space from the source coordinate in
that dimension, then we only forward to N that
neighbor from the positive direction.

The second flaw we discovered is a race condi-
tion that can lead to certain nodes never receiving the
flooded message. This race condition arises because

Figure 1: Illustration of the race condition that affects
the CAN efficient flooding algorithm. If the timing of
messages follows the timeline specified in this figure,
then Node E never receives the flooded message.

 4

when a node receives a duplicate message, it does not
forward that message. Therefore, the order in which
a node receives a message from its neighbors may
determine the directions in which that message is
forwarded. To demonstrate this problem, Figure 1
illustrates a situation where one of the nodes does not
receive the multicast message. This figure shows a
small portion of a 2-dimensional CAN, where the
dashed line in the figure is the location along the y
axis that is half-way from the origin. The sequence of
message delivery times listed in the timeline portion
of Figure 1 causes node E to never receive the mes-
sage. Note that a different ordering of message re-
ception either at node C or at node D would have led
to proper message delivery at node E. For example,
if we switch the order of messages at times T=1 and
T=2, then the message from A to C is delivered be-
fore the message from B to C, which means that node
C will forward the message to E.

The idea behind our fix to the flooding algorithm
is to make static forwarding decisions based on the
relative position of a node to the multicast origin,
rather than dynamic forwarding decisions based on
the order of incoming messages. The new algorithm
breaks up the forwarding process into two stages. In
first stage, a node decides which dimensions and di-
rections to the forward message along. In the second
stage, a node applies a second set of rules to filter the
subset of neighbors that satisfy the first stage rules.

The stage one forwarding rules are:
1. If a node's region overlaps the origin along all

dimensions less than or equal to i, then this node
will forward the message in both the positive and
the negative directions along dimension i.

2. If a node's region overlaps the origin along all
dimensions less than i, then this node will for-
ward the message only in one direction along
dimension i. The direction to forward the mes-
sage will be away from the origin coordinate,
towards the half-way point.

3. For the lowest dimension (dimension 1), always
forward only in one direction. As before, the
forwarding direction will be away from the ori-
gin coordinate, towards the half-way point.

The stage two filtering rules are:
1. For all dimensions greater than 1, only forward

to a neighboring node along dimension i if that
neighbor's region overlaps the origin coordinates
for all dimensions less than i.

2. The half-way filter rule from the original algo-
rithm, with our modification described above.

3. The corner filter rule from the original algorithm.

Although the rules for this algorithm look somewhat
different from the original algorithm, the way that
messages flow through the CAN coordinate space is
quite similar to the original algorithm. An important
side effect of the modified flooding algorithm is a
significant reduction in the number of duplicate mes-
sages, due to the first rule in the filtering stage of the
new algorithm.

3. Experiments and Results
3.1 Experimental Context and Methodology

We built an independent implementation of CAN
in a discrete-event simulator provided by the Pastry
authors. This work was part of our effort to evaluate
the effectiveness of building scalable application-
level multicast using overlay networks [Castro et al.
03]. To the best of our knowledge, that study con-
ducted the first head-to-head comparison of CAN-
style versus Pastry-style overlay networks, using
multicast communication workloads running on an
identical simulation infrastructure.

In this paper, we report results from two different
sets of simulations. The first set of simulations uses
a workload that consists of randomly selected nodes
in the overlay performing unicast RPC-style commu-
nication patterns. The second set of simulations was
performed as part of the aforementioned multicast
study, and the communication workloads consist of
both the CAN efficient flooding algorithm [Ratna-
samy et al. 01b] and the Scribe tree-based multicast
algorithm [Rowstron et al. 01] running on top of
CAN.

Our simulations ran on a network topology with
5050 routers. We used a random graph generated
with the Georgia Tech transit-stub Internet topology
model [Zegura et al. 96]. Our simulator models la-
tency for each of the network links, and queuing de-
lay at each of the application-level overlay hops. It
does not model queuing delay at the internal routers
or packet losses because modeling these would pre-
vent simulation of large networks.

To evaluate performance, our primary metrics
are relative delay penalty (RDP) [Chu et al. 00] and
neighbor state overhead. RDP is the ratio of the av-
erage delay across the overlay network and the aver-
age delay across the underlying IP network.
Neighbor state overhead is a measure of the number
of neighbors that each overlay node communicates
with, averaged across all nodes that participate in the
overlay. This measure is important because

 5

neighbors must communicate on a regular basis to
maintain the structure of the overlay and to imple-
ment estimates of the network delay between nodes.

3.2 CAN Parameter Complexity
CAN has a very large number of parameters that

can be used to tune its performance. We performed
an extensive exploration of this parameter space, at-
tempting to understand which combinations of pa-
rameters lead to the best RDP values for unicast
communication. The intent was to use the best pa-
rameter combination as a starting point for tuning our
application-level multicast system.

We varied the following parameters during our
exploration: the number of dimensions; the number
of nodes per zone; the number of realities; ena-
bling/disabling uniform partitioning; ena-
bling/disabling routing through corners; the maxi-
mum number of corner neighbors considered; choos-
ing a node assignment policy from among random,
topological, or landmark-based; and choosing a rout-
ing policy from among CAN distance, CAN ratio, or
network distance. To allow direct comparisons be-
tween different CAN configurations, we measured
the average amount of neighbor state that each node
maintains and only compared instances of CAN that
used similar amounts of neighbor state.

Our primary conclusion is that the CAN parame-
ter space is difficult to navigate. Configurations that
work well with one state size budget do not scale to a
different one in a linear fashion. Therefore, discover-
ing the best configuration with 50 neighbors does not
provide immediate insight into which parameters will
give the best configuration with 100 neighbors. To

illustrate the difficulties encountered in exploring the
CAN parameter space, Figure 2 shows how varying a
single parameter, the number of landmarks, can lead
to interesting non-linear behavior in terms of RDP.

The difficulty of tuning CAN also manifested it-
self in our application-level multicast work. The best
choice of parameters we were able to find from our
unicast experiments did not prove particularly useful
for our multicast experiments, forcing us to re-
explore the parameter space to tune multicast per-
formance. Table 1 lists a set of representative con-
figurations yielding lowest RDP values for an 80,000
node CAN multicast system at a variety of different
state overheads. Note the unpredictable variation of
even the most basic CAN parameter, namely dimen-
sionality of the hyperspace.

State Dimen-

sions (d)
Nodes Per
Zone (z)

Realities Uniform
Partitioning

18 10 1 1 enabled
29 9 2 1 enabled
38 12 3 1 enabled
59 10 5 1 enabled

111 8 10 1 enabled
Table 1: Representative good configurations, as a

function of neighbor state, for an 80,000 node CAN.

Nonetheless, we can provide some general guide-

lines, at least for the workloads that we have ex-
plored. Enabling some form of topological assign-
ment (either landmark-based or transit-stub-based)
provided the largest improvement in RDP out of all
the CAN parameters. For example, a typical transit-
stub-based placement configuration saw a 32% im-
provement in RDP and an 11% decrease in neighbor
state compared to a random node placement configu-
ration. We found that transit-stub-based node place-
ment performed comparably to landmark-based node
placement once sufficient numbers of landmarks
were employed to be effective.

Enabling uniform partitioning often provides a
significant reduction in terms of the neighbor state
overhead, especially for the two topological assign-
ment schemes where nodes often end up clustered
close together in the CAN space. Furthermore, uni-
form partitioning never causes RDP to become sig-
nificantly worse.

The network distance routing metric appears to
perform consistently better than the other routing
metrics. For a typical configuration, network-based
routing provides a 24% improvement in RDP over

2.2

2.4

2.6

2.8

3

0 4 8 12 16 20 24 28 32 36 40

Number of Landmarks

R
el

at
iv

e
D

el
ay

 P
en

al
ty

No uniform
Uniform
No landmark, uniform
No landmark, no uniform

Figure 2: The impact of the landmarks on RDP for 10,000
nodes, 10 dimensions, and 5 nodes per zone.

 6

ordinary CAN routing, and a 15% improvement over
ratio-based routing.

Both corner routing and multiple realities don’t
seem to improve RDP significantly without large
increases in neighbor state overhead. For example,
when we limit the number of corner neighbors con-
sidered so that it requires only a moderate amount of
state, the improvement in RDP is extremely small.
For example, we see a 0.1% improvement in RDP
versus a 27% increase in neighbor state.

3.3 Topologically Aware Node Assignment Com-
plexity
To implement both landmark-based placement

and transit-stub topological placement, one must de-
vise a technique for dividing the CAN coordinate
space evenly into a fixed number of bins, where the
number of bins is not known in advance. A desirable
property for these bins is that the length in each di-
mension be comparable (e.g. to avoid long and thin
rectangles).

Our initial binning approach frequently lead to
the creation of star topologies – a single node occu-
pying a large portion of the CAN space with a very
large number of neighbors (each of which occupies a
small portion of the CAN space). This sort of topol-
ogy defeats the purpose of constructing the overlay in
the first place. A combination of refinements to our
binning algorithm and enabling uniform partitioning
were critical to reducing the magnitude of this effect,
although we were unable to completely eliminate the
problem.

3.4 Application Programming Model Complexity
An important distinction to understand between

CAN and overlay networks such as Pastry, Chord,
and Tapestry is that they deliver a message tagged
with a given key to exactly that single node whose
node ID is numerically closest to the key in the
namespace. In contrast, CAN delivers such a mes-
sage to any node in the overlay that belongs to the
same zone that the key is contained by in some real-
ity. Thus, CAN provides “anycast” semantics
whereas its competitors provide unicast semantics.
The provision of anycast instead of unicast semantics
has significant implications for the applications that
use the overlay network since they are now responsi-
ble for maintaining consistency between state main-
tained on all nodes belonging to the same anycast
equivalence class.

Many of the original peer-to-peer papers used
distributed hash tables storing immutable content as a

driving application. For this application, anycast de-
livery semantics are fine. In contrast, when using
application-level multicast as a driving application
we observed that CAN imposed a significant seman-
tic burden on the application.

4. Conclusion
The primary contributions of this work are two-

fold: we have provided an independent validation of
the originally published CAN results and we have
learned about some of the difficulties of using CAN
as a distributed systems building block. Along the
way we both extended the CAN design and fixed a
few design bugs. Our validation is based on having
done a completely separate implementation of CAN,
using a different simulator for testing CAN, and cre-
ating a separate set of experiments for testing and
using CAN. Our experience with CAN is based on
having both performed unicast messaging experi-
ments as well as building two different kinds of ap-
plication-level multicast.

While gratified that CAN seems capable of
achieving the performance and cost levels for which
it was designed we were surprised by the amount of
complexity we encountered when using and tuning it.
In particular:
• We found that changing tuning parameters did

not yield easily predictable changes in CAN be-
havior.

• Several of the tuning parameters force anycast
communication semantics on the application.
While this may be quite suitable for some appli-
cations it may add a non-trivial burden to the de-
sign, implementation, and behavior of others.

• Several of CAN’s features had significant com-
plexity hidden inside their design. In particular,
we found a subtle bug in CAN’s broadcast flood-
ing algorithm and had considerable difficulty and
only partial success in getting topologically
aware node assignment to work as intended.

Acknowledgments
We thank Sylvia Ratnasamy for answering our

many questions concerning CAN, and for the topol-
ogy files used in their experiments. Without her help
we could not have validated our CAN implementa-
tion. We likewise thank Antony Rowstron, Miguel
Castro, and Anne-Marie Kermarrec for allowing us
to use their network simulator.

References
[Castro et al. 03] Miguel Castro, Michael B. Jones, Anne-

Marie Kermarrec, Antony Rowstron, Marvin Theimer,

 7

Helen Wang, Alec Wolman. An Evaluation of Scal-
able Application-Level Multicast Built Using Peer-
To-Peer Overlay Networks. In Proceedings of IEEE
INFOCOM, San Francisco, CA, April 2003.

[Chu et al. 00] Yang-hua Chu, Sanjay G. Rao and Hui
Zhang. A Case for End System Multicast. In Proceed-
ings of ACM SIGMETRICS, Santa Clara, CA, pp. 1-
12, June 2000.

[Ratnasamy et al. 01a] Sylvia Ratnasamy, Paul Francis,
Mark Handley, Richard Karp, and Scott Shenker. A
Scalable Content-Addressable Network. In Proceed-
ings of ACM SIGCOMM, San Diego, CA, pp. 161-
172. August 2001.

[Ratnasamy et al. 01b] Sylvia Ratnasamy, Mark Handley,
Richard Karp, and Scott Shenker. Application-level
Multicast using Content-Addressable Networks. In
Proceedings of Third International Workshop on Net-
worked Group Communication, UCL, London, UK,
November 2001.

[Rowstron and Druschel 01] Antony Rowstron and Peter
Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In
Proceedings of IFIP/ACM Middleware 2001, Heidel-
berg, Germany, November 2001.

[Rowstron et al. 01] Antony Rowstron, Anne-Marie Ker-
marrec, Miguel Castro, and Peter Druschel. SCRIBE:
The design of a large-scale event notification infra-
structure. In Proceedings of Third International Work-
shop on Networked Group Communication, UCL,
London, UK, November 2001.

[Stoica et al. 01] Ion Stoica, Robert Morris, David Kar-
ger, Frans Kaashoek, and Hari Balakrishnan. Chord:
A Scalable Peer-To-Peer Lookup Service for Internet
Applications. In Proceedings of ACM SIGCOMM,
San Diego, CA, pp. 149-160. August 2001.

[Zegura et al. 96] Ellen W. Zegura, Kenneth L. Calvert,
and Samrat Bhattacharjee. How to Model an Internet-
work. In Proceedings of IEEE Infocom ’96, San Fran-
cisco, CA, April 1996.

[Zhao et al. 01] Ben Y. Zhao, John D. Kubiatowicz, and
Anthony D. Joseph. Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing. U. C.
Berkeley Technical Report UCB/CSD-01-1141, April,
2001.

