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Abstract 
As part of evaluating options for the design and 

implementation of a scalable application-level multi-
cast system, we produced an independent implemen-
tation of CAN, experimented with tuning it, and also 
extended it to improve its performance and in some 
cases, correctness.  We were able to reproduce most 
of the results in the original CAN paper, providing 
independent validation of their results.  However, we 
encountered far more complexity with tuning and 
extending CAN than anticipated.  The best set of pa-
rameter choices appeared to be highly scenario-
specific and non-intuitive, at least for some of the 
parameters supported.  Tuning CAN involved a lot of 
trial-and-error navigation through the CAN parame-
ter space.  Furthermore, the “anycast” semantics pro-
vided by CAN turned out to make our application 
design more complex than was originally anticipated. 

1. Introduction 
The Content Addressable Network (CAN) [Rat-

nasamy et al. 01a] is a self-organizing, peer-to-peer 
overlay network that can be used to build scalable 
distributed applications.  Other such overlay net-
works currently in use include Chord [Stoica et al. 
01], Tapestry [Zhao et al. 01], and Pastry [Rowstron 
and Druschel 01]. 

Scalable application-level multicast is a function 
that can take advantage of the capabilities provided 
by such overlay networks.  As part of evaluating op-
tions for the design and implementation of a scalable 
application-level multicast system we experimented 
with both CAN and Pastry, with results reported in 
[Castro et al. 03].  This paper reports on the lessons 
we learned from trying to tune CAN for our applica-
tion as well as improve its performance and, in some 
cases, correctness. 

One of our earliest steps was to produce an inde-
pendent implementation of CAN.  To validate our 
implementation we then set about reproducing the 
results presented in the original CAN paper.  In 
nearly all cases we were able to reproduce these re-

sults within a few percent of the original values, 
thereby providing independent validation of their 
results. 

We then set about tuning CAN for our multicast 
application.  Our original validation efforts involved 
tuning CAN for simple unicast message-passing and 
we had intended to use the resultant parameter set-
tings as a starting point for tuning two different mul-
ticast designs.  Unfortunately these settings did not 
provide much help, as it turned out that the best set of 
parameter choices appeared to be highly scenario-
specific and changes in parameter settings resulted in 
non-linear performance effects.  

Along the way we discovered and fixed a bug in 
the published CAN multicast flooding algorithm 
[Ratnasamy et al. 01b] and also extended the design 
with three additional features in an effort to increase 
CAN’s performance.  Two of the three features, net-
work-based routing metric and transit-stub topologi-
cal node placement, ended up improving perform-
ance while one, corner neighbors did not. 

An unexpected complication we encountered 
concerned itself with the fact that some of CAN’s 
more important parameter settings, multiple nodes 
per zone and multiple realities, cause it to deliver 
messages in anycast-style to any of a set of eligible 
nodes, rather than to a single destination node. As a 
result, we ended up having to add an extra layer of 
distributed synchronization to our application. 

The net result of our efforts and experiments was 
that we were able to validate the overall performance 
claims that have been published in the prior literature 
but that we encountered an unexpectedly large 
amount of complexity while trying to tune CAN for 
our application as well as when extending it to im-
prove its performance and correctness.  The remain-
der of this paper briefly summarizes the CAN design, 
describes the new features we added to it, describes a 
bug in the published CAN flooding algorithm and 
our fix for the bug, and our experiences with trying to 
tune and use CAN. 
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2. CAN Design 
2.1 Basic Design 

The Content Addressable Network (CAN) [Rat-
nasamy et al. 01a] overlay network design organizes 
nodes of an overlay into a d-dimensional hypercube.  
Each node takes ownership of a specific hyper-
rectangle in the space, such that the collection of hy-
per-rectangles covers the entire space.  Each node 
tracks who its immediately adjacent neighbors are 
and routes messages to them.  Nodes join the hyper-
cube by routing a join message to a randomly chosen 
point in the space, causing the node owning that re-
gion of space to split its region into two, giving half 
to the new node and retaining half for itself.  Mes-
sage routing consists of choosing one of the current 
node’s neighbors closer in CAN space to the destina-
tion than the current node is, and forwarding the 
message to that neighbor, repeating this process until 
the message reaches the node whose region contains 
the destination address. 

2.2 Previously Published CAN Features 
Beyond the basic CAN algorithm, described 

above, CAN adds a number of “knobs” that can be 
used to improve its routing performance.  While 
these were described in [Ratnasamy et al. 01a], we 
summarize them here: 

Dimensions: The number of dimensions of the 
CAN hypercube. 

Ratio-Based Routing: Vanilla CAN routes to 
the neighbor closest to the destination in CAN space.  
Ratio-based routing examines the ratio between the 
network delay to each neighbor and the progress 
made in CAN space by routing to that neighbor, 
choosing to route to the neighbor with the best ratio 
of CAN distance progress to network cost. 

Multiple Nodes per Zone: This knob allows 
more than one node to inhabit the same hyper-
rectangle.  CAN delivers messages to any one of the 
zone inhabitants in an anycast manner. 

Multiple Realities: This knob allows multiple 
CAN hypercubes to co-exist at once, with the same 
nodes occupying each, but with completely different 
assignments of hyper-rectangles to nodes in each.  
Messages can switch between realities at each hop.  
Messages are delivered to a zone containing the des-
tination CAN address in any one of the realities. 

Uniform Partitioning: If enabled, when a node 
joins the CAN network, once its join message 
reaches a node containing its target CAN address, 
rather than immediately splitting the region in two, 

all the node’s neighbors are examined.  If a 
neighbor’s zone is larger than the current zone, the 
join message is forwarded to the neighbor, which will 
then apply the same test.  Once a local maximum 
neighbor size is reached that zone is split in two, with 
the new node obtaining half the split zone. 

Landmark-Based Placement: Landmark-based 
placement causes nodes, at join time, to probe a set 
of well known “landmark hosts”, estimating each of 
their network distances.  Each node measures its 
round-trip-time to the landmark machines, and orders 
the landmarks from the nearest to the most distant in 
the underlying network.  Nodes with the same land-
mark ordering are clustered into a bin.  Rather than 
choosing a random CAN addresses at which to join, 
the CAN space is divided into evenly sized bins, and 
the CAN join address is then chosen from within the 
bin area.  The effect is that nodes with the same 
landmark ordering end up closer to each other in 
CAN space. 

2.3 New CAN Features 
In the course of our investigations we developed 

several additional knobs beyond those previously 
published in an attempt to further improve the 
achievable CAN performance along several dimen-
sions.  We summarize them here: 

Network-Based Routing Metric: Network-
based routing chooses to route a message to the 
neighbor with least network cost, subject to the mes-
sage still being closer to the destination.  This is like 
the previously-published Ratio-Based Routing except 
that only network cost is factored into the routing 
decisions. 

Corner Neighbors:  We extended the CAN im-
plementation to support routing through corner 
neighbors.  Our motivation for adding corner 
neighbors was to increase the number of available 
routing choices.  In a traditional CAN, a node is only 
considered a neighbor if the coordinate spans overlap 
along d-1 dimensions and are adjacent along 1 di-
mension.  With our extension, a node will be consid-
ered a corner neighbor if the coordinate spans are 
adjacent along 2 or more dimensions, and overlap 
along all remaining dimensions.  In CANs with a 
large number of dimensions, the number of corner 
neighbors has the potential to grow extremely large.  
To offset this effect, we implement an option where 
nodes can randomly select a fixed number of corner 
neighbors from the set of possible corner neighbors. 

Transit-stub Topological Node Placement:  
The basic CAN construction is ignorant of the under-



 

 3

lying network topology, namely, two adjacent nodes 
in the CAN coordinate space may be far from each 
other in terms of the IP network distance. One of our 
key interests was to understand how much perform-
ance benefit there is to constructing overlays using 
network topology information.  Consequently we 
wanted to see how alternative assignment strategies 
would perform.  In addition to the landmark-based 
placement described above, we constructed a place-
ment technique based on the Georgia-Tech transit-
stub Internet topology model supported by our simu-
lator [Zegura et al. 96].  Here, we divide the CAN 
space into T equal sized bins, where T is the total 
number of transit networks in the topology.  Within a 
given bin, we randomly choose CAN addresses for 
each stub network that attaches to the corresponding 
transit network.  This ensures that all stubs that con-
nect to the same transit network will be relatively 
near each other in CAN space.  Furthermore, nodes 
connected to the same stub network will also end up 
close to each other in CAN space. 

2.4 CAN Flooding as Previously Published 
The multicast algorithm we implemented for 

CAN is based on the efficient flooding algorithm de-
scribed in [Ratnasamy et al. 01b], with some signifi-
cant modifications.   We begin by summarizing the 
published algorithm, and then we present our modifi-
cations. 

The naive approach to implement flooding for a 
CAN overlay network is for each node that receives a 
message to forward that message to all of its 
neighbors. Nodes filter out duplicate messages by 
maintaining a cache of previously received message-
ids.  The problem with the naive strategy is that it can 
lead to a large number of duplicate messages.  To 
reduce the number of duplicates, the [Ratnasamy et 

al. 01b] study presents an efficient flooding algo-
rithm that exploits the structure of the CAN coordi-
nate space to limit the directions in which each node 
will forward messages.  Nodes use the following five 
rules to decide whether to forward a message, and to 
decide to which neighbors to forward the message. 
1. Origin Forwarding Rule: The multicast origin 

node forwards the message to all neighbors. 
2. General Forwarding Rule: A node receives a 

message from a neighboring node adjacent along 
dimension i. The node forwards that message to 
all adjacent neighbors along dimensions 1 
through i-1.  The node also forwards the message 
to those adjacent neighbors along dimension i in 
the opposite direction from where it received the 
message. 

3. Duplicate Filter Rule: A node caches the mes-
sage-ids of all received messages.  When a node 
receives a duplicate, it does not forward the mes-
sage. 

4. Half-Way Filter Rule: A node does not forward a 
message along a particular dimension if that 
message has already traveled at least half-way 
across the space from the origin coordinate in 
that dimension. 

5. Corner Filter Rule: Along the lowest dimension 
(dimension 1), a node N only forwards to a 
neighbor A if a specific corner of A (CA) is in 
contact with N.  CA is defined to be the corner of 
A that is adjacent to N along dimension 1 and has 
the lowest coordinates along all other dimen-
sions. Note that this rule eliminates certain mes-
sages that would otherwise be sent according to 
the two forwarding rules. 

2.5 Improvements to CAN Flooding 
We discovered and fixed two flaws with the 

above algorithm.  The first flaw is an ambiguity in 
the half-way filter rule specified above.  The authors 
state that the above algorithm ensures there will be 
no duplicate messages if the CAN coordinate space is 
evenly partitioned (i.e. all CAN nodes have equal 
sized zones).  The following change to the half-way 
filter rule is needed to ensure that this property actu-
ally holds.  When deciding whether or not to forward 
to a neighbor N, if N contains the point that is half-
way across the space from the source coordinate in 
that dimension, then we only forward to N that 
neighbor from the positive direction. 

The second flaw we discovered is a race condi-
tion that can lead to certain nodes never receiving the 
flooded message. This race condition arises because 

                             

Figure 1:  Illustration of the race condition that affects 
the CAN efficient flooding algorithm. If the timing of 
messages follows the timeline specified in this figure, 
then Node E never receives the flooded message. 
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when a node receives a duplicate message, it does not 
forward that message.  Therefore, the order in which 
a node receives a message from its neighbors may 
determine the directions in which that message is 
forwarded.  To demonstrate this problem, Figure 1 
illustrates a situation where one of the nodes does not 
receive the multicast message.  This figure shows a 
small portion of a 2-dimensional CAN, where the 
dashed line in the figure is the location along the y 
axis that is half-way from the origin. The sequence of 
message delivery times listed in the timeline portion 
of Figure 1 causes node E to never receive the mes-
sage.  Note that a different ordering of message re-
ception either at node C or at node D would have led 
to proper message delivery at node E.  For example, 
if we switch the order of messages at times T=1 and 
T=2, then the message from A to C is delivered be-
fore the message from B to C, which means that node 
C will forward the message to E. 

The idea behind our fix to the flooding algorithm 
is to make static forwarding decisions based on the 
relative position of a node to the multicast origin, 
rather than dynamic forwarding decisions based on 
the order of incoming messages.  The new algorithm 
breaks up the forwarding process into two stages.  In 
first stage, a node decides which dimensions and di-
rections to the forward message along.  In the second 
stage, a node applies a second set of rules to filter the 
subset of neighbors that satisfy the first stage rules. 

The stage one forwarding rules are: 
1. If a node's region overlaps the origin along all 

dimensions less than or equal to i, then this node 
will forward the message in both the positive and 
the negative directions along dimension i. 

2. If a node's region overlaps the origin along all 
dimensions less than i, then this node will for-
ward the message only in one direction along 
dimension i.  The direction to forward the mes-
sage will be away from the origin coordinate, 
towards the half-way point. 

3. For the lowest dimension (dimension 1), always 
forward only in one direction.  As before, the 
forwarding direction will be away from the ori-
gin coordinate, towards the half-way point. 

The stage two filtering rules are: 
1. For all dimensions greater than 1, only forward 

to a neighboring node along dimension i if that 
neighbor's region overlaps the origin coordinates 
for all dimensions less than i. 

2. The half-way filter rule from the original algo-
rithm, with our modification described above. 

3. The corner filter rule from the original algorithm. 

Although the rules for this algorithm look somewhat 
different from the original algorithm, the way that 
messages flow through the CAN coordinate space is 
quite similar to the original algorithm.  An important 
side effect of the modified flooding algorithm is a 
significant reduction in the number of duplicate mes-
sages, due to the first rule in the filtering stage of the 
new algorithm. 

3. Experiments and Results 
3.1 Experimental Context and Methodology 

We built an independent implementation of CAN 
in a discrete-event simulator provided by the Pastry 
authors.   This work was part of our effort to evaluate 
the effectiveness of building scalable application-
level multicast using overlay networks [Castro et al. 
03]. To the best of our knowledge, that study con-
ducted the first head-to-head comparison of CAN-
style versus Pastry-style overlay networks, using 
multicast communication workloads running on an 
identical simulation infrastructure. 

In this paper, we report results from two different 
sets of simulations.  The first set of simulations uses 
a workload that consists of randomly selected nodes 
in the overlay performing unicast RPC-style commu-
nication patterns.  The second set of simulations was 
performed as part of the aforementioned multicast 
study, and the communication workloads consist of 
both the CAN efficient flooding algorithm [Ratna-
samy et al. 01b] and the Scribe tree-based multicast 
algorithm [Rowstron et al. 01] running on top of 
CAN. 

Our simulations ran on a network topology with 
5050 routers.  We used a random graph generated 
with the Georgia Tech transit-stub Internet topology 
model [Zegura et al. 96].  Our simulator models la-
tency for each of the network links, and queuing de-
lay at each of the application-level overlay hops.  It 
does not model queuing delay at the internal routers 
or packet losses because modeling these would pre-
vent simulation of large networks. 

To evaluate performance, our primary metrics 
are relative delay penalty (RDP) [Chu et al. 00] and 
neighbor state overhead.   RDP is the ratio of the av-
erage delay across the overlay network and the aver-
age delay across the underlying IP network.   
Neighbor state overhead is a measure of the number 
of neighbors that each overlay node communicates 
with, averaged across all nodes that participate in the 
overlay.  This measure is important because 



 

 5

neighbors must communicate on a regular basis to 
maintain the structure of the overlay and to imple-
ment estimates of the network delay between nodes. 

3.2 CAN Parameter Complexity 
CAN has a very large number of parameters that 

can be used to tune its performance.  We performed 
an extensive exploration of this parameter space, at-
tempting to understand which combinations of pa-
rameters lead to the best RDP values for unicast 
communication.  The intent was to use the best pa-
rameter combination as a starting point for tuning our 
application-level multicast system.   

We varied the following parameters during our 
exploration: the number of dimensions; the number 
of nodes per zone; the number of realities; ena-
bling/disabling uniform partitioning; ena-
bling/disabling routing through corners; the maxi-
mum number of corner neighbors considered; choos-
ing a node assignment policy from among random, 
topological, or landmark-based; and choosing a rout-
ing policy from among CAN distance, CAN ratio, or 
network distance.  To allow direct comparisons be-
tween different CAN configurations, we measured 
the average amount of neighbor state that each node 
maintains and only compared instances of CAN that 
used similar amounts of neighbor state. 

Our primary conclusion is that the CAN parame-
ter space is difficult to navigate.  Configurations that 
work well with one state size budget do not scale to a 
different one in a linear fashion.  Therefore, discover-
ing the best configuration with 50 neighbors does not 
provide immediate insight into which parameters will 
give the best configuration with 100 neighbors.  To 

illustrate the difficulties encountered in exploring the 
CAN parameter space, Figure 2 shows how varying a 
single parameter, the number of landmarks, can lead 
to interesting non-linear behavior in terms of RDP.   

The difficulty of tuning CAN also manifested it-
self in our application-level multicast work.  The best 
choice of parameters we were able to find from our 
unicast experiments did not prove particularly useful 
for our multicast experiments, forcing us to re-
explore the parameter space to tune multicast per-
formance.  Table 1 lists a set of representative con-
figurations yielding lowest RDP values for an 80,000 
node CAN multicast system at a variety of different 
state overheads.  Note the unpredictable variation of 
even the most basic CAN parameter, namely dimen-
sionality of the hyperspace. 

 
State Dimen-

sions (d) 
Nodes Per 
Zone (z) 

Realities Uniform 
Partitioning 

18 10 1 1 enabled 
29 9 2 1 enabled 
38 12 3 1 enabled 
59 10 5 1 enabled 

111 8 10 1 enabled 
Table 1:  Representative good configurations, as a 

function of neighbor state, for an 80,000 node CAN. 

 
Nonetheless, we can provide some general guide-

lines, at least for the workloads that we have ex-
plored.  Enabling some form of topological assign-
ment (either landmark-based or transit-stub-based) 
provided the largest improvement in RDP out of all 
the CAN parameters.  For example, a typical transit-
stub-based placement configuration saw a 32% im-
provement in RDP and an 11% decrease in neighbor 
state compared to a random node placement configu-
ration.  We found that transit-stub-based node place-
ment performed comparably to landmark-based node 
placement once sufficient numbers of landmarks 
were employed to be effective.   

Enabling uniform partitioning often provides a 
significant reduction in terms of the neighbor state 
overhead, especially for the two topological assign-
ment schemes where nodes often end up clustered 
close together in the CAN space.  Furthermore, uni-
form partitioning never causes RDP to become sig-
nificantly worse. 

The network distance routing metric appears to 
perform consistently better than the other routing 
metrics.  For a typical configuration, network-based 
routing provides a 24% improvement in RDP over 
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Figure 2: The impact of the landmarks on RDP for 10,000 
nodes, 10 dimensions, and 5 nodes per zone. 
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ordinary CAN routing, and a 15% improvement over 
ratio-based routing. 

Both corner routing and multiple realities don’t 
seem to improve RDP significantly without large 
increases in neighbor state overhead.  For example, 
when we limit the number of corner neighbors con-
sidered so that it requires only a moderate amount of 
state, the improvement in RDP is extremely small. 
For example, we see a 0.1% improvement in RDP 
versus a 27% increase in neighbor state. 

3.3 Topologically Aware Node Assignment Com-
plexity 
To implement both landmark-based placement 

and transit-stub topological placement, one must de-
vise a technique for dividing the CAN coordinate 
space evenly into a fixed number of bins, where the 
number of bins is not known in advance. A desirable 
property for these bins is that the length in each di-
mension be comparable (e.g. to avoid long and thin 
rectangles).   

Our initial binning approach frequently lead to 
the creation of star topologies – a single node occu-
pying a large portion of the CAN space with a very 
large number of neighbors (each of which occupies a 
small portion of the CAN space).  This sort of topol-
ogy defeats the purpose of constructing the overlay in 
the first place. A combination of refinements to our 
binning algorithm and enabling uniform partitioning 
were critical to reducing the magnitude of this effect, 
although we were unable to completely eliminate the 
problem. 

3.4 Application Programming Model Complexity 
An important distinction to understand between 

CAN and overlay networks such as Pastry, Chord, 
and Tapestry is that they deliver a message tagged 
with a given key to exactly that single node whose 
node ID is numerically closest to the key in the 
namespace.  In contrast, CAN delivers such a mes-
sage to any node in the overlay that belongs to the 
same zone that the key is contained by in some real-
ity.  Thus, CAN provides “anycast” semantics 
whereas its competitors provide unicast semantics.  
The provision of anycast instead of unicast semantics 
has significant implications for the applications that 
use the overlay network since they are now responsi-
ble for maintaining consistency between state main-
tained on all nodes belonging to the same anycast 
equivalence class. 

Many of the original peer-to-peer papers used 
distributed hash tables storing immutable content as a 

driving application.  For this application, anycast de-
livery semantics are fine.  In contrast, when using 
application-level multicast as a driving application 
we observed that CAN imposed a significant seman-
tic burden on the application. 

4. Conclusion 
The primary contributions of this work are two-

fold: we have provided an independent validation of 
the originally published CAN results and we have 
learned about some of the difficulties of using CAN 
as a distributed systems building block.  Along the 
way we both extended the CAN design and fixed a 
few design bugs.  Our validation is based on having 
done a completely separate implementation of CAN, 
using a different simulator for testing CAN, and cre-
ating a separate set of experiments for testing and 
using CAN.  Our experience with CAN is based on 
having both performed unicast messaging experi-
ments as well as building two different kinds of ap-
plication-level multicast. 

While gratified that CAN seems capable of 
achieving the performance and cost levels for which 
it was designed we were surprised by the amount of 
complexity we encountered when using and tuning it.  
In particular: 
•  We found that changing tuning parameters did 

not yield easily predictable changes in CAN be-
havior. 

•  Several of the tuning parameters force anycast 
communication semantics on the application.  
While this may be quite suitable for some appli-
cations it may add a non-trivial burden to the de-
sign, implementation, and behavior of others. 

•  Several of CAN’s features had significant com-
plexity hidden inside their design.  In particular, 
we found a subtle bug in CAN’s broadcast flood-
ing algorithm and had considerable difficulty and 
only partial success in getting topologically 
aware node assignment to work as intended. 
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