
Toward Industrial Strength Abstract StateMachines?Yuri Gurevich, Wolfram Schulte, and Margus Veanesfgurevich, schulte, margusg@microsoft.comOctober 2001Technical ReportMSR-TR-2001-98Microsoft ResearchMicrosoft CorporationOne Microsoft WayRedmond, WA 98052Abstract. A powerful practical ASM language, called AsmL, is beingdeveloped in Microsoft Research by the group on Foundations of SoftwareEngineering. AsmL extends the language of original ASMs in a numberof directions. We describe some of these extensions.

? This paper was supposed to appear in the Proceedings of the ASM'01 Workshopheld in February 2001 on the Canary Islands. The Proceedings were supposed to bepublished in Springer Lecture Notes in Computer Science, but the publication wasaborted. There are no plans for a journal publication of this article.

21 IntroductionExecutable speci�cations in the form of abstract state machines can play animportant role in software development. To realize the potential, the Founda-tions of Software Engineering group at Microsoft Research has developed (andcontinues to develop) AsmL, an ASM Language. AsmL is a powerful, practicallanguage. It facilitates writing complex speci�cations and allows you to executethese speci�cations. It is integrated with the current Microsoft programming en-vironment and is intended to support various useful tools. See our website [4] inthis connection.At this point (the spring of 2001), AsmL is single-threaded but is embedded intoa multi-threaded runtime environment.Conceptually AsmL is massively parallel. One state-change of an AsmL programmay be a complex transaction involving numerous subprograms. This allows youto avoid unnecessary sequentialization imposed by conventional programminglanguages and to make your programs clearer.To deal gracefully with numerous issues of practical execution, AsmL extendsthe language of original ASMs in a number of directions. Here we describe someof these extensions. Our description of these extensions is admittedly high-levelbut it gives main ideas. We presume that the reader is familiar with the Li-pari guide [5] to abstract state machines (called evolving algebras in the guide),and we restrict attention to sequential-time ASMs. A more detailed semanticaltreatment of AsmL, in the spirit of the Michigan guide [6], is in preparation.While this paper is in
uenced by the development of AsmL, we take a broaderview. In particular, we do not adhere slavishly to the current AsmL syntax.2 The Background StructureBy default, sets, sequences and maps are �nite in this paper.AsmL includes arithmetic and allows you to form sets, sequences, maps, tuples,etc. of your data. You may have, for example, maps from integers to sets ofintegers, sequences of such maps, sets of such sequences. What world do allthese composite entities live in? To provide such a world, special backgroundstructures were introduced in [1]. A set-background structure was explored in[2] without using the term \background". In the rest of this section, we mentionsome aspects of the AsmL background structures.Sets The background structure of AsmL includes the set-background of [2].AsmL has symbols for the containment relation, for the empty set and for anumber of set-theoretic operations. The states are closed under the set-formationoperation: If s is a set of elements of a state X then s itself is an element of X ;in that sense s is an elementary set. Think about the base set of X as follows:

3it is composed of non-sets and of the sets built by repeatedly applying the set-formation operation. As in [2], we use set-comprehension expressionsft(x) | x in r where �(x)gHere r is a set-valued expression so that values of r are elementary sets. Forexample,fx*x*x | x in f1,2,3,4g where x*x < 10g = f1,8,27gTuples and Sequences The AsmL background includes tuples and sequences, sothat, in any state, every tuple of elements is an element, and every sequence ofelements is an element (an elementary sequence). We use parentheses to denotetuples: (1,8,27,64). We use square brackets to denote sequences. A sequence-comprehension expression has the form[t(x) | x in r where �(x)]Here r is a sequence-valued expression. For example,[x*x*x | x in [3,4,3,5] where x*x < 10] = [27,27]Maps The AsmL background includes maps. A map m is a unary function suchthat, in any state X , the domain Dom(m) is a set of elements of X , and everym(x) is an element of X ; m(x) = undef for every x outside Dom(x). Any mapfrom elements of X to elements of X is again an element of X (an elementarymap). A built-in function Apply allows us to apply a map m to an element x.We abbreviate Apply(m;x) to m(x).There are only so many parentheses in a key-board. How to denote maps?Consider a map m that takes 1 to 7 and 2 to 11. The graph of m is the setf(1; 7); (2; 11)g. The map m itself can be denoted thus: f1 7! 7; 2 7! 11g. Thisdoes not mean that m is a set. This is just a convenient notation. The con-stituents 1 7! 7 and 2 7! 11 are called maplets. The notation f1 7! 2; t 7! 3g willgenerate a runtime error in a state where t = 1.The map-comprehension expression has the formf t(x) 7! t'(x) | x in r where �(x)gHere r is a set-valued expression. For example,f x 7! x*x*x | x in f1,2,3,4g where x*x < 10g =f 1 7! 1, 2 7! 8, 3 7! 27 g

4Reserve The above description of the AsmL background is not exhaustive. Inaddition, the background contains the integers for example. Think about thebase set of an AsmL state as follows: it is composed of atoms (that are not sets,not sequences, etc.) and of sets, sequences, etc. built by repeatedly applying theset-forming operation, the sequence-forming operation, etc. in any order.In a given state, an atom can be the value of an expression. Here are someexample expressions: undef, 1+1, head(s) where s is a sequence variable. Anatom can be a constituent of the value of an expression, for example it may be anelement of the value of a set variable. The remaining atoms are indistinguishableand constitute the reserve of the state. Any permutation of the reserve gives riseto an automorphism of the state. In contrast to the Lipari, the reserve is nota naked set. For example, tuples containing arbitrary reserve and nonreserveelements exist in the state; you do not have to create them after importing thereserve elements.3 Partial Updates of Sets and Maps3.1 Partial Updates of SetsThere are two distinct ways to view a set. From one point of view, a set is a singleunit. Accordingly, a set variable s is a nullary function whose intended values ina given state X are elements of X that are sets. An update rule s := e gives riseto a total update of s; the old value of s is replaced with a new value. From theother point of view, a set is an aggregate entity; you can put elements in andout of the set. To re
ect this point of view, you want to see the set variable sas a dynamic relation. Update rules s(e1) := true, s(e2) := false are partialupdates of s.In the unitary approach, partial updates are problematic. If you want to insertan element, say 7, into s, you can use the update rule s := s [f7g. But twodi�erent insertions like that, say s := s [f7g and s := s [f11g, contradict eachother. Of course you can combine the two rules by hand, e.g., s := s [f7; 11g.In general, this is impractical. Di�erent partial updates of s may come fromdi�erent parts of your program.In the aggregate approach, total updates of s are problematic. Suppose thatthe desired new value of s is f1; 2; 3g. The update commands s(1) := true,s(2) := true and s(3) := true insert the three elements into s; the problem isto ensure that s will not contain any other elements.AsmL allows you to make total and partial updates at once. Let us worry aboutthe legitimacy of this later. For now, let's explain how to combine a collectionU of total and partial updates of the set variable s. The most interesting case isthis.{ There is exactly one total update in U ; it replaces the old value of s with aset a.

5{ The elements b1; : : : ; bp that U inserts into s and the elements c1; : : : ; cq thatU removes from s are disjoint, so that fb1; : : : ; bpg \ fc1; : : : ; cqg = ;.In this case, U is consistent if and only if a contains every bi and no cj .3.2 Partial Updates of MapsLet � be a map variable. It may happen in a given state X that some �(a1) isagain a map, and �(a1)(a2) is again a map, and so on. You may want to updatevarious maps of the form �(a1)(a2) � � � (aj). This poses an update-consistencyproblem. We illustrate the problem and the solution on an example.Let � be a map variable with value f1 7! a; 2 7! f3 7! bgg. � can be picturedas a labeled tree a1 2b3We update �(2) to the map f5 7! cg via the rule�(2) := f5 7! cg: (1)and we update �(2)(3) to d via the rule�(2)(3) := d: (2)If both rules are �red in parallel, then the resulting update is contradictory.Indeed, let Y be the sequel of the current state X . By the �rst rule, the value of�(2) in Y is the map f5 7! cg and so �(2)(3) = undef, but, by the second rule,the value of �(2)(3) in Y is d.If, instead of rule (1), we �re the rule�(2)(5) := c (3)in parallel with the rule (2) then the resulting update set is consistent and thevalue of � in Y is, as expected, the mapa1 2d3 c5That is how AsmL deals with partial updates of maps.

63.3 Justi�cation of Partial UpdatesThe Lipari guide [5] does not provide for partial updates. The development ofAsmL put the issue of partial updates on the front burner. Partial updates willbe legitimized in the paper [8].The question arises whether partial updates can be justi�ed in the Lipari frame-work. Yes, this can be done, but at a price. To justify partial updates in theLipari framework, we need to present each partial update as a total update ofsome location. In the case of maps, one can introduce a special map registryfunction MR(x) where x is a sequence. To modify a map variable m at 1, up-date location MR(m; 1). To modify m(1) at 2, update MR(m; [1; 2]). To modifym itself, modify location MR(m;Nil). In this approach, m is a static functionwhose denotation just representsm in the state. The information about the mapassociated with m is give by the map registry. A similar approach can be appliedto sets. We do not develop this approach in details as we are not going to adoptit.4 Blurring the Di�erence Between Expressions and RulesIn AsmL, an expression may include rules so that the evaluation of the expressionmay produce updates. This makes programming easier and more natural. For asimple example, suppose that, for some reason, it became necessary to keep trackof all arguments x passed as parameters to a function (or named expression)f(x as Integer) as Integer =return e(x)with integer arguments and integer values. To achieve the goal, introducevar S as Set of Integer initially fgand modify the de�nition of f above tof(x as Integer) as integer =S(x) := truereturn e(x)Otherwise the program remains intact. In particular, there is no need to changeany code that calls f .Update-producing expressions make modeling easier and more natural. Hereis a simple and typical example. Large scale programming tends to be moreand more component oriented. COM is Microsoft's Component Object Model.A COM component comes with an oÆcial interface. The interface often has an

7enumerator holding a sequence of integers; a special function Next allows a clientto consume the sequence one integer at a time. Modeling such a component inAsmL, we haveclass Enumerator (s as Seq of Integer)var t as Seq of Integer = sNext() as Integer =if t = [] then undefelse t := tail(t)return head(t)Notice that a call to the Next function changes the value of t.5 MachinesLet us �rst review a sorting example in the May 2001 release of AsmL. Declarea sequence variablevar A as Seq[Integer]which holds a sequence of integers. For many purposes, AsmL treats a sequencex as a map on f0..length(x)-1g. The ruleswap() =choose i, j in f0..length(A)-1gwhere i < j and A(i) > A(j) doA(j) := A(i)A(i) := A(j)chooses nondeterministically two members of the sequence which are in thewrong order and swaps them. The two assignments are executed in parallelof course. If A has been sorted, then the rule does nothing.The rule swap can be executed repeatedly until the computation reaches the�xed point, that is the state does not change anymore. This gives rise to a littleabstract state machinesort() =until fixpoint doswap()The machine is an executable speci�cation of in-space one-swap-at-a-time sortingand thus describes a family of sorting algorithms, e.g. bubble sort and quicksort.You can use sort() as a rule in your program.

8prog1() =machineA := [7,3,8,2]stepsort()stepwriteln(A)The AsmL keyword step indicates sequential substitution. Thus prog1 performsthree steps: initializes A, sorts it, and then prints out the result. On the abstrac-tion level of prog1(), sort() does only one step; the sorting computation isperformed on a lower abstraction level. In that sense, sort() is a submachineof prog1().Now prog1() itself can be used as a submachine in a larger program, sayprog2(). On the abstraction level of prog2(), machine prog1() performs onlyone step, not three. The sequence variable A can be declared and initialized inprog2() outside prog1(); then machine prog1() changes the state of prog2().The keyword machine is used to indicate the program itself as well as its subma-chines. The body of the function sort() is a machine but the keyword machineis not used there because of the keyphrase until fixpoint do. Machines alsocan return results.Historical Remark The notion of submachine was explored in [3].6 Exception HandlingThrowing and catching exceptions is a powerful idea of modern approach toprogramming. The use of exceptions allows one to write a cleaner code thatemphasizes the intended functionality. A rudimentary form of exception handlingappears in the Michigan guide in the form of a try-else construct. AsmL usesexception handling in a systematic way.Here is a simpli�ed AsmL example from one of our window-networking projects.Install(parameters) =if something_is_wrong_with_the_parameters thenthrow e1elsetrymachineuninstall_the_old_componentstepread_in_the_necessary_infostep

9install_new_partcatche2 as RuntimeException :write_log(e2)throw e3The Install method takes a tuple (in fact a long tuple) of parameters. One ofthe parameters indicates which component is to be installed. First it is checkedthat the parameters are legal. If something is wrong with the parameters thenexception e1 is thrown. (In the actual code, di�erent exceptions are throwndepending on the conditions that are violated.) The exception e1 is supposed tobe caught by the user who called the Install method.If all the parameters are legal, the try block is executed: the old version, ifany, of the component is removed, then the data is read in, and �nally the newcomponent is installed. Many things can go wrong during any of the three phasesin which case an appropriate exception e2 is generated and the control movesto the catch block. Here an entry is made into the log �le and a new exceptione3 is generated for the bene�t of the caller.Every exception has a type in AsmL. It may or may not be an object. Concep-tually, it is possible that several exception of the same try block are thrownat once. Which one should we catch? One strategy is to nondeterministicallychoose one of the thrown exceptions. The current implementation of AsmL iswithin this strategy. There are other reasonable strategies. For example, you cancatch all thrown exceptions. Alternatively, you may want to catch all thrownexceptions that are most speci�c with respect to the subtyping discipline.Clashing updates are of particular interest to ASMers. It is not necessary topatiently collect all updates generated by the given program during the wholeone-step transaction. A try block around a subprogram allows us to betterhandle updates clashes.Implicitly the whole program is enveloped into a try block with Skip as theexception handler. In this case, instead of the user exception handling, we havesystem exception handling; the AsmL runtime system gives you some informa-tion about what went wrong.7 Objects7.1 OntologyAsmL is object oriented (OO). The problem of OO programming within ASMparadigm has been addressed earlier by Zamulin [9]. Our solution is simpler.Slightly simpli�ed, it is this. A class C is just a dynamic universe. Objects ofC are elements of that universe. Initially the class is empty. New objects areimported from the reserve. To be more precise, the dynamic universe is the

10extent of C; there are also �elds and methods associated with C. And it is theidenti�er (ID) of an object that belongs to the dynamic universe; the objectitself has its local state in addition to its ID.Let us address here the issue of the local state of an object. Here is one naturalapproach. View a �eld F of a class C as a dynamic function on (the extent of) C.For every object o of C, F (o) is a local variable of o. The local state of o is givenby the tuple of the values of the local variables of o. This approach becomesproblematic if the pool of classes can grow during the computation: new �eldsshould be added to the vocabulary which is supposed to be �xed. AsmL doesnot have dynamic loading of classes at this point but we have to plan for it. Inany case, we should be able to deal with dynamic loading of classes. To this end,we adopt a more general approach. Classes and their �elds and their methodsare represented as elements of the state. A special dynamic object registry OR,given (the ID of) an object o gives (the representation of) the class of o and itslocal state.7.2 Object Registry and Garbage CollectionGarbage collection is an important part of modern object oriented program-ming. Unreachable objects can be removed. Conventional wisdom tells us thatgarbage collection should make no semantical di�erence. This is not completelytrue. Indeed, it should not make any semantical di�erence whether unreachableobjects have been actually removed. On the other hand, it is important thatunreachable objects can be removed.In this connection, a question arises whether our object registry OR inhibitsgarbage collection. In particular whether OR can be used to count the numberof elements in a given class. This counting would be possible if OR were amap variable, but OR is a unary dynamic function. The obvious way to extractglobal information from OR is to use a comprehension expression ft(x) : xin Dom(OR) where �(x)g but this is syntactically wrong because OR is not anexpression and so Dom(OR) is not an expression. In order to apply OR to the IDan object o, we need an expression that evaluates to that ID; if o is unreachable,there is no such expression.To summarize, the use of the object registry does not inhibit garbage collection.8 Object Initialization ProblemDuring one step, an AsmL program may create new objects. For example, ourprogram may declare a class Horseclass Horsevar Color as String

11and then create a white horse Jerry.var Jerry as HorseJerry := new Horse(``White'')It is higly desirable that new objects are initialized at creation so that the �eldvariables of the object are given some initial values. For example you may needto create a white horse, that is a horse object with the �eld Color set to White.Notice that initialization involves updating the object registry. These initializa-tion updates will be executed only at the end of the current step. As a result,the initial values are not available at the current state. They will be availableonly at the next state but we need them in the current state. That is, in short,the initialization problem.To present our solution of the problem, let us recall the nature of the ASMcreation rulecreate x inR(x)An external demon (a part of our environment) chooses one of the reserve ele-ments for us, say an element a, and then we execute the rule R with variable xset to a. Notice that any location that involves x holds undef. Intuitively theseare new locations. Why not to allow the environment to change some of the newlocations during the creation? We do just that. To create an object, we submitthe initial values to the demon. The demon chooses a reserve element as theidenti�er of the new object and then initializes the �elds of the new objects onthe same occasion.The initialization update of a new location ` does not compete with subsequentupdates of `. For example, the rulec := new Horse(``White'')c.Color := ``Black''creates a new white horse and then colors it black. The horse remains white untilthe end of the current step, and becomes black after that.The object initialization problem is exacerbated by the need to create groupsof mutually dependant objects. For example, you may need to create at once(i) a husband object with a �eld indicating the wife and (ii) a wife object with a�eld indicating the husband. Our solution extends naturally to cover such groupcreations. The demon chooses a group of reserve elements and then initializes allthe relevant new locations at once. For example, in the case of the family paircreation, the demon choses two reserve elements, say h and w, and then sets thewife �eld of h to w and sets the husband �eld of w to h.

129 Intra-Step CommunicationThere is also an important problem of intra-step communication: during theexecution of one step, you call the outside world which can call you back, etc. Allthis takes place within one step of the ASM model. This issue will be addressedin [7].References1. Andreas Blass and Yuri Gurevich. Background, Reserve, and Gandy Machines. InP. Clote and H. Schwichtenberg, editors, Proceedings of CSL'2000, volume 1862 ofLNCS, pages 1{17. Springer-Verlag, 2000.2. Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless Polynomial Time.Annals of Pure and Applied Logic, 100(1{3):141{187, 1999.3. Egon B�orger and Joachim Schmid. Composition and Submachine Concepts forSequential ASMs. In P. G. Clote and H. Schwichtenberg, editors, Computer ScienceLogic, volume 1862 of Lecture Notes in Computer Science, pages 41{60. Springer,2000.4. FSE. Foundations of Software Engineering, Microsoft Research. Website.http://research.microsoft.com/fse/.5. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Egon Boerger, editor,Speci�cation and Validation Methods, pages 9{36. Oxford University Press, 1995.6. Y. Gurevich. May 1997 Draft of the ASM Guide. Technical Report CSE-TR-336-97,EECS Department, University of Michigan, 1997.7. Y. Gurevich and W. Schulte. Intra-Step Interaction with Outside World (a tentativetitle). in preparation.8. Y. Gurevich and N. Tillmann. Partial Updates: Exploration. to appear in the J. ofUniversal Computer Science, 2002.9. A. V. Zamulin. Generic Facilities in Object-Oriented ASMs. In Y. Gurevich, P. W.Kutter, M. Odersky, and L. Thiele, editors, Abstract State Machines: Theory andApplications (ASM'2000), volume 1912 of Lecture Notes in Computer Science, pages91{111. Springer, 2000.

