
Flatland: Rapid Prototyping of Distributed Internet Applications

Harry Chesley, Greg Kimberly, Steve White, Anoop Gupta, Steve Drucker

8/9/2001

Technical Report

MSR-TR-2001-73

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Flatland: Rapid Prototyping of Distributed Internet
Applications

Harry Chesley, Greg Kimberly, Steve White,

Anoop Gupta, Steve Drucker
Microsoft Research

Redmond, WA. 98052 USA

ABSTRACT
Computer intra- and internets are widely used for client-
server application such as web browsers. With the
exception of e-mail, however, the same networks are
seldom used for distributed, client-client or client-server-
client applications. Such applications are difficult to
develop and debug, and require a supporting infrastructure
that is not readily available from existing systems. Flatland
is a rapid prototyping environment that provides the
underlying infrastructure and makes it easy to create and
debug distributed internet application prototypes. In
addition to the infrastructure needed for a distributed
application, Flatland includes safe implementations of the
most common sources of distributed application bugs –
asynchronous operation and updating. Flatland also
supports streaming audio-video and down-level clients.

Keywords
Internet, distributed applications, rapid prototyping,
streaming video, distance learning.

1 INTRODUCTION
Contemporary computers and networks are increasingly
able to support distributed, real-time applications. Yet, few
of these applications have been delivered to date. Part of
the reason for this is the difficulty of developing
asynchronous, multiple machine software. Development
requires additional infrastructure, and often leads to
difficult to bugs that are difficult to reproduce and fix due
to their asynchronous nature.

Since there is relatively little pre-existing experience with
distributed applications to extrapolate from, it is also an
area that benefits greatly from rapid prototyping. Yet,
again, the infrastructure is not there for rapid prototyping,
and asynchronous issues can overwhelm the developer,
diverting resources from prototyping the application at
hand.

Flatland brings together a number of existing technologies
with an architecture than reduces the chances of
asynchronous issues arising. It leaves the distributed
application developer to the issues specific to their
application, without needing to spend time on generic
distributed software concerns.

V-Worlds, a platform developed by the Virtual Worlds
Group in Microsoft Research, provides the core distributed
persistent object facilities of Flatland. DHTML as
implemented in Internet Explorer provides the user
interface aspects. JScript provides the implementation
language. And NetShow provides streaming audio-video.

Flatland has been used to develop several distributed
applications. These include a text/icon chat system, a

distance learning application, and a research tool for
investigating social dilemmas.

2 THE PROBLEM
Over the past twenty years, the use of rapid prototyping to
explore an application design space has gained increasing
acceptance as a means of software design. Meanwhile, the
move from single-computer applications to distributed
applications has opened the door to vast new potential uses
for computer systems. But at the same time, it has increased
the complexity of those applications and the difficulty of
prototyping and developing them.

2.1 Rapid Prototyping
Traditionally, most computer applications have been local,
single-machine applications. Rapid prototyping has proved
to be a valuable technique for evolving software design. [9]
Over time, software development facilities and languages
(such as Microsoft Visual Basic and Smalltalk) have
developed to allow rapid experimentation with new
software concepts and designs. These rapid prototyping
environments allow product planners, software developers,
and user interface researchers to develop and test multiple
hypothesizes before committing to a single final design.

Recent work in user-centered design is particularly well
suited to developing applications and user interfaces via
rapid prototyping. Using this methodology, feedback from
actual users is central to the design process, and the ability
to easily and rapidly incorporate that feedback into the
software is critical.

Distributed applications require additional infrastructure
over single-user, single-machine applications, making rapid
prototyping more challenging.

Flatland brings together a number of underlying
technologies to enable rapid prototyping, and adds an
architecture that makes distributed applications in particular
easy to build.

2.2 Distributed Applications
With the advent of the Internet, there are many
opportunities for distributed applications in several areas:

• Distance learning

• Computer-supported cooperative work (CSCW)

• On-line communities

• Multi-player games

Distributed applications, however, are more difficult to
prototype and debug. In addition to the more complex
logistics of distributed applications – with at least twice as
many components as a stand-alone application – they are
intellectually more challenging to design and debug. The
human mind simply works better on single-threaded
problems.

2.2.1 Infrastructure
The first barrier to distributed application development is
infrastructure. Well-established protocols exist for client-
server applications, but not for distributed, client-server-
client applications. While it is possible to create distributed
applications using existing protocols like IRC or DCOM, it
is not an easy task.

Flatland provides the infrastructure so that application
developers can concentrate on the specific problem at hand,
not on developing the supporting technologies. It does this
by building on top of the existing V-Worlds platform.

2.2.2 Asynchronous Operation/Mutual Exclusion
The most common source of bugs in distributed
applications has to do with asynchronous operation.
Without proper facilities for mutual exclusion, and without
their careful application, programs using multiple
simultaneous threads of execution often develop cross-
thread interactions that are extremely difficult to understand
and reproduce.

Another aspect of asynchronous operation is update
propagation. When a change is made in one part of the
system, that change must propagate to the rest of the
distributed application, causing appropriate user interface
changes for all users. This is also known as the update
model.

Flatland provides a pair of update models that centralize the
process of updating objects and propagating the changes.
These update models are carefully designed to limit the
problems that arise from asynchronous operation.

2.2.3 Audio-video Stream Synchronization
When streaming audio-video is used in an application, an
additional complication arises: due to network latencies,
different clients may receive the audio-video stream at
different points in time, even though their connections with
other network elements are essentially real-time. This
requires synchronization between the audio-video stream
and other aspects of the application.

Flatland includes an update model that automatically defers
updates until the appropriate point in time as defined by the
received audio-video stream.

3 COMPONENTS
The Flatland system is build on top of a number of existing
technologies. V-Worlds provides real-time client-server-
client communication. DHTML provides easy construction
of user interface elements. Active scripting provides
scripting languages for rapid prototyping. NetShow
provides audio-video streaming. All of these are tied
together by the Flatland architecture.

3.1 V-Worlds
V-Worlds [5] is a platform for distributed client-server-
client applications. It provides automatic transfer of object
properties, as well as remote procedure calls, among a set
of communicating clients and a single server. It provides for
persistent storage of the objects within the system. It also
incorporates a mechanism to limit the communications
overhead by restricting which clients are notified of
changing in which objects.

3.1.1 Objects
V-Worlds is a persistent object system. Data and behavior
is encapsulated within objects. The objects are
automatically moved from client to server to client as
needed, and are archived on the server for persistence
across sessions.

Objects include properties that can be simple data types
(number, string, etc.), compound data (list, map, etc.), or
other objects. Properties can be marked on a case-by-case
basis whether they should be distributed or only maintained
locally.

Behavior is provided in the form of methods on the objects.
Methods can be marked to execute on the server, on the
client, or on either. If a client-side method is invoked from
the server, it is executed in parallel on all of the connected
clients.

V-Worlds provides dynamic inheritance. Rather than taking
their methods and initial property values from a class
definition, V-Worlds objects take them from an exemplar
object. This provides more flexibility for dynamic updates
than a class/instance model.

3.1.2 Avatars
The user/client is represented within V-Worlds using an
Avatar object. This object includes login information,
current connectivity information, and anything else that is
specific to a user. It also helps to determine what
information needs to be transferred to the associated client.

3.1.3 Rooms
In order to limit the amount of client-server-client
communication, all objects in V-Worlds must exist within
the contents list of a Room object. Server objects are only
distributed to clients if the client’s Avatar object is in the
same room as the object. This allows multiple sets of
Avatars to maintain shared accessible object pools, without
incurring the overhead of every client hearing about every
object in the system.

3.1.4 Summary
V-Worlds provides Flatland with a distributed, persistent
object system that hides the details of client-server-client
communication and object archiving. This is the core of any
distributed application.

3.2 DHTML
Dynamic HTML (DHTML) is composed of the Internet
standards HyperText Markup Language (HTML) 4.0,
Cascading Style Sheets (CSS) 1.0, and the associated
document object model. Taken together, these provide a

powerful system for quickly building and modifying an
application user interface. This is the core of Flatland rapid
prototyping of user interface designs.

In addition to the current facilities implemented in the
current version of Internet Explorer and used in existing
Flatland work, these standards and their implementations
continue to evolve and expand, constantly making more
user interface capabilities available for prototyping.

3.3 Scripting
Several scripting languages are now available for scripting
both HTML pages and V-Worlds object methods. JScript,
ECMAScript, VBScript, and Perl are all available.

Scripts are used in Flatland for two purposes: Within the V-
Worlds objects, scripts implement the semantics of an
application element. Within DHTML, they implement the
user interface aspects.

For Flatland, we have used JScript (a superset of
ECMAScript) almost exclusively, with small amounts of
VBScript where required to capture error exceptions.

3.4 NetShow
Microsoft NetShow provides the streaming video facilities
required by some Flatland applications. NetShow encoding
and playback can be controlled from script from within
Flatland.

NetShow also provides the ability to encode data within the
audio-video stream. Flatland makes use of this capability
for two purposes. First, it includes time synchronization
information in the stream so that other Flatland events can
be synchronized to the audio-video stream. Second, it
includes information to support down-level browsers that
do not have access to the V-Worlds part of the system.

3.5 Limitations
Building Flatland on top of a large and complex set of
technologies is like standing on the shoulders of giants. You
can go and see further, but you’re limited by where the
giants are willing to take you.

Flatland was built primarily on V-Worlds 1.0 and Internet
Explorer 4.01 running on the Windows operating system
(95, 98, or NT). While it is theoretically possible to extend
these systems to other platforms, such a task is well beyond
the work described here.

However, in order to make the remote learning application
of Flatland more widely useable, we did build a “down-
level client,” that allows other platforms to watch, though
not participate, in the system. See below for more details.

4 FLATLAND ARCHITECTURE
The Flatland architecture pulls all these components and
goals together into a single coherent design that minimizes
the amount of effort required to construct and modify
distributed applications, while maximizing the range of
those potential applications. Flatland implements the
foundation of a distributed application, including most of
the components that traditionally cause obscure and
difficult to locate bugs. But it provides an open-ended

script-based environment for semantic development, and a
powerful, DHTML-based environment for UI development.

4.1 Distributed Model/View
The Flatland architecture divides the application into
discrete elements. Each element is further divided into a
distributed object that exists within V-Worlds, and a user
interface object that exists within DHTML in an Internet
Explorer window. This is a natural evolution of the
Smalltalk model/view/controller paradigm [6] in a
distributed environment, with the view and controller
combined in the DTHML object.

The model object within V-Worlds can be thought of as
existing across the server and all participating clients. The
model object is responsible for maintaining the current
semantic state – as opposed to the user interface
representation of that state – for distributing changes among
the server and the clients, and for persisting the state across
multiple sessions.

The DHTML user interface object is implemented using
scriptlets. A scriptlet is an Internet Explorer feature, similar
to a frame, that encapsulates a user interface
implementation as a reusable element. This allows
implementation of the UI for one element of the application
independent of the other elements, as well as reuse of
elements between different applications.

The client portion of the model object and the user interface
scriptlet maintain references to each other to facilitate
communication. Both objects implement COM OLE
automation, allowing script level access to objects,
properties, and methods.

4.2 Update Model
Flatland standardizes the update model for application
elements in order to avoid synchronization and update
issues described earlier. Two models are available, for data-
driven immediate updates and for event-driven updates that
are synchronized with the associated audio-video stream.

4.2.1 Data-driven Update Model
The simplest update model in Flatland is used for elements
that do not require synchronization with the audio-video
stream, or for elements that will be used in applications
without such a stream. In this approach, properties of the
model object are changed on the server. V-Worlds then
automatically distributes the changes to the clients. Then an
update method is called on the user interface object to
display the changes to the user. Updating the model object
on the server, plus a single semaphore on the model object,
preclude changing or accessing the model in an invalid
state.

In more detail, the process takes place as follows:

1. Something triggers a change in an application
element. Most often, this is an action by one of the
users, interpreted by the user interface object of
the element.

2. A server-side method is called to update the model
object. Server-side methods are single-threaded in
V-Worlds, ensuring mutual exclusion of updates.

3. The server-side method calls BeginUpdate(),
which sets the exclusion semaphore on the model
object.

4. The server-side method makes a set of mutually
consistent changes to the properties of the model
object.

5. The method calls EndUpdate(), which clears the
semaphore, and initiates the user interface update
process.

6. An update method is called on the user interface
objects associated with this application element on
all of the clients. This method is responsible for
displaying the new state of the element to the
users.

The semaphore is used to ensure that access is not made to
the model object when it’s in an inconsistent state. This will
not happen on the server, since the server is single-
threaded, but client-side methods on the model object or on
the user interface object could attempt to access the model
object in the middle of an update. These methods need to
check the semaphore before access the model object. In
most cases, however, the user interface update method is
the primary point of reference into the object, and the
Flatland architecture will not call this method if the object
is not consistent.

This update model is simple to use, and ensures proper
mutual exclusion of model object changes and appropriate
propagation of user interface updates. To use it, developers
only need to add a server-side model object property update
method for the V-Worlds object that implements the
semantics of the element and a user interface update method
for the scriptlet that updates the interface.

4.2.2 Event-driven, Synchronized Update Model
When updates need to be synchronized with the audio-
video stream, a different update model is available. In this
case, changes are packaged into events that are deferred
until the appropriate point in time, and then an event-
specific update method is invoked in the user interface
object.

In order to provide synchronization, time-stamps are
periodically inserted into the audio-video stream. Every
client receiving the stream can then maintain its temporal
position relative to the current stream. This information is
used to set the time of newly created events in the
originator, and to determine how long to defer events in the
receiver.

The synchronized event process takes place as follows:

1. Something triggers a change in an application
element. Most often, this is an action by one of the
users, interpreted by the user interface object of
the element.

2. An event object is created which includes the
event type, the time relative to the audio-video
stream, and any parameters that further define the
event.

3. The event is sent to the server and redistributed to
all of the clients.

4. Each client queues the event until the appropriate
time arrives for it to be invoked. This might be
immediate if the time has already passed, or might
be up to several seconds in the future.

5. When the time arrives, a event-type-specific
method is invoked on the user interface object that
is passed the event parameters. This method
updates the user interface as appropriate.

This update model is more complex to implement than the
simple model described in the previous section, but it
allows for synchronization with the audio-video stream. The
developer must define one or more application element-
specific events, and create the associated update methods.

4.3 Composite Elements
Most Flatland application elements are simple, stand-alone
items. However, it is also possible to create composite
elements with nested sub-elements. The most common use
of nest elements is to create window layouts.

When a user is connected to Flatland, they see a window
that corresponds to the Room where their Avatar is located.
This window contains one top-level application element,
also known as a window layout. That element generally
contains a number of sub-elements.

Another use of composite elements is sharing screen space
between more than one simple element. In the remote
learning application of Flatland, for example, a slide area
shows a sequence of slides to the user. Each slide is itself
an instance of an application element, and the slide area is a
composite element.

4.4 Authorization
Another common element of distributed applications is the
need for authorization facilities. There are usually
differences between what the general public and the owners
of the application are allowed to do. Flatland provides four
levels of authorization: audience, presenter, authorizer, and
room creator.

(Note: The terms used originated in the remote learning
application of Flatland, hence the bias toward “presenters”
and “audiences.”)

4.4.1 Audience Authorization
The most basic level of authorization is audience – the
ability to be in the room at all. Without this authorization, a
user cannot enter a room. Audience authorization is on a
room-by-room basis.

4.4.2 Presenter Authorization
A presenter is given more control over the application
elements, together with the ability to create and edit them.

The details of what a presenter can do beyond what an
audience member can do are specific to the individual
application element. Presenter authority is on a room-by-
room basis.

For example, in the distance learning application, new
slides can only be created by a presenter, and only a
presenter can change the video source.

4.4.3 Authorizer Authorization
Authorizers can change the authorization of themselves and
other users within a given room. They can enable a specific
user to be audience members, presenters, and/or
authorizers. They can also enable “anyone” to be one of
these. Giving “anyone” authorization is most commonly
used to open the doors to the room and let everyone in once
the room is ready for visitors.

4.4.4 Room Creation Authorization
The final level of authorization is the ability to create new
rooms. When a new Flatland site is created, it starts with no
rooms, and only the site administrator is authorized to
create new rooms. The administrator can then create new
rooms and/or authorize other people to do so.

4.5 Down-level Clients
Full Flatland functionality is available only under Internet
Explorer 4.01 running on the Windows operating system.
However, many Flatland applications, especially those in
distance learning, need the ability to operate with other
browsers and operating systems, even if it is in a non-
interactive fashion.

Flatland provides this ability for applications that use an
audio-video stream. Down-level clients are available that
extract events from the audio-video stream and update the
local HTML page as appropriate. No interaction with the
distributed, V-Worlds based system is available, but at least
users with other systems can watch the activity.

The same mechanism is employed for archival playback of
a presentation.

5 APPLICATIONS
Flatland has been used for a number of specific
applications. These include text and graphic chat systems,
distance learning, and social dilemma research.

5.1 Heads Chat
Perhaps the simplest Flatland application is a text chat
facility that is complimented by head icons that represent
the users. The heads allows the users more expression than
pure chat. They can move to form groups, look at different
parts of the screen, and the presenter can create sub-areas to
divide the audience into discussion or voting groups.

Heads chat is an example Flatland application that gives
Flatland developers a jumping off point to create their own
applications.

5.2 Remote Learning
The remote learning application of Flatland combines
NetShow streaming audio and video with a collection of
audience feedback mechanisms that allow the presenter to

receive both solicited and unsolicited responses from the
viewers. Figure 1 shows the main screen layout, as seen by
a presenter.

Figure 1 – Flatland Presenter Layout

Figure 2 shows the Flatland components and their
relationships. A presenter communicates with a number of
audience members using NetShow video and Flatland. The
audience, in turn, can pass questions, answers, and requests
back to the presenter via Flatland.

5.2.1 User Interface
Figure 1 shows the main Flatland window layout, as seen by
the presenter. The audience sees a similar view, but without
many of the controls and buttons.

The middle left section of the layout contains the video of
the presenter, provided using Microsoft NetShow 3.0 [7].
Any Flatland participant with a video feed could present,
but in these studies only the instructor did.

The upper right section of the window contains slides and
questions, as defined by the presenter. This area can include
slides generated by Microsoft PowerPoint, simple text
slides, and audience Q&A slides that allow the audience to
vote by selecting one of the answers to a multiple choice
question. The presenter can also use a ”pointer” to indicate
specific sections of the slide during the presentation.

The presenter controls the selection of the currently
displayed slide. A History button above the slide area,
however, generates a separate window with the entire set of
slides for the current presentation. This allows any viewer
to browse the slides not currently being displayed in the
main window.

Presenter controls in the slide area include facilities to
select the slide to be displayed, using either the ”next” and
”previous” arrow buttons on the top right or the table-of-
contents pop-up on the top left. There are buttons to edit or
delete the current slide. A presenter can also create a new
slide on the fly and insert it in the presentation.

Figure 2 – Flatland System

Below the slides, on the right, is a text chat area. This
allows free-form communication between audience
members or between the audience and the presenter.
Interactive chat gives audience members a strong feeling of
the presence of other participants, and can be invaluable for
resolving last minute technical problems that audience
members may encounter. This window also reports when
people join or leave a session.

Although free-form chat is valuable in providing an open
and unrestricted communications channel, it can easily
become overwhelming. For questions specifically directed
at the presenter, a separate question queue is provided to
the bottom left of the window. In this area (hereafter called
the Q&A window), audience members can pose questions
for the presenter. They can also add their support to
questions posed by others by incrementing a counter. This
voting capability could reduce duplicate questions and help
a presenter decide which question to address next.

Finally, the upper left area of the window provides several
lighter weight feedback mechanisms. On the right are two
checkboxes that allow the audience to give continuous
feedback on the speed and clarity of the presentation,
displayed as a meter on the presenter window. On the left
are buttons to leave the presentation, to show a list of
audience members, and to raise a hand for impromptu
audience polling. A pop-up, floating ”tool tip” shows a list
of members with their hands raised if the cursor is left over
the hand icon. The same information is also displayed in the
pop-up audience member list.

5.3 Social Dilemma
To be added.

6 CONCLUSIONS
The widespread availability of the Internet has led to many
opportunities for distributed Internet applications.
However, developing distributed applications is
challenging, and has few existing examples to build upon.
This adds greatly to both the desire for, and difficulty of,
rapid prototyping in this environment.

Flatland builds upon the existing facilities of V-Worlds,
DHTML, active scripting, and NetShow to provide an
architecture that facilitates rapid prototyping by supplying
pre-built infrastructure and elements that perform the basic
and most error-prone elements of any distributed
application, while allowing considerable freedom of
implementation.

Flatland has been used to develop several applications,
including a remote learning system and a social dilemma
workshop. Microsoft Research is continuing to develop new
uses for it.

7 REFERENCES
1. Isaacs, E.A., Morris, T., and Rodriquez, T.K., A Forum For

Supporting Interactive Presentations to Distributed Audiences,
Proceedings of the Conference on Computer-Supported Cooperative
Work (CSCW ’94), October, 1994, Chapel Hill, NC, pp. 405-416

2. Isaacs, E.A., Morris, T., Rodriquez, T.K., and Tang, J.C.(1995), A
Comparison of Face-To-Face and Distributed Presentations,
Proceedings of the Conference on Computer-Human Interaction
(CHI ’95), Denver, CO, ACM: New York, pp. 354-361.

3. Isaacs, E.A., and Tang, J.C, Studying Video-Based Collaboration in
Context: From Small Workgroups to Large Organizations, in Video-
Mediated Communication, K.E. Finn (ed.), 1997, A.J. Sellen & S.B.
Wilbur, Erlbaum: city, state , pp. 173-197

4. Begeman, M., Cook, P., Ellis, C., Graf, M., Rein, G. & Smith, T.,
1986. Project Nick: Meetings augmentation and analysis. Proceedings
of CSCW’96. Revised version in Transactions on Office Information
Systems, 5, 2, 1987.

5. Vellon, M., K. Marple, D. Mitchell, and S. Drucker. The Architecture
of a Distributed Virtual Worlds System. Proceedings of the 4th
Conference on Object-Oriented Technologies and Systems (COOTS).
April, 1998.

6. Glenn E. Krasner and Steven T. Pope, "A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80", in
Journal of Object-Oriented Programming, 1(3), pp. 26-49,
August/September 1988.

7. Microsoft NetShow. Available at http://www.microsoft.com.

8. Microsoft INet SDK. Available at http://www.microsoft.com.

9. Tanik, M.M., Yeh, R.T. Rapid Prototyping in Software Development.
Computer, May, 1989.

