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1 Introduction

Modern software systems are built by a multitude of programmers using application program
interfaces (APIs). When a software system is built using APIs, there are several classes of
problems that can hamper its dependability: a client P of an API may use it improperly; an
implementation L may not properly implement the API. There are many requirements on both
the client and implementer of an API that are typically stated only in the documentation for the
API. Currently, only a small portion of these requirements |namely, the number of arguments
of a function, and the types of each argument and return value| are stated in the header
�le for the API and checked for agreement at call sites by the compiler. We wish to express
temporal safety requirements [15] on the API, such as rules about ordering of function calls with
associated constraints on the data values visible at the API boundary, and automatically check
(statically or dynamically) if these requirements are satis�ed by the client and the implementer
of the API.

Let L be a library that implements a certain API (as speci�ed by the type, variable and
function declarations in a C \dot-H" �le) and let P be a client of L. Client P makes calls to
procedures de�ned in the API that are implemented by L. Additionally, the library L may
make calls back to P via function pointers passed from P to L. We denote the (sequential)
composition of P and L by P jj L.

In this paper, we present Slic, a low-level speci�cation language designed to specify the
temporal safety properties of APIs implemented in the C programming language. A Slic

speci�cation S de�nes a state machine1 that monitors the execution of behavior of the program
P jj L at the API's procedural interface. The atomic \propositions" of a Slic speci�cation are
boolean functions over the interface state at the API boundary between P and L. An interface
state is a triple (A; fcall; returng;
), where A is a procedure (named directly or indirectly
in the API), the second component indicates that control is being passed to A by a call or
that control is returning from A to its caller, and 
 is a valuation to the formal parameters of
procedure and the return value of A. The state machine rejects certain �nite execution traces

1Not necessarily �nite state.
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(a sequence of interface states) of P jj L, either because P makes improper use of the API
implemented by L or because L does not properly implement the API.

A program Q = P jj L together with a Slic speci�cation S de�nes a new program Q0 in
which the speci�cation S has been combined with Q. This is known as a \product construc-
tion" [22, 21]: Q0 is the product of program Q with speci�cation S. The product Q0 has the
following property: a unique label (SLIC ERROR) is not reachable in Q0 if-and-only-if Q satis�es
speci�cation S. We have developed a pre-processor for Slic that produces the program Q0

given inputs Q and S. There are two ways to use the program Q0:

� One can subjectQ0 to a static analysis to attempt to determine whether or not SLIC ERROR

is reachable in Q0 (an undecidable problem, of course), as in the Slam project [2, 1].

� One can run Q0 on various tests to see if execution ever reaches SLIC ERROR.

The rest of this paper is organized as follows. Section 2 presents the syntax and semantics of
Slic. Section 3 describes how the Slic pre-processor works. Section 4 shows how Slic can
be used to encode properties that involve universal quanti�cation over dynamically-allocated
objects in C. Section 5 reviews related work and Section 6 discusses future work.

2 Syntax and Semantics

This section presents the syntax and semantics of Slic. The design for Slic was driven by two
desiderata:

� Out-of-line speci�cation: we did not want to require programmers to modify or annotate
source code, since in Slam we are dealing mainly with legacy code;

� C-like syntax/semantics: we wanted Slic speci�cations to resemble C code as much as
possible.

2.1 Syntax

The syntax of the Slic language is de�ned in Figure 1. A Slic speci�cation consists of two
basic parts: a state structure de�nition and a list of transfer functions.

The state structure is a global C structure consisting of a set of �elds. The type of a �eld
can be (1) any scalar C type, or (2) a pointer to any C type. Structures, unions and arrays are
not allowed. Each �eld must be given an initial value which de�nes the initial state of the state
machine.

A transfer function has two parts: a pattern speci�cation and a statement block that de�nes
the function body. A pattern speci�cation has two parts: a function identi�er id and one of four
basic event types (event): call, return, entry, exit. The �rst two events (call and return)
identify the program points immediately before transfer of control to the named function takes
place (just after evaluation of the actual expressions to the call), and immediately after control
returns to the caller (just before assignment of the return value). The latter two events (entry
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Syntax Comment

S ::=
state

transFun+

A Slic speci�cation consists of a state
structure, and a list of transfer function
de�nitions.

state ::= state f fieldDecl+ g
A state structure is a list of �eld declara-
tions.

fieldDecl ::= ctype id = expr ;
A �eld has a C type, an identi�er and an
initialization expression.

transFun ::= pattern stmt
A transition function consists of a pattern
and a statement.

pattern ::= id . event
event ::= call j return j entry j exit
stmt ::= id+ = expr+ ; Parallel assignment statement.

j if ( choose ) stmt [ else stmt ]
j abort string;
j reset;
j halt;
j f stmt g

choose ::= * Non-deterministic choice
j expr

expr ::= id j expr op expr j � � � Pure expression sublanguage of C
id ::= C identifier refer to �elds of state structure

j $ int $i refers to ith actual/formal parameter
j $ return return value of a function
j $ C identifier global variable

Figure 1: Syntax of the Slic language.

and exit) identify the program points in the named (called) function immediately before its
�rst statement and immediately before it returns control to the caller.2

The body of a transfer function contains a single statement. A statement is either a C-
style if-then-else conditional, a (parallel) assignment statement or abort, halt or reset. The
abort statement is used to explicitly signal that an unsafe state has been reached with an error
message. The halt statement signals that analysis of the current execution path should stop.
The reset statement resets the values of all �elds in the state structure to their initial values.

Two important control constructs are missing from the statement sublanguage: statement
sequencing and loops. This restriction has several desirable consequences: (1) within the exe-
cution of a transfer function each state �eld can be updated at most once; (2) transfer functions
always terminate.

The predicate in an if-then-else statement can either be the token \*", which represents a
non-deterministic boolean choice operator, or a boolean expression. Thus, a Slic speci�cation
can encode non-deterministic state machines.

The expression sublanguage (expr) of Slic is the pure expression language of C, without
state update operators (++, --, etc.), pointer arithmetic, or the address-of operator (&). Deref-

2The reason for having four events instead of two is that sometimes the code for the library L may not be
available for instrumentation. In this case, the call and return events must be used to monitor the program P

calling functions in L, and the entry and exit events must be used to monitor the library L calling functions in
P (via function pointers).
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state {

int zero_cnt = 0;

}

put.entry {

if ($1 == 0) {

if (zero_cnt == 4)

abort "Queue has 4 zeroes!";

else

zero_cnt = zero_cnt + 1;

}

}

get.exit {

if ($return == 0)

zero_cnt = zero_cnt - 1;

}

Figure 2: Slic speci�cation for a simple property of a global queue.

erencing via * and -> is allowed. The identi�ers in this language are of two forms: regular
C-style identi�ers that are (only) used to refer directly to the �elds of the state structure.
The $int identi�ers are used to refer to the actual/formal parameters, depending on the event
context (call and entry events).3 The identi�er $return is used to refer to the return value,
which is accessible at the exit and return events. An identi�er $C identifier is used to refer
to global variables accessible in the API.

Figure 2 gives a very simple example of a Slic speci�cation for a global queue of integers.
The speci�cation states that it is in error to have more than four zeroes in the queue.

The state structure contains an integer to count the number of zeroes in the queue, initialized
to zero (to re
ect the initial empty state of the global queue). Upon entry to the put function of
the queue (where the �rst parameter of the function is the integer), the transfer function checks
to see if the parameter is zero. If it is not, then no state change occurs. Otherwise, the transfer
function checks if the count of zeroes has reached four. If so, the transfer function aborts
execution (that is, an unsafe state has been reached). Otherwise, the count is incremented.
Upon exit from the queue's get function, if the return value of the function is zero then the
state count is decremented.

2.2 Semantics

The semantics of a Slic speci�cation is straightforward and can be formalized using traces.
An execution of a C program Q = P jj L with a Slic speci�cation S can be seen as a trace
of concrete execution states �1 ! �2 � � �. An execution state � = (pc;
) has two components:
a program counter pc and a valuation 
 to all variables that are in scope at pc. The state

3Additionally, Slic supports access to the parameter values at the return and exit events by caching the
values at the corresponding call and exit events.
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// C code generated from SLIC

static int zero_cnt = 0;

void SLIC_put_entry(int f1) {

if (f1 == 0) {

if (zero_cnt == 4)

SLIC_ERROR("Queue has four zeroes!");

else

zero_cnt = zero_cnt + 1;

}

}

void SLIC_get_return(int ret) {

if (ret == 0)

zero_cnt = zero_cnt - 1;

}

// queue (library) code, instrumented by SLIC

void put(int i) {

SLIC_put_entry(i);

...

}

int get() {

...

// computation into return temporary t

...

SLIC_get_exit(t);

return t;

}

Figure 3: Slic generated code and instrumentation.

structure from S is added as an extra global variable to Q that is in scope at all values of pc.
Each transition may cause a change in the state of the Slic global state structure, depending
on whether or not the program pc corresponds to one of the four event types that a Slic

speci�cation matches on, and depending upon the code of the transfer function that may be
invoked. An execution is an unsafe execution if it can lead to the execution of an abort

statement.

3 Slic Instrumentation

Given a program Q = P jj L and a Slic speci�cation S over L, the Slic pre-processor tool
creates a new program Q0 as follows.

First, in order to simplify the instrumentation process, the Slic pre-processor puts the C
code into a normal form after parsing it. This normalization makes all control-
ow explicit
and makes all RHS expressions and argument expressions side-e�ect free. As a result of the
normalization, a pretty printing of the Slic-instrumented code will not look very similar to the
input C code (although there is a direct mapping between the two).

The Slic speci�cation S then is compiled into a C �le S:c as follows. The Slic state
structure becomes a static global variable in S:c. Each transfer function t in S with name n:e is
compiled into a C function S n e with a formal parameter fi for each unique $i (and $return)
referenced in the body of t. The body of f is compiled straightforwardly, with references to $i
and $return variables replaced by references to the corresponding formal parameters de�ned
above.

Finally, instrumentation of the program Q is accomplished by inserting a call to function
S n e with appropriate actual arguments whenever the event n:e takes place. In the presence of
function pointers, without a points-to analysis, it is not (in general) possible to instrument for
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state {

enum { Unlocked, Locked} s = Unlocked;

T* which_t = NULL;

}

Allocate_T.return {

if ($return && !which_t) {

if (*) {

which_t = $return;

s = Unlocked;

}

}

}

Deallocate_T.call {

if (which_t && $1 == which_t) {

if (s == Locked)

abort;

which_t = NULL;

}

}

Lock_T.call {

if (which_t && $1 == which_t) {

if (s == Unlocked)

s = Locked;

else

abort;

}

}

UnLock_T.call {

if (which_t && $1 == which_t)

s = Unlocked;

}

Figure 4: A Slic speci�cation of a locking protocol that encodes universal quanti�cation over
dynamically-allocated objects.

the call and return events. The control-
ow normalization phase of Slic uses the points-to
analysis of Das [6] to resolve function pointers. Such an analysis is not needed if only entry

and exit events are used.

Figure 3 shows the code generated from the speci�cation of Figure 2 and some instrumented
code.

4 The Universal Quanti�cation \Trick"

In this section, we show how Slic can be used to check safety properties that involve universal
quanti�cation over dynamically-allocated data in a C program. This relies on an \instrumenta-
tion trick" that uses non-determinism to express universal quanti�cation. This trick has been
used before in model checking [4].

Consider the following problem: library L allows a program to allocate, deallocate, lock and
unlock objects of type T*. We wish to establish that a C program P that dynamically allocates
and deallocates objects of type T follows a proper locking protocol for each object t of type
T . More speci�cally, each object of type T begins in the \unlocked" state when successfully
allocated by a call to the function Allocate T. An object of type T may be locked (unlocked)
by calling the function Lock T (Unlock T), passing the object to be locked as an argument. It is
illegal to lock an object that already is locked. It is also illegal to deallocate (via Deallocate T)
a locked object.

Figure 4 shows how this property is encoded in Slic. The state structure has two �elds:
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s represents the state of a \selected" object of type T . If which t is not NULL then which t

contains the location of the selected object. Otherwise, no object has been selected. There are
four transfer functions that update this state structure:

� Allocate T.return: If an object has not been selected and the return value of this func-
tion is non-NULL (which means that an object of type T has been successfully allocated),
then non-deterministic choice is used to determine whether or not this instance of type T
will be \selected".

� Deallocate T.call: If the object being deallocated is the \selected" object then the exe-
cution aborts if it is locked.

� Lock T.call: If the object to be locked is the \selected" object then the execution aborts
if already it is locked.

� Unlock T.call: If the object to be unlocked is the \selected" object then the state is set
to unlocked.

It should be noted that this \trick" is mainly helpful for static analysis, which can deal
with a non-deterministic FSM as it has the power to explore all possible paths. On the other
hand, at run-time the non-deterministic choice points in a Slic speci�cation must be resolved.
It should also be noted that this trick is equivalent to checking the locking property for every
static occurrence of Allocate T in a program.

5 Related Work

5.1 Automata-based speci�cation

From a research perspective, there is little new to Slic. Slic is a concrete realization of
Schneider's security automata [21] for the C language.

Other automata-based speci�cation languages for C have been used by Engler et al in the
MC project [7] and Evans in the new version of LCLint [8]. Engler et al.'s Metal speci�cation
language has a more general event de�nition language, in which an arbitrary piece of C syntax
can be recognized as an event. Additionally, Metal allows state to be attached to a pointer.
While Metal is �nite state and explicitly enumerates the possible states of the automaton, Slic
is not �nite state (as it can count) and more expressive in this regard.

The run-time Java assurance tool Java-MaC uses a state machine approach based on
events [14]. In this work, speci�cation is separated into two parts: a primitive event de�ni-
tion language (PEDL) that generates a trace of events and a meta event de�nition language
(MEDL) that implements a security automaton that checks the trace. MEDL contains history
variables, as Slic does.

5.2 Pre- and post- conditions

Another popular form of software speci�cation is based on pre- and post-conditions [10] as
found for languages such as Ada [17], Smalltalk and Larch [9, 3], Ei�el [18], and Java [16].
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Although syntactically dissimilar, Slic has equivalent power to such formalisms, as it can
check arbitrary conditions on state at the entry and exit of functions. In some sense, Slic is
less \declarative" than a pure pre- and post- condition formalism as it has state, which is read
from and written to. If enhanced with so-called \model variables", pre- and post-conditions can
be used to specify temporal safety properties. In contrast to pre- and post-conditions, which
annotate each function in an interface (splitting the de�nition of a property across function
declarations), Slic centralizes the de�nition of a partial property in a single state machine.

5.3 Temporal logics

Temporal logic has been used for specifying properties of software, notably in Holzmann's
FeaVer system [12] (based on the SPIN model checker [11] and its use of Linear Temporal
Logic) and the Bandera Speci�cation Language [5]. The use of Linear Temporal Logic allows
user to specify liveness as well as safety properties, while Slic is restricted to safety properties.

5.4 Instrumentation languages

Rosenblum's APP [20] is an assertion pre-processing language and tool for C. Assertions are
expressed in stylized comments in the C code and converted into instrumentation code by the
APP tool. APP does not provide support for check safety properties, as it has no history
mechanism.

Slic is an example of so-called\aspect-oriented" programming [13], in which some behavior
of a system is separated into an \aspect". A pre-processor then \weaves" together a program
P and an aspect to generate a new program P 0 (a form of production construction). In general,
an aspect can both read and modify the state visible to program P , while a Slic speci�cation
can only read the state of P (a Slic speci�cation cannot modify the state visible to program
P ).

5.5 Code as speci�cation

Given a program P accessing library L via an API, one can also specify properties by replacing
L by a library L0 that performs various checks on P . That is, a human can create the product
program directly. This approach is used in IBM's CANVAS Java analysis project with the
EASL/P language [19]. This language is a core subset of Java that allows the (abstract)
speci�cation of component behavior using Java code. It contains loops and the ability to
allocate data dynamically and is strictly more powerful than Slic.

6 Future Work

Besides obvious syntactic sugarings for convenience, Slic can be extended in three basic ways.
However, adding expressiveness to Slic needs to be balanced with the ability to guarantee that
(1) Slic transfer functions always terminate, and (2) Slic instrumentation does not alter the
values of variables in the original program.
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� Events: the alphabet of program events that Slic recognizes can be enlarged beyond
procedure call and return. Memory read and writes are obvious events to add �rst, which
would allow Slic to perform checks such as NULL pointer dereferencing. See the Metal
language [7] for examples of such events.

� State: the domain of Slic's state structure can be enlarged. In particular, there are
examples where it would be useful for Slic to have its own array, stack or other dynamic
data structure in order to record more about the execution history.

� Computation: Slic's computational ability can be enhanced by including procedures,
loops, modules, objects, etc. We have found many cases where procedures would be
helpful in giving more structure to Slic transfer functions.
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