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to bring video-teleconferencing one step closer to the mass market. This paper presents a
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pose in a much more reliable way than if only one camera is used. Thus we enjoy the ver-
satility of stereo techniques without suffering from their vulnerability. By emphasizing a 3D
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Figure 1: Eye-gaze Correction: The two images
shown on the left are taken from a pair of stereo
cameras mounted on the top and bottom sides of
a monitor; the image shown above is a synthe-
sized virtual view that preserves eye-contact.

1 Introduction

Video-teleconferencing, a technology enabling communicating with people face-to-face over remote dis-
tances, does not seem to be as widespread as predicted. Among many problems faced in video-teleconferencing,
such as cost, network bandwidth, and resolution, the lack of eye-contact seems to be the most difficult one
to overcome[17]. The reason for this is that the camera and the display screen cannot be physically aligned
in a typical desktop environment. It results in unnatural and even awkward interactions. Special hardware
using half-silver mirrors has been used to address this problem. However this arrangement is bulky and
the cost is substantially high. What’s more, as a piece of dedicated equipment, it does not fit well to our
familiar computing environment, thus its usability is greatly reduced. We aim to address the eye-contact
problem by synthesizing videos as if they were taken from a camera behind the display screen, thus to es-
tablish natural eye-contact between video-teleconferencing participants without using any kind of special
hardware.

The approach we take involves three steps: pose tracking, view matching, and view synthesis. We
use a pair of calibrated stereo cameras and a personalized face model to track the head pose in 3D. The
use of strong domain knowledge (a personalized face model) and a stereo camera pair greatly increase the
robustness and accuracy of the 3D head pose tracking. The stereo camera pair also allows us to match
parts not modelled in the face model, such as the hands and shoulders, thus providing wider coverage of
the subject. Finally, the results from the head tracking and stereo matching are combined to generate a
virtual view. Unlike some other methods that only “cut and paste” the face part of the image, our method
generates natural looking and seamless images, as shown in figure 1.

There have been attempts to address the eye-contact problem using a single camera with a face model
[11],[9], or using dense stereo matching techniques[18], [14]. We will discuss these approaches in more
details in Section 2. With a single camera, we found it difficult to maintain both the real-time requirement
and the level of accuracy we want with head tracking. Existing model-based monocular head tracking
methods [10], [3], [2], [6], [1] either use a simplistic model so they could operate in real time but produce
less accurate results, or use some sophisticated models and processing to yield highly accurate results
but take at least several seconds to compute. A single-camera configuration also has difficulties to deal
with occlusions. Considering these problems with a monocular system, we decided to adopt a stereo
configuration. The important epipolar constraint in stereo allows us to reject most outliers without using
expensive robust estimation techniques, thus keeping our tracking algorithm both robust and simple enough
to operate in real-time. Furthermore, two cameras usually provide more coverage of the scene.

One might raise the question that why we do not use a dense stereo matching algorithm. We argue that,
first, doing a dense stereo matching on a commodity PC in real time is difficult, even with today’s latest
hardware. Secondly and most importantly, a dense stereo matching is unlikely to generate satisfactory
results due to the limitation on camera placement. Aiming at desktop video teleconferencing applications,
we could only put the cameras around the frame of a display monitor. If we put the cameras on the opposite
edges of the display, given the normal viewing distance, we have to converge the cameras towards the
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Figure 2: Camera-Screen
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person sitting in front of the desktop, and such a stereo system will have a long baseline. That makes stereo
matching very difficult; even if we were able to get a perfect matching, there would still be a significant
portion of the subject which is occluded in one view or the other. Alternatively, if we put the cameras close
to each other on the same edge of the monitor frame, the occlusion problem is less severe, but generalization
to new distant views is poor because a significant portion of the face is not observed. After considering
various aspects, we have decided to put one camera on the upper edge of the display and the other on the
lower edge, and follow a model-based stereo approach to eye-gaze correction.

2 Related Works

In a typical desktop video-teleconferencing setup, the camera and the display screen cannot be physically
aligned, as depicted in figure 2. A participant looks at the image on the monitor but not directly into the
camera, thus she does not appear to make eye contact with the remote party. Research [22] has shown
that if the divergence angle (α) between the camera and the display is greater than five degrees, the loss
of eye-contact is noticeable. If we mount a small camera on the side of a 21-inch monitor, and the normal
viewing position is at 20 inches away from the screen, the divergence angle will be 17 degrees, well above
the threshold at which the eye-contact can be maintained. Under such a setup, the video loses much of its
communication value and becomes un-effective compared to telephone.

Several systems have been proposed to reduce or eliminate the angular deviation using special hard-
ware. They make use of half-silvered mirrors or transparent screens with projectors to allow the camera to
be placed on the optical path of the display. A brief review of these hardware-based techniques has been
given in [13]. The expensive cost and the bulky setup prevent them to be used in a ubiquitous way.

On the other track, researchers have attempted to create eye-contact using computer vision and com-
puter graphics algorithms. Ott et al. [18] proposed to create a virtual center view given two cameras
mounted on either side of the display screen. Stereoscopic analysis of the two camera views provides a
depth map of the scene. Thus it is possible to “rotate” one of the views to obtain a center virtual view that
preserves eye contact. Similarly, Liu et al. [14] used a trinocular stereo setup to establish eye contact. In
both cases, they perform dense stereo matching without taking into account the domain knowledge. While
they are generic enough to handle a variety of objects besides faces, they are likely to suffer from the vul-
nerability of brute-force stereo matching. Furthermore, as discussed in the previous section, we suspect
that direct dense stereo matching is unlikely to generate satisfactory results due to the constraint of camera
placement imposed by the size of the display monitor – a problem that may be less severe back in the early
90’s, when the above two algorithms were proposed .

Cham and Jones at Compaq Cambridge Research Laboratory [5] approached this problem from a ma-
chine learning standpoint. They first register a 2D face model to the input image taken from a single camera,
then morph the face model to the desired image. The key is to learn a function that mapps the registered
face model parameters to the desired morphed model parameters [11]. They achieve this by non-linear re-
gression from sufficient instances of registered-morphed parameter pairs which are obtained from training
data. As far as we know, their research is still in a very early stage, so it is not clear if this approach is
capable of handling dramatic facial expression changes. Furthermore, they only deal with the face part of
the image – the morphed face image is superimposed on the original image frame, which sometime leads
to errors near the silhouettes due to visibility changes.

The GazeMaster project at Microsoft Research [9] uses a single camera to track the head orientation and
eye positions. Their view synthesis is quite unique in that they first replace the human eyes in a video frame
with synthetic eyes gazing in the desired direction, then texture-map the eye-gaze corrected video frame to
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Figure 3: The components
of our eye-gaze correction
system
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a generic rigid face model rotated to the desired orientation. The synthesized photos they published look
more like avatars, probably due to the underlying generic face model. Another drawback is that, as noted
in their report, using synthetic eyes sometime inadvertently changes the facial expression as well.

From a much higher level, this GazeMaster work is similar to our proposed approach, in the sense that
they both use strong domain knowledge (a 3D face model) to facilitate the tracking and view synthesis.
However, our underlying algorithms, from tracking to view synthesis, are very different from theirs. We
incorporate a stereo camera pair, which provides the important epipolar constraint that we use throughout
the entire process. Furthermore, the configuration of our stereo camera provides much wider coverage of
the face, allowing us to generate new distant views without having to worry about occlusions.

3 System Overview

Figure 3 illustrates the block diagram of our eye-gaze correction system. We use two digital video cameras
mounted vertically, one on the top and the other on the bottom of the display screen. They are connected
to a PC through 1394 links. The cameras are calibrated using the method in [23]. We choose the vertical
setup because it provides wider coverage of the subject and higher disambiguation power in feature match-
ing. Matching ambiguity usually involves symmetric facial features such as eyes and lip contours aligned
horizontally. The user’s personalized face model is acquired using a rapid face modelling tool [15]. Both
the calibration and model acquisition require little human interaction, and a novice user can complete these
tasks within 15 minutes.

With these prior knowledge, we are able to correct the eye-gaze using the algorithm outlined as follows:

1. Background model acquisition

2. Face tracker initialization

3. For each image pair, perform

• Background subtraction

• Temporal feature tracking in both images

• Updating head pose

• Correlation-based stereo feature matching

• Stereo silhouette matching

• Hardware-assisted view synthesis

Currently, the only manual part of the system is the face tracker initialization which requires the user
to interactively select a few markers. We are currently working on automatic initialization.

The tracking subsystem includes a feedback loop that supplies fresh salient features at each frame to
make the tracking more stable under adversary conditions, such as partial occlusions and facial expression
changes. Furthermore, an automatic tracking recovery mechanism is also implemented to make the whole
system even more robust over extended period of time. Based on the tracking information, we are already
able to manipulate the head pose by projecting the live images onto the face model. However, we also want
to capture the subtleties of facial expressions and other foreground objects, such as hands and shoulders. So
we further conduct correlation-based feature matching and silhouette matching between the stereo images.
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All the matching information, together with the tracked features, is used to synthesize aseamlessvirtual
image that looks as if it were taken from a camera behind the display screen. We have implemented the
entire system under the MS Windows environment. Without any effort spending on optimizing the code,
our current implementation runs about 4-5 frames per second on a single CPU 1 GHz PC.

4 Stereo 3D Head Pose Tracking

Our stereo head pose tracking problem can be stated as follows:

Given (i) a set of tripletsS = {(p,q,m)} at timet, wherep andq are respectively points in the upper
(first) and the lower (second) camera images, andm is their corresponding point in the face model,
and (ii) a pair of images from the stereo cameras at timet + 1,

determine (i) S′ = {(p′,q′,m)} at timet + 1 wherep′ andq′ are the new positions ofp andq, and (ii)
compute the head pose, so that the projections ofm in time t + 1 arep′ andq′ in the stereo image
pair, respectively.

We use the KLT tracker to track feature pointsp,q from time t to t + 1 [21]. Note that there is one
independent feature tracker for each camera, thus we need apply the epipolar constraint to remove any stray
point. The epipolar constraint states that if a pointp = [u, v, 1]T (expressed in homogeneous coordinates)
in the first image and a pointq = [u′, v′, 1]T in the second image correspond to the same 3D pointm in
the physical world, they must satisfy the following equation:

qT Fp = 0 (1)

whereF is the fundamental matrix that encodes the epipolar geometry between the two images [8]. In
fact,Fp defines the epipolar line in the second image, thus Equation (1) means that the pointq must pass
through the epipolar lineFp and vice versa.

In practice, due to camera noise and inaccuracy in camera calibration and feature localization, we define
a band of uncertainty along the epipolar line. For every triplet(p′,q′,m), if the distance fromq′ to thep′s
epipolar line is greater than a certain threshold, this triplet will be discarded. We use a distance threshold
of three pixels in our experiment.

After we have removed all the stray points that violate the epipolar constraint, we update the head pose,
represented by a3 × 3 rotational matrixR and a 3D translation vectort, so that the sum of re-projection
errors ofm to p′ andq′ is minimized. The re-projection errore is defined as

e =
∑

i

‖ p′i − φ(A0(Rmi + t) ‖2 + ‖ q′i − φ(A1[R10(Rmi + t) + t10]) ‖2 (2)

whereφ(·) represents the standard pinhole projection,A0 andA1 are the cameras’ intrinsic parameters,
and (R10, t10) is the transformation from the second camera’s coordinate system to the first camera’s.
Solving(R, t) by minimizing (2) is a nonlinear optimization problem. We can use the head pose from time
t as the initial guess and conduct the minimization by means of, for example, the Levenberg-Marquardt
algorithm.

After the head pose is determined, we replenish the matched setS′ by adding more good feature points
selected using the criteria in [21]. A good feature point is a point with salient textures in its neighborhood.
We must be careful not to add feature points in the non-rigid parts of the face, such as the mouth region. To
do so, we define a bounding box around the tip of the nose that covers the forehead, eyes, and nose region.
Any good feature points outside this bounding box will not be added to the matched set. However, they
will be used in the next stereo matching stage, which we will discuss in Section 5.2.

The replenish scheme greatly improves the robustness of the tracking algorithm. Our experiments
have shown that our tracking can keep tracking under large head rotations and dramatic facial expression
changes.
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4.1 Tracker Initialization and Auto-Recovery

The tracker needs to know the head pose at time 0 to start tracking. We let the user interactively select
seven landmark points in each image, from which the initial head pose can be determined. The initial
selection is also used for tracking recovery when the tracker loses tracking. This may happen when the
user moves out of the camera’s field of view or rotates her head away from the cameras. Fortunately, for
our video-teleconferencing application, we could just send one of the video streams un-modified under
these situations. When she turns back to look at the screen, we do need to continue tracking with no human
intervention, which requires automatic recovery of the head pose. During the tracking recovery process,
the initial set of landmark points is used as templates to find the best match in the current image. When
a match with a high confidence value is found, the tracker continues the normal tracking. Our recovery
scheme is effective because unlike most other tracking applications, we only need to track the user when
she is looking right at the display window. This is exactly the scenario when the initial landmark templates
are recorded.

Furthermore, we also activate the auto-recovery process whenever the current head pose is close to the
initial head pose. This prevents the tracker from drifting. A more elaborated scheme that uses multiple
templates from different head poses can further improve the effectiveness of automatic tracker reset. This
can be further extended to a non-parametric description of head poses that can self-calibrate over time.

5 Stereo View Matching

The result from the 3D head pose tracking gives a set of good matches within therigid part of the face
between the stereo pair. To generate convincing and photo-realistic virtual views, we need to find more
matching points over the entire foreground images, especially along the contour and the non-rigid parts
of the face. We incorporate both feature matching and template matching to find as many matches as
possible. During this matching process, we use the reliable information obtained from tracking to constrain
the search range. In areas where such information is not available, we relax the search threshold, then apply
the disparity gradient limit to remove false matches.

To facilitate the matching (and later view synthesis in Section 6), we rectify the images using the
technique described in [16], so that the epipolar lines are horizontal.

5.1 Disparity and Disparity Gradient Limit

Before we present the details of our matching algorithm, it is helpful to define disparity, disparity gradient,
and the important principle of disparity gradient limit, which will be exploited through out the matching
process.

Disparity is well defined for parallel cameras (i.e., the two image planes are the same) [8], and this is
the case after we have performed stereo rectification to align the horizontal axes in both images. Given a
pixel (u, v) in the first image and its corresponding pixel(u′, v′) in the second image, disparity is defined
asd = u′ − u (v = v′ as images have been rectified). Disparity is inversely proportional to the distance of
the 3D point to the cameras. A disparity of 0 implies that the 3D point is at infinity.

Consider now two 3D points whose projections arem1 = [u1, v1]T andm2 = [u2, v2]T in the first
image, andm′

1 = [u′1, v
′
1]

T andm′
2 = [u′2, v

′
2]

T in the second image. Their disparity gradient is defined to
be the ratio of their difference in disparity to their distance in the cyclopean image, i.e.,

DG =
∣∣∣∣

d2 − d1

u2 − u1 + (d2 − d1)/2

∣∣∣∣ (3)

Experiments in psychophysics have provided evidence that human perception imposes the constraint
that the disparity gradientDG is upper-bounded by a limitK. The limit K = 1 was reported in [4]. The
theoretical limit for opaque surfaces is 2 to ensure that the surfaces are visible to both eyes [19]. Also
reported in [19], less than10% of world surfaces viewed at more than 26cm with 6.5cm of eye separation
will present with disparity gradient larger than 0.5. This justifies use of a disparity gradient limit well below
the theoretical value (of 2) without imposing strong restrictions on the world surfaces that can be fused by
the stereo algorithm. In our experiment, we use a disparity gradient limit of 0.8 (K = 0.8).
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5.2 Feature Matching Using Correlation

For unmatched good features in the first (upper) image, we try to find corresponding points, if any, in
the second (lower) image by template matching. We use normalized correlation over a9 × 9 window
to compute the matching score. The disparity search range is confined by existing matched points from
tracking, when available.

Combined with matched points from tracking, we build a sparse disparity map for the first image and
use the following procedure to identify potential outliers (false matches) that do not satisfy the disparity
gradient limit principle. For a matched pixelm and a neighboring matched pixeln, we compute their
disparity gradient between them using (3). IfDG ≤ K, we register a vote of good match form; otherwise,
we register a vote of bad match form. After we have counted for every matched pixel in the neighborhood
of m, we tally the votes. If the “good” votes are less than the “bad” votes,m will be removed from the
disparity map. This is conducted for every matched pixel in the disparity map; the result is a disparity map
that conforms to the principle of disparity gradient limit.

5.3 Contour Matching

Template-matching assumes that corresponding images patches present some similarity. This assumption
may be wrong at occluding boundaries, or object contours. Yet object contours are very important cues for
view synthesis. The lack of matching information along object contours will result in excessive smearing
or blurring in the synthesized views. So it is necessary to include a module that extracts and matches the
contours across views in our system.

The contour of the foreground object can be extracted after background subtraction. It is approximated
by polygonal lines using the Douglas-Poker algorithm[7]. The control points on the contour are further
refined to sub-pixel accuracy using the “snake” technique[12]. Once we have two polygonal contours,
denoted byP = {vi|i = 1..n} in the first image andP ′ = {v′i|i = 1..m} in the second image, we use the
dynamic programming technique (DP) to find the global optimal match across them.

Since it is straightforward to formulate contour matching as a dynamic programming problem with
states, stage, and decisions, we will only discuss in detail the design of the cost functions. There are two
cost functions, thematchingcost and thetransitioncost. The matching cost functionC(i, j) measures the
“goodness” of matching between segmentVi = vivi+1 in P and segmentV ′

j = v′iv
′
i+1 in P ′. The lower

the cost, the better the matching. The transition cost functionW (i, j|i0, j0) measures the smoothness from
segmentVi0 to segmentVi, assuming that(Vi, V

′
j ) and(Vi0 , V

′
j0

) are matched pairs of segments. Usually,
Vi andVi0 are continuous segments, i.e.,‖i0 − i‖ ≤ 1. It penalize for matches that are out of order. The
scoring scheme of DP, formulated as a forward recursion function, is then given by

M(i, j) = min( M(i− 1, j − 1) + C(i, j) + W (i, j|i− 1, j − 1),
M(i, j − 1) + C(i, j) + W (i, j|i, j − 1),
M(i− 1, j) + C(i, j) + W (i, j|i− 1, j) ) .

5.3.1 The Matching Cost.

It takes into account the epipolar constraint, the orientation difference, and the disparity gradient limit.

• The epipolar constraint: We distinguish three configurations, as shown in Figure 4 where the red
line is the contour in the first (upper) image; the blue line is the contour in the second (lower) image.
The dotted lines are the corresponding epipolar lines. In Figure 4(a), segmentbc and segmentqr are
being matched, andCe = 0. The epipolar constraint limitsqr corresponding to segmentb′c′, instead
of bc. In Figure 4(b), the epipolar constraint tells that segmentab cannot match segmentrs because
there is no overlap. In that case, a sufficiently large cost (Thighcost) is assigned to this match. When
the orientation of at least one line segment is very close to that of epipolar lines, intersection of the
epipolar line with the line segment cannot be computed reliably. In that case, the cost is the average
inter-epipolar distance(de = (e1 + e2)/2), as illustrated in the figure. In summary, the epipolar
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Figure 4: Applying the epipolar constraint to contour matching.

constraint cost for a pair of segment(Vi, V
′
j ) is

Ce =





de if Vi or V ′
j is close to horizontal lines;

0 if Vi or V ′
j overlaps;

Thighcost otherwise.
(4)

• The orientation difference: It is defined as a power function of the orientation difference between
the proposed matching segments(Vi, V

′
j ). Let ai andaj be orientation ofVi andV ′

j , the orientation
difference is

Ca = (
|ai − aj |

Ta
)n (5)

whereTa is the angular difference threshold, andn is the power factor. We useTa = 30◦ andn = 2.

• The disparity gradient limit : It is similar to that used in template matching. However, we do not
want to consider feature points in matching contour segments because the contour is on the occluding
boundary, where the disparity gradient with respect to the matched feature points is very likely to
exceed the limit. On the other hand, it is reasonable to assume that the disparity gradient limit will be
upheldbetweenthe two endpoints of the segment. We adopt the disparity prediction model in [24].
That is, given a pair of matched points(mi,m′

i), the disparity of a pointm is modeled as

d = di + Dini (6)

wheredi = ‖m′
i − mi‖, Di = ‖m − mi‖, andni ∼ N(0, σ2I) with σ = K/(2 − K). A pair

of matched segments contains two pairs of matched endpoints(ms,m′
s) and (me,m′

e). We use
(ms,m′

s) to predict the disparity ofme, and compute the variance of the “real” disparity from
the predicted one. Similarly we also compute the variance of the predicted disparity ofms using
(me,m′

e). As suggested in [24], the predicted variance should be less restrictive when the point
being considered is away from the matched point, which leads to the following formulae:

σi = [σmax − σmin](1− exp(−D2
i /τ2)) + σmin (7)

where the range[σmin, σmax] andτ are parameters. We useσmin = 0.5, σmax = 1.0, andτ = 30.

Now we can finally write out the disparity gradient cost. Letds = ‖m′
s −ms‖, de = ‖m′

e −me‖,
D1 = ‖me −ms‖, D2 = ‖m′

e −m′
s‖, and∆d = de − ds; σe andσs are computed by plugging in

D1 andD2 into (7); the disparity gradient cost is given by

Cd = ∆d2/σ2
e + ∆d2/σ2

s . (8)

Combining all the above three terms, we have the final matching cost as:

C = max(Thighcost, Ce + waCa + wdCd) (9)

wherewa andwd are weighting constants. The match cost is caped byThighcost. This is necessary to pre-
vent any corrupted segment in the contour from contaminating the entire matching. In our implementation,
Thighcost = 20, wa = 1.0, andwd = 1.0.
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5.3.2 The Transition Cost.

In contour matching, when two segments are continuous in one image, we would prefer that their matched
segments in the other image are continuous too. This is not always possible due to changes in visibility:
some part of the contour can only be seen in one image. The transition cost (W ) is designed to favor smooth
matching from one segment to the next, while taking into account discontinuities due to occlusions. The
principle we use is again the gradient disparity limit. For two consecutive segmentsVi andVi+1 in P ,
the transition cost function is the same as the one used in matching cost – equation (8), except that the
two pairs of matched points involved are now the endpoint ofVi and the starting point ofVi+1 and their
corresponding points inP ′.

6 View Synthesis

From the previous tracking and matching stages, we have obtained a set of point matches and line matches
that could be used to synthesize new views. We implemented and tested two methods for view synthesis.
One is based on view morphing [20] and the other uses hardware-assisted multi-texture blending. The view
morphing technique allows to synthesize virtual views along the path connecting the optical centers of the
two cameras. A view morphing factorcm controls the exact view position. It is usually between 0 and 1,
whereas a value of 0 corresponds exactly to the first camera view, and a value of 1 corresponds exactly to
the second camera view. Any value in between represents a virtual viewpoint somewhere along the path
from the first camera to the second.

In our hardware-assisted rendering method, we first create a 2D triangular mesh using Delaunay tri-
angulation in the first camera’s image space. We then offset each vertex’s coordinate by its disparity
modulated by the view morphing factorcm, [u′i, v

′
i] = [ui + cmdi, vi]. The offset mesh is fed to the hard-

ware render with two sets of texture coordinates, one for each camera image. Note that all the images
and the mesh are in the rectified coordinate space, we need to set the viewing matrix to the inverse of the
rectification matrix to “un-rectify” the resulting image to its normal view position, this is equivalent to the
post-warp in view morphing. Thus the hardware can generate the final synthesized view in a single pass.
We also use a more elaborate blending scheme, thanks to the powerful graphics hardware. The weightWi

for the vertexVi is based on the product of the total area of adjacent triangles and the view-morphing factor,
as

Wi =
∑

S1
i ∗ (1− cm)∑

S1
i ∗ (1− cm) +

∑
S2

i ∗ cm
; (10)

whereS1
i are the areas of the triangles of whichVi is a vertex, andS2

i are the areas of the corresponding
triangles in the other image. By changing the view morphing factorcm, we can use the graphics hardware
to synthesize correct views with desired eye gaze in real-time, and spare the CPU for more challenging
tracking and matching tasks.

Comparing these two methods, the hardware-assisted method, aside from its blazing speed, generates
crisper results if there is no false match in the mesh. On the other hand, the original view morphing
method is less susceptible to bad matches, because it essentially uses every matched point or line segment
to compute the final coloring of a single pixel, while in the hardware-based method only the three closest
neighbors are used.

7 Experiment Results

We have implemented our proposed approach using C++ and tested with several sets of real data. Very
promising results have been obtained. We will first present a set of sample images to further illustrate
our algorithm, then we will show some more results from different test users. For each user, we built a
personalized face model using a face modelling tool[15]. This process, which takes only a few minutes and
requires no additional hardware, only needs to be done once per user. All the parameters in our algorithm
are set to be the same for all the tests.

Figure 5 shows the intermediate results at various stages of our algorithm. It starts with a pair of stereo
images in Fig. 5(a); Fig. 5(b) shows the matched feature points, the epipolar lines of feature points in the
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(a) The input image pair (b) Tracked feature points
with epipolar line superim-
posed

(c) Extracted foreground
contours

(d) Rectified images for
stereo matching

(e) Delaunay triangulation over matched points

(f) Final synthesized view (uncropped)

Figure 5: Intermediate results of our eye-gaze correction algorithm

first image are drawn in the second image. Fig. 5(c) shows the extracted foreground contours: the red one is
the initial contour after background subtraction while the blue one is the refined contour using the “snake”
technique. In Fig. 5(d) we show the rectified images for template matching. All the matched points form a
mesh using Delaunay triangulation, as shown in Fig. 5(e). The last image (Fig. 5(f)) shows the synthesized
virtual view. We can observe that the person appears to look down and up in the two original image but
look forward in this synthesized view.

During our experiments, we captured all test sequences with resolution 320x240 at 30 frames per
second. Our current implementation can only run at 4 to 5 frames per second. The results shown here are
computed with our system in a “step-through” mode. Except the manual initialization performed once at
the beginning of the test sequences, the results are computed automatically without any human interaction.

The first sequence (Figure 6) shows the viability of our system. Note the large disparity changes
between the upper and lower camera images, making direct template-based stereo matching very difficult.
However, our model-based system is able to accurately track and synthesize photo-realistic images under
the difficult configuration, even with partial occlusions or oblique viewing angles.

Our second sequence is even more challenging, containing not only large head motions, but also dra-
matic facial expression changes and even hand waving. Results from this sequence, shown in Figure 7,
demonstrated that our system is both effective and robust under these difficult conditions. Non-rigid facial
deformations, as well as the subject’s torso and hands, are not in the face model, yet we are still able to
generate seamless and convincing views, thanks to our view matching algorithm that includes a multitude
of stereo matching primitives (features, templates, and curves). Templates matching finds matching points,
as many as possible, in regions where the face model does not cover, while contour matching preserves the
important visual cue of silhouettes.
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Figure 6: Sample results from the first test sequence. The top and bottom rows show the images from the
top and bottom cameras. The middle row displays the synthesized images from a virtual camera located in
the middle of the real cameras. The frame numbers from left to right are 108, 144, 167 and 191.

8 Conclusions

In this paper, we have presented a software scheme for maintaining eye contact during video-teleconferencing.
We use model-based stereo tracking and stereo analysis to compute a partial 3D description of the scene.
Virtual views that preserve eye contact are then synthesized using graphics hardware. In our system,
model-based head tracking and stereo analysis work hand in hand to provide a new level of accuracy, ro-
bustness, and versatility that neither of them alone could provide. Experimental results have demonstrated
the viability and effectiveness of our proposed approach.

While we believe that our proposed eye-gaze correction scheme represents a large step towards a vi-
able video-teleconferencing system for the mass market, there are still plenty of rooms for improvements,
especially in the stereo view matching stage. We have used several matching techniques and prior domain
knowledge to find good matches as many as possible, but we have not exhausted all the possibilities. We
believe that the silhouettes in the virtual view could be more clear and consistent across frames if we in-
corporate temporal information for contour matching. Furthermore, there are still salient curve features,
such as hairlines and necklines, that sometimes go unmatched. They are very difficult to match using a
correlation-based scheme because of highlights and visibility changes. We are investigating a more ad-
vanced curve matching technique.
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