
Relative Completeness of Abstraction

Re�nement for Software Model Checking

Thomas Ball1 Andreas Podelski2

Sriram K. Rajamani1

January 14, 2002

Technical Report

MSR-TR-2001-106

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

1

Relative Completeness of Abstraction

Re�nement for Software Model Checking

Thomas Ball1, Andreas Podelski2, and Sriram K. Rajamani1

1 Microsoft Research
2 Max-Planck-Institut f�ur Informatik

Abstract. Automated methods for an undecidable class of veri�cation problems
cannot be complete (terminate for every correct program). We therefore consider
a new kind of quality measure for such methods, which is completeness relative to
a (powerful but unrealistic) oracle-based method. More precisely, we ask whether
an often implemented method known as \software model checking with abstrac-
tion re�nement" is complete relative to �xpoint iteration with \oracle-guided"
widening. We show that whenever backward �xpoint iteration with oracle-guided
widening succeeds in proving a property ' (for some sequence of widenings de-
termined by the oracle) then software model checking with a particular form of
backward re�nement will succeed in proving '. Intuitively, this means that the
use of �xpoint iteration over abstractions and a particular backwards re�nement
of the abstractions has the e�ect of exploring the entire state space of all possible
sequences of widenings.

1 Introduction

Automatic abstraction is a fundamental problem in model checking software. A
promising approach to construct abstractions automatically, called predicate ab-
straction, is to map the concrete states of a system to abstract states according
to their evaluation under a �nite set of predicates. Many e�orts have been made
to construct predicate abstractions of systems [1, 2, 6, 8, 13, 15, 16, 24{28]. Where
do the predicates for predicate abstraction come from? A popular scheme for
generating predicates is to guess a set of initial predicates, and use (spurious)
counterexamples from a model checker to generate more predicates as neces-
sary [3, 6, 22, 24]. Such schemes go by the name of abstraction re�nement.

Property checking for software is undecidable, even for properties such as
invariants (assertion violations). Thus it is impossible to come up with an ab-
straction re�nement procedure that always generates a set of predicates that is
guaranteed to (in)validate a program against a property. As a result, the process
of abstraction re�nement is largely a black-art, and little attention has been paid
to even understand what the goal of predicate generation should be. This paper
makes two contributions in this regard:

{ We formalize a goodness criterion for abstraction re�nement, namely rel-
ative completeness with respect to a comparable \oracle-guided" widening

method. Since the termination argument of most �xpoint analyses that oper-
ate on in�nite state spaces and lose precision can be explained using widen-
ing, this criterion is appropriate. Without such a criterion, any abstraction
re�nement procedure would seem like \just another" simple and practical
heuristic.

{ We give an abstraction re�nement procedure which satis�es the above crite-
rion, using the pre operator. Our de�nition of abstraction re�nement captures
the essence of the many implementation strategies based on counterexamples
but avoids their technicalities.

If a set of states is represented by a formula ' (in disjunctive-normal form)
then a widening of ' is obtained by dropping some conjuncts from some disjuncts
in '. Widenings are used to accelerate the termination of �xpoint analyses [9,
11]. For example, suppose x � 0 ^ x � n represents the set of states before an
increment of variable x in a loop. The formula x � 0 obtained by a widening
(dropping the conjunct x � n) represents the limit of an iterative reachability
analysis. The precision of the analysis then depends on the widening schedule:
which conjuncts are dropped and when in the �xpoint analysis they are dropped.
Oracle-guided widening uses an oracle to guess the best possible widening sched-
ule.

We use such an oracle-guided widening as a quality measurement for reason-
ing about the \relative completeness" of abstraction re�nement. We design an
abstraction re�nement procedure using the pre operator, and show that if the
oracle-guided widening terminates with success then the abstraction re�nement
(which does not use an oracle) will terminate with success. The basic idea of the
procedure is to iteratively apply pre \syntactically" without performing a satis-
�ability check on the formula constructed at intermediate stages. The resulting
procedure has the ability to \skip" over (potentially non-terminating) loops.

The term \relative completeness" of program veri�cation methods has pre-
viously been used to refer to the existence of an oracle in the form of a theorem
prover for an undecidable logic, e.g. integer arithmetic (the method succeeds
whenever the oracle does) [7]. In contrast, our use of \relative completeness"
refers to the existence of an oracle guiding the widening in another veri�cation
method (that method serves as a point of reference). Furthermore, our results
hold for incomplete theorem provers|we do not assume that theorem provers
are complete. Instead, we give the minimal requirements on a theorem prover
(such as the provability of certain implications) in order to construct sound
approximations.

Our formal setting accounts for the situation where a �nite-state model
checker is used. There, a Boolean variable is introduced for each predicate. The
model checker no longer keeps track of the logical meaning of the predicate that
a Boolean variable stands for. As a consequence, the �xpoint termination test
becomes strictly weaker.

This paper is organized as follows. Section 2 provides the abstract formal set-
ting for our work. Section 3 de�nes Method I, an algorithm for abstract �xpoint
analysis and our abstract re�nement procedure. Section 4 de�nes Method II, an

3

algorithm for concrete �xpoint analysis with oracle-guided widening. Section 5
shows that a particular version of Method I (based on \backward re�nement")
is relatively complete with respect to Method II. Section 6 illustrates the di�er-
ence between forward and backward re�nement with a small example. Section 7
discusses some other technical issues and Section 8 concludes the paper.

2 The Formal Setting

In this section, everything but the \syntactic" de�nition of the operator pre and
an \implementation-biased" (computable) de�nition of implication is standard.

Programs. We express programs in the standard format of `guarded' com-
mands to which other programming languages (also concurrent ones) can be
easily translated. A program is a set C of guarded commands, which are logical
formulas c of the form

c � g(X) ^ x01 = e1(X) ^ : : : ^ x0m = em(X) (1)

where x1; x2; : : : ; xm are all the program variables (including one or several pro-
gram counters, here pc); the variable x0i stands for the value of x after executing
the guarded command c. We write X for the tuple of program variables, i.e.
X = hx1; x2; : : : ; xmi. The formula g is written g(X) in order to stress that its
only free variables are among x1; : : : ; xm; it is called the guard of c. A program
state is a valuation of X . We have a transition of one state into another one if
the corresponding valuation of primed and unprimed variables satis�es one of
the guarded commands c 2 C. While each guarded command is deterministic,
we note that program itself can be nondeterministic since multiple guards can
hold at a given program state.

Symbolic representation. A `symbolic' method uses formulas ' (also referred
to as constraints or Boolean expressions) of a �xed formalism to e�ectively rep-
resent in�nite sets of states. The exact nature of the formalism does not matter
here, although we have in mind that it is some restricted class of �rst-order for-
mulas over the algebraic structure on which the program computes (e.g. linear
arithmetic). Re
ecting existing implementations (see e.g. [17, 11, 21, 19, 14]), we
assume a �xed in�nite set of atomic formulas and represent an in�nite set of
states by a formula of the form

' �
_
i2I

^
j2Ji

'ij (2)

where the 'ij 's are atomic formulas. We de�ne a partial order on formulas '0 � '
as the provability of the implication '0) ' by a given theorem prover. Note
that this ordering need not correspond to the entailment ordering; in many cases
(e.g. integer arithmetic), the validity of implication is undecidable.

We purposefully do not require that theorem provers implement the test of
the (in general, undecidable) validity of implication. As we will see, in order for

4

our results to hold, a theorem prover only must be able prove that ' ^ '0) ',
as well as that ') ' _ '0, for all formulas ' and '0.

Pre and Post. For a guarded command c of the form (1), we de�ne the appli-
cation of the operator prec on a formula ' by the simultaneous substitution of
the variables x1; x2; : : : ; xk in ' by the expressions e1; : : : ; ek. The operator pre
for a program (a set of guarded commands) is simply the disjunction of the prec.

prec(') � g(X) ^ '[e1(X); : : : ; em(X)=x1; : : : ; xm]

pre(') �
W
c2C prec(')

In deviation from more familiar de�nitions, we do not perform a satis�ability
check in the computation of prec. This is crucial in the de�nition of the backward
re�nement procedure in Section 3, but not for the �xpoint procedure in Section 4.
In our formulation, we use a theorem prover only to check the ordering ' � '0;
we thus do not model the standard optimization of eliminating unsatis�able
disjuncts in a formula '.

The application of the operator postc on a formula ' is de�ned as usual; its
computation requires a quanti�er elimination procedure.

postc(') � (9X: ' ^ g(X) ^ x01 = e1(X) ^ : : : ^ x0m = em(X))[X=X 0]

post(') �
W
c2C postc(')

Invariants. In order to specify correctness, we �x formulas init and safe denoting
the set of initial and safe states, respectively, as well as formulas nonInit and
unsafe denoting their complements. These formulas are in the form given for '
in (2). We de�ne the given program to be correct if no unsafe state is reachable
from an initial state.

The correctness can be proven by showing one of the two conditions below.
Here, lfp(F; ') stands for the least �xpoint of the operator F above '.

lfp(post; init) � safe

lfp(pre; unsafe) � nonInit

The least �xpoint implicitly refers to the quotient lattice of formulas wrt. the
pre-order \�".1

A safe invariant is an inductive invariant that implies safe, i.e. a formula
such that

1 The quotient lattice is de�ned by the partial-order that results from collapsing
strongly-connected components in the pre-order�. This identi�es equivalance classes
of formulas that are logically equivalent (as de�ned by �). It is not necessary to in-
troduce extra notation for the quotient lattice since e.g. ' � '0 is equivalent to
the fact that the equivalence class of ' is smaller than or equal to the one of '0

in the quotient lattice. We leave this implicit in order to keep the notation concise.
Additionally, the quotient lattice has a top element true which is greater than every
element in the lattice and a bottom element false that is less than every element in
the lattice.

5

{ init � ,
{ post() � ,
{ � safe.

We will call a safe invariant a forward invariant in order to distinguish it from
what we call a backward invariant, namely a formula such that

{ unsafe � ,
{ pre() � ,
{ � nonInit.

We can establish correctness by computing either a forward invariant or
a backward invariant. In order to have a generic notation that allows
us to cover both cases, we introduce meta symbols F, start and bound

such that hF; start; boundi will be instantiated to hpost; init; safei and to
hpre; unsafe; nonIniti; an hF; start; boundi-invariant is then either a forward in-
variant or a backward invariant. Therefore we can express either of the two
correctness conditions above as the existence of an hF; start; boundi-invariant,
which is a formula such that

{ start � ,
{ F() � ,
{ � bound.

The domain of formulas is closed under the application of F; the domain need
not, however, contain lfp(F; start). Even if it does not, it may still contain a
formula denoting an hF; start; boundi-invariant. We note that we do not need
the completeness of the domain for our results since we only consider �xpoints
obtained by �nite iteration sequences.

Using the generic notation, a possible approach to establish correctness is to
�nd an upper abstraction F0 of the operator F (i.e. where F(') � F0(') holds for
all formulas ') such that lfp(F0; start), the least �xpoint of F0 above start, can be
computed and is contained in bound. Then, lfp(F0; start) is an hF; start; boundi-
invariant because of the simple fact that F0(') � ' entails F(') � '.

In the following two sections, we will use two methods that use predicate
abstraction and widening, respectively, to �nd such an upper abstraction F0.
The two possible instantiations of hF; start; boundi to hpost; init; safei and to
hpre; unsafe; nonIniti yield the two basic variations of each of the two methods.

3 Method I: Predicate Abstraction with Re�nement

We �rst describe the abstract �xpoint iteration method parameterized by a
re�nement procedure that generates a (generally in�nite) sequence of �nite sets
Pn of predicates over states (for n = 0; 1; : : :). We then instantiate it with
a particular re�nement procedure (introduced below). We identify a predicate
with the atomic formula ' de�ning it. Thus, each set Pn is a �nite subset of the
in�nite set of atomic formulas.

6

'0 := start

n := 0
loop

Pn := atoms('n)

construct abstract operator F#
n
de�ned by Pn

 := lfp(F#
n
; start)

if (� bound) then
STOP with \Success"

'n+1 := 'n _ F('n)
n := n+1

endloop

Fig. 1. Method I: abstract �xpoint iteration with iterative abstraction re�nement,
where hF; start; boundi is either hpost; init; safei (\forward") or hpre; unsafe; nonIniti
(\backward").

We write L(Pn) for the (�nite!) free distributive lattice generated by the set of
predicates Pn, with bottom element false and top element true and the operators
^ and _. The notation L(Pn)

v is used to stress the partial order \v" that comes
with the lattice. We note that a constant-time �xpoint check in the free lattice
can be implemented using Binary Decision Diagrams (BDD's) [4]. Each lattice
element can be written in its disjunctive normal form (sometimes viewed as a
set of bitvectors). In the partial order \v" of the free lattice, predicates are
pairwise incomparable. Therefore, elements written in disjunctive normal form
are compared as follows.

_
i2I

^
j2Ji

'ij v
_
k2K

^
j2J0

k

'0ij if 8i 2 I 9k 2 K f'ij j j 2 Jig � f'0kj j j 2 J
0
kg

We will always have that L(Pn) contains start, but generally L(Pn) is not
closed with respect to the operator F (we recall that the triple of meta symbols
hF; start; boundi stands for either hpost; init; safei or hpre; unsafe; nonIniti).

We use the framework of abstract interpretation [9] to construct the `best'
abstraction F#n of F with respect to Pn. This operator is de�ned in terms of a
Galois connection,

F#n � �n Æ F Æ

where the composition f Æg of two functions f and g is de�ned from right to left:
f Æg(x) = f(g(x)). The abstraction function �n maps a formula ' to the smallest
(wrt. \v") formula '0 in L(Pn) that is larger (wrt. \�") than ', formally

�n(') � �'0 2 L(Pn)
v: ' � '0:

7

The meaning function
 is the identity. As before, we omit the extension of the
de�nitions to the quotient lattice.2

The requirement that the mappings �n and
 form a Galois connection
(which guarantees the soundness of the approximation and hence the correctness
of Method I) translates to the minimal requirement for the theorem prover: it
must be able to prove the validity of the implications ') '_'0 and '^'0) '
for all formulas ' and '0. This is because the requirement of the Galois connec-
tion entails that
 is monotonic (i.e. ' v '0 entails
(') �
('0)). In the free
lattice, we also have that '^'0 v ' and ' v '_'0. Hence, by the monotonicity
of
, ' ^ '0 � ' and ' � ' _ '0, which translates to the requirement on the
theorem prover.

We will have that P0 � P1 � : : : and hence L(P0) � L(P1) � : : : which
means an increasing precision of the abstraction �n for increasing n.

Method I. The parametrized method starts with n = 0 and repeatedly

{ constructs the abstract operator F#n de�ned by Pn,
{ iterates F#n to compute lfp(F#n ; start),
{ re�nes the set of predicates to get predicates Pn+1,
{ increases n by one

until lfp(F#n ; start) � bound.
If Method I terminates for some n, then lfp(F#n ; start) is a (forward or back-

ward) invariant (depending on whether F is instantiated by post or by pre). We
note that lfp(F#n ; start) is computed over a free lattice ordered by v, and that
its computation is guaranteed to terminate.

If we take the method with the forward or backward re�nement procedure
de�ned below, we obtain the automated veri�cation method given in Figure 1.
The algorithm uses the operator atoms to map a formula ' (in disjunctive-normal
form) to its (�nite) set of atomic constituent formulas:

atoms(
_
i2I

^
j2Ji

'ij) = f'ij j i 2 I; j 2 Jig:

Re�nement. Our re�nement procedure is to simply apply F to the current
formula 'n and disjoin the result with 'n, to result in 'n+1. The sequence of
formulas produced by the algorithm is thus:

{ '0 = atoms(start)
{ 'n+1 = 'n _ F('n)

We call the procedure `backward re�nement' if hF; starti is hpre; unsafei and
`forward re�nement' if hF; starti is hpost; initi.

2 To be precise, the abstraction function on the quotient lattice for the pre-order \�"
maps the equivalence class of ' to �n('). Similarly, the meaning of an element of
the free lattice is an element of the quotient lattice; i.e. the meaning function maps '
to the equivalence class of '.

8

'0

0; old; n := start; false; 0
loop

if ('0

n
� old) then

if ('0

n
� bound) then

STOP with \Success"
else

STOP with \Don't know"
else

old := '0

n

i := guess provided by oracle
'0

n+1 := widen(i; ('0

n
_ F('0

n+1)))
n := n+ 1

endloop

Fig. 2. Method II: �xpoint iteration with abstraction by oracle-guided widening. Here,
hF; start; boundi is either hpost; init; safei (\forward") or hpre; unsafe; nonIniti (\back-
ward").

4 Method II: Oracle-Guided Widening

Method II iteratively applies the `concrete' operator F over formulas and af-
terwards calls an oracle which determines a widening operator and applies the
widening operator to the result of the application of F (the chosen widening
operator may be the identity function). The precise de�nition of the method is
given in Figure 2. Again, the instantiations of hF; start; boundi to hpost; init; safei
and to hpre; unsafe; nonIniti yield the forward (resp. backward) variations of the
method.

The only requirement that we impose on each operator widen chosen by the
oracle is that the application of widen on a formula ' yields a weaker formula '0

(denoting a larger set of states) in which some conjuncts in some disjuncts have
been dropped (possibly none), i.e.

widen(
W
i2I

V
j2Ji

'ij) =
W
i2I

V
j2J0

i

'ij where J 0i � Ji for all i: (3)

We suppose that we have an enumeration of widening operators widen(0),
widen(1), : : : and that the oracle determines a particular one, widen(i), by
returning a natural number i at each iteration step. We write widen(i; x) short
for widen(x) where widen = widen(i). Thus, each sequence of natural numbers
produced by the oracle uniquely determines a �xpoint iteration sequence.

5 Relative Completeness for Backward Re�nement

For the following theorem, we consider Method I and Method II with F; start and
bound instantiated to pre; unsafe and nonInit, respectively. The theorem says that

9

for every program, Method I is guaranteed to terminate with success (i.e. proving
the correctness of the program) if there exists an oracle such that Method II
terminates with success.

Theorem 1 (Relative Completeness of Abstract Backward Iteration
with Backward Re�nement). Method I with hF; start; boundi instantiated to
hpre; unsafe; nonIniti will terminate with success if Method II with hF; start; boundi
instantiated to hpre; unsafe; nonIniti terminates with success.

The theorem means that the (possibly in�nite) sequence of �nite abstract �x-
point iteration sequences

(start; pre#n (start); : : : ; lfp(pre
#
n ; start))n=1;2;:::

`simulates' the tree consisting of all the in�nitely many, possibly in�nite branches

(start;widen(i1) Æ pre(start); : : :)
(i1;i2;:::)2IN

IN

that arise from the di�erent choices for the operator widen(ik) at each level k
(corresponding to the di�erent sequences (i1; i2; : : :) of natural numbers that
can be returned by the oracle). `Simulates' here informally refers to the search
of a backward invariant.

Proofs. The following lemma is of intrinsic interest; it relates the expressiveness
of a set of predicates P with the precision of the abstract �xpoint operator F#

induced by P as described in Section 3.3

Lemma 1. If the set of predicates P can express an hF; start; boundi-invariant
(i.e, L(P), the free lattice generated by P, contains a formula such that
start � , F() � and � bound), then the least �xpoint of F#, the best
abstraction of F over L(P), is an hF; start; boundi-invariant as well.

Proof. The operator F# is de�ned by (see Section 3) F# = �P Æ F Æ
 where
�P(') = �'0 2 L(P): ' � '0. We will show that for all k,

F#
k
(start) � (4)

from which lfp(F#; start) � follows directly. We will show (4) by induction.
The case k = 0 follows by the assumption that is an invariant. For k + 1, we
have

F#(F#
k
(start)) � F#()

3 Successive abstraction re�nement and iteration of F# will succeed if (and only if) the
abstraction re�nement procedure is `good enough'. As a consequence of Lemma 1,
the procedure is `good enough' if it eventually generates a set of predicates P that is
`expressive enough' (in the precise sense of Lemma 1). We cannot expect a realistic
abstraction re�nement procedure that generates such a set P whenever it exists. We
can, however, try to �nd procedures with `relative' power.

10

by the induction hypothesis and the monotonicity of F# (we also use the mono-
tonicity of
 to go from : : : v : : : to : : : � : : :). We now need to show that
F#() � . We know the following:
(1) by the de�nition of �P , F

#() is the least element in L(P) that is greater
than or equal to F();
(2) by the assumption that is an invariant, F() � ;
(3) is an element of L(P).
Therefore, we have F#() � , which completes the proof by induction. ut

Proof (of Theorem 1). We �rst observe that the operator prec for the program
consisting of only the guarded command c distributes over conjunction and dis-
junction.

prec(
_
i2I

^
j2Ji

'ij) =
_
i2I

^
j2Ji

prec('ij) (5)

It follows from this observation and the de�nition of pre(') as
W
c2C prec(') that

atoms(pre(
_
i2I

^
j2Ji

'ij)) =
[
c2C

fatoms(prec('ij))ji 2 I; j 2 Jig (6)

Using the above observations we prove that atoms('n) � atoms('0n), where
'n is the formula in Method I at (the beginning of) iteration n and '0n is the
formula in Method II at (the beginning of) iteration n. The proof goes by in-
duction over n. The base case is simple as '0 = start and '00 = start. The values
'n+1 and '

0
n+1 are constructed as follows by Methods I and II (respectively):

{ 'n+1 = 'n _ pre('n)
{ '0n+1 = widen(i; '0n _ pre('0n))

By the induction hypothesis, atoms('n) � atoms('0n). It follows directly from (6)
that atoms(pre('n)) � atoms(pre('0n)). Since the widen operator can only drop
atomic formulae, we have atoms('n+1) � atoms('0n+1), which completes the
proof by induction.

Therefore, if Method II terminates with success at the n-th iteration with the
result '0n, then '

0
n is a backward invariant (below nonInit) that can be expressed

by Pn = atoms('n) � atoms('0n). Hence, by Lemma 1, the least �xpoint of pre#n
above unsafe is also a backward invariant (below nonInit). Hence Method I also
terminates with success. ut

Forward �xpoint iteration with backward re�nement. Can we use ab-
stract forward �xpoint iteration with backward re�nement and still have relative
completeness? The answer is yes if we use the dual fpre of pre for the backward
re�nement. The operator fpre (sometimes called the weakest liberal precondition
operator) is de�ned by fpre(') = :pre(:').

We de�ne dual backward re�nement as the procedure that iterates fpre start-
ing from safe; i.e., it generates the sequence of sets of predicates Pi = atoms('i)
(n � 0) where

11

'0 := safe

n := 0
loop

Pn := atoms('n)

construct abstract operator post#
n
de�ned by Pn

 := lfp(post#
n
; start)

if (� safe) then
STOP with \Success"

'n+1 := 'n _ fpre('n)
n := n+1

endloop

Fig. 3. Method III: forward abstract �xpoint iteration with backwards iterative ab-
straction re�nement.

{ '0 = safe

{ 'n+1 = 'n _ fpre('n)
This new method (Method III) is made precise in Figure 3. One possible inter-
pretation of the following theorem is that the crucial item in the statement of
Theorem 1 is the backward direction of the re�nement (and not the direction of
the abstract �xpoint iteration).

Theorem 2 (Relative Completeness of Abstract Forward Iteration
with Dual Backward Re�nement). For every program, Method III is guar-
anteed to terminate with success if Method II terminates with success.

Proof (of Theorem 2). Let Method II terminate with success at, say, the n-th
iteration, with, say, the result , then is a backward invariant (more pre-
cisely, a hpre; unsafe; nonIniti-invariant). It is not diÆcult to show that : is a
hpost; init; safei-invariant.

The formula can be expressed by the set of predicates obtained by backward
re�nement in the sense of Section 3, i.e. starting with unsafe and iterating pre.
If we call this set of predicates fPn, then : can be expressed by f:p j p 2 fPng,
a set that is exactly the set Pn de�ned by `dual' backward iteration, as used in
Theorem 2.

Thus, we have a hpost; init; safei-invariant that can be expressed by the set of
predicates Pn. Using Lemma 1 with post#n instantiated for F#n , we obtain that
the forward abstract �xpoint iteration with backward abstraction re�nement,
terminates with success. ut

6 Example: Forward vs. Backward Re�nement

The example program in Figure 4 shows that the completeness of Method I
relative to Method II does not hold for the forward case, i.e. when F; start and

12

init � pc = `1
unsafe � pc = error

variables X = fx; y; zg

guarded commands:
c1 : pc = `1 ! pc := `2; x := 0
c2 : pc = `2 ^ x � 0! x := x+ 1
c3 : pc = `2 ^ x < 0! pc := `3
c4 : pc = `3 ^ y = 25! pc := `4
c5 : pc = `4 ^ y 6= 25! pc := `5
c6 : pc = `5 ! pc := `6; z := �1
c7 : pc = `6 ^ z 6= 0! z := z � 1
c8 : pc = `6 ^ z = 0! pc := error

L1: x = 0;

L2: while (x >= 0) {

x = x + 1;

}

L3: if (y == 25) {

L4: if (y != 25) {

L5: z = -1;

L6: while (z != 0) {

z = z - 1;

}

error:;

}

}

Fig. 4. Example program: Method I, forward abstract �xpoint iteration with forward
re�nement, does not terminate; Method II (iterative application of post and oracle-
guided widening) terminates with success. We here use `syntactic sugar' for guarded
commands and list only the `true' updates; for example, c2 stands for the formula
pc = `2 ^ x � 0 ^ x0 = x+ 1 ^ pc0 = pc ^ y0 = y ^ z0 = z. The right hand side shows
the program in C-like notation

bound are instantiated to post; init and safe, respectively. The values `1 through
`6 for pc in the left hand side of Figure 4 correspond to labels L1 through L6

in the right hand side. In this example, for Method I to terminate, it is crucial
to �nd the (contradictory) predicates x = 25 and x 6= 25. What is diÆcult is
that the code path through these predicates is \bracketed" above and below by
non-terminating while loops.

We observe the following facts about this example:

{ Method II forward (iterative application of post and oracle-guided widen-
ing) terminates with success (the widening operator just drops all conjuncts
containing the variable x).

{ Method I with forward abstraction re�nement does not terminate. Forward
re�nement will get \stuck" at the �rst while loop, generating an in�nite
sequence of predicates about x, namely x = 0, x = 1, x = 2, : : :

This means that the analog of Theorem 1 does not hold for the forward case.
Continuing the example, we also have that

{ Method II (iterative application of pre and oracle-guided widening) termi-
nates with success (the widening operator just drops all conjuncts containing
the variable z).

{ Method I backward terminates with success, which will follow by Theorem 1,
but can also be checked directly by executing the method which terminates
in four iterations. The �rst three iterations of pre are shown below. For

13

readability, conjuncts of the form (c = c) for some constant c have been
dropped.

unsafe = (pc = error)
pre(unsafe) = (pc = `6 ^ z = 0)
pre2(unsafe) = (pc = `6 ^ z 6= 0 ^ z = 1)_

(pc = `5 ^ �1 = 0)
pre3(unsafe) = (pc = `6 ^ z 6= 0 ^ z = 2)_

(pc = `5 ^ �1 6= 0 ^ �2 = 0)_
(pc = `4 ^ y 6= 25 ^ �1 = 0)

Note that it is crucial that we do not do a satis�ability test during the
computation of pre; therefore, the backward re�nement procedure retains
disjuncts that have unsatis�able conjuncts such as �1 = 0. Thus, the pred-
icates y = 25 , y 6= 25, pc = error , pc = `6, pc = `5, pc = `4 are present in
P4. These predicates are suÆcient to ensure that lfp(pre#4 ; unsafe) � nonInit.

As a secondary point, neither the iteration of the concrete post operator post

nor the iteration of the concrete predecessor operator pre terminates (without
using widening). We leave open the problem of designing a forward re�nement
procedure with relative completeness.

7 Discussion

BDD's Implement the Free Lattice. One appealing feature of predicate
abstraction is that a �nite-state model checker (based e.g. on BDD's) can be
used to implemented the abstract �xpoint iteration. There, a Boolean variable
is introduced for each predicate. This means that the logical meaning of the
predicate is not used in the �xpoint termination test. Therefore, for example,
the Boolean expression [x < 2] (where [x < 2] is the Boolean variable introduced
for the predicate x < 2) is not subsumed by [x < 3]; the BDD's for [x < 3] and
[x < 2] _ [x < 3] are di�erent.

We formally account for this situation by ordering formulas with \v", the
ordering of the free distributive lattice. This ordering is strictly stronger than the
ordering \�" based on the provability of implication by a given theorem prover;
i.e., if ' v '0 then ' � '0 (by the monotonicity of the meaning function
), but
the converse does not hold in general; for example, x < 2 6v x < 3.

Relative completeness states that Method I, a �xpoint iteration over formulas
with the ordering \v", terminates if Method II, a �xpoint iteration over formulas
with the ordering \�", terminates, although the �xpoint test of Method I is
strictly weaker than one of Method II. How is this possible? | The following
explanation is based on a technical intricacy (of predicate abstraction) related
to Lemma 1.

We observe that the operator iterated in Method I is F#n , de�ned by �n ÆFÆ

for some n. Let Method II terminate with, say, the formula ', i.e., F(') � '; we
are asking why then F#n (�n(')) v �n(') must hold. We have that atoms(') � Pn

14

and hence
 Æ�n(') � ' (and not only ' �
 Æ�n(')). Therefore, and since �n
is monotonic, we have �n Æ F Æ
(�n(')) v �n('), which we wanted to show.

Boolean expressions. Our setting of the lattice L(P) generalizes the setting
of Boolean expressions that has been used so far in work on abstract model
checking [1, 2, 6, 8, 13, 15, 16, 24{28]. Our more general setting allows us to de-
termine a sense in which the negated versions of predicates generated by the
abstraction re�nement procedure are useless. This is important because the time
for constructing the abstract �xpoint operator is exponential in the number of
predicates.

We obtain the setting of Boolean expressions as an instance of ours simply
by adding the negated version of each predicate. Namely, the lattice of Boolean
expressions over the set of predicates P is L(P [f:'; ' 2 Pg), the lattice gen-
erated by the positive and negated versions of predicates (i.e. atomic formulas).

In the setting of Boolean expressions, Theorem 2 holds with the same back-
ward re�nement procedure as in Theorem 1. In the present formulation, the
backward re�nement procedure considered in Theorem 2 is equivalent to iterat-
ing pre (starting with unsafe) and adding the negation of the predicates obtained.
However, with Boolean expressions, generating the positive or the negated ver-
sion of a predicate amounts to the same.

Re�nement Based on Error Traces. The de�nition of the abstraction re-
�nement procedure in Section 3 is modeled after the standard re�nement pro-
cedure as implemented e.g. by Clarke et al. [5], Ball and Rajamani [3] (who
took forward re�nement) and Lakhnech et al. [24], Henzinger et al. [20], and
Das et al. [12] (who took backward re�nement). The de�nition abstracts away
the technicalities of the particular implementation strategy where a `spurious'-
error execution trace is used to selectively add predicates that can express a
speci�c set of reachable states (with the e�ect of eliminating that error trace);
the de�nition amounts to consider all traces of the same length as the `spurious'
execution trace. Theorems 1 and 2 also hold if we take that implementation
strategy (which still generates all `necessary' predicates under the assumption
of the theorems).

More Powerful Re�nement. The backward re�nement procedure enhances
the standard one in that it adds also predicates that occur in unsatis�able con-
juncts. For example, if c is the guarded command pc = `5 ^ z

0 = �1 ^ pc0 = `6,
then atoms(prec(pc = `6 ^ z = 0)) is atoms(pc = `5 ^ �1 = 0), which consists of
the two predicates pc = `5 and �1 = 0 (see Section 6); the predicate �1 = 0 will
not appear in �n(') for any '. In terms of a practical, error trace-based strategy,
this means that one adds predicates to eliminate more spurious transitions of
the error trace than just the �rst one.

Forward vs. Backward Re�nement. It is perhaps intriguing as to why
Method I is as powerful as Method II with backward re�nement, but not with

15

forward re�nement. We �rst try to give some intuition for the di�erence between
the two cases and then give a more technical explanation.

In the forward direction, the `concrete' execution of each guarded com-
mand c 2 C is deterministic (even though the entire system de�ned by a set C of
guarded commands may be non-deterministic). An `abstract' execution (where
abstraction is induced e.g. by widening) is in general non-deterministic and can
reach more program points (and other program expressions) than the concrete
execution. Note that abstraction re�nement must be based on the concrete execu-
tion (otherwise, the spuriousness of an abstract error trace can not be detected).
The deterministic execution follows only one branch and hence it may get \stuck
in a loop" (for example the loop in line L2 of Figure 4).

In the backward direction, the concrete execution already is (in general) non-
deterministic and can follow several branches; hence it does not get stuck in a
loop (for example the loop in line L6 of Figure 4) and can reach as many program
points (expressions) as an abstract execution; in order to make this always true,
pre must produce also disjuncts with unsatis�able conjuncts; we added Line L5
in the program in Figure 4 to demonstrate this point.

A more technical explanation for the di�erence between the forward and
the backward case lies in (5). It is well-known that the predecessor operator
for deterministic programs (hence in particular for one guarded command c)
distributes over intersection whereas the successor operator does not. Computing
pre works by simple syntactic substitution. In contrast, computing post requires
existential-quanti�er elimination. Therefore, it seems diÆcult to �nd a realistic,
powerful forward abstraction re�nement procedure.

Widening. We use the notion of a widening operator essentially in the sense
of [9, 11]. In the standard setting, a widening operator is a binary operator that
assigns two elements x and x0 another element xrx0 that is larger than both. In
this paper, each widening operator widen is unary. This makes a di�erence in the
context of a �xed widening operator (the second argument is used to determine
the `direction' of the extrapolation of the �rst by xrx0); it does not restrict
the power of the extrapolation in our setting (for each application xrx0 of the
binary operator the oracle can guess a unary one which, applied to x, yields the
same result).

The restriction on the form of widen(x) is motivated by the goal to model
widening operators such that each application can realistically be implemented
(although, of course, the oracle can not). The intuition is that boundaries that
need to be moved in each �xpoint iteration are getting weaker and weaker and
will be dropped in the limit. Many widening operators that have been imple-
mented by Cousot, Halbwachs, Jeannet and others (see e.g. [11, 14, 17, 21]) seem
to follow that intuition.

Widening vs. Predicate Abstraction. Our intent is not a comparison be-
tween the respective power of model checking based on predicate abstraction
with re�nement and of widening-based model checking. Such a comparison would
be futile since the latter lacks the outer loop that performs a re�nement of the

16

abstraction. (What would such a loop look like in order to obtain relative com-
pleteness?)

It is illuminating, however, to see that predicate abstraction and widening can
be formally related with each other as two abstraction methods for veri�cation.
Previously, this was thought to be impossible [23]. For static program analy-
sis, widening was shown to be superior to predicate abstraction or any other
`static' abstraction [10]. As a consequence of our result, predicate abstraction
with re�nement can be understood as widening with `optimal' guidance.

The converse of the theorems, i.e. the relative completeness of Method II
wrt. Method I, does not hold.4 Intuitively, this is because the widening in
Method II (dropping a conjunct) is generally less precise than the extrapola-
tion in Method II (which amounts to replacing a conjunct with a formula over
already generated predicates). The converse would hold if we extended the widen-
ing accordingly. However, we consider that direction of relative completeness not
interesting as long as we do not know of a realistic way to mimic the oracle for
guessing a widening.

The power of either, Method I or II, depends on the given formalism which
�xes the set of atomic formulas. For example, the methods are more powerful if
equalities x = y+ c must be expressed by the conjunction of inequalities (e.g. if
atoms(fx = 0g) is not fx = 0g but fx � 0; x � 0g, then Method I will succeed
on the example in Section 6 also with forward re�nement; similarly, Method I
with backward re�nement will succeed on the example program in [24]).

Termination for Incorrect Programs. Each veri�cation method that we
consider here can be modi�ed in a straightforward way so that it will always
detect (and will always terminate) in the case where the program is incorrect.
The termination of a veri�cation method is an issue only in the case of correct
programs. Therefore we concentrate on that case, and gloss over the case of
incorrect programs.

Finite quotients. If we assume that the program has a �nite simulation or
bisimulation quotient, termination of �xpoint computations can be guaranteed
(both forward and backward) [25, 18]. Our work does not make any such as-
sumptions. We focus on the uniform evaluation of a method on all instances of
the undecidable veri�cation problem (and not on the instances of a decidable
subproblem).

Optimization. Generating a small set of predicates is always a desirable fea-
ture in designing a re�nement procedure. This was not our focus in this paper.
Instead, we de�ned what the goal of the re�nement procedure should be, and
designed a re�nement procedure to meet this goal. Once this goal is established,

4 To obtain a counterexample, consider a program with two independent branches,
one that causes the generation of the predicates x = y and x = y + 1, and
another corresponding to the program fragment x=0; y=0; while(*)fx++; y++g;
while(x!=0)fy--; x--g; if(y!=0)ferror:g.

17

and only after such a goal is formulated as an algorithmic problem, it is possible
to propose and evaluate optimizations. Our work enables this to happen.

8 Conclusion

Automated re�nement is presently the least understood part of automated pro-
gram veri�cation methods known under the term `software model checking'. Up
to now, di�erent re�nement procedures could be evaluated only practically, by
comparing their implementations in various existing tools. The work presented
here is the �rst that tries to evaluate them on a principled basis. We think
that this is a starting point to arrive at a systematic way to design and analyze
re�nement procedures.

References

1. P. A. Abdulla, A. Annichini, S. Bensalem, A. Bouajjani, P. Habermehl, and
Y. Lakhnech. Veri�cation of in�nite-state systems by combining abstraction and
reachability analysis. In CAV 99: Computer-aided Veri�cation, LNCS 1633, pages
146{159. Springer-Verlag, 1999.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In PLDI 01: Programming Language Design and Im-

plementation, pages 203{213. ACM, 2001.
3. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties

of interfaces. In SPIN 01: SPIN Workshop, LNCS 2057, pages 103{122. Springer-
Verlag, 2001.

4. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677{691, 1986.
5. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction re�nement. In CAV 00: Computer Aided Veri�cation, LNCS 1855,
pages 154{169. Springer-Verlag, 2000.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction re�nement. In CAV 00: Computer-Aided Veri�cation, LNCS 1855,
pages 154{169. Springer-Verlag, 2000.

7. S. A. Cook. Soundness and completeness of an axiom system for program veri�-
cation. SIAM Journal of Computing, 7(1):70{91, February 1978.

8. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting �nite-state models from Java source code. In ICSE 2000:

International Conference on Software Engineering, pages 439{448. ACM, 2000.
9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

POPL 79: Principles of Programming Languages, pages 269{282. ACM, 1979.
10. P. Cousot and R. Cousot. Comparing the Galois connection and widen-

ing/narrowing approaches to abstract interpretation. In Proceedings of PLILP 92:

Programming Language Implementation and Logic Programming, LNCS 631, pages
269{295. Springer-Verlag, 1992.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL 78: Principles of Programming Languages, pages
84{96. ACM, 1978.

18

12. S. Das and D. L. Dill. Successive approximation of abstract transition relations.
In LICS 01: Symposium on Logic in Computer Science, 2001.

13. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In CAV 00:

Computer-Aided Veri�cation, LNCS 1633, pages 160{171. Springer-Verlag, 1999.
14. G. Delzanno and A. Podelski. Model checking in CLP. In TACAS 99: Tools and

Algorithms for Construction and Analysis of Systems, LNCS 1579, pages 223{239.
Springer-Verlag, 1999.

15. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and re�ne-
ments in abstract model checking. In SAS 01: Static Analysis, LNCS 2126, pages
356{373. Springer-Verlag, 2001.

16. S. Graf and H. Sa��di. Construction of abstract state graphs with PVS. In CAV

97: Computer-aided Veri�cation, LNCS 1254, pages 72{83. Springer-Verlag, 1997.
17. N. Halbwachs, Y.-E. Proy, and P. Raymond. Veri�cation of linear hybrid systems

by means of convex approximations. In SAS 94: Static Analysis, LNCS 864, pages
223{237. Springer-Verlag, 1994.

18. T. Henzinger and R. Majumdar. A classi�cation of symbolic transition systems.
In STACS 00: Theoretical Aspects of Computer Science, LNCS 1770, pages 13{34.
Springer-Verlag, 2000.

19. T. A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: a model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110{122, 1997.

20. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. personal communication,
May 2001.

21. B. Jeannet. Dynamic partitionning in linear relation analysis and application to the

veri�cation of synchronous programs. PhD thesis, Institut National Polytechnique
de Grenoble, September 2000.

22. R. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton
University Press, 1994.

23. Y. Lakhnech. Personal communication, April 2001.
24. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental veri�cation by

abstraction. In TACAS 01: Tools and Algorithms for Construction and Analysis

of Systems, LNCS 2031, pages 98{112. Springer-Verlag, 2001.
25. K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for auto-

matic abstraction. In CAV 00: Computer-Aided Veri�cation, LNCS 1855, pages
435{449. Springer-Verlag, 2000.

26. V. Rusu and E. Singerman. On proving safety properties by integrating static
analysis, theorem proving and abstraction. In TACAS 99: Tools and Algorithms

for Construction and Analysis of Systems, LNCS 1579, pages 178{192. Springer-
Verlag, 1999.

27. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In POPL 99: Principles of Programming Languages, pages 105{118. ACM, 1999.

28. H. Sa�idi and N. Shankar. Abstract and model check while you prove. In CAV 99:

Computer-aided Veri�cation, LNCS 1633, pages 443{454. Springer-Verlag, 1999.

19

