
Polymorphic Predicate Abstraction

Thomas Ball Todd Millstein
tball@microsoft.com todd@cs.washington.edu

Sriram K. Rajamani
sriram@microsoft.com

June 17, 2002

Technical Report
MSR-TR-2001-10

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Polymorphic Predicate Abstraction

Thomas Ball Todd Millstein ?

tball@microsoft.com todd@cs.washington.edu

Sriram K. Rajamani
sriram@microsoft.com

Microsoft Research

Abstract. Predicate abstraction is a technique for creating abstract models of software that are
amenable to model checking algorithms. Because model checking algorithms have worst-case behav-
ior that is exponential in the number of predicates in the model, it is highly desirable to reduce the
number of predicates, while retaining precision. We show how polymorphism, a well-known concept
in programming languages and program analysis, can be incorporated in a predicate abstraction
algorithm for C programs. The use of polymorphism in predicates, via the introduction of sym-
bolic names for values, allows us to model the e�ect of a large number of monomorphic predicates
equivalently with a small number of polymorphic predicates. Polymorphic predicate abstraction of
C programs is complicated by the presence of procedures and pointers, and our algorithm handles
both constructs. We have proved that our algorithm is sound and have implemented it in the C2bp
tool.

1 Introduction

Predicate abstraction [17, 10] is a technique for automatically creating a �nite state system (for
which a �xpoint analysis will terminate) from an in�nite state system (for which a �xpoint
analysis will, in general, not terminate). Under predicate abstraction, the concrete states of an
in�nite state system are mapped to abstract states according to their evaluation under a �nite
set of predicates.

The technique of predicate abstraction has been recently applied to software (rather than
the transition systems usually considered in the model checking community) [29, 1, 15]. In pre-
vious work [1], we introduced an automatic predicate abstraction algorithm for C programs, as
implemented in the C2bp tool [1]. Given a C program P and a set E = f'1; '2; : : : ; 'ng of
predicates, C2bp automatically constructs a boolean program abstraction BP(P;E), a program
that has identical control structure to P (including procedures and procedure calls) but con-
tains only boolean variables. The program BP(P;E) contains n boolean variables (b-variables)
V = fb1; b2; : : : ; bng, where each b-variable bi represents the predicate 'i. Each b-variable in V
has a three-valued domain: false, true, and � (representing \don't know"). Boolean programs
are amenable to model checking algorithms, including the one implemented in the Bebop

tool [3]. The combination of the C2bp and Bebop tools can be used to discover inductive
invariants in a C program that are boolean functions over the predicates in E.

The C2bp algorithm is unique in that it handles the following features of the input C
program:

? Currently at the University of Washington.

{ Procedures: The main challenge of predicate abstraction of procedure calls is in translating
predicate knowledge between callers and callees in a conservative but precise manner. C2bp
does this in a modular fashion: each procedure can be abstracted by C2bp given only
the interfaces of procedures that it calls. This contrasts with other work, which inlines
procedures [19]. Such an approach may lead to code explosion and does not handle programs
with recursion.

{ Pointers: Predicate abstraction is complicated by the presence of pointers in C programs.
In particular, because of pointer aliasing, an update to one variable may a�ect the truth of
predicates involving other variables. This problem is exacerbated by procedure calls, which
can potentially modify the local state of the caller via pointers. We employ the results of a
points-to analysis to provide conservative but precise abstraction in the presence of pointers.

The algorithm presented in [1] supports predicates in E that are pure C boolean expres-
sions over the variables in P . While quite expressive, this predicate language has an important
shortcoming in the presence of procedures. As an example, consider the following procedure,
which is the identity function on integers:

int id(int x) { return x; }

Suppose we would like the boolean program abstraction to prove that the value returned by
id is 5 when some client f1 invokes it. In this case, we must add the predicate (x = 5) to E.
Similarly, to prove that the value returned by id is 73 when another client f2 invokes it, we
must add the predicate (x = 73) to E. In general, a separate predicate is required for each
possible concrete value to be tracked.

This problem has several practical consequences. First, the number of predicates required
in the abstraction of a procedure is proportional to the number of callers of the procedure.
Because the abstraction process is exponential in the size of E, this requirement can become
prohibitively expensive. It also somewhat undermines the modular abstraction of procedures,
since a procedure may need to be re-abstracted (to incorporate new predicates) whenever a
call to the procedure is added anywhere in the program. Second, the predicate language is not
powerful enough for the model checker to deduce facts such as \id returns the same value that
it is passed." Instead, the model checker can deduce only instantiations of this fact, given a
particular value.

In this paper, we show how to use polymorphism to solve this problem. We extend the
predicate language to allow the use of symbolic constants, which are names given to the initial
values of a procedure's formal parameters, and we appropriately generalize the C2bp algorithm.
A predicate containing a symbolic constant is said to be polymorphic. In our example above,
we can use the polymorphic single predicate (x = 0x) (where 0x is the symbolic constant for
x) to capture the relevant information of id in the resulting boolean program The predicate
abstraction algorithm is modi�ed to appropriately handle polymorphic predicates, substituting
concrete values for symbolic constants during the abstraction of each procedure call (just as
types are substituted for type variables at each call site of a type-polymorphic function in
languages supporting parametric polymorphism). In the presence of pointers, we also support
symbolic constants that refer to dereferences of formal parameters. The generalized algorithm
is implemented in our C2bp tool.

int inc(int x) {

x := x+1;

return x;

}

void foo(int a) {

int b,c;

b := inc(a);

c := inc(b);

return;

}

inc {

x = 2,

x = 3,

x = 4

}

foo {

a = 2,

b = 3,

c = 4

}

inc {

x = 'x,

x = 'x+1

}

foo {

a = 'a,

b = 'a+1,

c = 'a+2

}

C Program Pmono Ppoly

Fig. 1. A simple C program and two sets of predicates, Pmono and Ppoly.

bool,bool,bool inc(bool {x=2}, bool {x=3},

bool {x=4}) {

{x=2}, {x=3}, {x=4}

:= choose(false, {x=2}|{x=3}|{x=4}),

choose({x=2}, !{x=2}),

choose({x=3}, !{x=3});

return {x=2},{x=3},{x=4};

}

void foo({a=2}) {

bool {b=3},{c=4};

bool prm1, prm2, prm3;

bool ret1, ret2, ret3;

...

...

prm1 := choose({a=2}, !{a=2});

prm2 := choose(false, {a=2});

prm3 := choose(false, {a=2})

ret1, ret2, ret3 := inc(prm1, prm2, prm3);

{b=3} := choose(ret2, !ret2);

prm1 := choose(false, {b=3});

prm2 := choose({b=3}, !{b=3});

prm3 := choose(false, {b=3});

ret1, ret2, ret3 := inc(prm1, prm2, prm3);

{c=4} := choose(ret3, !ret3);

return;

}

Fig. 2. Boolean program abstraction created by the C2bp tool, given the C program shown in Figure 1 and
predicates Pmono.

Section 2 informally reviews by example how C2bp performs monomorphic predicate ab-
straction for C programs with procedures and then presents the same example using polymor-
phic predicate abstraction. Section 3 introduces a core language used to formally explain the
predicate abstraction algorithm. Section 4 presents the technical details of our algorithm, in the
case when programs do not involve pointers, and Section 5 extends the algorithm to accommo-
date pointers. Section 6 discusses related work and Section 7 concludes the paper. Appendix B
proves that the C2bp abstraction algorithm is sound.

2 Example

Figure 1 shows a simple example of a procedure foo calling an increment procedure inc twice.
Consider the set of predicates Pmono in this �gure. Three of these predicates are local to the
procedure inc and the other three are local to the procedure foo. Figure 2 shows the boolean

program that C2bp produces when given the C program1 and the predicate set Pmono from
Figure 1. The boolean program has the same control-
ow structure as the C program and
contains a b-variable for each predicate input to C2bp. A b-variable that is a formal parameter
is called a b-parameter. For example, the procedure inc takes three formal b-parameters, fx=2g,
fx=3g, and fx=4g, corresponding to the three predicates in Pmono that mention the formal
parameter x.2 The procedure returns three b-variables that represent the updated values of the
predicates about x. Procedure foo has a formal b-parameter fa=2g. It also has local b-variables
for the predicates in Pmono involving the local variables b and c.

C2bp creates this boolean program by translating each statement s of the C program into
one or more statements S0 in the boolean program such that S0 conservatively models the e�ect
of s on each predicate that is in scope at the corresponding point in the boolean program.
Consider the assignment statement x := x+1 in the inc procedure. C2bp discovers that if the
predicate (x = 2) is true (false) before this statement, then the predicate (x = 3) will be true
(false) after. This results in the translation (as part of the parallel assignment in inc): fx=3g
:= choose(fx=2g, !fx=2g). The choose function is included in every boolean program and
is de�ned as follows:

bool choose(bool pos, bool neg) {

if (pos) return true;

else if (neg) return false;

else return *;

}

The pos b-parameter of the choose function represents suÆcient conditions for the truth of
a predicate, while neg represents suÆcient conditions for the falsehood of a predicate. C2bp
guarantees that choose is never called with both b-parameters evaluating to true. Both b-
parameters may evaluate to false because the predicates being modeled are not strong enough
to provide a de�nite answer, or because the theorem proving machinery that C2bp uses is
incomplete. In this case, the choose function conservatively returns �, representing the \don't
know" value.

Consider the �rst procedure call b := inc(a) in procedure foo. In the C program, the actual
parameter passed to inc is the expression a, whose value is assigned to the formal parameter
x of inc. By substituting the actual parameter a for formal x in the predicate (x = 2), C2bp
determines that if the predicate (a = 2) is true (false) at this call then the predicate (x = 2) is
true (false) at the entry of inc, resulting in the statement: prm1 := choose(fa=2g, !fa=2g).
The b-variable prm1 is then sent as the actual parameter for the �rst b-parameter of inc in
the boolean program. The other b-parameter values are determined similarly via assignments
to the b-variables prm2 and prm3. There are three return predicates in inc: (x = 2), (x = 3)
and (x = 4). The assignment of the return value of inc to variable b is an implicit assignment
of the form b := x. C2bp deduces that the predicate (b = 3) will be true (false) after the call
(and the assignment of the return value to b) if the predicate (x = 3) (represented by ret2 in
foo) is true (false) at the exit of procedure inc. Thus, C2bp generates the assignment fb=3g
:= choose(ret2, !ret2).

1 Throughout, we use \:=" instead of \=" for the assignment operator, to avoid confusion.
2 Boolean programs permit an identi�er to be of the form fpg, where p is an arbitrary string. This is useful for
naming b-variables with the exact predicates they represent.

bool,bool inc() {

bool {x='x}, {x='x+1};

{x='x} := true;

{x='x}, {x='x+1} :=

choose(false,{x='x}|{x='x+1}),

choose({x='x},!{x='x});

return {x='x}, {x='x+1};

}

void foo() {

bool {a='a},{b='a+1},{c='a+2};

bool ret1, ret2;

{a='a} := true;

ret1, ret2 := inc();

{b='a+1} := choose({a='a}&ret2,

({a='a}&!ret2)|(!{a='a}&ret2));

ret1, ret2 := inc();

{c='a+2} := choose({b='a+1}&ret2,

({b='a+1}&!ret2)|(!{b='a+1}&ret2));

return;

}

Fig. 3. Boolean program abstraction created by the C2bp tool, given the input C program shown in Figure 1
and predicates Ppoly.

The predicates (x = 2) and (x = 3) are necessary so that if the value 2 is passed into inc, it
can be determined that the return value is 3. Similarly, the two predicates (x = 3) and (x = 4)
are necessary so that if the value 3 is passed into inc, it can be determined that the return
value is 4. These predicates (along with the predicates local to foo) allow the boolean program
to model the fact that if foo is passed the value 2, then the variable c will have the value
4. However, an entirely di�erent set of predicates for inc would be necessary for the boolean
program to glean the value of c if 5 were passed to foo, for example. Similarly, the program may
contain other calls to inc, which can require inc to be re-abstracted with yet more predicates.

Polymorphic Predicate Abstraction. Although calls may di�er in the values of arguments
passed to a procedure, they often rely on the same underlying abstract transfer function of the
procedure. The idea of polymorphic predicate abstraction is to employ predicates that directly
model this transfer function, which can then be shared across call sites. In the example of the
inc procedure, we wish to state that the return value of inc is one more than the initial value of
the formal parameter x of inc. Symbolic constants o�er a way to do this. We denote the value
of x at entry to inc by the symbolic constant 0x. To precisely summarize the e�ect of inc for
both call sites then requires only two predicates: x = 0x and x = 0x+1, all local to inc. At each
caller, C2bp binds 0x to the appropriate actual value to get the desired e�ect. The predicate
set Ppoly in Figure 1 shows such polymorphic predicates. Similar polymorphic predicates are
created for foo, in order to make its abstraction generic with respect to its callers.

Figure 3 shows the boolean program created by C2bp when applied to the C program and
the predicate set Ppoly. This boolean program is similar to its monomorphic counterpart, but
the use of symbolic constants allows it to prove much stronger properties about the original
C program. In particular, the boolean program is able to model the fact that inc returns a
value that is one greater than the original value of x and that variable c in foo will have a
value that is two greater than the original value of a. In this way, all calls to inc and foo can
be precisely abstracted, no matter what values are passed as arguments to those calls. Note
the (perhaps) surprising e�ect of the translation: the procedures inc and foo have no formal
b-parameters! This highlights the fact that inc and foo are truly polymorphic procedures: their
transfer functions have no dependence on the contexts in which they are called.

Types: � ::= void j bool j int j ref �

Expressions: e ::= c j x j e1 op e2 j &x j � � � � � x

Declaration: d ::= � x1; � � � ; xn;

Statements: s ::= skip j goto L j L: s
j branch s1 jj � � � jj sn end

j assume(e)
j return x1; � � � ; xn
j �x := e
j x1; � � � xn := e1; � � � ; en
j x1; � � � ; xm := f(e1; � � � ; en)

Statement Sequences: s ::= s1; � � � sn;
Procedure: p ::= � 01; � � � ; �

0

m id (f1 : �1; � � � ; fn : �n)
f d1 � � � dq s g

Program: g ::= d1 � � � dm p1 � � � pn

Fig. 4. A core language containing references and procedures.

3 Core Language

To simplify the presentation of the central ideas in our approach, we focus our attention on a
small core language containing procedures and references (but without type casts, pointer arith-
metic, structures, arrays, unions, and explicit allocation and deallocation). Figure 4 presents
the syntax of the core language.

The core language contains void, boolean, integer, and reference types. The booleans are
three-valued, and we use Kleene's three-valued logic to interpret them (see Appendix A for
a formal description). A procedure can return multiple values and so is annotated with a
sequence of return types. The expressions include boolean and integer constants (ranging over
metavariable c), variables (ranging over metavariable x), and the usual arithmetic and binary
operations (ranging over metavariable op). We also provide two pointer expressions, the ability
to create a reference to a variable and the ability to dereference a pointer variable as many
times as its type allows.

The statements include the skip statement, goto statement, and labelled statements.
Branches with a �nite number of targets are speci�ed with the branch statement, which non-
deterministically selects one of its n statements (branches) to execute. The assume statement is
the dual of the assert statement: the assume statement silently terminates execution if its ex-
pression evaluates to false. The assume statement, in combination with the (non-deterministic)
branch statement, can be used to implement the common if-then-else and C-style switch
statements. For example, the statement \if e then s1 else s2" is implemented as \branch
assume(e); s1; jj assume(!e); s2; end".

There are two forms of assignment statements in the language. The �rst (�x := e) is an
indirect assignment through a variable with reference type. For ease of exposition, we do not
allow more than one dereference on the left-hand side of an assignment. This does not limit
expressiveness. The second is a parallel assignment to of n expressions to n variables. Finally,
the statement language contains a procedure call statement, in which the procedure can return
a sequence of m values.

All variables must be declared before being used. Variables of reference type must addition-
ally be initialized before being used. Variables of type int and bool are assigned an initial value
of 0 and * (\don't know"), respectively.

4 Polymorphic Predicate Abstraction Algorithm

This section presents our polymorphic predicate abstraction algorithm for the core language
without references. We are given a program P in the core language and a set E = f�1; � � � ; �ng
of C pure boolean expressions over the variables in P and associated symbolic constants. The
goal of the algorithm is to create a boolean program abstraction BP(P;E) that conservatively
(yet precisely as possible) represents the e�ect of each statement in P on each predicate in E.
The language of boolean programs is simply the language of Section 3 with integers, reference
types, and all associated expressions and statements removed.3

After de�ning some preliminaries, we review the concepts of weakest preconditions and
predicate strengthening that form the basis of our abstraction algorithm. We then present the
syntax-directed translation of the basic program statements and then of procedure calls. The
section ends with a brief example.

4.1 Preliminaries

It is useful in the following to assume that a programs are in internal form. A program P is in
internal form if each procedure of P has the following properties:

{ The procedure has a single return statement, and it is the last statement of the procedure.
{ Each statement in the procedure has a unique label, as does each sub-statement in the cases
of each branch statement.

{ The actual parameters of each procedure call statement in the procedure are simple vari-
ables.

{ The left hand side of function calls has only local variables.
{ For each formal f of the procedure, there is a local variable 0f and an initialization statement

L : 0f := f at the beginning of the procedure's sequence of statements. The variable 0f is
never referenced again in the procedure.

It is clear that transforming a program to internal form does not change its semantics. From
now on, we assume programs are in internal form.

Each predicate �i in E will have a corresponding b-variable bi in BP(P;E). Let V =
fb1; � � � ; bng and let E be a mapping from each bi to the associated �i. We often extend E
to negations, conjunctions, and disjunctions of boolean variables, in the obvious way.

Each predicate in E is annotated as being either global to BP(P;E) or local to a particular
procedure in BP(P;E) (see Figure 1, in which predicates are local to inc or foo { there are

3 Technically, the choose function given in Section 2 is not in the language of Section 3 (because the language
does not contain an if-then-else statement). We also often employ a parallel assignment where the right-
hand sides are all calls to choose, another violation of the language's syntax. Both of these relaxations can
be straightforwardly desugared to the appropriate syntax.

no global predicates in this example), thereby determining the scope of the corresponding b-
variable in BP(P;E). Let GP = fg1; g2; : : : g be the global variables of the program P . A global
predicate can refer only to variables in GP . Let EG denote the global predicates of E. BP(P;E)
will contain one global declaration for each of the b-variables associated with predicates in EG.

For a procedure R, let ER denote the subset of predicates in E that are local to R. Let
FR = ff1; f2; : : : g be the formal parameters of R, and let LR = fl1; l2; : : : g be the local variables
of R. We assume that the return statement of R has the form \return r", where r 2 FR[LR.

4

Recall that we allow local predicates of a procedure R to introduce symbolic constants
corresponding to formal parameters of R. The symbolic constant for formal parameter f is
denoted by 0f .

4.2 Weakest Preconditions and Cubes

For a statement s and a predicate ', let WP (s; ') denote the weakest liberal precondition [12,
18] of ' with respect to statement s. WP (s; ') is de�ned as the weakest predicate whose truth
before s entails the truth of ' afterwards. The standard weakest precondition rule says that
WP (x := e; ') is ' with all occurrences of x replaced with e, denoted '[e=x]. For example,
WP (x := x+1; x < 5) = (x+1) < 5 = (x < 4). Therefore, (x < 4) is true before x := x+1
executes if and only if (x < 5) is true afterwards.

Given a statement s, a set of predicates E, and predicate e 2 E, it may be the case that
WP (s; e) is not in E. For example, suppose E = f(x < 5); (x = 2)g. We have seen that
WP (x := x+ 1; x < 5) = (x < 4), but the predicate (x < 4) is not in E. Therefore, we
use decision procedures (i.e., a theorem prover) to strengthen the weakest precondition to an
expression over the predicates in E. In our example, we can show that x = 2) x < 4. Therefore
if (x = 2) is true before x := x+ 1, then (x < 5) is true afterwards.

We formalize this strengthening of a predicate as follows. A cube over a set of boolean
variables V = fb1; � � � ; bng is a conjunction c1 ^ : : : ^ cn, where each ci 2 fbi;:big. For any
predicate ', a set of boolean variables V , and a function E that maps each variable b in V to
a predicate E(b), let FV;E(') denote the largest disjunction of cubes c over V such that E(c)
implies '. The predicate E(FV;E(')) represents the weakest predicate over E that is stronger
than '. In our example, if V = fb1; b2g, E(b1) = (x < 5), and E(b2) = (x = 2), then FV;E(x <
4) = (b1 ^ b2) _ (:b1 ^ b2) � b2, so E(FV;E (x < 4)) = (x = 2).

It will also be useful to de�ne a corresponding weakening of a predicate to the set of pred-
icates in E. De�ne GV;E(') as :FV;E(:'). The predicate E(GV;E(')) represents the strongest
predicate over E that is implied by '.

For each cube, the implication check involves a call to a theorem prover implementing the
required decision procedures. Our implementation of C2bp uses two theorem provers: Simplify
[11] and Vampyre [4], both Nelson-Oppen style provers [25]. The naive computation of FV;E(�)
and GV;E(�) require exponentially many calls to the theorem prover in the worst case. We have
implemented several optimizations that make the FV;E(�) and GV;E(�) computations practical [1].

4 The abstraction process can be straightforwardly extended to handle zero or multiple return values in the
source program.

4.3 Statements Besides Procedure Calls and Returns

Each statement of program P (other than procedure calls) translates to one statement in
BP(P;E). We de�ne the function BP(s; V; E) to output the translation of statement s, given
the set of boolean variables V and a mapping to the associated predicates being modeled. Most
of the statement translations are straightforward:

BP(skip, V; E) � skip

BP(goto L, V; E) � goto L

BP(L: s, V; E) � L: BP(s; V; E)
BP(branch s1 jj � � � jj sn end, V; E) � branch BP(s1; V; E) jj � � � jj BP(sn; V; E) end

The rule for abstracting branch statements relies on the following natural rule for abstracting
statement sequences:

BP(s = s1;� � � sn;,V; E) � BP(s1; V; E); � � � BP(sn; V; E);

For a statement of the form assume(e), we know by the semantics of assume that e is
true at the associated point in P , and therefore also at the corresponding point in BP(P;E).
However, e may not be in the set E of predicates being modeled, so the best we can do in
BP(P;E) is to assume the strongest predicate over expressions in E that is implied by e:

BP(assume (e), V; E) � assume (GV;E(e))

For example, suppose the statement s is assume(x < 2) and the set of predicates E is
f(x < 5); (x = 2)g. Then BP(s; V; E) (under the obvious V and E interpretations) is as-
sume(fx<5g&!fx=2g).

Now, consider an assignment statement s of the form x := e.5 The associated statement
in BP(P;E) must appropriately update all of the boolean variables in V that are in scope
at the current program point p.6 If WP (s; �i) is true at p, then bi may be safely set to true
at p in BP(P;E). Similarly, if WP (s;:�i) is true at p, then bi may be safely set to false
at p in BP(P;E). Because the predicate WP (s; �i) may not be in E, we need to weaken it
to a predicate over expressions in E that implies WP (s; �i) , and similarly for WP (s;:�i).
Therefore, BP(P;E) will contain the following parallel assignment statement in place of s7:

BP(x := e; V; E) � b1; : : : ; bn :=
choose(FV;E (WP (x:=e; '1));FV;E (WP (x:=e;:'1)));
: : : ;
choose(FV;E (WP (x:=e; 'n));FV;E (WP (x:=e;:'n)))

Consider again the assignment statement x:=x+1 and the set of predicates E = f(x < 5); (x =
2)g. The translation of this assignment into the boolean program is:

{x<5}, {x=2} := choose({x=2}, false), choose(false, {x=2});

5 The abstraction process can be straightforwardly extended to handle parallel assignments in the source pro-
gram.

6 This \pointwise" updating of the boolean variables corresponds to a Cartesian approximation of the most
precise Boolean abstraction possible. For details, see [2].

7 As an optimization, we only need update those b-variables whose values may have changed as a result of the
assignment [1].

4.4 Procedures, Calls, and Returns

This subsection describes the abstraction of procedures and procedure calls. When abstracting
a program P , C2bp �rst produces the interface of each procedure in P , which is essentially
the procedure's type signature in BP(P;E). Interfaces can be determined for each procedure
in isolation. Once this is done, the statements of each procedure are abstracted one-by-one; the
abstraction of a call to procedure R relies on R's interface.

Procedure Interfaces Let R0 be the version of procedure R in BP(P;E). The interface
of R0 is a six-tuple (FR; r; SR; Ef ; Er; BR), which C2bp constructs by examining ER and the
formal parameters in procedure R in program P . The terms FR and r were de�ned above.
SR = f0fi1 ;

0fi2 ; : : : g is the set of symbolic constants used in the predicates in ER. Let scs(e)
be the set of symbolic constants in predicate e. Let vars(e) be the set of variables referenced in
expression e.

The set Ef contains the subset of ER that should be formal parameter predicates in
BP(P;E). These are the predicates in ER that refer to variables in FR, and possibly to globals,
but do not refer to local variables of R or symbolic constants.

Ef = fe 2 ER j vars(e) \ FR 6= ; ^ vars(e) \ LR = ; ^ scs(e) = ;g

The associated b-variable in V of each member of Ef will be a formal parameter in R0. The
associated b-variables of all other members of ER will be declared as local variables in R0.

The set Er contains the subset of predicates in ER that should be returned by R0. These
are the predicates in ER that refer to the return variable r or to symbolic constants, but not
to local variables or formals of R (other than r):

Er = fe 2 ER j (r 2 vars(e) _ scs(e) 6= ;) ^ (vars(e) � frg) \ (LR [FR) = ;g

For each symbolic constant 0fij in SR, there must exist a predicate (fij =
0fij) in ER.

8 The set
BR � ER consists of the predicates in ER of the form (fij =

0fij). These predicates are called
the binding predicates of R.

Translating Return Statements Now we can de�ne the rule for abstracting return state-
ments. Let b1; : : : ; bn be the associated b-variables in V for each member of ER. Then the
translation of R's return statement is de�ned as follows:

BP(return r, V; E) � return b1; : : : ; bn

Translating Procedure Calls Consider a call x := R(a1; : : : ; aj) in some procedure Q in
program P . Let VQ0 be the b-variables in scope at Q0 (the boolean program version of Q), and
let EQ be a map from VQ0 to the predicates they represent. Let (FR; r; SR; Ef ; Er; BR) be the
interface of R0. We divide the computation of BP(x := R(a1; : : : ; aj); V; E) into three parts:

8 A tool could easily insert such predicates into ER as necessary.

computation of the actual parameters, generation of the call to R0, and updating of variables
in the calling context.

First C2bp computes an actual value to pass to R0 for each formal parameter predicate
ei 2 Ef , assigning it to a fresh local variable prmi. Let e

0
i = ei[a1=f1; a2=f2; : : : ; aj=fj], where

f1; f2; : : : ; fj are the formals from FR. The expression e0i represents the value of formal param-
eter predicate ei in the current calling context. Therefore, if e0i is true (false) before the call,
then ei should be passed the value true (false). As with assignment statements,9 in general we
need to strengthen e0i to an expression over the expressions in E:

prmi := choose(FVQ0 ;EQ(e
0
i);FVQ0 ;EQ(:e

0
i)); (1)

Generating the call to R0 is straightforward: we pass all jEf j of the prmi variables to R0,
and we use jErj fresh variables to catch the return values from the call:

ret1; : : : ; retjErj := R0(prm1; : : : ; prmjEf j); (2)

The most diÆcult part of the translation is in conservatively (but precisely) updating the
b-variables in the scope of Q0 that may have changed as a result of the call to R0. In particular,
any predicate of Q0 that mentions x (the left-hand side of the call to R in Q) or a global variable
might have changed its value. Let Eu = fe 2 EQ j (x 2 vars(e)) _ (vars(e) \GP 6= ;)g be the
set of such predicates. We will update the value of each predicate in Eu, in the context of the
returned predicates of R0 as well as the old values of the predicates in EQ.

First we introduce a mapping orig which says how to interpret each variable in scope of
Q in P , after the call to R. For local variables and formal parameters y of Q, we de�ne orig

(y) = y, since their values are not a�ected by the call to R (as there are no reference variables,
for now). For global variables y, we de�ne orig (y) = yo, where yo is a fresh variable name called
an original variable. Conceptually, we can think of yo as caching the value of y in Q before the
call to R, just as R's symbolic constants cache the original values of its formals. We extend orig

to expressions in the usual way.

Next we de�ne a mapping
 which says how to interpret the symbolic constants and the
return value of R in the context of Q. Since a symbolic constant 0fi refers to the initial value of
a formal parameter fi of R, we de�ne
(

0fi) = orig(ai), where ai is the associated actual of fi
in the call to R. For the return variable r in R,
(r) = xret, where xret is a fresh variable. The
reason for using xret instead of x is to capture the intermediate state when the call from R has
returned, and before the update to x has happened. For globals g in G,
(g) = g. We extend

to expressions in the usual way.

Now we are ready to de�ne the interpretation of all the boolean variables in scope of Q
after the call to R. We saw above that for each return predicate ei of Er, there is an associated
b-variable reti local to procedure Q0. Let TQ0 be the set of these b-variables and let ERQ be a

map such ERQ(reti) = ei. Let V̂ = VQ0[TQ0 . Recall that EQ maps the b-variables VQ0 in scope in

Q to predicates that they represent. De�ne a new map Ê from V̂ to predicates in the following

9 Conceptually, the translation of parameters is akin to simulating the assignment of actuals to formals.

way:

Ê(b) = orig(EQ(b)); if b is a local or formal b-variable in VQ0

EQ(b); if b is a global b-variable in VQ0

(ERQ(b)); if b 2 TQ0

The mapping Ê maps the b-variables in scope in Q to the predicates they represent after the
call to R (but before the update to x).

Finally, we are ready to update the truth values of every b-variable b such that E(b) = e for
some e 2 Eu. We model this update as a conceptual assignment of xret to x after the call to R:

b := choose(F
V̂ ;Ê(WP (x := xret; e));FV̂ ;Ê(WP (x := xret;:e))); (3)

To summarize, BP(x := R(a1; : : : ; aj); V; E) is obtained by concatenating the assignments
of the form (1) for every formal parameter predicate, a call of the form (2) and assignments of
the form (3) for every element in Eu.

4.5 Examples

Consider the translation of the call b := inc(a) in Figure 2. The b-variables Vfoo in scope
at foo are f fa=2g, fb=3g, fc=4g g. The Efoo function is obvious from the notation (e.g.,
Efoo(fa=2g) = (a = 2), etc.) The formal b-parameters of inc in the abstraction are fx=2g,
fx=3g and fx=4g. In order to determine the actual for fx=2g, C2bp computes

prm1 := choose(FVfoo;Efoo(a = 2);FVfoo;Efoo(a 6= 2))

where (a = 2) is obtained by substituting the actual a for formal x. The values for prm2 and
prm3 are computed in a similar manner.

Now consider the processing of return values from this call. The set of return temporaries
Tfoo is f ret1, ret2, ret3 g. We have V̂ = Vfoo [Tfoo, Ê(ret1) = (bret = 2), Ê(ret2) =

(bret = 3), and Ê(ret3) = (bret = 4), obtained by substituting bret for y in the return predicates
of inc. We also have Ê(fa=2g) = (a = 2), Ê(fb=3g) = (b = 3), and Ê(fc=4g) = (c = 4).
The new value of fb=3g is choose(F

V̂ ;Ê(bret = 3);F
V̂ ;Ê(bret 6= 3)), which compiles to choose(

ret2, !ret2).

Finally, consider the translation of the call b := inc(a) in Figure 3. The b-variables Vfoo in
scope at foo are f fa='ag, fb='a+1g, fc='a+2g g, with the obvious Efoo. The inc function

returns two predicates. The set of return temporaries Tfoo is f ret1, ret2 g. We have Ê(ret1)

= (bret = a) and Ê(ret2) = (bret = a+1), obtained by substituting bret for x and a for 0x in the
return predicates. The new value of fb='a+1g is choose(F

V̂ ;Ê(bret =
0a+1);F

V̂ ;Ê(bret 6=
0a+1)),

which compiles to

choose(fa='ag&ret2, (fa='ag&!ret2) j !fa='ag&ret2))

5 Adding Pointers

In this section, we extend the algorithm of Section 4 to handle programs with pointers. We now
allow the full syntax of the language of Section 3. We also allow pointers, pointer dereferencing,
and addresses of variables in the input predicates.

In addition, symbolic constants may now refer to dereferences of formal parameters. De�ne
an access expression q to be a variable preceded by zero or more dereference (*) symbols. Let
var(q) be the underlying variable in the access expression. Consider a procedure R. Given an
access expression q, where var(q) is a formal parameter of R, the symbolic constant 0q refers to
the value of q on entry to R.

These generalizations require modi�cation to the internal form as well as the translation of
assignment statements, procedure interfaces, and procedure calls.

Internal Form. We modify the de�nition of the internal form in two ways. First, the actual
parameters to procedure calls may be locations instead of just simple variables. Second, we
augment initialization statements to handle symbolic constants of dereferences to formal pa-
rameters. For each procedure, for each access expression �nf such that f is a formal of the
procedure and the access expression �n is allowed by the formal's type, we require a local vari-
able 0�nf . Further, we require the existence of an initialization statement L : 0�nf := �n 0f
after the initialization statement for 0f . The variable 0�nf should only appear in initialization
statements.

Assignment Statements. When translating an assignment statement (either of the form
x:=e or *x:=e), the standard weakest precondition computation described in Section 4.2 no
longer suÆces. For example, considerWP (x := 5; �y > 6). According to the standard de�nition,
WP (x := 5; �y > 6) = �y > 6[5=x] = �y > 6. This means that if �y > 6 is true before the
execution of x:=5, then it is true afterwards. However, this is not the case if �y and x are aliases
of one another.

To handle this problem, we adapt Morris' general axiom of assignment [24]. Let metavari-
able l range over locations, which are l-valuable expressions. Consider the computation of
WP (l := e; '), and let l0 be a location mentioned in the predicate '. Then there are two
cases to consider: either l and l0 are aliased, and hence a change in the contents of l will cause a
change in the contents of l0; or they are not, and an assignment to l leaves l0 unchanged. De�ne

l0[l e] =

�
e if l and l0 are aliased;
l0 otherwise.

Then the predicate WP (l:=e; ') is de�ned as '[l e], where '[l e] denotes the predicate
obtained by syntactically substituting each location l0 in ' by the expression l0[l e]. In this
way, all aliases of l are replaced by e. In the absence of alias information, the weakest precondi-
tion has to consider both the case when l0 is and is not aliased to l, for each l0 in '. Therefore, if
' has k locations in it, the weakest precondition will in general have 2k syntactic disjuncts, each
disjunct considering a possible alias scenario. The weakest precondition corresponding to each
disjunct is obtained from ' by simultaneously substituting all locations in ' that are aliased to l
with e. In our example above,WP (x := 5; �y > 6) = ((&x = y)&(5 > 6))j((&x 6= y)&(�y > 6)).
We use a may-alias analysis [9] to improve the precision of this weakest precondition computa-
tion, pruning disjuncts that represent infeasible alias scenarios.

Procedure Interfaces. For a procedure R, the components GP ; FR; LR; r and SR of R's
interface are de�ned as in Section 4.4. The de�nition of binding predicates BR is augmented to
require predicates of the form (�n 0f = 0�nf) where 0�nf is in SR. We require that if a binding
predicate of the form (�n 0f = 0�nf) is in BR, then there must also be a binding predicate in
BR with 0f on the right-hand side.

The formal parameters Ef and the return predicates Er of R in BP(P;E) are de�ned as
before. Note that the return predicates Er may now contain dereferences of symbolic constants
(such as �0q) which are used to update local state of the caller modi�ed by the call to R, as
described below.

Procedure Calls. Consider a call x := R(a1; : : : ; aj) in some procedure Q in program P . The
computation of the actuals for the corresponding call to R0 in BP(P;E) is unchanged, as is the
generation of the call to R0. However, in the presence of pointers, the set of local predicates
in Q0 that must be updated needs to be generalized to include predicates that can be possibly
a�ected in the call due to pointer indirection and aliasing:

Eu = fe 2 EQ j e references an alias of x _
e references an alias of a global variable _
e references an alias of a (transitive) dereference of a global variable _
e references an alias of a (transitive) dereference of an actual parameter to Rg

The set Eu can be conservatively over-approximated using a may-alias analysis.

Next, the mappings orig and
 are extended. The mapping orig is generalized to handle
locations. Given an access expression �ny (the value of n dereferences of y), if y is a global
variable or the value of �ny may be a�ected by the call to R (checked conservatively by a
may-alias analysis), then orig(�ny) = yo;n, where yo;n is fresh. Otherwise, orig(�ny) = �ny.
Also, orig(&y) = &y. Then
 is generalized in the natural way to use the extension of orig .
Speci�cally, if f is a formal parameter of R with associated actual a, then

(�m 0 �n f) = �m orig(�na)

where m � 0 and n � 0.

For example, consider the following simple procedure:

void simple(int* p) {

*p = 8;

}

The symbolic constant 0�p refers to the value of �p at the entry of the procedure. Assuming
an actual parameter a to some call to simple,
 maps 0�p to ao;1, which represents the value
of �a before the call. On the other hand, �0p refers to the value obtained by dereferencing the
original value of p. Note that unlike 0�p, the value of �0p can change through the procedure. For
example, after the assignment to �p, �0p has the value 8, while 0�p still has the original value of
�p. Accordingly,
 maps �0p to �ao, which represents the updated value in the calling context.

Finally, the assignments used to update expressions in Eu proceed as described in Section 4,
using the extended orig and
 mappings.

Appendix B contains the proof of soundness of the full C2bp algorithm including pointers.

void test() {

int x, y;

x := 5;

y := 4;

swap(&x,&y);

return;

}

void

swap(ref int p, ref int q) {

int t;

t := *p;

*p := *q;

*q := t;

return;

}

test {

x = 4,

x = 5,

y = 4,

y = 5

}

swap {

p = 'p,

q = 'q,

*'p = '*p,

*'q = '*q,

*'p = '*q,

*'q = '*p,

t = '*p

}
(a) Program (b) Predicates

Fig. 5. Polymorphic predicate abstraction with pointers

5.1 Example

Figure 5 shows an example involving pointers. The polymorphic predicates in the swap function
allow all callers to prove that the values of �p and �q are swapped after the call to swap returns.
Figure 6 shows the (simpli�ed) boolean program output by C2bp.

The swap function has four binding predicates, (p = 0p), (q = 0q), (�0p = 0�p) and (�0q =
0�q), which are initialized to true at the beginning of the function as a result of abstracting
the initialization statements introduced by the internal form. The translation of the three
assignment statements uses the updated weakest precondition for pointers. For example, when
translating the statement *q := t, we must consider the possibility that �q is aliased to �p, in
which case predicates involving �p (and its aliases) may be a�ected. In this case, however, our
alias analysis can easily deduce that �p and �q are not aliased, since the corresponding actuals
are distinct variables x and y. Therefore several predicates need not be updated. For example,
the weakest precondition of *q := t with respect to (�0p = 0�p) simpli�es to (�0p = 0�p) itself
given the results of the alias analysis, signifying that the predicate is indeed una�ected by the
statement.

According to the de�nition of Er, the predicates (�0p = 0�p); (�0q = 0�q); (�0p = 0�q); and
(�0q = 0�p) are returned from swap. Consider the call to swap from the test function. Because
both x and y may be modi�ed by the call to swap, all four local predicates of test must
be updated after the call. By the
 mapping, the returned predicates f (�0p = 0�p); (�0q =
0�q); (�0p = 0�q); (�0q = 0�p) g are mapped to the predicates f (x = xo); (y = yo); (x = yo); (y =
xo) g

10. Further, the local predicates f (x = 4); (y = 5); (x = 5); (y = 4) g are mapped by
 to f
(xo = 4); (yo = 5); (xo = 5); (yo = 4) g. These mappings suÆce to prove that the swap property
holds. For example, we can deduce that if (yo = 4) and (x = yo) are true, then (x = 4) is also
true after the call to swap. This can be seen by the update to fx=4g after the call to swap in
the abstraction of test.
10 Technically, x should be �&x, and similarly for y.

void test() {

bool {x=4},{x=5},{y=4},{y=5};

bool ret1,ret2,ret3,ret4;

{x=5},{x=4} := true, false; // x := 5;

{y=4},{y=5} := false, true; // y := 4;

ret1,ret2,ret3,ret4 := swap();

{x=5},{x=4},{y=5},{y=4} :=

choose({y=5}&ret3 | {x=5}&ret1, ...),

choose({y=4}&ret3 | {x=4}&ret1, ...),

choose({y=5}&ret2 | {x=5}&ret4, ...),

choose({y=4}&ret2 | {x=4}&ret4, ...);

return;

}

bool,bool,bool,bool swap() {

bool {p='p},{q='q};

bool {*'p='*p},{*'q='*q},{*'p='*q},{*'q='*p};

bool {t='*p};

{p='p} := true;

{q='q} := true;

{*'p='*p} := true;

{*'q='*q} := true;

{t='*p} := {p='p} & {*'p='*p}; // t := *p;

//*p := *q;

{*'p='*q}, {*'p=*'p} :=

choose({p='p}&{q='q}&{*'q='*q},

{p='p}&{q='q}&!{*'q='*q}),

choose({p='p}&{q='q}&{*'q='*p},

{p='p}&{q='q}&!{*'q='*p});

//*q := t;

{*'q='*p},{*'q='*q} :=

choose({q='q}&{t='*p},!{t='*p}), *;

return {*'p='*p},{*'q='*q},

{*'p='*q},{*'q='*p};

}

Fig. 6. Boolean program abstraction created by the C2bp tool, given the input program and predicates shown
in Figure 5.

6 Related Work

Constructing abstract models of systems has been studied in several contexts [8, 7, 21]. Abstrac-
tions constructed by [14] and [20] are based on specifying transitions in the abstract system using
a pattern language, or as a table of rules. Automatic abstraction support has been built into
the Bandera tool set [13]. They require the user to provide �nite-domain abstractions of data
types. Predicate abstraction as implemented in C2bp is more general, capturing relationships
among variables. Predicate abstraction was �rst introduced by Graf and Saidi [17]. Implemen-
tations of predicate abstraction have been reported in [10, 27, 6]. To the best of our knowledge,
C2bp is the �rst tool to do predicate abstraction on a full scale programming language like
C. The predicate abstraction tool reported in [29] does not deal with problems introduced by
procedure calls, polymorphic predicates or pointers, as we have done here. Also, it is unclear if
the abstractions produced by [29] are even sound in the presence of pointers and aliasing.

The use of polymorphism in programming languages [23, 5] and program analysis has a
rich history. The ML programming language has a polymorphic type system that allows the
de�nition of generic functions, whose types contain type variables. For example, the identity
function, I = �x:x, has type 8�:�! �. A generic function can be safely typechecked once, no
matter what types a particular calling context substitutes for the function's type variables. In
our setting, we use symbolic constants to make the abstraction process for procedures generic.

Each procedure can be safely abstracted once, no matter what values a particular calling context
substitutes for the procedure's symbolic constants.

A context-sensitive program analysis is one that analyzes each call to a given procedure Q,
based on Q's calling context [28]. Transfer functions summarize the input-output behavior of
a procedure and provide a way to avoid redundant work during context-sensitive analysis [28].
The tools C2bp and Bebop together compute transfer functions on demand [1] (see also [30,
26]). Polymorphic predicates allow us to raise the level of abstraction of the transfer functions
computed in C2bp, allowing more sharing and reuse among the di�erent calling contexts.
The use of polymorphism in transfer functions has been explored in the context of work on
polymorphic points-to analysis [16]. Binding information between a calling procedure and called
procedure has been discussed before in the context of program analyses [22].

7 Conclusion

We have presented an algorithm for polymorphic predicate abstraction of C programs and
proven it sound. We have shown how a large number of monomorphic predicates, proportional
to the number of call sites of a procedure, can often be equivalently represented by a constant
number of polymorphic predicates. The main technical challenge is in capturing the e�ect of
procedure calls on the local state of the caller, in the presence of symbolic constants and pointers.
The precision of the C2bp algorithm for a subset of C has been discussed in [2]. We plan to
extend this precision result for C2bp to include all constructs of C. We have used C2bp and the
other SLAM tools to validate properties of Windows NT device drivers and to �nd invariants
in several programs. More details on these experimental results can be found in [1].

Acknowledgements

We thank Rupak Majumdar for his hard work in making the C2bp tool come to life. Andreas
Podelski provided a crucial insight that a symbolic constant can be thought of as a local variable
to which the corresponding formal is assigned on entry to the procedure.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs.
In PLDI 01: Programming Language Design and Implementation, pages 203{213. ACM, 2001.

2. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstractions for model checking C programs.
In TACAS 01: Tools and Algorithms for Construction and Analysis of Systems, LNCS 2031, pages 268{283.
Springer-Verlag, 2001.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean programs. In SPIN 00: SPIN
Workshop, LNCS 1885, pages 113{130. Springer-Verlag, 2000.

4. D. Blei and et al. Vampyre: A proof generating theorem prover | http://www.eecs.berkeley.edu/~ ru-
pak/vampyre.

5. L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. Computing
Surveys, 17(4):471{522, 1985.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re�nement. In
CAV 00: Computer Aided Veri�cation, LNCS 1855, pages 154{169. Springer-Verlag, 2000.

7. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In POPL 92: Principles of
Programming Languages, pages 343{354. ACM, 1992.

8. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for the static analysis of programs
by construction or approximation of �xpoints. In POPL 77: Principles of Programming Languages, pages
238{252. ACM, 1977.

9. M. Das. Uni�cation-based pointer analysis with directional assignments. In PLDI 00: Programming Language
Design and Implementation, pages 35{46. ACM, 2000.

10. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In CAV 00: Computer-Aided
Veri�cation, LNCS 1633, pages 160{171. Springer-Verlag, 1999.

11. D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover {
http://research.compaq.com/src/esc/simplify.html.

12. E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
13. M. Dwyer, J. Hatcli�, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser, and H. Zheng. Tool-

supported program abstraction for �nite-state veri�cation. In ICSE 01: International Conference on Software
Engineering, pages 177{187, 2001.

14. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-speci�c, programmer-
written compiler extensions. In OSDI 00: Operating System Design and Implementation. Usenix Association,
2000.

15. C. Flanagan and S. Qadeer. Predicate abstraction for software veri�cation. In POPL '02, pages 191{202.
ACM, January 2002.

16. J. S. Foster, M. Fahndrich, and A. Aiken. Polymorphic versus monomorphic
ow-insensitive points-to analysis
for C. In SAS 00: Static Analysis, LNCS 1824, pages 175{198. Springer-Verlag, 2000.

17. S. Graf and H. Sa��di. Construction of abstract state graphs with PVS. In CAV 97: Computer-aided Veri�-
cation, LNCS 1254, pages 72{83. Springer-Verlag, 1997.

18. D. Gries. The Science of Programming. Springer-Verlag, 1981.
19. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL '02, pages 58{70. ACM,

January 2002.
20. G. Holzmann. Logic veri�cation of ANSI-C code with Spin. In SPIN 00: SPIN Workshop, LNCS 1885, pages

131{147. Springer-Verlag, 2000.
21. R. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton University Press, 1994.
22. W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural pointer aliasing. SIGPLAN

Notices, 27(7):235{248, 1992.
23. R. Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,

17:348{375, 1978.

24. J. M. Morris. A general axiom of assignment. In Theoretical Foundations of Programming Methodology,
Lecture Notes of an International Summer School, pages 25{34. D. Reidel Publishing Company, 1982.

25. G. Nelson. Techniques for program veri�cation. Technical Report CSL81-10, Xerox Palo Alto Research
Center, 1981.

26. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow analysis via graph reachability. In
POPL 95: Principles of Programming Languages, pages 49{61. ACM, 1995.

27. H. Sa�idi and N. Shankar. Abstract and model check while you prove. In CAV 99: Computer-aided Veri�cation,
LNCS 1633, pages 443{454. Springer-Verlag, 1999.

28. M. Sharir and A. Pnueli. Two approaches to interprocedural data
ow analysis. In Program Flow Analysis:
Theory and Applications, pages 189{233. Prentice-Hall, 1981.

29. W. Visser, S. Park, and J. Penix. Using predicate abstraction to reduce object-oriented programs for model
checking. In FMSP 00: Formal Methods in Software Practice, pages 3{12. ACM, 2000.

30. R. P. Wilson and M. S. Lam. EÆcient context-sensitive pointer analysis for C programs. SIGPLAN Notices,
30(6):1{12, 1995.

A Kleene's Three-Valued Logic

Figure 7 presents Kleene's interpretation for conjunction, disjunction, and negation of three-valued logic. This
interpretation is used in the programs of the language presented in Section 3.

^ true false �

true true false �

false false false false

� � false �

_ true false �

true true true true

false true false �

� true � �

:

true false

false true

� �

Fig. 7. Kleene's three-valued interpretation of ^, _ and :.

B Soundness

We represent a program state as a pair � = hL;
i, where L is the label on the statement to be executed next and

 is a store mapping the locations in scope at L to values. We sometimes extend
 to expressions in the obvious
way. The initial state of a program P is a state hL;
i such that L labels the �rst statement of a distinguished
\main" procedure and
 maps all locations in scope to their initial values, as described in Section 3.

We say that hL1;
1i �! hL2;
2i if execution of the statement at L1 with store
1 produces store
2 and
moves to the statement labelled L2. The semantics of the �! relation is standard. A trace of a program P is a
sequence �1 �! � � � �! �n where the �rst state of the sequence is the initial state of P and where procedure
calls and returns are properly matched: execution of a return statement transfers control to the statement after
the most recent unmatched procedure call. Therefore a trace represents a valid pre�x of an execution of P . Let
�!� denote the transitive closure of the �! relation. We sometimes denote traces using a sequence of states
with every pair of successive states related by �!�, when the implicit intermediate states on the trace are of no
importance.

Soundness intuitively means that every execution of a program has a corresponding execution in the associ-
ated boolean program abstraction. The main theorem we prove says that one execution step of a program has
a corresponding sequence of execution steps in the associated boolean program abstraction. First we de�ne a
simulation relation on program states, which captures the notion that b-variables are conservative abstractions
of the expressions they represent.

De�nition 1. Let P be a program, E be a set of predicates over symbolic constants and variables in P , and
B = BP(P;E) be the boolean program abstraction computed by C2bp. Let V be the b-variables in B and E be the
mapping from V to E. We say that a state hL1;
1i of P is simulated by a state hL2;
2i of B if L1 = L2 and
for all b-variables b in scope at L2 we have that:

(
2(b) = true)
1(E(b)) = true) and (
2(b) = false)
1(E(b)) = false)

Our theorem then says that simulation is preserved by the �! relation.

Theorem 1. Let P be a program, E be a set of predicates over symbolic constants and variables in P , and
B = BP(P;E) be the boolean program abstraction computed by C2bp, with variables V and mapping E from V
to E. Let �1 �! � � � �! �k �! � be a trace of P and �01 �!

� � � � �!� �0k be a trace of B. If for all 1 � i � k it
is the case that �i is simulated by �0i, then there exists some �0 such that �01 �!

� � � � �!� �0k �!
� �0 is a trace

of B and � is simulated by �0.

Proof. Since �k is simulated by �0k, we have that �k has the form hL;
ki and �0k has the form hL;
0

ki. Let s be
the statement labelled L in P and s0 be the statement labelled L in B. Case analysis of the form of s:

{ s = skip. Then s0 = skip as well. By the semantics of skip we have � = hL1;
ki where L1 is the label
of the statement following s. We also know that s0 = skip as well, so there exists �0 = hL1;

0

ki such that
�0k �! �0. Then since �k is simulated by �0k, it follows that � is simulated by �0.

{ s = goto L1. Then s0 = goto L1 as well. By the semantics of goto we have � = hL1;
ki and �0 = hL1;

0

ki,
where �0k �! �0. Since �k is simulated by �0k, it follows that � is simulated by �0.

{ s = branch s1 jj � � � jj sn end. Then s0 = branch BP(s1; V; E) jj � � � jj BP(sn; V; E) end. By the semantics
of branch we have � = hL1;
ki, where L1 is the label of the �rst statement in one of the branch cases. Then
by the semantics of branch, there exists some �0 = hL1;

0

ki such that �0k �! �0. Since �k is simulated by
�0k, it follows that � is simulated by �0.

{ s is an assignment statement: Then � = hL1;
i, where L1 is the label of the statement following s. By the
abstraction process we know that s0 is a parallel assignment, so also there exists �0 = hL1;

0i, such that
�0k �! �0. Now suppose
0(b) is true, for some b-variable b in scope at L1 in B. To �nish this case, we show
that
(E(b)) is true as well. (A similar proof can be done for the case in which
0(b) is false.)
Since
0(b) is true, we know by the abstraction of assignments that some cube in FV;E (WP(s;E(b))) was
true in
0

k. (Note that no cube can be in both FV;E (WP(s; e)) and FV;E (WP(s;:e)).) Let that cube be
c1 ^ � � � ^ cm, so for each 0 � r � m;
0

k(cr) = true. Since �k is simulated by �0k, we have that for each
0 � r � m;
k(E(cr)) = true. By the de�nition of FV;E we have E(c1) ^ � � � ^ E(cm)) WP(s;E(b)). Then
by de�nition of WP ,
(E(b)) is true as well.

{ s is of the form assume(e): Then � = hL1;
ki, where L1 is the label of the statement following s. By the
abstraction process we know that s0 is assume(:FV;E(:e)). Suppose �

0

k can take an evaluation step to some
�0. Then by the semantics of assume �0 will have the form hL1;

0

ki, Since �k is simulated by �0k, it follows
that � is simulated by �0.
Therefore, we just need to prove that �0k can take an evaluation step to some �0, which is the case according
to the semantics of assume if
0

k(:FV;E(:e)) is true or �. Since �k �! �, we know that
k(e) is true.
Therefore
k(:e) is false. By de�nition, E(FV;E(:e))) :e, so also
k(E(FV;E(:e))) is false. Therefore

k(:E(FV;E(:e))) =
k(E(:FV;E(:e))) is true. Finally, since �k is simulated by �0k we have

0

k(:FV;E (:e))
is true or �.

{ s is a procedure call of the form v := R(a1; a2; : : : ; aj): Then � = hL1;
i, where L1 is the label of the �rst
statement in procedure R and where
 maps global variables to their current values (the same values they
have in
k), maps formal parameters to the values of their actuals, and maps local variables of R to their
appropriate initial values. By the abstraction process, s0 is a call to R0, the version of R in B, preceded by
assignment statements which compute the values of the actual parameters to the call. Therefore, there exists
some �0 = hL1;

0i, where �0k �!
� �0 and
0 maps global variables to their current values (the same values

they have in
0

k), maps formal parameters to the values of their actuals, and maps local variables of R0 to �.
Suppose
0(b) is true, for some b in scope. To �nish this case, we show that also
(E(b)) is true.

� If b is a global, then we saw above that
0(b) =
0

k(b), so
0

k(b) is true. Then since
k is simulated by

0

k we have that
k(E(b)) is true. Since b is global, we know that E(b) refers only to global variables of
P . Since we saw above that for each such variable x we have
(x) =
k(x), also
(E(b)) =
k(E(b)).
Therefore
(E(b)) is true.

� If b is a formal of R0, then b has the value of the associated actual parameter to the call. Then by the
process for computing actuals, some cube in FV;E (E(b)[a1=f1; � � � ; aj=fj]) was true in
0

k, where fi is
the associated formal for actual ai. Let that cube be c1 ^ � � �^ cm, so for each 0 � r � m;
0

k(cr) = true.
Then since �k is simulated by �0k we have that for each 0 � r � m;
k(E(cr)) = true. By the de�nition
of FV;E we have E(c1) ^ � � � ^ E(cm)) E(b)[a1=f1; � � � ; aj=fj], so
k(E(b)[a1=f1; � � � ; aj=fj]) is true.
Therefore by the de�nition of
 we also have that
(E(b)) is true.

� Otherwise, b is a local variable. But then we saw above that b has the value �, contradicting the fact
that
0(b) is true.

{ s is a return statement of the form return r. Then � = hL1;
i, where L1 is the label of the �rst statement
after the last unmatched procedure call in P 's trace. Statement s0 is also a return statement. Since �i is
simulated by �0i for 1 � i � k, the two traces must agree on the last unmatched procedure call. Then there
exists an appropriate �0 = hL1;

0i such that �0k �! �0.
Let hL̂;
̂i represent the program state before that last unmatched procedure call in P 's trace. Similarly, let
hL̂;
̂0i represent the program state before computing actual parameters for the last unmatched procedure
call in B's trace. Let the call in P have the form v := R(a1; a2; : : : ; aj), and let it appear in procedure Q.
Then the call in procedure Q0 of B has the form ret1; : : : ; retr := R0(prm1; : : : ; prmp), followed by updates
of the b-variables associated with expressions in Eu.
Suppose
0(b) is true, for some b in scope. To �nish this case, we show that also
(E(b)) is true. There are
three cases to consider:

� First, suppose b is a global b-variable. Then b was in the scope of the call, and since each reti and each
b-variable in Eu is a local variable, (and hence b is not in Eu) we have
0(b) =
0

k(b). So we have

0

k(b) is true, and since �k is simulated by �0k also
k(E(b)) is true. We know that v is not a global
variable (see de�nition of internal form in Section 4) and E(b) may only refer to global variables, so

k(E(b)) =
(E(b)), and therefore
(E(b)) is true.

� Second, suppose b is a local variable or formal parameter of Q. We have two sub-cases. First suppose
that E(b) 62 Eu, the set of expressions local to Q whose associated b-variables are updated after the call
to R. Since b is a local variable or formal of Q and since each reti variable is fresh (and hence is not b),
the value of b cannot be a�ected by the call to R, so
̂0(b) =
0(b) and
̂0(b) is true. Then since hL̂;
̂i
is simulated by hL̂;
̂0i, we have
̂(E(b)) is true. Since b 62 Eu, by the de�nition of Eu we have that
the value of E(b) cannot change as a result of the call to R, so
̂(E(b)) =
(E(b)). Therefore
(E(b)) is
true.

� Finally, suppose E(b) 2 Eu. For this case, we conceptually consider the call to R in P to instead consist
of the two statements

vret := R(a1; a2; : : : ; aj); v := vret

where vret is a fresh local variable in Q. Intuitively, the point between the two statements represents
the state when the call has returned but the return value has not yet been assigned to v. Additionally,
just before the call we conceptually add a statement of the form xo := x; for each location x in scope
such that orig(x) = xo, where xo is fresh. Similarly we add a statement of the form xo;n := �nx for each
location �nx in scope such that orig(�nx) = xo;n, where xo;n is fresh. Clearly the semantics of the call
is preserved by these modi�cations.
Let Ê be the mapping from b-variables in scope of Q0 and the reti variables to expressions, as de�ned in
Section 4. Let
r be the store at the point in (the conceptually-revised) P between the two statements
above, and let
0

r be the store at the point in B just after the call to R0, before the updates to the
associated b-variables of expressions in Eu. Our strategy is to show that for all b-variables b0 in the
domain of Ê:

(
0

r(b0) = true)
r(Ê(b0)) = true) and (
0

r(b0) = false)
r(Ê(b0)) = false)

Suppose we can show this is the case. Then, since b (the b-variable we are currently considering in Eu) is
subsequently assigned in B to choose(FV̂ ;Ê (WP (v := vret; Ê(b)));FV̂ ;Ê(WP (v := vret;:Ê(b)))) and the
current statement in P is v := vret, it follows from the same argument as in the case above for assignment
statements that
(E(b)) is true.
Therefore, suppose
0

r(b0) = true, for some b0 in the domain of Ê. According to the de�nition of Ê,
there are three cases to consider:
� b0 is a global b-variable in VQ0 , and Ê(b0) = EQ(b0) = E(b0). Since b0 is global, it is in scope of R also,
and since each reti is a local variable (and hence is not b0), also b0 is true in
0

k. Then since �k is
simulated by �0k also
k(E(b0)) is true. We know that vret is not a global variable (see de�nition of
internal form in Section 4) and E(b0) may only refer to global variables, so
k(E(b0)) =
r(E(b0)),
and therefore
r(E(b0)) is true.

� b0 is a local b-variable in VQ0 , and Ê(b0) = orig(EQ(b)). Since b0 is a local b-variable and is true

in
0
r, it is also true in
̂0, since the values of locals cannot be changed by the call to R0 and

each reti variable is fresh (and hence is not b0). Then since hL̂;
̂i is simulated by hL̂;
̂0i, we
have
̂(EQ(b0)) is true. Then, by the assignments xo := x and xo;n := �nx before the call, that
means that orig(EQ(b0)) is true in
̂. Consider a variable in orig(EQ(b0)). By the de�nition of orig ,
all locations in EQ(b0) that can be a�ected by the call to R are replaced by fresh local original
variables. Therefore no locations in orig(EQ(b0)) can be a�ected by the call to R. Further, none of
those locations can alias the reti variables, since those are fresh. Therefore, orig(EQ(b0)) is true in

r.

� b0 is a local of the form reti returned, and Ê(b0) =
(ERQ(b0)). We need to prove that
r(
(ERQ(b))
is true. Since b0 is true in
0

r and is a returned b-variable from R0, we know that b0's counterpart
b00, which is returned from R0 in its return statement, is true in
0

k also. Therefore, since �k is
simulated by �0k we have that
k(ER(b

0
0)) is true. That is equivalent to saying that
k(ERQ(b0)) is

true. Therefore, we can conclude that
r(
(ERQ(b0))) is true if we can show that for all locations
l in the domain of
,
k(l) =
r(
(l)). We do a case analysis on l. We have three cases:
� var(l) is a global, so
(l) = l. Since locations don't change values as a result of the return and
the return value is assigned to the fresh vret, the result follows.

� var(l) is the return variable r, so
(l) = l[vret=var(l)]. Since the return value of the call is
assigned to vret, the result follows.

� var(l) is a symbolic constant 0�nf , so
(l) = l[orig(�na)=var(l)], where a is the actual for formal
f . By the internal form de�nition, the symbolic constant 0�nf is a local of R0 that is assigned
the value of �nf at the entry point of the procedure, and never modi�ed. We have two cases.
First suppose orig(�na) = �na. By the de�nition of orig , the value of �na is not modi�ed by the
call, so
̂(orig(�na)) =
r(orig(�

na)). Since �nf at the entry point of the procedure has the
same value as �na before the call, we have
k(

0�nf) =
̂(orig(�na)). So we have shown that

k(

0�nf) =
r(orig(�
na)), which also implies that
k(l) =
r(
(l)).

Second, suppose orig(�na) = ao;n. By our conceptual revision of P , ao;n is assigned the value
�na just before the call. So we have
k(

0�nf) =
̂(orig(�na)). Since ao;n is a local variable, it is
not modi�ed by the call, so
̂(orig(�na)) =
r(orig(�

na)). So we have shown that
k(
0�nf) =

r(orig(�
na)), which also implies that
k(l) =
r(
(l)).

Finally, soundness follows as a simple corollary to the above theorem:

Corollary 1. (Soundness) Let P be a program, E be a set of predicates over symbolic constants and variables
in P , and B = BP(P;E) be the boolean program abstraction computed by C2bp. If �1 �! � � � �! �k is a trace
of P , then there exists a trace �01 �!

� � � � �!� �0k of B such that for all 1 � i � k, �i is simulated by �0i.

Proof. The proof is by induction on k. For the base case, suppose k = 1, so the trace in P consists solely of �1,
the initial state. Let �1 = hL;
i, where L is the label of the �rst statement in the \main" procedure. Then there
is an initial state �01 of B, of the form hL;
0i. Further, since the initial values of b-variables is �, all b-variables
in the domain of
0 have value �. Therefore, �1 is simulated by �01 vacuously.

For the inductive case, suppose k is some j > 1, and assume the corollary holds for traces of P of length
smaller than j. Since we're given that �1 �! � � � �! �j is a trace of P , so is �1 �! � � � �! �j�1. Then by the
inductive hypothesis there exists a trace �01 �!

� � � � �!� �0j�1 of B such that for all 1 � i < j, �i is simulated
by �0i. Then by Theorem 1 there exists some �0j such that �01 �!

� � � � �!� �0j is a trace of B and �j is simulated
by �0j , so the result follows.

