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Abstract
Soft Modems use the main processor to execute mo-

dem functions traditionally performed by hardware on the
modem card. To function correctly, soft modems require
that ongoing signal processing computations be performed
on the host CPU in a timely manner. Thus, signal proc-
essing is a commonly occurring background real-time
application—one running on systems that were not de-
signed to support predictable real-time execution. This
paper presents a detailed study of the performance char-
acteristics and resource requirements of a popular soft
modem. Understanding these requirements should inform
the efforts of those designing and building operating sys-
tems needing to support soft modems. Furthermore, we
believe that the conclusions of this study also apply to
other existing and upcoming soft devices, such as soft
Digital Subscriber Line (DSL) cards. We conclude that (1)
signal processing in an interrupt handler is not only un-
necessary but also detrimental to the predictability of other
computations in the system and (2) a real-time scheduler
can provide predictability for the soft modem while mini-
mizing its impact on other computations in the system.

1. Introduction
Soft modems use the main processor to execute mo-

dem functions traditionally performed by the digital signal
processor (DSP) on the modem card. Soft modems have
enjoyed large success in the home computer market. Two
reasons for their success are low cost and the flexibility of
migrating to newer technologies by simple software up-
grade. Given recent advances in CPU processing power,
the impact of a soft modem on the throughput of the sys-
tem is reasonable—we measured a 14.7% sustained CPU
load on a 450 MHz Pentium II. Because soft modems need
periodic real-time computations on the host CPU in order
to maintain line connection and transmit data, a mecha-
nism ensuring predictable scheduling is essential.

This paper presents a detailed study of the perform-
ance characteristics and resource requirements of a popu-
lar soft modem1. We analyzed the vendor-supplied version
of the driver and three additional versions that we created.
The four versions of the soft modem driver are:

1 Our agreement with the manufacturer prevents us from
identifying this soft modem.

• INT – the signal processing routines are executed in
an interrupt handler (a.k.a. in interrupt context). This
is the original version.

• DPC – the signal processing routines are executed in
the context of a Deferred Procedure Call (DPC)
[Solomon & Russinovich 00, pages 107-111].

• THR – the signal processing routines are executed in
the context of a kernel thread scheduled using the
standard priority-based Windows 2000 scheduler.

• RES – the signal processing routines are executed in
the context of a kernel thread scheduled using a Ri-
alto/NT CPU Reservation [Jones & Regehr 99b].

We captured performance profiles of each of the four
versions of the driver and compared and contrasted the
modem performance. We report on the benefits and the
problems encountered with each of the driver versions
analyzed. One of the goals of this study is to make the
detailed performance characteristics of a popular soft mo-
dem available to the industry, allowing this data to inform
their work on providing predictable execution on con-
sumer and general-purpose operating systems.

While the soft modem’s 14.7% CPU load is not high
per se, a problem with the vendor version is that all of this
time is spent in interrupt context. Once connected, the
execution of the interrupt handler typically lasts 1.8ms
with a repeatable worst case of 3.3ms during connection.

This study shows that signal processing in interrupt
context is not only unnecessary but also detrimental to the
predictability of other computations in the system. While
DPCs and priority-based scheduling cause milder side
effects upon the rest of the system, they nevertheless suf-
fer from some of the same drawbacks as the original ver-
sion. This study supports the conclusion that certain kinds
of real-time scheduling abstractions provide a good an-
swer to the observed predictability problems that can be
caused by the soft modem.

Indeed, their real-time requirements and omnipres-
ence make the soft modems an excellent environment for
testing the feasibility and the practicality of soft real-time
scheduling for commodity operating systems. One section
of our results is dedicated specifically to studying the ef-
fectiveness of using a particular set of real-time schedul-
ing abstractions for supporting the predictability require-
ments of the soft modem. This paper demonstrates a con-
crete set of benefits when real-time scheduling is applied
to the computations employed by a soft modem.
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Finally, we believe many of the lessons learned from
studying soft modems are applicable to a wider class of
problems. Other soft devices are already in use, with more
coming soon. For instance, software-based Digital Sub-
scriber Line (Soft DSL) [Tramontano 00] devices have
been announced. As will be detailed, Soft DSL has similar
execution period requirements, but significantly larger
overall CPU requirements than soft modems.

The remainder of this paper is structured as follows:
Section 2 provides background on soft modems and oper-
ating systems support for predictable execution. Section 3
describes the hardware and software tools used for our
study. Section 4 details how the soft modem used in these
experiments operates. Section 5 discusses the four soft
modem driver versions used in this study. Section 6 con-
tains our results. A roadmap of the results can be found at
the beginning of Section 6. Section 7 tells one of the “war
stories” from our investigation. Section 8 discusses possi-
bilities for further related research. Section 9 relates some
industry perspectives on the findings of the study. And
Section 10 presents our conclusions. Then, following the
Acknowledgements and References, Appendix A presents
some supplemental results.

2. Background
2.1 Modem Taxonomy

A modem is a peripheral device that enables comput-
ers to communicate with each other over conventional
phone lines. The term modem stands for Modula-
tor/Demodulator. The purpose of a modem is to convert
(modulate) the digital signal that a computer understands
into an analog signal that can be carried over a phone line,
and to re-convert (demodulate) the analog into a digital
signal at the other end [Anderson et al. 96]. Demodulation
consists of digitizing analog waveforms using an A-to-D
converter followed by the application of signal processing
algorithms. Modulation consists of a different set of signal
processing algorithms to produce a digitized waveform,
which is sent through a D-to-A converter.

Traditional modem communication standards assume
that both ends of a data connection are linked to the public
switched telephony network (PSTN) by analog lines. This
limits the communication bandwidth to 33.6Kbps in each
direction [3Com 98]. By assuming that one of the end-
points is connected digitally to the PSTN (like most Inter-
net Service Providers are), modern modems are able to
achieve speeds of up to 56Kbps downstream and
33.6Kbps upstream using the V.90 protocol [ITU 98].

There are four functions that a modem provides:
1. An interface between analog phone lines and digital

computer components – A/D and D/A.
2. Signal modulations at different rates.
3. An Attention (AT) command set interpreter.
4. An asynchronous interface between the modem and

the computer.
In addition to these functions, any modem card will

provide buffering for data flowing in both directions.

Modems can be classified into hardware-based mo-
dems (traditional modems) or software-based modems,
depending on where each of these functions are executed.

2.1.1 Hardware-based Modems
Traditional modems implement all the modem func-

tionality in hardware on the modem card. Dedicated chips
provide signal modulation and interpret the AT command
set. The card also provides A/D and D/A converters. On
older modems, the Universal Asynchronous Re-
ceiver/Transmitter (UART) chip implements the asyn-
chronous interface between the modem and the computer.
Today, the PCI bus interface often provides this function-
ality, replacing the UART chip.

2.1.2 Software-based Modems
Software-based analog modems use the host proces-

sor to perform some of the modem functions traditionally
performed on the modem card. Two types of software-
based modems have emerged [Dell 99]:
1. Controllerless modems (also known as winmodems or

linmodems), which perform and interpret the standard
attention (AT) commands on the main processor. Sig-
nal modulation, A/D, and D/A are implemented by
hardware on the modem card.

2. Soft modems, which perform signal processing (as
well as AT commands) on the host CPU, unlike both
regular and controllerless modems. Modem data buff-
ers may reside in host memory. Soft modems still have
hardware-based A/D and D/A converters.
Today, the software-based analog modems are very

common on the new computer systems, both for worksta-
tions and especially for laptops. Some of the reasons for
their success are low cost, low power consumption, and
maximum upgrade flexibility. Drawbacks are high CPU
and memory usage. The scant availability of drivers for
operating systems other than Windows has also contrib-
uted to their limited use on non-Windows platforms.

2.2 Commodity Operating Systems and Real-
Time Applications
General-purpose operating systems such as Windows

2000, Linux, and Solaris are increasingly being used to
run time-dependent tasks such as audio and video proc-
essing despite good arguments against doing so [Nieh et
al. 93]. This is the case even though many such systems,
and Windows 2000 in particular, were designed primarily
to maximize aggregate throughput and to achieve ap-
proximately fair sharing of resources, rather than to pro-
vide low-latency response to events, predictable time-
based scheduling, or explicit resource allocation. None-
theless, since these systems are being used for time-
dependent tasks, it is important to understand both their
capabilities and limitations for such applications.

One common mechanism provided for real-time ap-
plications is to designate a certain range of priorities as
real-time priorities. For instance, Windows 2000 supports
32 priority levels in three classes:
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• Idle: Priority 0 is used by the per-processor idle
threads.

• Regular: Priorities 1-15 are variable levels; thread
priorities in this range are adjusted by the system to
increase responsiveness. For example, quantum size is
increased for threads in the foreground process, prior-
ity may be boosted upon completing a wait, and pri-
ority is boosted for threads that have been ready to
run, but not scheduled for several seconds.

• Real-Time: Priorities 16-31 are real-time priorities.
Quanta and priorities of threads in this range are not
adjusted—the scheduler simply runs the threads at the
highest priority in a round-robin manner.

2.3 The Rialto/NT Approach
Two real-time abstractions were developed within the

Rialto real-time operating system [Jones et al. 97, Jones et
al. 96] – CPU Reservations and Time Constraints. These
abstractions allow activities to obtain minimum guaran-
teed execution rates with application-specified reservation
granularities via CPU Reservations, and to schedule tasks
by deadlines via Time Constraints, with on-time comple-
tion guaranteed for tasks with accepted constraints. These
abstractions were subsequently ported to a research ver-
sion of Windows 2000 called Rialto/NT [Jones & Regehr
99b].

Rialto/NT was designed and built to combine the
benefits of today’s commodity operating systems with the
predictability of the best soft real-time systems. Rialto/NT
supports simultaneous execution of independent real-time
and non-real-time applications. These goals are achieved
by computing a deterministic schedule that meets the de-
clared requirements of all admitted real-time tasks when-
ever the set of real-time applications changes.

2.4 The Windows Driver Model (WDM)
Traditionally, the term driver refers to a piece of

software that manages the resources of a peripheral system
device. Windows 2000 takes a flexible approach by al-
lowing several layers of software to exist between an ap-
plication and a device. This layering allows a much
broader definition of a driver that includes file systems,
filters, and network stacks, in addition to the peripheral
devices.

The Windows Driver Model (WDM) enables devices
to have a single driver for all Microsoft platforms that
support WDM. WDM drivers are binary compatible
across Windows 2000 and Windows 98 x86 platforms and
are source compatible with RISC-based Windows plat-
forms [Microsoft 98].

The soft modem driver that we used for our experi-
ments follows the WDM standard. Since the Rialto/NT
abstractions were implemented on Windows 2000, our
study is focused on this operating system.

3. Environment and Methodology
3.1 Hardware Environment

All performance results reported were measured on a
Dell Precision 610 system with a 450 MHz Pentium II,
384 MB ECC SDRAM and a Quantum Viking II SCSI
hard drive. The soft modem supports theoretical speeds of
up to 56Kbps downstream and 33.6Kbps upstream and a
plethora of modem standards including V.90, V.42bis,
V.42, and V.34 [ITU 98]. The minimum system require-
ments for this soft modem are:
• 150 MHz Pentium processor or 233 MHz AMD

K6/K6-2 processor or 266 MHz Cyrix 6x86 MX
processor.

• Windows 95/98 with 16 MB of RAM or Windows
NT 4.0 with 32 MB of RAM.

• 2 MB of free disk space.
For all traces (except for results in Sections 6.5.2 and

6.6), we connected to the Microsoft internal network via
Remote Access Service (RAS) using the Point-to-Point
Protocol (PPP). We used the same phone number that Mi-
crosoft employees use to connect from home. The Micro-
soft RAS Servers use 3Com Total Control [3Com 00]
remote access devices. Under normal conditions, the mo-
dem connected at speeds of 50.6Kbps downstream (and
occasionally higher) and 31.2Kbps upstream. The Micro-
soft internal network is a 100Mbps switched network.

For the results presented in Sections 6.5.2 and 6.6, we
used a dedicated, Microsoft Research RAS Server with a
Digi DataFire RAS 48 PT2 [Digi 00] remote access con-
centrator device. The modem connected at a downstream
speed of 50.6Kbps and an upstream speed of 28.8Kbps.

3.2 Software Environment
3.2.1 Instrumented Windows 2000 Kernel

We used an instrumented version of the Windows
2000 kernel that was developed by the Windows Perform-
ance group at Microsoft in order to understand and tune
the behavior of the system and applications.

The kernel is capable of logging a wide variety of
events to a physical memory buffer and then dumping
them to disk for post-processing. During our experiments,
we used predefined instrumentation points to log all de-
ferred procedure calls (DPCs), thread context switches,
thread and process creations and deletions, and synchroni-
zation events. We also logged application-specific data
such as modem hardware register values and modem
phase change events.

The instrumented kernel offers the same performance
as a regular kernel when no events are to be logged. Fur-
thermore, logging an event has minimal impact on the
system performance. We measured an average execution
of 247 cycles for logging an event, which translates to
about 549ns on the computer used to collect the data.

Logging produced around 10MB of data per minute.
After dumping the binary event logs to disk and convert-
ing them into a text format, we post-processed the output
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with Perl scripts that filtered out uninteresting data and
converted the remainder into a more readable format.

All the experiments used the same kernel, which
contains both the regular Windows 2000 and the Ri-
alto/NT [Jones et al. 97] schedulers. A thread is scheduled
based on its priority unless it makes a CPU Reservation
via a system call. A thread to which a CPU Reservation is
guaranteed is scheduled by the Rialto/NT scheduler.

3.2.2 Soft Modem Driver Source Code
For the soft modem driver, we had access to source

code that negotiates the connection, services the card in-
terrupts, and makes the appropriate calls to the signal
processing routines. We did not have source code for any
signal processing related modem functionality.

The lack of complete source code of the driver did not
impede us from studying the predictability of the soft mo-
dem. In the vendor version of the driver, the calls to the
signal processing routines are made in the interrupt han-
dler. The available source code allowed us to instead make
the calls in the context of either a DPC or a thread, as
needed in our experiments. We were unable, however, to
draw any conclusions about the effectiveness of the signal
processing algorithm, nor fully understand or modify its
behavior when invoked later than it would have been in
the INT version.

4. Soft Modem Operation
The soft modem uses Direct Memory Access (DMA)

to transfer data between memory and the A/D and D/A.
Sixteen-bit samples are transferred at rates between 7.2
KHz and 16 KHz. When receiving, whenever a predefined
amount of data has been sampled off the phone line, the
modem interrupts the system. The interrupt handler proc-
esses both incoming and outgoing data. This soft modem
uses floating point but does not use MMX instructions for
its signal processing algorithms. The driver software must
consume incoming and provide outgoing samples without
overflowing or underflowing the buffers. There are four
different buffers—two output buffers (one for data and
one for voice samples) and two input buffers. Each buffer
has a size of 512 16-bit samples, for a total of 1024 bytes.
Since modems are mainly used for data communication,
our experiments traced the data buffers only.

When dial-up is initiated, but before the dial tone, the
modem is in an on-hook state performing ring detection.
During this period, which lasts about two seconds, inter-
rupts occur whenever 18 samples have been transferred by
the DMA to the memory; at a DMA rate of 7.2 KHz, this
corresponds to an interrupt rate (the inter-arrival time be-
tween interrupts) of 2.5ms. During dialing and initial mo-
dem connection attempts, interrupts occur for every 90
bytes of transferred data, corresponding to an interrupt rate
of 12.5ms.

After dialing is finished, when the modem attempts to
connect, there is an initial period of training during which
the modem listens to the phone line trying to determine
whether any modem protocols are in use and whether

analog to digital conversion is taking place. If no conver-
sion is occurring, the V.90 protocol is used and the mo-
dem connects at 56Kbps or less. If there is A/D conversion
then the ISP is not connected digitally to the PSTN and
the modem uses the V.34 protocol, with its inherent
33.6Kbps connection speed [3Com 98].

5. Soft Modem Driver Versions
5.1 Initial Interrupt-Based Version (INT)

In the initial (vendor-supplied) version of the driver,
when the card interrupts the CPU, the driver software per-
forms signal processing inside the interrupt handler (a.k.a.
Interrupt Service Routine or ISR). Both outgoing and in-
coming samples are processed during each interrupt. The
handler also services modem requests for changing the
transfer frequency and the number of samples per inter-
rupt, both of which, in effect, determine connection speed.

Under Windows 2000, the interrupts are serviced in a
priority order based on their interrupt request levels
(IRQL). Thus, the modem interrupt handler can be pre-
empted by other interrupt handlers. On our test machine,
all other interrupts had higher priority with two excep-
tions—the interrupts associated with the network card and
the SCSI controller for the CD-ROM. Some of the higher
priority interrupts include the interrupts servicing the key-
board, the communications ports, the mouse, the audio
drivers, the floppy disk and the SCSI hard disk.

5.2 DPC-Based Version (DPC)
Deferred Procedure Calls (DPCs) are routines exe-

cuted within the kernel in no particular thread context in
response to queued requests for their execution. For ex-
ample, DPCs check the timer queues for expired timers
and process the completion of I/O requests. Having inter-
rupt handlers queue DPCs to finish work associated with
them reduces hardware interrupt latency. All queued
DPCs are executed whenever a thread is selected for exe-
cution just prior to starting the selected thread. There can-
not be more than one instance of the same DPC inside the
queue at any one moment. While good for interrupt laten-
cies, DPCs can be bad for thread scheduling latencies, as
they can potentially result in an unbounded amount of
work before a thread is scheduled.

We created a version of the soft modem driver that
executes the signal processing code in a DPC. When the
modem card raises an interrupt, the ISR queues a DPC to
process the buffer of samples. Unlike the vendor version,
where only higher priority interrupts preempt the signal
processing routines, signal processing executing inside of
a DPC is preempted by all hardware interrupts.

There can be more than one occurrence of the inter-
rupt before the DPC is executed. Therefore, synchroniza-
tion between the interrupt handler and the DPC was im-
plemented using an atomically incremented variable that
was set to the number of interrupt occurrences. This vari-
able is atomically decremented by each processing unit
executed by the DPC.
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5.3 Thread-Based Version (THR)
In the THR version of the driver, signal processing is

performed in a thread running at a specified priority. The
thread is created during driver initialization.

A semaphore was chosen as the synchronization
mechanism between the thread and the interrupt handler.
Under the Windows 2000 model, a semaphore cannot be
directly set from an interrupt handler. Thus, whenever the
interrupt occurs, the interrupt handler queues a DPC that
signals the thread via the semaphore. As before, since
there can be more than one occurrence of the interrupt
before the DPC is executed, an atomically set variable is
shared between the ISR and the DPC.

Because interrupt handlers and DPCs run to comple-
tion before a thread is dispatched, there is a potentially
unbounded delay between the interrupt and when the
thread starts to run. However, for specific hardware and
driver combinations, reasonable delays are achievable in
practice [Cota-Robles & Held 99].

5.4 CPU Reservation-Based Version (RES)
In the final version of the driver, the signal processing

thread uses the Rialto/NT real-time scheduler’s CPU Res-
ervation abstraction to ensure a minimum guaranteed exe-
cution rate and granularity.

CPU Reservation requests are of the form reserve X
units of time out of every Y units for thread A. This re-
quests that for every time interval of size Y, thread A be
scheduled for at least X time units, provided it is runnable.
For example, a thread might request 800µs every 5ms,
7.5ms every 33.3ms, or one second every minute.

CPU Reservations are continuously guaranteed. If A
has a reservation for X time units out of every Y, then for
every time T, A will be run for at least X time units in the
interval [T, T+Y], provided it is runnable. Execution time
intervals granted to a thread for its reservation are not
guaranteed to be contiguous. If a thread is not runnable
during its reserved time intervals, the time is returned to
the Windows 2000 scheduler and used for other threads.

The current implementation of Rialto/NT has two re-
strictions: (1) CPU reservations must have values that are
integer multiples of milliseconds, since they are driven off
the periodic Windows 2000 clock and (2) the period of a
reservation must be a power-of-two multiple of a millisec-
ond due to a choice of algorithms within Rialto/NT.

We analyzed the soft modem under different reserva-
tions—1 millisecond every 8 milliseconds (12.5%),
2ms/8ms (25%), 2ms/16ms (12.5%), 3ms/16ms (18.75%),
1ms/4ms (25%). The reservation is requested only after
the initial modem period of about two seconds in order to
avoid interference with this high interrupt rate period.

During this initial period, the thread runs without a reser-
vation but with a real-time priority. Since the soft modem
causes audio computations during dial-up (different proto-
col attempts can be heard while connecting), and the ker-
nel audio mixer threads run at priority no higher than 24,
we assigned priority 24 to the thread during this initial
period. Having sub-millisecond reservation accuracy
would have allowed us to use a different reservation for
the training period, for instance 0.1ms every 2.5ms.

6. Results
Our results are organized as follows: Section 6.1

gives an overview of our experiments. Section 6.2 quanti-
fies the resource usage and timing behavior of the original
soft modem driver, plus the DPC and THR versions. Sec-
tion 6.3 measures the drivers’ interference with other ap-
plications’ operation. Section 6.4 describes the behavior of
the soft modem and its effects upon other applications
when CPU Reservations are used to schedule its signal
processing computations. Section 6.5 quantifies the effects
that the different implementations have upon end-to-end
modem download throughput. Section 6.6 attempts to pre-
cisely characterize the minimum resource and timing re-
quirements that the soft modem must obtain in order to
function correctly.

6.1 Overview of Experiments
We analyzed the behavior of the modem under two

main scenarios—dial-up and steady state communication.
These are the experiments we ran:
• Establishing a connection with and without contention

by a synthetic CPU load. The CPU load we applied
was a normal priority (priority 8) spinning thread.

• A highly compressed file transfer with and without a
normal priority spinning thread.

• Different real-time and normal thread priorities for
the THR version, with a spinning competitor.

• Different reservation amounts for the RES version.
• A stress scenario where the soft modem driver, a

normal priority (priority 8) spinning thread and a pri-
ority 10 process performing a grep command that
searches the entire file system were run concurrently.
By running the grep over the entire file system, we
ensured disk activity. We found the stress scenario re-
sults to be identical to those for a connection with a
normal priority competitor. The induced disk activity
did not influence the soft modem driver behavior.

In addition to these tests, we studied the impact of the
different driver versions on the scheduling latency ob-
served by a real-time thread that uses Windows multime-
dia timers to request a callback every 1ms.
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In order to quantify the observed modem behavior,
we measured the following parameters:
• The times between successive soft modem interrupts.
• The times between successive DPC calls and thread

wakeups.
• The elapsed times spent in the soft modem interrupt

handler, DPC, and thread. (Note that these times in-
clude processing times spent in other contexts that
preempt the traced ISR, DPC, or thread. We believe
that this is appropriate, since signal processing times
are the variable of interest and not execution times.)

• The number of samples pending to be processed. This
variable directly reflects whether the modem is
meeting its deadlines and whether it recovers from
temporary unprocessed data accumulations. This
value will always be less than the buffer size of 512
samples since it will wrap around to zero (indicating
loss of data) should it ever reach 512.

• The modem’s effect on the scheduling latency of co-
existing threads.

• The end-to-end modem throughput. This is a primary
measure of user-visible modem behavior.

Whenever possible, we compared the measured soft
modem performance to the PC 99 specification recom-
mendations [Intel & Microsoft 98]. PC 99 was created by
Intel and Microsoft as a set of recommendations to hard-
ware manufacturers and driver writers for the Microsoft
Windows family of operating systems.

6.2 Soft Modem Resource Usage Study
The measurements presented in this section use a test

scenario of a dial-up connection with a normal priority
spinning competitor thread.

6.2.1 Soft Modem Interrupt Rate
Figure 1 shows the interrupt rate for the INT version.

Before dialing, interrupts occur very frequently (every
2.5ms) for about two seconds—the modem is on-hook
performing ring detection. For the next 9 seconds, inter-
rupts occur every 12.5ms while the modem is dialing and
waiting for the other end to start the connection. When-

ever there is a change in DMA frequency or in the size of
the sample buffers, the modem requests an interrupt fre-
quency change. This request causes a short delay in the
interrupt rate that corresponds to the six scattered points in
the graph. Once the connection has been established, inter-
rupts occur every 13.125 or 11.25 milliseconds. The rates
fall within the PC 99 recommended interrupt rates of 3-16
milliseconds [Intel & Microsoft 98]. The other driver ver-
sions have the same interrupt rates.

6.2.2 Elapsed Times in ISR in INT Versions
The PC 99 specification recommends that the maxi-

mum time during which a driver-based modem disables
interrupts should not exceed 100µs [Intel & Microsoft 98].
Figure 2 shows that the execution of the interrupt handler
typically lasts 1.8ms with a repeatable worst case of
3.3ms—a factor of 33 worse than the specs recommend.
The elapsed times measure the times needed to handle the
soft modem interrupts and include time spent in other in-
terrupts that might have preempted the soft modem inter-
rupt handler.

We believe that spending this much time in interrupt
context has unacceptable consequences for the predict-
ability of coexisting real-time activities. For instance,
multimedia timers in Windows 2000 allow applications to
schedule callbacks at millisecond granularity. Obviously,
this resolution will not be attainable if any ISRs run for
longer than 1ms. We quantify multimedia timer delay in
Section 6.3.

6.2.3 CPU Utilization
Figure 3 shows the CPU utilization of the soft mo-

dem. Each point represents the utilization during a 12.5ms
interval while the soft modem code was executing. We
chose 12.5ms because this is the average period between
soft modem interrupts during all but the first two seconds
of a connection. The connection is established after 23
seconds, thus the last five seconds of the trace present the
CPU load in steady state. As Figure 3 illustrates, the soft
modem uses 14.7% of the CPU once connected.

Rate of Interrupts (INT)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Time (seconds)

M
ill

is
ec

o
n

d
s

On-hook ConnectedTrainingDialing
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6.2.4 Times Spent by the DPC Version
When signal processing is done in a DPC, the inter-

rupt handler does very little work—an average of 5.4µs
per interrupt and a maximum of 16µs. Figure 4 shows the
times spent inside of the interrupt handler and the DPC.
Unsurprisingly, the times spent in the DPC are essentially
identical to those spent in the ISR in the original version in
Figure 2.

While the ISR execution times have been reduced
from milliseconds to a few microseconds, the time spent
inside the DPC is still too large. The PC 99 specifications

suggest that at any instant in time, the total execution time
required for all DPCs that have been queued by a driver-
based modem, but have not been executed, should not
exceed 500µs [Intel & Microsoft 98].

6.2.5 Samples Pending to be Processed
Executing signal processing in a thread context has

the benefit of minimizing the times spent in interrupt han-
dlers and DPCs. While the predictability gains are obvi-
ous, the question becomes whether the soft modem is able
to process data and maintain the line connection. A good
indicator of the connection performance is the number of
samples pending to be processed in the receive data
buffer. Figure 5 shows these unprocessed samples for the
vendor version, measured after the call to the signal proc-
essing routine returns.

In the training and connected phases, there are never
more than 30 samples left unprocessed in the buffers,
which is very small relative to the size of the buffer (512
samples). The DPC version has the same behavior with
respect to the number of unprocessed samples.

Figure 6 shows the samples pending to be processed
for the THR driver version, measured after the call to the
signal processing routine returns. The PC 99 specs rec-
ommend that drivers should perform long computations in
a real-time thread using priorities 28 and above. After
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Figure 6: Samples pending to be processed with a nor-
mal priority spinning thread (THR 24)
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trying different priority settings, we concluded that prior-
ity 24 suffices, which is the same as the thread priorities of
the audio drivers that are used by the soft modem to output
the modem noises during connection.

In Figure 6, the THR version of the driver is able to
keep up with the received samples, even in the presence of
normal priority competition. There are more cases when
there are 30 samples left unprocessed, but overall, the be-
havior looks very similar to the vendor version.

6.2.6 Samples Pending for a Failed Connection

In order to understand the modem behavior under se-
vere competition, we lowered the priority of the signal
processing thread. Figure 7 shows the samples pending to
be processed when the processing thread has normal pri-
ority (priority 8) and there is a normal priority spinning
competitor. The soft modem is not able to dial the number
properly. Instead, the “Please hang up and try your call
again” message is heard. As Figure 7 illustrates, running
the modem thread at too low a priority causes buffer over-
flows when competition is present.

6.2.7 Elapsed Times in the Signal Processing Thread
Figure 8 shows the elapsed times spent per thread

wakeup for the THR driver version at priority 24 with a
normal priority spinning competitor.

The elapsed times for the thread runs look identical to

the elapsed times in the interrupt handler for the vendor
version and the elapsed times in a DPC for the DPC ver-
sion. This is expected, since there is no real-time com-
petitor for the signal processing thread.

As Section 6.2.6 shows, when the signal processing
thread has priority 8, the modem is not able to dial the
number properly under the presence of a normal priority
spinning competitor. Since no data is exchanged over the
phone lines, there is very little time elapsed per thread run
for signal processing, as seen in Figure 9.

6.3 Interference with Scheduling Predictability of
Other Applications
In order to understand the effects of long running

ISRs and DPCs, we measured the wakeup latencies of a
callback routine that uses Windows multimedia timers.
The timers have been set to fire every millisecond and the
routine is called with priority 31, the highest priority for a
real-time thread.

6.3.1 Control Case: Timer Latency with no Modem
Figure 10 shows a histogram of the measured timer

wakeup latencies on a quiescent machine when the soft
modem is not running. The experiment captured 30,000
wakeups over a 30-second period. Samples are accumu-
lated into 50µs buckets. On this machine, timer wakeups
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are triggered by the Real-Time Clock (RTC), which is in-
terrupting at a rate of 1024Hz, or every 976µs. (It supports
only power-of-two frequencies.) Thus, as described in
[Jones & Regehr 99a], approximately 2.4% of the wake-
ups occur near 2ms, since clock interrupts arrive 2.4%
faster than the desired 1ms timer wakeup rate.

6.3.2 Timer Latency with INT and DPC Versions

Figures 11 and 12 show histograms of the measured
latencies when the soft modem is added, for the INT ver-
sion and for the DPC versions, respectively. The damage
the soft modem’s long-running ISR or DPC causes to the
predictability of the callback routine is evident: the tails of
the distributions increase from 2ms to over 5ms. This is
precisely the reason why the PC 99 modem guidelines
recommend that such long-running computations be per-
formed in threads.

6.3.3 Timer Latency with THR Version
Figure 13 illustrates the callback latencies for the

THR driver version. As before, it uses a priority 24 real-
time thread. By running the modem computations in a
thread, timer wakeup latencies are once again nearly as
predictable as those for the control case in Figure 10.

Given that thread-based signal processing works well
and causes less disruption of coexisting system activities,

why then might a vendor still chose to perform signal
processing in DPCs or in interrupt handlers?

6.3.4 Reflections upon the Vendor Choice
Vendors face a problem common to all priority-based

open systems (ones in which independently authored ap-
plications and/or drivers may be executed): for any chosen
priority, there is a potentially unbounded delay until a
thread is scheduled to run. These delays can be caused by
other applications running for arbitrary periods of time at
the chosen or higher priority. Thus, no timing guarantees
can be made.

For systems with a fixed priority preemptive sched-
uler, like Windows 2000, one solution would be to use
Rate Monotonic Analysis (RMA) [Liu & Layland 73] to
assign priorities such that all time-dependent tasks can
meet their deadlines. (Rate monotonic analysis does two
things: it assigns priorities to periodic tasks in order of
their periods, with higher priorities going to tasks with
shorter periods. And it determines whether the entire re-
sulting schedule is feasible, based upon the resulting pri-
ority assignments and computational requirements of each
task.) Unfortunately, RMA cannot be practically em-
ployed because:
• RMA assumes cooperation between the threads,

which is unrealistic in an open system, given the ex-
istence of independently developed drivers and appli-
cations written by different vendors running together
on the same operating system.

• RMA assumes constant timing requirements for all
the coexisting threads. Whenever the CPU require-
ments of a thread change, it potentially affects the
scheduling all the other coexisting threads.

We believe that a better alternative to RMA in an
open system would be a real-time scheduler such as Ri-
alto/NT. The coexisting threads could then reserve ongo-
ing portions of the CPU according to their needs, using the
CPU Reservation abstraction. This alternative is explored
in the next section.
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6.4 Rialto/NT Real-Time Scheduling Results
This section presents results achieved by scheduling

the soft modem’s signal processing computations using
CPU Reservations provided by the Rialto/NT scheduler.

6.4.1 Samples Pending to be Processed in RES Version

Figure 14 shows the samples pending to be processed
for the RES driver version for a 2ms every 8ms CPU Res-
ervation, which reserves 25% of the CPU. Note that there
are unprocessed samples left in the buffers, but the modem
is able to process them in time and no buffer overflows
occur. This situation occurs because a 2ms every 8ms
CPU Reservation only approximates the desired 2ms
every 12.5ms reservation. While there are more pending
unprocessed samples than in the vendor version or THR
version without real-time competition (see Figure 6), we
believe that this is a small price to pay in exchange for the
gains in the predictability of the coexistent system activi-
ties. The number of samples pending to be processed is
much smaller than the receive buffer size of 512 samples,
and there is no degradation in the modem performance.
Appendix A.1 contains similar graphs for additional reser-
vation values: 3ms/16ms, 1ms/8ms, and 1ms/4ms.

6.4.2 Elapsed Times per Wakeup in RES Version
Figure 15 presents the elapsed times spent in the sig-

nal processing thread per thread wakeup. The elapsed
times are the times needed for a single run to complete
signal processing. As mentioned before, this incorporates
times spent in activities that preempt the driver thread.

While larger as a percentage than the actual modem
requirements, a 2ms/8ms CPU Reservation is not an ideal
match for the soft modem processing routines. The period
of 8ms causes the signal processing thread to be scheduled
to execute at different times than the occurrences of the
interrupt. Whenever scheduled, the thread will cede its
reservation to the normal spinning competitor if it is not in
a ready state. Also, data can be available when the thread
is outside its reservation, thus having to compete with the
normal priority spinning thread. This behavior is illus-
trated in Figure 15 by the elapsed times of 6-8ms for sig-
nal processing. However, despite the period mismatch,

this reservation does allow the modem to operate per-
fectly, as the results in Section 6.5 show.

6.4.3 Coexistent Thread Latencies in RES Version

Section 6.3 illustrated the impact of the INT and DPC
versions of the soft modem on the predictability of a call-
back routine. Figure 16 shows the callback latencies for
the RES version with a 2ms/8ms CPU Reservation.

The predictability of the callback routine improves
substantially over the INT and DPC versions. Note that
the callback routine is scheduled by the Windows 2000
scheduler with a priority of 31. The predictability is simi-
lar to the THR version shown in Figure 13, albeit with
three times more callbacks occurring one histogram inter-
val of 50µs to the left or right of the ideal 1ms callback
period in this version than in the THR version.

6.5 End-to-End Modem Download Throughput
To analyze modem throughput, we measured the time

required to transfer a 200,000 byte file. The file is com-
pressed to defeat modem data compression. We repeated
the experiment ten times for each version of the driver.

6.5.1 Microsoft RAS Server Pool
We placed the file on a computer on the Microsoft

intranet and then we measured the transfer times, con-
necting to the Microsoft RAS server, as before. There are
two components of the measured times: (1) transfer times
of the file through the Microsoft internal network (from
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Figure 14: Samples pending with a normal priority
spinning thread (RES 2ms/8ms – 25%)
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25%)
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the source computer to the RAS server) and (2) transfer
times through the phone line (from the RAS server to the
destination computer). While including the network times
introduces some noise into the modem transfer times, this
is a realistic scenario; therefore, we chose to include these
results.

Min Max Mean Std Dev Succ
INT 37.914 37.258 37.222 0.019 10
DPC 37.151 37.303 37.229 0.051 10
THR Pri 8 59.899 60.658 60.219 0.228 10
THR Pri 24 37.147 40.648 37.560 1.086 10
RES 2ms/16ms 156.632 240.932 204.146 35.447 10
RES 3ms/16ms 37.864 122.042 76.840 30.775 10
RES 1ms/8ms 43.741 83.336 56.237 10.73 9
RES 2ms/8ms 37.086 37.242 37.175 0.053 10
RES 1ms/4ms 37.118 38.823 37.354 0.518 10

Table 1: File transfer times (seconds) of 200,000 bytes
including network transfer times

Table 1 contains statistics about the transfer times re-
corded in seconds, along with the number of successful
file copies out of a total of ten attempts. For the THR pri-
ority 8 test, there was no spinning competitor; otherwise
the modem cannot keep the connection alive for the entire
transfer. For all the other tests, a normal priority spinning
thread was executing in parallel with the file transfer.

The 2ms every 8ms and 1ms every 4ms reservations
(25% CPU) behaved identically to the INT and the DPC
version, while the 1ms/8ms (12.5%), 3ms/16ms (18.75%)
and 2ms/16ms (12.5%) needed a longer amount of time
for transfers.

6.5.2 Microsoft Research Dedicated RAS Server

Min Max Mean Std Dev Succ
INT 36.334 36.398 36.367 0.029 10
DPC 36.272 36.447 36.396 0.048 10
THR Pri 8 36.533 37.000 36.716 0.152 10
THR Pri 24 36.319 36.475 36.384 0.056 10
RES 2ms/16ms 329.485 363.891 346.688 24.329 2
RES 3ms/16ms 94.615 174.070 103.789 24.735 10
RES 1ms/8ms N/A N/A N/A N/A 0
RES 2ms/8ms 36.319 36.444 36.378 0.038 10
RES 1ms/4ms 36.303 36.425 36.345 0.036 10

Table 2: File transfer times (seconds) of 200,000 bytes
excluding network transfer times

Next, we eliminated the network transfer times by
placing the file on a RAS server itself. We could not do
this on the Microsoft RAS servers, since running con-
trolled experiments on the large modem pool would have
been infeasible both administratively and technically. In-
stead, we used a dedicated, Microsoft Research RAS
server. Appendix A.2 presents the interrupt rate and
elapsed times of the interrupt handler for the vendor driver
version when connecting to the Microsoft Research RAS
server.

Having eliminated the potential variability introduced
by the network, the file transfer times and success rates

out of ten attempts are presented in Table 2. As before,
there is a spinning competitor thread for all the tests ex-
cept the THR priority 8 test.

This set of results is similar to the ones presented in
the previous section, with two differences:
• The RES driver version using a 1ms/8ms reservation

disconnected so frequently it was impossible to run
the experiments. Likewise, the 2ms/16ms reservation
was nearly unusable.

• On average, the transfer times are both lower and
more predictable, due to eliminating the network
transfer.

We believe that the disconnections for the 1ms/8ms
and 2ms/16ms cases of the dedicated RAS server are most
likely caused by the difference in the type of modem at the
server. Remember that the corporate RAS server bank
uses 3Com Total Control [3Com 00] remote access de-
vices, whereas the dedicated server uses a Digi DataFire
RAS 48 PT2 [Digi 00] remote access concentrator device.
Another difference is that while both servers connected at
50.6Kbps in the downstream direction using the V.90
protocol, the server pool upstream connections occurred at
31.2Kbps, whereas the dedicated upstream connections
occurred at 28.8Kbps. All of this serves to illustrate that
the modem protocols are complicated, and two standards-
compliant implementations may still operate differently.

Nevertheless, while the corporate and research server
results are not directly comparable due to the server hard-
ware differences, we have succeeded in providing a more
accurate measure of end-to-end modem throughput.

6.6 Reservation Sensitivity Study and Model
As the data above shows, the reservation parameters

chosen are critical to modem performance. A sufficient
reservation can make the RES version perform as well as
the original driver, whereas a poorly chosen reservation
can render the modem inoperable. In order to better under-
stand the characteristics of these reservation ranges, and to
attempt to develop a predictive model for them, we un-
dertook the following study.

First, we constructed a modified version of the Ri-
alto/NT scheduler that removes the restriction that reser-
vation periods be a power-of-two multiple of a millisec-
ond, instead allowing us to make a single reservation with
a period of any integer number of milliseconds. And un-
like Rialto/NT, in which a thread remains eligible for
timeshare scheduling outside its reserved time slots, this
new scheduler never allows a thread to run outside of its
reserved time slots. We made these changes in order to be
able to more precisely quantify exactly how much time the
soft modem needs to operate correctly.

We then ran a series of controlled experiments, vary-
ing the modem reservation parameters, in which we re-
measured the file transfer times to the dedicated RAS
server, as per the previous section. With the thread forced
to live within its reservation by the modified scheduler, we
found the results extremely consistent across runs—they
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tended to either work essentially perfectly or not work at
all, depending upon the reservation. Table 3 shows trans-
fer times and success rates out of ten attempts for key sets
of reservation values during these experiments.

Min Max Mean Std Dev Succ
RES 1ms/7ms 36.333 36.724 36.426 0.112 10
RES 1ms/8ms N/A N/A N/A N/A 0
RES 2ms/13ms 36.288 36.975 36.547 0.232 10
RES 2ms/14ms 38.631 91.713 65.172 37.535 2
RES 2ms/15ms N/A N/A N/A N/A 0
RES 3ms/15ms 36.275 36.586 36.387 0.108 10
RES 3ms/16ms 97.289 180.415 110.523 26.408 9
RES 3ms/17ms N/A N/A N/A N/A 0
RES 4ms/16ms 36.255 37.116 36.415 0.256 10
RES 4ms/17ms N/A N/A N/A N/A 0
RES 7ms/20ms N/A N/A N/A N/A 0
RES 8ms/20ms 36.347 36.476 36.394 0.039 10

Table 3: File transfer times (seconds) for reservations not
also receiving timeshared time

Figure 17 is a graphical representation of the space of
possible CPU reservations in which the reservations from
Table 3 are plotted, differentiating three cases: reserva-
tions that were Sufficient for the modem to operate cor-
rectly, reservations that were Insufficient for the modem
to operate correctly, and reservations that were Mar-
ginal—those for which the modem operated in a degraded
fashion. The Actual average interrupt amount and period
for the INT version of the driver, 1.84ms out of each
12.5ms, is also presented as a point of reference.

Also, two lines that play a role in our model of the
soft modem’s reservation requirements are included in the
graph. One is a line from the origin through the “actual”
point (1.84ms every 12.5ms). This slope corresponds to a
CPU reservation percentage of 14.7%. The second is a line
dividing the space into regions where the reservation pe-
riod and amount differ by more or less than 12.5ms. In
other words, points to the right of this line have reserva-
tions with gaps in them longer than 12.5ms.

For all reservations receiving at least 14.7% of the
CPU with gaps of under 12.5ms, the soft modem operated
perfectly. The observed boundary between working reser-
vations and non-working reservations closely approaches
the two boundary lines, with an inflection point near their
intersection. Indeed, our model of the modem’s operating
ranges predicts that all reservations in this region of the
space should operate correctly, whereas all reservations
outside this region should fail. The intuition behind this
model’s predictions is explained below.

First, all points below the 14.7% line represent reser-
vations receiving a smaller share of the CPU than the
original version actually uses when executing an average
of 1.84ms of work every 12.5ms. With insufficient CPU
time, the modem eventually falls behind and loses data.
Second, all points to the right of the 12.5ms gap line rep-
resent reservations in which there are periods of time
longer than 12.5ms during which the modem gets to do no
work. During these long gaps, more than one interrupt’s

worth of work can arrive. Yet despite the RES version
calling the signal processing code multiple times when
multiple interrupts occur, the code appears to sometimes
not successfully process an old interrupt’s work once a
new one has occurred. (However, without source for the
signal processing code, we are unable to verify this as-
sumption.) Apparently the signal processing routine must
be called at least every 12.5ms if it is to work correctly.

All insufficient and marginal reservation values fail
one or both of these tests—either their percentage is too
small, or their gaps are too long, or both—conforming to
our model of what kinds of reservations should and should
not result in the modem operating successfully. Indeed,
the locations of the two marginal results, where the con-
nection sometimes fails or where the transfer rate is sig-
nificantly degraded, likewise affirm the validity of our
model—both are close to, but on the wrong sides of the
boundary lines.

We would be remiss, however, if we did not point out
that a reservation of 1ms every 7ms proved to be suffi-
cient, even though this is only 14.3% and our model pre-
dicts that 14.7% should be required. While very close to
the predicted threshold, this point seems to indicate that
the behavior in this region is not completely linear.

To summarize, it appears that both a minimum aver-
age fraction of the CPU must be delivered and it must be
delivered frequently enough in order for the soft modem to
function correctly. Both the fraction and the frequency
were easily determined by observing the behavior of the
original interrupt-based driver. The observed data closely
fit this predictive model.

Finally, we believe that other real-time tasks, such as
Soft DSL, which also involve filling and/or emptying a
buffer at a constant rate will be likely to exhibit similar
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behavior, albeit, with different parameters as dictated by
the particular buffer size and rate values.

7. Interesting Experiences Along the Way
On the Pentium architecture, the Floating Point Unit

(FPU) is not saved on a context switch. Instead, an excep-
tion is raised whenever the new context accesses the FPU
registers and the system then saves the old context. The
soft modem signal processing routines make heavy use of
the FPU registers. If this code executes in interrupt con-
text, as the vendor version does, raising an exception will
not preempt the ISR to save the old context. Thus, the soft
modem interrupt handler must save the FPU context of the
interrupted activity.

For all other driver versions, the soft modem interrupt
handler does not execute the signal processing load, and
therefore it does not need to save the FPU context. For the
DPC version, the queued DPC must save the FPU context,
since the DPC can preempt a running thread and run on
the thread’s stack, affecting its registers.

Whenever the signal processing is run in a thread
context, the FPU registers need not be saved. When the
thread executes its first FPU instruction, an exception is
raised and the system automatically saves the FPU con-
text.

We initially moved some code from the INT version
to the DPC version, including the FPU register save-and-
restore code. It mostly worked, but occasional long com-
putational delays were observed. We eventually deter-
mined that the kernel mixer, which uses the FPU registers,
was consequently trashing our FPU context. Fixing this
oversight on our part solved this bug.

8. Further Research
Our study is one step in understanding the application

benefits of using real-time schedulers. Soft modems are an
ideal platform for prototyping different real-time system
abstractions due to their precise timing requirements. One
potential extension to our study would be the analysis of
the application impact of CPU reservations for multiproc-
essor machines.

Multiple soft modems serviced by the same driver on
a single system would pose different challenges to the
real-time schedulers depending on the number of simulta-
neously communicating modems. Likewise, more studies
are needed to understand the overall system behavior
when multiple real-time applications using the Rialto/NT
scheduling abstractions are concurrently executing. One
opportunity would be to conduct studies in which both the
soft modem and the digital audio player application, which
was studied in [Jones & Regehr 00], are present.

Once the signal processing is done in a thread context,
there is an opportunity to run the thread in user space, with
important gains to system safety. In addition to the needed
predictability, access to the various hardware components
is the other major obstacle to executing driver code in user
space. A better identification of the driver hardware re-

quirements and providing safe user space abstractions are
other extensions worth pursuing.

Finally, this research could be extended to the newly
proposed software-based Digital Subscriber Line (soft
DSL) [Tramontano 00]. While CPU requirements for soft
DSL are much higher, they possess some of the same real-
time characteristics as soft modems, making them ideal
candidates for understanding the benefits and limitations
of real-time schedulers.

9. Industry Perspectives and Things to Come
9.1 Industry Perspectives on Implementation

Choices
While one might assume that the vendor was unaware

of or chose to ignore the PC 99 timing guidelines [Intel &
Microsoft 98] for soft modem interrupt handlers, we have
learned through private communication [Anonymous 00]
that the real story is more complex (and more interesting).
The vendor, in fact, did produce a version of their driver
that performed signal processing in a thread, and tested
this version with numerous combinations of hardware and
other software.

Just like our THR implementation, their thread-based
implementation normally worked fine. However, during
testing, they came across a few scenarios that starved the
modem thread. These included copying data from one IDE
device to another (for instance, a CD to a disk), and start-
ing applications such as Internet Explorer. They also saw a
USB scanner using the Intel 440BX chipset holding off
interrupts for 30-50ms. Therefore, in an understandable
move of self-defense, they chose to do signal processing
in interrupt context.

One might ask how such choices could be avoided,
particularly since all users of this soft modem suffer the
consequences of the signal processing being done in inter-
rupt context, whereas only a very small number of test
cases produced problems for a thread-based version. And
indeed, those test cases were caused by behaviors them-
selves not conforming to the PC 99 guidelines—behaviors
such as IDE disk drivers not using DMA, for instance.

The vendor acknowledged that they would be thrilled
to be good system citizens and run the signal processing in
a thread, provided they could have confidence that other
software and hardware vendors would do the same.
Clearly, all would benefit from such an outcome, as over-
all system predictability would improve, including for the
modem device itself.

To accomplish this, it is our belief that, ultimately,
systematic latency timing verification of all components
and software is the only viable solution. The definition of
“correct operation” must be extended to include not just
“produces the correct answer” but also measures of time-
liness. Only then will vendors have the confidence to
“play by the rules” because they know that others are as
well. For more on this topic, see [Cota-Robles & Held 99]
and [Jones & Regehr 99a].
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9.2 Soft DSL and Other Soft Devices
Software-based Digital Subscriber Line (soft DSL)

[Tramontano 00] interfaces are about to appear on the
market. The CPU requirements for soft DSL will be even
more demanding than for soft modems. The facts below
were obtained through private communication [Anony-
mous 00] with the soft modem vendor.

There are two communication rates for DSL: G.lite,
which is 1.531Mbps downstream and 512Kbps upstream,
and full rate DSL, which is 3.062Mbps downstream and
512Kbps upstream. Soft G.lite produces a CPU load of
approximately 25% of a 600 MHz Pentium III. Full-rate
DSL requires nearly twice that. For both rates, soft DSL
requires a 4ms processing period—significantly shorter
than the 12.5ms steady state period required for the V.90
soft modem.

Soft implementations of the 802.11b wireless LAN
protocol [IEEE 97] and the Bluetooth wireless protocol
[Haartsen & Mattisson 00] are also possible. While only
2-3% of a 600 MHz CPU is needed, they require short
computations extremely frequently—every 312.5µs.

The requirements of these, and other soft devices that
may be developed, only increase the motivation for effec-
tive operating system and testing support for low-latency
predictable computations.

10. Conclusions
We created four different versions of a soft modem

driver that execute the signal processing code in interrupt
context, in a DPC, in a thread using the Windows 2000
scheduler, and in a thread scheduled by the Rialto/NT
real-time scheduler. We analyzed the performance profiles
and the behavior of each driver version. Based on this
analysis, we drew the following conclusions.

First, signal processing in interrupt context is not only
unnecessary, but also detrimental to the predictability of
any coexisting activity. Unfortunately, this is precisely
what the vendor version does. We believe, however, that
the vendor’s choice is understandable given the absence of
predictability guarantees in Windows 2000.

Second, the DPC version has some of the same pre-
dictability drawbacks as the vendor version. Both the ven-
dor and the DPC versions do not conform to the PC 99 set
of recommendations for the Windows 2000 driver writers
[Intel & Microsoft 98].

Third, the Windows 2000 scheduled thread version
alleviates some of these problems. We found that the soft
modem driver functions well when the signal processing
thread has high real-time priority and no competition.

Fourth, we conclude that other threads are less inter-
fered with when the modem is scheduled using the real-
time CPU Reservations abstraction. In particular, this ab-
straction allows us to control the amounts of time that the
modem interferes with other time-sensitive computations
while still meeting its needs.

In summary, this study makes the detailed perform-
ance characteristics of a popular soft modem available to

the industry. We believe that this data should prove useful
for informing ongoing work on providing predictable exe-
cution on consumer and general-purpose operating sys-
tems.
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A. Supplemental Results
As part of the work done on this project, more rele-

vant data has been gathered. While not essential to the
conclusions of this paper, we believe that this data is
nonetheless important in understanding the behavior of the
soft modem and support for predictability in Windows
2000.

A.1 Samples Pending to be Processed in RES Ver-
sion

Figure 14 shows the unprocessed samples for a soft
modem thread scheduled using a 2ms/8ms (25%) CPU

Reservation. After trying different values we concluded
that 2ms/8ms best approximates the desired modem be-
havior, given the coarse-grained accuracy of the reserva-
tions. Figure 18 presents the unprocessed samples for
threads scheduled using 1ms/8ms, 3ms/16ms, and
1ms/4ms CPU Reservations, respectively.

As Figure 18 shows, the 1ms/8ms (12.5%) CPU Res-
ervation causes buffer overflows in the presence of com-
petition. For the 3ms/16ms CPU Reservation, there is a
case when there are 222 samples left in the receive buffer;
nevertheless, the modem is able to recover. With a
1ms/4ms reservation, there are never more than 120 un-
processed samples, which is small relative to the buffer
size of 512. Note that both 3ms/16ms and 1ms/4ms values
result in an actual larger CPU load than the needed
2.5ms/12.5ms.

A.2 Interrupt Rate and Elapsed Times in ISR for
Connection to Microsoft Research RAS

In order to eliminate the potential variability intro-
duced by a network when measuring transfer times, we
used a dedicated RAS server at Microsoft Research in-
stead of the general Microsoft RAS servers. The behavior
and the timing constraints of the modem remain largely
unchanged. Figure 19 presents the interrupt rate for the
vendor version of the driver while connecting with a nor-
mal priority spinning competitor. The effective connection
speed is 50.6Kbps.

The interrupt rate follows the same pattern as be-
fore—there is an initial period of 2-3 seconds when the
interrupt rate is 2.5ms, followed by 18-19 seconds of di-
aling when the interrupts occur every 12.5ms and finally
during training and connection the interrupt rate oscillates
between 11.25ms and 13.125ms.

There are some differences, however, related to the
length of the different phases of the connection:
• The dialing phase is about 4 seconds longer due to the

ISP modem answering the call a little later than the
modems of the Microsoft RAS servers.

• The training phase is about 5 seconds shorter. We
believe this is due to the different type of modem
equipment used by the RAS servers.
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Samples Pending to be Processed (RES 1ms/4ms)
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Figure 18: Samples pending to be processed (RES) for
various reservations – 1ms/8ms or 12.5% (first),

3ms/16ms or 18.75% (second) and 1ms/4ms or 25%
(last)
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Figure 19: Rate of soft modem interrupts when con-
necting to Microsoft Research RAS Server
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• The connected phase in our scenario is about two sec-
onds longer. Authenticating the calling computer to
the network took a longer time when connecting
through the Microsoft Research RAS server.

Figure 20 illustrates the elapsed times in the interrupt
handler of the soft modem when connecting to the Micro-
soft Research RAS server. As before, the elapsed times
measure the times needed to handle the soft modem inter-
rupts and include times spent in interrupt handlers that
might have preempted the soft modem interrupt handler.

As before, the execution of the interrupt handler typi-
cally lasts 1.8ms. However, there is a repeatable worst
case execution time of 3.8ms, a factor of 38 times worse
than the PC 99 specs recommend [Intel & Microsoft 98].

Although connecting to a different ISP modem, the
soft modem behavior and time constraints remain largely
unchanged. Although there exist small differences with
respect to the length of the different connection phases and
the elapsed times executing signal processing, we believe
that this was a small price to pay in order to measure accu-
rate file transfer times reflecting the overall modem per-
formance.
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Figure 20: Elapsed times in interrupt handler when con-
necting to Microsoft Research RAS Server


