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Wenqing Jiang and Henrique Malvar

Abstract

We propose a new adaptive speech noise removal algorithm based on a two-
stage Wiener �ltering. A �rst Wiener �lter is used to produce a smoothed
estimate of the a priori signal-to-noise ratio (SNR), aided by a classi�er that
separates speech from noise frames, and a second Wiener �lter is used to gen-
erate the �nal output. Spectral analysis and synthesis is performed by a mod-
ulated complex lapped transform (MCLT). For noisy speech at a low 10 dB
input SNR, for example, the proposed algorithm can achieve on average about
13 dB noise-to-mask ratio (NMR) reduction, or about 6 dB SNR improvement.

1 Introduction

Noise removal is a necessary preprocessing step for speech acquisition in computer
telephony and other applications, such as speech-assisted human-computer interfaces.
O�ce noise from fans and computers, as well as vehicle noise, not only degrades
the subjective speech quality, but it also hinders performance of speech coding and
recognition systems.

Many approaches have been reported in the literature for speech noise reduction,
such as the short-time spectral amplitude estimator in [1, 2], the signal subspace
approach in [3] and the human auditory system model-based approaches in [4] and
[5]. In this paper, we focus our study on short-time spectrum attenuation techniques,
which have been shown to be very e�ective and simple for low cost implementations
[1,2,6].

A typical spectrum attenuation technique, assuming an additive uncorrelated
noise model, consists of two basic steps [7]: (i) estimation of noise spectrum and
(ii) �ltering of the noisy speech to obtain the cleaned speech. In spectral subtraction
systems, a noise spectral magnitude estimate is actually subtracted from the signal
magnitude spectrum. That can lead to larger amounts of noise reduction. Both
approaches are usually e�ective, but they can generate artifacts known as musical

noise1[6], especially in spectral subtraction systems. Approaches to reduce musical
noise include using sophisticated speech/noise classi�cation mechanisms, such as the
cepstral detector by Sovka et al. [8], the pitch-based detector by Tucker et al. [9], and
the multiple features-based voice activity detector (VAD) in G.729 by Benyassine et
al. [10].

1The residual noise composed of sinusoidal components with random frequencies that come and

go in each short-time frame. It is caused by the mismatch between the noise spectrum estimation

and the noise spectrum at each short-time frame.

1



In particular, the system in [10] improves the probability of correct noise frame
classi�cation for improved noise spectrum estimation, and smoothes the a priori SNR
estimation over time, as in the minimum mean-square error short-time spectral mag-
nitude estimator in [1,2]. Time smoothing is e�ective in reducing musical noise, but
it leads to reverberation artifacts.

In this paper we propose a two-stage Wiener �lter system for speech noise re-
moval. For simplicity, we use an adaptive energy-based speech/noise classi�cation
technique similarto [11]. To reduce the classi�cation error, speci�cally the error of
misclassi�cation of speech frames as noise frames, we smooth the initial energy-based
classi�cation result over time. That is justi�ed by the observation that speech frames
tend to cluster to each other in time. In other words, both the energy measure and
classi�cation results of neighboring frames are used to obtain the �nal classi�cation
result for each current frame, a context-adaptive classi�cation idea that has been
successfully used reducing reconstruction noise in picture coding [12].

Driven by the frame classi�er, we use a Wiener �lter to estimate the speech and
noise spectra, or equivalently the a priori SNR. Another Wiener �lter then generates a
minimum-mean square estimate of the speech signal. This two-stage Wiener �ltering
approach is simple to implement and performs closely to the best systems reported
to date, but with a lower level of musical tones.

2 System Outline

A simpli�ed block diagram of our proposed system is shown in Figure 1. The in-
put signal is �rst transformed on a frame-by-frame basis using a modulated complex
lapped transform (MCLT). The MCLT is similar to a windowed Fourier transform
frequency analyzer, but with slightly di�erent center frequencies [13]. Frame classi-
�cation and Wiener �ltering, as described in the next sections, are performed in the
magnitude MCLT domain. The �ltered magnitude information is combined with the
original phase information and inverse transformed via the IMCLT.

MCLT

IMCLT

Wiener
Filter 2

Wiener
Filter 1

Speech/noise
Classifier

Noise
Spectrum
Estimator

magnitude

phase

Figure 1: Basic block diagram of the proposed system.

Let x be the input signal, s the original speech signal and n the uncorrelated noise.
We assume as usual an additive noise model, that is

x = s+ n (1)
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Let X(i; k) be the input spectrum of frame i at frequency bin k, computed via the
MCLT:

X(i; k) =
2N�1X

n=0

x(iN + n)pa(n; k) (2)

where N is the frame length and pa(n; k) is the MCLT analysis kernel [13].

3 Context-Adaptive Classi�cation

Our classi�er is based on an energy metric. The ith frame energy E2(i) is computed
from the input spectrum as follows:

E2(i) =
1

k1 � k0

k1X

k=k0

[jX(i; k)j � �X(i)]2 (3)

where the average frame magnitude �X(i) is given by

�X(i) =
1

k1 � k0 + 1

k1X

k=k0

jX(i; k)j (4)

We usually set k0 = 300N=fs and k1 = 3000N=fs (where fs is the A/D sampling
frequency). That choice is motivated by the fact that for human speech essentially
all energy is concentrated in the 300Hz{3000Hz band.

Once the energy E2(i) is computed, We make an initial decision by hard thresh-
olding: if E(i) > T then frame i is classi�ed as speech; otherwise, it is labeled as
noise. Since speech is nonstationary, we adapt the threshold T from past frames by
the simple rule

T = Emin + �(Emax � Emin) (5)

where Emin = minfE(j)g, Emax = maxfE(j)g and j = i�We; i+ 1 �We; � � � ; i� 1
with (We; �) respectively the window size (number of past frames) and a relative
thresholding constant. We can slow down adaptation of T by increasing the window
size We, and we can make it more robust to large energy 
uctuations in noise frames
by increasing �. Typical values in our experiments are We = 20 and � = 0:3.

A problem with this simple hard-thresholding technique is that it often misclas-
si�es low energy speech frames (e.g. for unvoiced speech) as noise frames. To reduce
this error, we propose the following smoothing rule: if the energies of the current
frame and the past We frames are below the threshold, then the current frame is a
noise frame; otherwise, the current frame is a speech frame. Ws is a smoothing length;
in our experiments we set Ws = 5. The rule is justi�ed because in practice low-energy
unvoiced frames usually happen immediately before or after voiced frames. Figure 2
shows an example where we see that this smoothing process helps to reduce the error
of misclassifying speech frames into noise frames.
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Figure 2: Comparison of energy-based classi�cation results before (hard-decision,
dashed lines) and after smoothing (soft-decision, solid lines) (Ws = 5; � = 0:2;We =
20).

4 Two-Stage Wiener Filtering

After classi�cation, we use each noise frame to adapt the noise spectrum estimate
jN̂(i; k)j by

jN̂ (i; k)j = �jN̂(i� 1; k)j + (1� �)jX(i; k)j (6)

where the parameter � controls the adaptation speed. In our experiments, we use
� = 0:9.

A Wiener �lter [14] is the optimal Bayesian linear �lter that minimizes the ex-
pected mean-squared error E[jŝ� sj2] for the noise corruption model in Eqn. (1). In
the frequency domain, the Wiener �lter gain can be written as

G(k) =
jS(k)j2

jS(k)j2 + jN(k)j2
=

P (k)

1 + P (k)
(7)

where S(k); N(k) are respectively the frequency spectrum of the signal and noise.
P (k) � jS(k)j2=jN(k)j2 is the a priori SNR. The output spectrum Ŝ(k) is computed
by Ŝ(k) = G(k)X(k).

The Wiener �lter is essentially an adaptive gain that gets smaller as the SNR
P (k) gets smaller. Its e�ciency is tied to the assumptions that both signal and
noise are wide-sense stationary random processes and the a priori SNR is known. In
practice, many noise sources such as computers and fans are reasonably stationary,
but speech certainly isn't. Therefore, we have to replace the a priori statistics by
spectral estimates.

When frame-adaptive spectral estimates are used to compute the Wiener �lter
gains in Eqn. (7), low-level speech frames can make G(k) 
uctuate rapidly, generating
annoying musical noise in the �ltered signal [6].

To improve the spectrum estimation of speech signals, we propose to use a two-
step Wiener �ltering algorithm. In the �rst stage, the input signal is Wiener �ltered
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using an adjusted SNR estimate:

P 0(i; k) = �P̂ (i� 1; k) + (1� �)P (i; k) (8)

where
P (i; k) = (jX(i; k)j2 � jN̂(i; k)j2)=jN̂(i; k)j2 (9)

and P̂ (i� 1; k) is calculated, using the �ltered signal from the previous frame, as

P̂ (i� 1; k) = jŜ(i� 1; k)j2=jN̂ (i� 1; k)j2 (10)

We see that P (i; k) is equivalent to that resulted from a spectral subtraction system [5,
11]. However, direct spectral subtraction leads to musical noise while oversubtraction
increases speech distortion.

With the smoothed estimate P 0(i; k), we reduce variations in the Wiener gain
G(i; k) over time. This helps to suppress the residual musical noise. The larger the �,
the lower the level of the residual musical noise. In Figure 3 we show di�erent estima-
tions of the SNR. It can be seen that isolated small magnitude pulses (corresponding
directly to the musical noise) are suppressed after the smoothing operation.
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Figure 3: Di�erent SNR estimates. Solid line: P (i; k) before smoothing; dotted line:
P 0(i; k) (after smoothing) with � = 0:97; dashed line: P 1(i; k) �nal estimate.

In Figure 3 we note that the smoothed SNR estimate P 0(i; k) is delayed with
respect to P (i; k) for large � (e.g.� = 0:97). This time delay may lead to reverberation
e�ects at the end of speech utterances. To avoid that kind of distortion, we propose
the use of a second Wiener �lter, which recomputes the SNR estimation by

P 1(i; k) = �P̂ (i� 1; k) + (1 � �)P u(i; k) (11)

where P u(i; k) = jŜ(i; k)j2=jN̂ (i; k)j2 with Ŝ(i; k) the �ltered signal from the �rst
Wiener �lter. A typical plot of P 1(i; k) is also shown in Figure 3. We note that the
newly estimated P 1(i; k) is shifted back and synchronized with that of Pold(i; k) from
spectrum subtraction, while suppressing the small magnitude pulses to avoid musical
noise.
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5 Experimental Results

To measure the performance of the proposed algorithm, we compute the sample SNR
and the noise-to-masking ratio (NMR) for the �ltered speech signals. The sample
SNR is de�ned as

SNR = 10 log 10

P
N�1

n=0
s2(n)

P
N�1

n=0
[y(n)� s(n)]2

(12)

where N is the length of the original signal s(n) and y(n) is the signal for which
we want to compute the SNR (either the input speech x(n) or the �ltered output
from our system). The NMR is an objective measure based on the human auditory
system and it indicates the ratio of audible noise components to the hearing threshold.
Therefore, an NMR of 0 dB indicates a noise at the threshold of audibility, whereas
higher NMRs mean more noticeable noise. The NMR has been found to have a high
degree of correlation with subjective tests. The NMR is de�ned as [5]

NMR =
10

M

M�1X

i=0

log 10
1

B

B�1X

b=0

1

Cb

Pk=kh

k=kl
jD(i; k)j2

T 2

b
(i)

(13)

where M is the total number of frames, B is the number of Critical Bands (CB) , Cb

is the number of frequency components for the bth CB, and jD(i; k)j2 is the power
spectrum of the noise at frequency bin k and frame i. The kl; kh are respectively the
low and high frequency bin indices corresponding to bth CB, and Tb is its masking
threshold, which depends on the signal spectral magnitudes around the bth band [5].

To generate noisy speech signals, we used Eqn. (1) with six noise patterns. Be-
sides white and pink noise, for more realistic results we also used four noise patterns
recorded from o�ce and conferencing rooms, with a mixture of air conditioning and
computer noises. The speech material consisted of short sentences recorded by a male
and a female speaker. All signals were sampled at 16 kHz (which is characteristic of
\wideband" teleconferencing systems). We adjusted the noise level to an equivalent
a priori SNR of 10 dB.

The results are given in Table 1. The rows indicate the SNR and NMR results
before (su�x \in") and after (su�x \out") noise reduction, for male and female
speech (\M:" and \F:" pre�xes), and the columns indicate the noise patterns; the
four recorded room noises (a){(d) and pink and white noises (\PN" and \WN").
We see that the proposed algorithm signi�cantly improves the SNR or equivalently
reduces the NMR. The average SNR improvement is 5.8 dB or equivalently 12.9 dB
NMR reduction. That level of SNR improvement is roughly the same as what is
obtained with the best spectral subtraction systems [3], but our proposed algorithm
leads to a signi�cant reduction of the musical noise artifact, with low algorithmic
complexity and low processing delay.
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Table 1: SNR and NMR (in dB) before and after noise reduction.

(a) (b) (c) (d) PN WN
M: SNRin 9.9 9.8 10.0 10.0 10.1 10.0
M: SNRout 13.1 12.9 12.6 19.2 14.3 15.6
F: SNRin 9.9 9.9 9.9 10.0 10.2 10.0
F: SNRout 17.7 17.6 16.0 20.7 16.2 15.9

SNR Gain 5.5 5.4 4.4 9.9 4.1 5.7

M: NMRin 11.7 15.0 16.3 11.9 21.7 28.5
M: NMRout 2.7 4.0 4.9 -0.1 6.6 11.1
F: NMRin 15.9 19.0 17.4 12.0 19.5 25.2
F: NMRout 3.9 3.7 5.0 1.9 5.3 8.6

NMR Gain 10.5 12.2 11.9 11.1 14.7 17

6 Conclusion

We proposed an adaptive noise reduction algorithm based on Wiener �ltering. It
includes two main modi�cations compared to conventional approaches:(i) a smooth-
ing rule for the energy-based speech/noise classi�cation and (ii) a recursive two-stage
Wiener �ltering structure, to reduce the signal distortion from \musical noise." Pre-
liminary experimental results have shown an average SNR improvement of about 6 dB
and an NMR reduction of about 13 dB, for noisy speech at 10 dB input SNR.

With speech input, the performance of our system could be enhanced by adding
speech production models (e.g. linear prediction { LP) as part of the a priori spectral
information. However, such modi�cation could hinder performance on handset-free
telephony and similar applications, due to the mismatch of the LPC model to rever-
berant speech.
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