
Chaos Mosaic: Fast and Memory Efficient Texture Synthesis

Ying-Qing XU; Baining GUO; Harry SHUM

April 20, 2000

Technical Report
MSR-TR-2000-32

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Chaos Mosaic: Fast and Memory Efficient
Texture Synthesis

Category: Research

Abstract

We present a procedural method for synthesizing large textures from an input texture sample. The

basis of our algorithm is the chaos mosaic, a technique for synthesizing textures with an even and

visually stochastic distribution of the local features of the input sample. The chaos mosaic is fast. For

synthesizing textures of the same size and comparable quality, our algorithm is orders of magnitude

faster than existing algorithms. On a PC we can synthesize a 512 � 512 texture from a 64 � 64 sample

in just 0.03 second. More importantly, the chaos mosaic facilitates memory efficient texture rendering

through procedural texturing. Like traditional solid texture techniques, the chaos mosaic allows us to

synthesize and render synthetic textures that, if stored explicitly as textures, would require prohibitively

large amount of storage. As an example, we demonstrate that an 100k � 100k synthetic texture can be

interactively visualized on a modest PC without suffering from latency. Finally, the chaos mosaic can

drastically reduce the bandwidth for interactive 3D graphics delivered across the internet.

Keywords: Procedural Texturing, Chaos Transformation, Virtual Texture, Latency, Bandwidth.

1 Introduction

Texture mapping was introduced in [Cat74] as a method of adding surface details by projecting a texture

image onto an object surface. Despite its tremendous success, texture mapping suffers from three serious

problems. First, the available texture is often too small to cover the object surface. In this situation, a

simple tiling may introduce unacceptable artifacts in the form of visible repetition. Second, there may be

no natural map from the texture space to the object surface and consequently the texture is subject to severe

distortion when mapped. The third and probably the most important problem is that texture mapping is

memory intensive, both in terms of capacity and bandwidth [BAC96, TK96].

Researchers have proposed texture synthesis algorithms to address some of the above problems. Two of

the main approaches to texture synthesis are procedural methods [Pea85, Per85, Lew89, Ups89, WK91,

Tur91] and statistical sampling methods [HB95, De 97, PS99, ZLW99, EL99]. These two approaches are

complementary in their strengths and weaknesses. Procedural methods [Pea85, Per85, Lew89] can be very

fast and they support memory efficient texture rendering by not storing the synthesized textures explicitly

but synthesizing them on the fly [Ups89]. On the down side, existing procedural methods are only spe-

cialized emulators of the generative processes of certain types of textures, such as marbles, sea shells, and

animal skins. Statistical sampling methods can synthesize a wide variety of textures, as long as appropriate

sample textures are provided. Since they start from sample textures, the statistical sampling methods also

eliminate the need of parameter tweaking, which is essential to traditional procedural methods. However,

statistical sampling methods are quite slow and they do not consider the memory efficiency during texture

rendering. In fact, some statistical sampling methods tend to use a lot of memory just for synthesizing

textures (e.g., see Section 4.1).

To combine the strengths of procedural and statistical sampling methods while avoiding many of their

weaknesses, we have developed a procedural method for synthesizing large textures from an input sample

texture. The basis of our algorithm is the chaos mosaic, a technique for synthesizing textures with an even

and visually stochastic distribution of the local features of the input texture sample. Texture synthsis with

the chaos mosaic is easy and fast. For synthesizing textures of the same size and comparable quality, our

algorithm is orders of magnitude faster than existing statistical sampling algorithms. For example, we can

synthesize a 512 � 512 texture from a 64 � 64 sample in 0.03 second on a PC with a 450 Mhz Pentium

III processor .

The chaos mosaic also addresses the memory efficiency issue. Like the procedural solid texturing tech-

niques, the chaos mosaic allows us to synthesize and render synthetic textures that, if stored explicitly as

textures, would require prohibitively large amount of storage [Pea85, Per85, Lew89, Ups89]. We intro-

duce a compact encoding of the chaos mosaic called the virtual texture, by which textures are generated

on the fly during rendring. As an example, we demonstrate that an 100k � 100k synthetic texture can be

interactively visualized on a modest PC without suffering system latency.

Because of its speed and memory efficiency, the chaos mosaic can significantly reduce the bandwidth

2

for interactive 3D graphics delivered across the internet. We can replace the synthetic textures in a VRML

model by texture samples and have the VRML browser generate the synthetic textures from the down-

loaded texture samples upon reading the VRML model for display. The result is a drastic reduction of

both downloading bandwidth and the loading time of the VRML model. Note that we can also generate

the synthetic textures using statistical sampling methods [HB95, De 97, PS99, ZLW99, EL99], but we will

loose interactivity because these methods are slow.

The chaos mosaic resembles the statistical sampling techniques [HB95, De 97, PS99, ZLW99, EL99]

in that it generates synthetic textures from an input sample texture. In fact, by maintaining local charac-

teristics of the sample texture while varying from it in the global form, the chaos mosaic often produces

similar results as De Bonet’s successful algorithm does [De 97]. However, it is worthwhile to note that

the chaos mosaic is a procedural method that does no statistical modeling or analysis. In designing the

chaos mosaic, we are not trying to build a statistical theory for texture modeling and analysis (e.g., see

[PS99, ZLW99]). Instead, our goal is to derive a fast recipe for high-quality synthetic textures suitable for

various graphics rendering taskes.

The rest of the paper is organized as follows. In section 2, we discuss the chaos mosaic in detail. In

particular, we explain how to transform a tiling of the input sample texture into a synthetic texture that

preserves the local features of the texture sample and has an even and visually stochastic distribution of

these features. Section 3 describes procedural texturing with the chaos mosaic. We introduce the virtual

texture encoding of the chaos mosaic and show how to synthesize and render large textures with the virtual

texture. Results are presented in Section 4, followed in Section 5 by conclusions and suggestions for future

work .

2 Chaos Mosaic

The chaos mosaic is rather unique in that it starts with a tiling of the input sample texture and transforms

the tiling into a synthetic texture that has an even and visually stochastic distribution of the local features of

the texture sample. In this section, we describe our techniques for creating an even and visually stochastic

distribution and for preserving local features.

3

Figure 1: From tiling to the chaos mosaic. Top: a tiling of the input sample texture, with the black box

indicating the input sample. Bottom: the corresponding chaos mosaic. We obtain the chaos mosaic from

the tiling by applying a procedurally-defined image transformation.

4

Notation: We describe the size and location of a texture block B by an integer tuple (x, y, w, h), where

x and y specify the top left corner of the block. The width and height of the block are given by w and h

respectively. A random block B is a block whose size and location parameters x, y, w, and h are random

numbers.

2.1 From Tiling to Chaos Mosaic

Fig. 1 shows an example of creating an m�m chaos mosaic M from an n�n input sample texture S. As

shown in Fig. 1 (top), it is easy to construct an m�m tiling T from the input sample S. While inheriting

the local features of S, the tiling T has an undesirable repetitive structure gloablly. We wish to construct

the chaos mosaic M such that it satisfies the following requirements:

a) M maintains the local features of S.

b) Globally M has an even and visually stochastic distribution of the local features of S and

this global distribution is quickly computable.

The first requirement of the chaos mosaic is motivated by the fact that capturing the local features is es-

sential for the synthsized texture to have identical textural characteristics as the texture sample. This fact

has been recognized for a long time by researchers who analyze/synthesize textures using statistical sam-

pling methods [HB95, De 97, PS99, ZLW99, EL99]. Considering the input sample textures as samples of

some probabilistic distributions, statistical sampling methods create new synthetic textures by estimating

these probabilistic distributions and sampling from the estimations. Although the estimation and sampling

strategies vary from method to method, all methods base their analysis on locally defined image features

and strive to preserve local features in the synthesized textures.

The second requirement of the chaos mosaic, with its strong emphasis on the fast computation of the

global distribution of the local features, is our way to eliminate the globally repetitive structure of the tiling

T . Creating a stochastic distribution of the local features so as to avoid visible repetition is not new. If we

generate an synthetic texture E using a statistical sampling method (e.g. [HB95]), then E will also have a

stochastic distribution of local features of the input sample texture S. Such a distribution comes naturally

as part of the underlying probabilistic model of the statistical sampling method.

5

What is new in the second requirement of the chaos mosaic is that we explicitly demand the fast compu-

tation of the global distribution of the local features. To make this fast computation possible, we relax our

requirement on the global distribution to visually stochastic: there is no need for the global distribution to

have a underlying probalistic model. This global distribution which is both visually stochastic and quickly

computable is indeed the key to fast and memory efficient texture synthesis using the chaos mosaic. As

we shall see, a properly chosen chaos iteration system can quickly create an even and visually stochastic

pattern out of any input image. The chaos mosaic derives its computational efficiency from this amazing

fact.

2.2 Selecting Chaos Transformation

To create an even and visually stochastic pattern, we use an iterative system from the field of deterministic

chaos [Sch88]. Deterministic chaos denotes the state of disorder and irregularities generated by a nonlinear

dynamic system in which previous history uniquely determines the future behavior. One such system is

the iterative system based on the cat map of Arnold [AA68]. For the tiling T , the cat map is a mapping

from T onto itself such that the pixel at the point (xl; yl) is mapped to (xl+1; yl+1) as follows:

xl+1 = (xl + yl) mod m (1)

yl+1 = (xl + 2yl) mod m (2)

Here we used the fact that T is of the size m�m. Starting from any point (x0; y0) 2 T , we can generate

a sequence of points f(xl; yl) 2 T j l = 0; 1; 2; 3; :::g by iteratively applying the cat map. We call the

resulting iteration system the cat map iteration.

Although the cat map iteration appears to be very simple, its analysis are quite mathematically involved.

In this section we will keep our discussions as simple and intuitive as possible. In the appendix, we provide

more mathematical explanations.

While there are many chaos transformations in the field of deterministic chaos [Sch88], we selected the

cat map for two reasons. First, the cat map is an area-preserving automorphism of the torus (i.e., the cat

map is an area-preserving mapping defined on the torus and the mapping is both one-to-one and onto).

Because the cat map is defined on the torus, we can easily make the chaos mosaic defined on the torus

6

Figure 2: The cat map iteration can quickly create an even and visually stochastic pattern out of any input

image. Top left: a tiled texture with 4 � 4 tiles. Top right: the result after one interation of the cat map.

Bottom left: after three interations. Bottom right: an even and visually stochastic pattern achieved after

five iterations.

7

Figure 3: The chaos transformation translates the random blocks of every tile to new locations, where

they are pasted over the tiling. Left: the random block (highlighted by the red box) of a tile (highlighted

the white box) is translated to a new location as the green box and pasted over the tiling. Right: the

synthesized texture.

as well and thus make the resulting synthetic texture tilable. Second, the cat map iteration is an ergodic

system1 well known for its strongly irregular motion. A trully amazing result of this strongly irregular

motion is that the cat map iteration can create an even and visually stochastic pattern out of any input

image in just a few iterations. Using a tiled texture as an example, Fig. 2 shows an even and visually

stochastic pattern achieved after five iterations of the cat map. The strong irregular motion of the cat map

iteration makes a visually stochastic distribution quickly computable as required by the chaos mosaic.

2.3 Preserving Local Features

Direct applications of chaos transformation to the tiling T do not preserve the local features within T . As

is shown in Fig. 2, the chaos transformation destroys the local features along with the global structure of

T . To preserve the local features, we apply the chaos transformation at the block level instead of the pixel

1A system is ergodic if its trajectory uniformly covers the energetically allowed region of classical phase space such that

time averages can be replaced by the average over the corresponding phase space.

8

level. Specifically, we randomly choose a set of blocks within each tile of T . The chaos transformation

translates the random blocks of every tile to new locations, where they are painted over the current pixels

of T . See Fig. 3 for an example.

For the random blocks to capture local features of the input sample texture, we need to control the size

of the blocks. On the one hand, a random block must be big enough to capture local features. On the other

hand, to increase irregularity in the chaos mosaic we also require that a random block be smaller than an

individual tile of T . Since the input sample texture is of size n� n, we introduce the block area constraint

on a random block B
 as follows,

Block Area Constraint: The block B
 = (x
 , y
 , w
 , h
) must be contained in the input

sample texture S and that

0:0 < c� �
w
h

n2
� c� < 1:0:

The constants c� and c� are the upper and lower bounds of the block area respectively.

Our experiments indicate that the precise values of c� and c� have little effect on the synthesized textures.

For the results reported in this paper, we set c� = 0:5 and c� = 0:75.

Next we need to decide how many random blocks per tile of T are needed. Ideally, each tile should be

partially covered by one random block so that the chaos mosaic contains no verbatim copy of the input

sample texture. Since each random block can touch at most 4 tiles, we should have more than 1=4 random

blocks per tile. Having more than one blocks per tile, however, tends to crowd some tiles with too many

random blocks. For this reason, a good balance point is somewhere around one random block per tile.

Our experiments suggest that the precise number of random blocks per tile is immaterial. For the results

reported in this paper we simply use one random block per tile of T .

We define the cat map iteration for the random blocks as follows. For a random block B
 = (x
 , y
 , w
 ,

h
), we feed its top left corner (x
 , y
) to the cat map iteration as the starting point (x0
 , y0
). After i steps,

we place the top left corner of the blockB
 at (xi
 , yi
). Before the cat map iteration starts, there is a random

block within each tile of the tiling T and the random blocks are hence evenly distributed over T . The cat

map iteration redistributes the random blocks over T and produces two results. First, the redistribution

quickly creates a visually stochastic pattern due to the strong irregular motion of the cat map iteration.

9

For the results reported in this paper, we set the number of cat map iterations to be i = 10. Second, the

redistribution keeps the random blocks evenly distributed because the cat map iteration is ergodic and for

each random block B
 , its top left corner (xl
 , yl
) is equally likely to be in any region of T as l increases.

Since the cat map is defined on the torus, so is the chaos mosaic M . Fig. 4 (bottom) shows a chaos

mosaic mapped onto a torus. As a texture defined on the torus, the chaos mosaic tiles.

2.4 Resolving Mismatched Features

After distributing the random blocks over the tiled texture T , we have generated an even and visually

stochastic distribution of the local features of the input sample texture. The remaining task is to treat

the boundaries of the random blocks (and the boundaries of the tiles of T if the input sample texture

does not tile seamlessly). When the input sample is a noisy texture with non-distinguishable features, the

transition across the block boundary is not noticeable. On the other hand, if the input sample texture has

distinguishable features, there may be mismatch between the features across the boundary as shown in

Fig. 5.

One way to resolve the mismatched features across a boundary edge e is to apply a constrained synthesis

technique. We first black out a block B� of pixels around the edge and then perform constrained synthesis

to fill the hole B�. Typically we black out three layers of pixels around the edge e to form B�. Efros and

Leung have developed a very effective texture synthesis algorithm that works well on a wide variety of

textures and is especially well-suited for constrained synthesis [EL99]. We have adapted their algorithm

for synthesizing the pixels in the block B�. Efros and Leung model a texture as a Markov Random Field

(MRF) and grow a texture pixel by pixel from the known pixels. To synthesize a pixel p, they first find

all neighborhoods in the input sample texture that are sufficiently similar to the pixel p’s neighborhood !�

and then randomly select one neighborhood and take its center to be the value of p. Because B� is a narrow

strip along the edge e, !� contains known pixels from both sides of e and this fact should influence the

choice for the pixel value of p. In practice, however, we found out that this influence by itself is not strong

enough to extend features from one side to the other side. By closely examining the synthesis process, we

observed that for most pixels of B�, only one neighborhood satisfies Efros and Leung’s similarity criterion.

As a result, the newly-synthesized pixel p is not given enough freedom to be able to differ from the blacked

10

Figure 4: The chaos mosaic is defined on the torus and hence tiles. Top: the torus covered by the tiling T .

We included this image for quality comparison with the chaos mosaic. Bottom: the torus covered by the

chaos mosaic M .

11

out pixel value of p. To encourage randomness in selecting the value of p, we consider a neighborhood ! 0

to be sufficiently similar to !� if !0 is among the j neighborhoods that are most similar to !� where j = 5.

With this new criterion, the constrained synthesis can resolve the mismatched features, as the example in

Fig. 5 demonstrates.

Despite its effectiveness, the constrained synthesis procedure described above is quite expensive com-

putationally. The main factors determining the cost are the sizes of the neighborhood !� and the input

sample texture. For an 128�128 input sample texture and an 11�11 neighborhood !�, it can take several

minutes to fill a hole of 400 pixels. In searching for a fast approximation to the above constrained synthe-

sis procedure, we have done extensive experiments. Through these experiments we found that for most

textures, a simple cross-edge filtering is sufficient to smooth out the transition across the block boundaries.

All results reported in this paper are obtained using a cross-edge filtering over three layers of pixels on

each side of the block boundary. The reasons for our findings are two folds. First, we rarely see severely

mismatched features like those in Fig. 5, which we create by hand to highlight the issue. Second, the syn-

thetic textures we create are for texture mapping on 3D surfaces. Due to the trilinear filtering performed

during texture mapping, the image blur caused by the cross-edge filtering is hard to spot on 3D surfaces,

especially in our case the affected areas are very small and they are irregularly distributed. In Section 4.2

we further assess the effect of the cross-edge smoothing on image quality.

2.5 Summary

In summary, we construct the chaos mosaic M from the tiling T through the following steps. First, we

select a set of random blocks within each tile of the tiling T . Then, we distribute all the random blocks

over T using the cat map iteration and paste the blocks over T . Finally, we filter the pixels near the edge

of the random blocks in order to smooth out the transition between two blocks or between a block and

the background tiling T . Fig. 1 (bottom), Fig. 3 (right), and Fig. 4 (bottom) are some synthetic textures

constructed through these steps.

In terms of computational cost, it is easy to see that the most expensive step in constructing M is

painting the random blocks over the tiling T . In our unoptimized implementation we paint one pixel at a

time, which makes the overall construction cost O(n�) where n� is the number of pixels in the tiling T .

12

Figure 5: Resolving mismatched features on the boundary edge of a block. Top left: mismatches features

on the boundary edge of the block, with the boundary edge marked by black lines. Top right: the same as

the left figure but the black lines are removed for better visualization of the mismatched features. Bottom

left: a few layers of pixels near the edge are blacked out to form a constrained texture synthesis problem.

Bottom right: the result of constrained synthesis.

13

3 Virtual Texture

In this section Section 3 describes procedural texturing with the chaos mosaic. We introduce the virtual

texture, an encoding of the chaos mosaic. The virtual texture is thousands of times more compact than

explicitly stored textures. Yet, we can evaluate any part of a virtual texture on the fly. These properties of

the virtual texture make it a powerful tool for memory efficient texture rendering.

3.1 Global Structure Encoding

The virtual texture V consists of the input sample texture S and a precomputed global structure of M .

More specifically, V is a tuple (S, T�, R�) with T� and R� encoding the global structure of the chaos

mosaic as follows:

� The tiling encoding T� = (m� , n� , w� , h�) records the structure of the tiling T . The integers m� and

n� are the numbers of tiles in x- and y-directions, whereas w� and h� are the width and height of a

tile.

� The random block sequence R� = fB0; L0; B1; L1; :::; Bk�1; Lk�1g describes k random blocks

within S that are to be pasted over the tiling T and the locations to paste them. Each random block

B
 = (x
 , y
 , w
 , h
) is pasted in T such that the top left corner of B
 is at L
 = (s
 , t
).

Note that the random block sequence R� also determines a fixed order to paste the random blocks. This

order matters because pixels pasted later overwrite existing pixels at the same locations. Fig. 6 (top)

illustrates the virtual texture encoding of the chaos mosaic.

Precomputing the virtual texture is easy. Since S and T� are given, we only have to calculate R�. By

selecting a random block B
 for each tile of the tiling T , we have implicitly set values for the parameters

x
 , y
 , w
 , and h
 . Suppose that B
 is selected within the (k1; k2)-th tile of T . To get the parameters s

and t
 we only have to feed x0
 = x
 + k1w� and y0
 = y
 + k2h� to the cat map iteration and collect the

result s
 = xi
 and t
 = yi
 after i = 10 iterations.

We can roughly estimate the storage for the virtual texture as follows. For an m � m virtual texture

V with sufficiently large m, the dominate storage cost of V is that of the random block sequence R�.

14

Figure 6: Virtual texture encoding and evaluation. Top row: the encoding of the global structure of the

chaos mosaic. Shown on the left hand side is the structure of the tiling and the random blocks, with the

random blocks indicated by 3D boxes. For each random block, we record its position within the tiling as

well as its position within the input sample texture (shown by the square on the right hand side). Bottom

row: the lazy evalutation of a texture block B�, which is shown by the shaded rectangle. Shown on the

left hand side is the evaluation of the tiles corvering the B�. Shown on the right hand side are evaluated

random blocks touching those tiles.

15

Typically, the input sample texture S is of size n� n with n = 64, n = 128, or n = 256. For such an S, a

random block B
 = (x
 , y
 , w
 , h
) and its location L
 = (s
 , t
) require 12 bytes. With one random block

per tile of T , we need roughly 12 m2=n2 bytes for an m � m virtual texture. This is about n2=4 smaller

than an m�m “real” texture with 24-bit pixels. For example, an m�m virtual texture from an 128� 128

sample is 4,000 times smaller than an m�m “real” texture.

3.2 Procedural Texturing

The evaluation strategy of the virtual texture is similar to that of the procedural solid texture [Per85, Pea85,

Lew89, Ups89], which procedurally defines a texture over the entire 3D space but evaluates only points

on the object surfaces where the texture is needed. From the virtual texture V , we can quickly evaluate

any part B� of the chaos mosaic on the fly. The evaluation procedure is just a lazy construction the chaos

mosaic. Instead of pasting all random blocks on the complete tiling T , we only tile with the tiles touching

B� and paste random blocks that touching those tiles. Fig. 6 (bottom) illustrates the lazy evaluation of the

virtual texture.

While the above evaluation procedure works correctly for B� of any size, it is not the most efficient way

to do single-pixel evaluation, which we need for procedural texturing [Ups89]. Consider the case when

the desired pixel p is not near the boundary of a random block. Evaluating p involves determining the tile

B� where p belongs and the random blocks covering B�. Once these random blocks are found we can

determine the last random block covering p or that no random block covers p. Then we can either fetch p

from the last random block or from the tile B�. Finding B� is a simple matter of indexing arithmetic. To

efficiently find the random blocks touching B�, we should precompute a matrix whose (k1; k2)-th entry

contains pointers to the random blocks touching the (k1; k2)-th tile of the tiling T . As for the case when

the pixel p is near the edge of a random block, we need to evaluate more than one pixels to produce a

filtered result as the desired pixel.

In order for this on-the-fly texture evaluation to work correctly, the evaluation must be fast and, more

importantly, it must satisfy the internal consistency requirement [FFC82, Lew89]. The internal consistency

requires that if a given part of the synthetic texture is synthesized multiple times, the result must be always

the same. This requirement is important when we use the synthetic texture in an animation. For the virtual

16

texture, the precomputed global structure ensures the internal consistency. In this respect, the virtual

texture behaves just like a “real” texture.

It is worthwhile to note that the existing statistical sampling methods [HB95, De 97, PS99, ZLW99,

EL99] are not suitable for procedural texturing. First, these methods are quite slow and they require a long

processing time even for a small part of the texture. Second, if we apply a statistical sampling method to

synthesize a small piece of the texture at a time, there is no easy way to satisfy the internal consistency

requirement.

3.3 Applications

Memory Efficient Texture Rendering: The virtual texture is an effective way to reduce the system la-

tency caused by a synthetic texture that does not fit into the system memory, either because the scene

geometry has taken too much space already or because the synthetic texture is itself too big. System

latency is one of the most fudamental issues in graphics system design [TK96] and researchers have de-

veloped various techniques to reduce or hide system latency. Interactive rendering systems handle system

latency by careful algorithms design and pipelining [TK96]. For scanline-based rendering [CCC87] and

ray tracing [PKGH97], caching is an excellent way to reduce system latency. Caching works well as long

as the system memory is bigger than the working set of the scene; when the system memory is smaller

than the working set, caching is not effective and the rendering task may not get a chance to finish at all

[PKGH97].

The virtual texture can reduce system latency for two reasons: the virtual texture is itself very small and

it supports procedural texturing, by which textures are generated on the fly as needed. Procedural texturing

based on the virtual texture can be used the same way as procedural solid texturing [Pea85, Per85, Lew89],

which is already a standard features of most of today’s ray tracing systems as well as any rendering system

using the RenderMan interface [Ups89, HL90].

As an interactive demonstration of capability of the virtual texture, we have developed an interactive

system for displaying large synthetic textures based on on-the-fly evaluation of the virtual texture. This

system, which allows the user to see any part of the synthetic texture through a window, has two outstand-

ing features. First, the system can load a very large synthetic texture quickly because an m � m virtual

17

texture is thousands times smaller than an m � m “real” texture. Second, the user can view any part

of a very large (e.g. 100k � 100k) synthetic texture interactively without suffering system latency. See

Section 4 for detailed report on experimental results.

The basic idea of our virtual texture display system can be extended to interactive texture mapping of

large synthetic textures. For simplicity we consider a scene in which geometry primitives use different

parts of the same texture. Before rendering each frame, we determine a rectangular region B� in the

texture space for every visible primitive P� in the scene. We then evaluate a block B� of the virtual texture

V such that B� covers B� for every P�. Finally, we perform texture mapping with the evaluated texture

block B�. Our experimental results are discussed in Section 4.

In principle, the virtual texture can also be used to reduce the memory bandwidth due to large synthetic

textures. Today, bulk of the IHVs have moved to the so-called “pull” architecture [CBS98]. In this

architecture, textures are stored in the system memory and the graphics accelerator pulls texels from

the system memory to the accelerator’s on-chip texture cache during texture mapping. Since memory

bandwidth is improving at a much slower rate than that of memory capacity [TK96], today’s memory

system cannot keep pace with the escalating demand for texture bandwidth. Because the virtual texture is

so small, it can fit into the L2 cache of a memory system that uses multi-level texture caching [CBS98] and

thus eliminate the need to fetch texels from system memory. For example, a 5000 � 5000 virtual texture

with an 128 � 128 24-bit input sample is about 67 Kb, which fits into a typical L2 texture cache (2 � 8

Mb) [CBS98].

Bandwidth Reduction: The Virtual Reality Modeling Language (VRML) is a standard language for

describing interactive 3D objects and worlds delivered across the Internet. The chaos mosaic allows us

to replace the synthetic textures in a VRML model by their texture samples. After the VRML model is

downloaded, the VRML browser generates the synthetic textures from the downloaded texture samples

upon reading the VRML model for display. Handling synthetic textures in the VRML models this way

drastically reduces the downloading bandwidth as well as the loading time of the VRML models. Note

that in theory we can also generate synthetic textures in the VRML models using statistical sampling

methods [HB95, De 97, PS99, ZLW99, EL99] but there are two problems. First, the user will not be able

to display the VRML models immediately after downloading because a long time is needed to generate

18

Texture Size T(H) T(CM) Mem(H) Mem(CM)

400� 400 157 0.026 8Mb 4.8Mb

512� 512 278 0.042 12Mb 5.0Mb

800� 800 579 0.101 27Mb 6.2Mb

1024� 1024 1112 0.151 44Mb 7.4Mb

Table 1: Timing and memory usage comparison between the chaos mosaic and Heeger’s algorithm. The

“T(H)” column lists timings of Heeger’s algorithm in seconds. The “T(CM)” column lists timings of

the chaos mosaic in seconds. The “Mem(H)” and “Mem(CM)” report the memory usages of Heeger’s

algorithm and the chaos mosaic respectively.

the synthetic textures from the texture samples. Second, the statistical sampling methods explicitly store

the synthesized textures and hence can only handle relatively small textures.

4 Results

4.1 Synthesis Speed

To compare our synthesis speed with existing statistical sampling methods, we have implemented Heeger’s

algorithm [HB95], which is one of the more efficient statistical sampling methods. Table 1 provides the

statistics for synthesizing textures of various sizes from an 128�128 input texture sample. These statistics

were gathered on a PC with a 450 Mhz Pentium III processor and 128 Mb of main memory. Roughly

speaking, the chaos mosaic is about 6,500 times faster than Heeger’s algorithm. Notice that as the the size

of the synthetic image increases, the memory usage grows much faster for Heeger’s algorithm than for the

chaos mosaic.

In terms of quality, both Heeger’s algorithm and the chaos mosaic work well on noisy textures with non-

distinguishable features. When the input sample texture has distinguishable features, Heeger’s algorithm

ceases to be effective while the chaos mosaic continues to produce good results. We shall compare the

chaos mosaic with De Bonet’s algorithm [De 97], which is more successful in capturing distinguishable

19

features.

4.2 Texture Quality

In order to study image quality, we have done extensive testing with the chaos mosaic. The companion

CDROM contains over 600 examples from our testing results. These 512 � 512 textures are generated

from either 64� 64 or 128� 128 input sample textures taken from various sources including De Bonet’s

and Brodatz’s collections.

First, we compare the image quality of the chaos mosaic with De Bonet’s algorithm. We choose to

compare quality with his algorithm for two reasons. First, De Bonet’s algorithm is at or near the state of

the art in terms of quality. The more important reason is that De Bonet has done extensive testing with his

algorithm and has published his test results over the internet [De].

In general De Bonet’s algorithm and the chaos mosaic produce textures of similar qualities. The two

techniques have some differences, as Fig. 7 demonstrates. Fig. 7 (top right) and Fig. 7 (middle left) are

diferent versions of a 192 � 192 texture generated by De Bonet’s algorithm with randomness thresholds

of 750, and 1250 respectively. Fig. 7 (bottom) is a 400 � 400 texture by the chaos mosaic. The chaos

mosaic captures local features well and have a high degree of randomness. De Bonet’s algorithm also

captures local features well for small randomness thresholds, but the resulting Fig. 7 (top right) is similar

to the tiling shown in Fig. 7 (top left). To get a higher degree of randomness, we can try to increase

the randomness threshold in De Bonet’s algorithm. However, after the randomness threshold passes 750,

further increasing unfortunately has the side effect of destroying local features, as shown in Fig. 7 (middle

left).

A main strength of the chaos mosaic is its ability to create a visually stochastic distribution of local

features. For repeated textures such as the one in Fig. 8, the chaos mosaic generates the best result with

the number of cat map iteration set to zero, in which case the texture synthesized is just a tiling. Fig. 8

(top) shows the textures synthesized by the chaos mosaic with increasing degree of randomness. For

comparison, Fig. 8 (bottom) shows textures synthesized by De Bonet’s algorithm with increasing degree

of randomness.

Next, we study the effect of cross-edge smoothing on the quality of the synthesized texture. In most

20

Figure 7: Comparison of image quality of the chaos mosaic and De Bonet’s algorithm. Top left: a tiling

of 3� 3 tiles. Top right: De Bonet’s result with the randomness threshold of 750. Middle left: De Bonet’s

result with the randomness threshold of 1250. Middle right: Input sample texture. Bottom: the result of

the chaos mosaic.

21

Figure 8: Handling repeated textures. Top left: The chaos mosaic zero cat map iteration. This is just a

tiling of the input sample texture, which is indicated by the black box. Top right: The chaos mosaic with

ten cat map iterations. Bottom left: De Bonet’s result with randomness threshold of 750. Bottom right:

De Bonet’s result with randomness threshold of 1250.

22

cases, as Fig. 1, Fig. 3, Fig. 4, Fig. 7 exemplify, the mismatched features are not a serious problem and the

cross-edge smoothing is sufficient to hide the edge of the random blocks. An exception is shown in Fig. 9.

In this case, because the background is a light color and the features are small, the mismatched features

and image blur caused by cross-edge smoothing are easily visible. Nevertheless, the synthesized texture

in Fig. 9 (bottom) is still of reasonable quality. In contrast, if the local features are not captured at all as is

the case with De Bonet’s algorithm, the synthesized texture is dramatically worse as shown in Fig. 9 (top

right).

4.3 Memory Efficient Texture Rendering

Fig. 10 shows the user interface of our interactive texture rendering system. Using the mouse, the user can

select any part of a large texture for displaying through a w � w window, where w = 256 for us. For a

large virtual texture, the synthetic texture is never created in its entirety; instead the system dynamically

evaluates and displays the chosen w � w block of the texture. For a large “real” texture, we keep it in

the disk storage. When the user has chosen a w � w block of the texture for display and the block is not

currently in the main memory, the user will experience system latency .

With the virtual texture, our interactive texture rendering system allows us to view interactively very

large textures, such as 100k� 100k textures, without suffering system latency. To measure system latency

for “real” textures stored on the hard drive, we have experimented with a 10k � 10k texture on a PC

running Microsoft Windows 98 on an AMD K7 processor. The PC has 128Mb of main memory and a 9

Gb Quantum Fireball hard drive. The lantency for the “real” texture on the hard drive can be as big as

1.0 second per frame and is on average 0.7 second per frame. This latency is mainly affected by the PC’s

caching strategy and the hard drive’s the seeking speed. The viewing of the virtual texture is interactive at

0.017 second per frame.

Fig. 11 (bottom) is a snapshot from an interactive rendering system that uses the virtual texture for

texture mapping. The pathway in the middle is texture mapped by on-the-fly evaluation of a large virtual

texture and hence there is no visible repetition. The pathway is made of quads, each corresponding to a

512�512 texture block within a very large virtual texture. When a quad is become visible, its correspond-

ing texture block is evaluated and mapped onto the quad. Note that the existing graphics API’s (e.g. Direct

23

Figure 9: The effect of corss-edge smoothing on the quality of synthesized texture. Top left: the input

sample texture. Bottom: the result of the chaos mosaic. Notice the mismatched features and image blur

caused by the cross-edge smoothing. Top right: De Bonet’s result with randomness threshold of 500.

Results with other randomness thresholds are similar.

24

Figure 10: The user interface of our interactive texture rendering system. The navigator window corre-

sponds to the entire virtual texture. The red box in the navigator window indicates the size and location of

the evalauted texture block, which is displayed in the viewport. In the above example, the virtual texture

is of size 1024 � 1024 and the viewport is of size 256 � 256. The user can view any part of the virtual

texture by moving the red box around with the mouse.

25

Figure 11: Snapshots of an interactive rendering system that uses the virtual texture for texture map-

ping. The pathway in the middle is texture mapped using two methods. Top: traditional texture mapping

by repeating the input texture. Bottom: texture mapping with on-the-fly evaluation of a virtual texture

constructed from the input sample texture.

26

3D) are not designed with the virtual texture in mind, and under these API’s it is difficult to implement

texture mapping with the virual texture in a general setting. Nevertheless, our system provides insight into

the feasibility of such implementations. In terms of speed, our system is almost as fast as the conventional

texture mapping shown in Fig. 11 (top), in which we can easily see the visible repetition on the pathway.

5 Conclusion

We have presented an algorithm for synthesizing large textures from an input texture sample. Our al-

gorithm combines the strengths of traditional procedural methods and statistical sampling methods. Our

method is fast. It facilitates memory efficient texture rendering by way of procedural texturing. Like statis-

tical sampling methods, our method can synthesize a wide variety of textures as long as a sample texture is

provided. Our method is easy to use and requires no parameter tweaking as traditional procedural methods

do.

As Turk pointed out before [Tur91], acquiring texture, texture mapping, and texture sampling are inter-

related taskes. In this work, we have shown that procedural technique can be combined with input texture

sample to facilitate the process of acquiring textures and memory efficient texture rendering. For future

work, we plan to extend the ideas presented here to texture synthesis on surfaces of arbitrary topology.

Also of interest is the interplay between texture synthesis artifacts and the texture sampling strategy used

in texture rendering. Finally, we are interested developing texture synthesis techniques that minimize the

memory bandwidth during texture mapping.

References

[AA68] V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Benjamin, 1968.

[BAC96] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from Compressed Textures. Proceed-

ings of SIGGRAPH 96, August 1996.

[Cat74] E. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. Deptart-

ment of Computer Science, University of Utah, December 1974.

27

[CBS98] M. Cox, N. Bhandari, and M. Shantz. Multi-Level Texture Caching for 3D Graphics Hard-

ware. In Proceedings of the 25th International Symposium on Computer Architecture, 1998.

[CCC87] R. L. Cook, L. Carpenter, and E. Catmull. The Reyes Image Rendering Architecture . Com-

puter Graphics (Proceedings of SIGGRAPH 87), July 1987.

[De] J. S. De Bonet. www.ai.mit.edu/˜jsd/Research/TextureSynthesis/.

[De 97] J. S. De Bonet. Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Im-

age. In Computer Graphics Proceedings, Annual Conference Series, pages 361–368, August

1997.

[EL99] A. A. Efros and T. K. Leung. Texture Synthesis by Non-Parametric Sampling. In Proceedings

of International Conference on Computer Vision, 1999.

[FFC82] A. Fournier, D. Fussell, and L. Carpenter. Computer Rendering of Stochastic Models. Com-

munications of the ACM, 25(6):371–384, June 1982.

[Gu90] Y. Gu. Evidences of Classical and Quantum Chaos in the Time Evolution of Non-Equilibrium

Ensembles. Physics Letters, A149(2,3):95–100, September 1990.

[HB95] D. J. Heeger and J. R. Bergen. Pyramid-Based Texture Analysis/Synthesis. In Computer

Graphics Proceedings, Annual Conference Series, pages 229–238, July 1995.

[HL90] P. Hanrahan and J. Lawson. A Language for Shading and Lighting Calculations. Computer

Graphics (Proceedings of SIGGRAPH 90), 24(4), August 1990.

[Jan69] R. Jancel. Fundations of Classical and Quantum Statistical Mechanics. Pergamon, 1969.

[Lew89] J.-P. Lewis. Algorithms for Solid Noise Synthesis. In Computer Graphics (SIGGRAPH ’89

Proceedings), volume 23, pages 263–270, July 1989.

[Pea85] D. R. Peachey. Solid Texturing of Complex Surfaces. Computer Graphics (Proceedings of

SIGGRAPH 85), 19(3), July 1985.

28

[Per85] K. Perlin. An Image Synthesizer. In Computer Graphics (SIGGRAPH ’85 Proceedings),

volume 19, pages 287–296, July 1985.

[PKGH97] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering Complex Scenes with Memory-

Coherent Ray Tracing. Proceedings of SIGGRAPH 97, August 1997.

[PS99] J. Portilla and E. Simoncelli. Texture Modeling and Synthesis Using Joint Statistics of Com-

plex Wavelet Coefficients. In Proceedings of IEEE Workshop on Statistical and Computa-

tional Theories of Vision, 1999.

[Sch88] H. G. Schuster. Deterministic Chaos: An Introduction. VCH Verlagsgesellschaft mbH, 1988.

[TK96] J. Torborg and J. Kajiya. Talisman: Commodity Real-Time 3D Graphics for the PC. Proceed-

ings of SIGGRAPH 96, August 1996.

[Tur91] G. Turk. Genereating Textures on Arbitrary Surfaces Using Reaction-Diffusion. In Computer

Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 289–298, July 1991.

[Ups89] S. Upstill. The RenderMan Companion. Addison Westley, 1989.

[WK91] A. Witkin and M. Kass. Reaction-Diffusion Textures. In Computer Graphics (SIGGRAPH

’91 Proceedings), volume 25, pages 299–308, July 1991.

[ZLW99] S. C. Zhu, X. Liu, and Y. N. Wu. Exploring Texture Ensembles by Efficient Markov Chain

Monte Carlo. In Proceedings of IEEE Workshop on Statistical and Computational Theories

of Vision, 1999.

Appendix: The Chaos Behaviors of the Cat Map

If we cosider the torus as the (p; q) phase space with jpj � 1

2
and jqj � 1

2
, then the cat map iteration

describes the chaotic motion of a point mass of one degree of freedom (DOF) subject to periodic external

force [Jan69]. The Hamiltonian of a point mass with one DOF is

H(t) =
1

2
p2 +

K

2
q2

1X

m=�1

ei2�mt

29

Figure 12: Left: the exponential growth of h(�) confirms the chaotic behaviors of the cat map. Right:

the fact that S� quickly approaches its maximum value after about ten iterations indicates that an even and

visually stochastic distribution can be achieved in about ten ieterations.

The corresponding Hamilton’s equations, after discretization, are

pk+1 = (pk �Kqk) mod 1 (3)

qk+1 = (pk + (1�K)qk) mod 1 (4)

The cat map corresponds to the case of K = �1.

As an non-equilibrium ensemble, the cat map iteration has two statistical quantities that describe its

phase-space distribution. The coarse-grained entropy S� = �k R� �� ln(��)d�, where �� represents the

coarse-grained density of Ehrenfests [Jan69], is a measure of macroscopic uniformity of the phase-space

distribution. The other quantity, which describes the microscopic heterogeneity of the phase-space distri-

bution, is defined by h(�) = lim�!0
S��S

�
; where S = �k R� � ln(�)d� is the Gibbs entropy [Gu90]. The

quantity h(�) is important because whether the non-equilibrium ensemble exhibits deterministic stochas-

ticity or chaos behaviors depends on whether h(�) has exponential growth. For the cat map, the coarse-

grained entropy

S� = � ln(
X

m0;n0

e�2�
2(�2a2

k
+a2)(m2

0
+n2

0
))

where ak =
m2

k
+n2

k

m2

0
+n2

0

with

mk =
m0

2
p
5
((
p
5� 1)�k1 + (

p
5 + 1)�k2)�

n0p
5
(�k1 � �k2)

nk =
n0

2
p
5
((
p
5 + 1)�k1 + (

p
5� 1)�k2)�

m0p
5
(�k1 � �k2)

30

�1 =
1

2
(3 +

p
5) and �2 =

1

2
(3�

p
5):

The expression of h(�) is more complex and can be found in [Gu90]. In Fig. 12, we plot S� and h(�) as

funtions of the discrete time t = k. The exponential growth of h(�) confirms the chaotic behaviors of the

cat map. The fact that S� quickly approaches its maximum value after about ten iterations indicates that

an even and visually stochastic distribution can be achieved in about ten ieterations.

31

