
Model-Based Clustering and Visualization of Navigation

Patterns on a Web Site

Igor Cadez

icadez@ics.uci.edu

David Heckerman

heckerma@microsoft.com

Christopher Meek

meek@microsoft.com

Padhraic Smyth��

smyth@ics.uci.edu

Steven White

j-stevew@microsoft.com

�� Department of Information and Computer Science

University of California, Irvine

CA 92717-3425

March 2000, Revised September 2001

Technical Report

MSR-TR-00-18

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

1

Abstract

We present a new methodology for exploring and analyzing navigation patterns on a web

site. The patterns that can be analyzed consist of sequences of URL categories traversed

by users. In our approach, we �rst partition site users into clusters such that users

with similar navigation paths through the site are placed into the same cluster. Then,

for each cluster, we display these paths for users within that cluster. The clustering

approach we employ is model-based (as opposed to distance-based) and partitions users

according to the order in which they request web pages. In particular, we cluster users

by learning a mixture of �rst-order Markov models using the Expectation-Maximization

algorithm. The runtime of our algorithm scales linearly with the number of clusters and

with the size of the data; and our implementation easily handles hundreds of thousands

of user sessions in memory. In the paper, we describe the details of our method and a

visualization tool based on it called WebCANVAS. We illustrate the use of our approach

on user-tra�c data from msnbc.com.

Keywords: Model-based clustering, sequence clustering, data visualization, Internet, web

1 Introduction

Arguably one of the great challenges for computer science in the coming century will be the

understanding of human behavior in the context of \digital environments" such as the web.

Given our limited experience to date with modeling such environments, there are relatively

few existing theories or �rst-principles to guide any analysis or modeling endeavors. On the

other hand, one can readily obtain vast quantities of data from such environments. In this

context, data-driven exploration of digital traces|such as web-server logs|is certainly an

important starting point for furthering our understanding of \digital behavior."

In this paper, we describe a novel approach to visualization and exploratory analysis of

dynamic behavior of individuals visiting a particular web site. As a test bed for our work

we use web-server logs of individual browsing records for many thousands of individuals or

users at the msnbc.com site. Our approach is straightforward. First, we partition users into

clusters such that users with similar behavior on the site are placed into the same cluster.

Then, for each cluster, we display the behaviors of the users within that cluster.

The focus of our paper is on the clustering and visualization aspects of such data, rather

than on the various engineering issues involved in preprocessing server-log data (identi�-

cation, \sessionization," etc.). At this point, it is su�cient to assume a fairly abstract

characterization of the data|that is, (a) the server-log �les have been converted into a

set of sequences, one sequence for each user session, (b) each sequence is represented as an

1

User Sequence

1 frontpage news travel travel

2 news news news news news

3 frontpage news frontpage news frontpage

4 news news

5 frontpage news news travel travel travel

6 news weather weather weather weather

7 news health health business business business

8 frontpage sports sports sports weather

9 weather

Figure 1: A sample of user sequences.

ordered list of discrete symbols, and (c) each symbol represents one of several possible cat-

egories of web pages requested by the user. These categories correspond to sets of Uniform

Resource Locators (URLs) on the site. Figure 1 shows a sample of such sequences. The

web-servers from msnbc.com for a twenty-four-hour period typically produces roughly one

million such sequences.

There are a number of aspects of the data which make the problem non-trivial. First,

the information is inherently dynamic. Models and displays based on static information

(such as histograms of pages requested) will not fully capture the dynamic nature of the

underlying web-sur�ng behavior. Thus, we investigate relatively simple Markov models to

represent dynamic behavior. An important point in this context is that these dynamic

models serve primarily as vehicles for data exploration and we do not assume that the

models necessarily represent the true data-generating process.

Second, dynamic behavior in this general context is highly likely to be quite hetero-

geneous. A population of users of this size will tend to have vastly di�erent web-sur�ng

patterns in terms of (e.g.) the duration of a session and the content visited during a session.

To address this heterogeneity, we imagine that di�erent users lie in di�erent clusters, where

each cluster has a di�erent Markov model. Speci�cally, we model the data as having been

generated in the following fashion: (1) A user arrives at the web site and is assigned to a

particular cluster with some probability, and (2) the behavior of that user is then gener-

ated from a Markov model with parameters speci�c to that cluster. We pretend this model

generates the web data we observe, and that we only see the user behaviors and not the

actual cluster assignments. We then use a standard learning technique, the Expectation{

2

Maximization (EM) algorithm, to learn the proportion of users assigned to each cluster

as well as the parameters of each Markov model. In so doing, we assign each user to a

cluster or fractionally to the set of clusters. This approach to clustering is sometimes called

a model-based approach, and lies in contrast with the commonly used distance-based ap-

proaches. The clustering model we learn is sometimes called a mixture model. By using a

model-based approach to clustering, sequences of di�erent lengths may be assigned to the

same cluster (e.g., sequence 1 and 5 in Figure 1 may very likely be generated from a single

model corresponding to one of the clusters). This approach provides a natural and consis-

tent mechanism for handling the problem of modeling and clustering sequences of di�erent

lengths. Full details of the model and the associated clustering algorithm are discussed in

Section 2.

The third non-trivial aspect of the data is its size. Thus, it is critical that any algorithmic

technique scale in a reasonable fashion|for example, linear or near-linear in the number of

clusters K, the number of sequences N , and the average number of category requests per

sequence L. This requirement rules out|for example|any direct application of standard

hierarchical clustering techniques that scale as O(N2) in both time and space complexity.

An example of such an approach would be agglomerative clustering using (e.g.) some

form of pair-wise edit-distance between sequences. In contrast, our algorithm for learning

clusters of Markov chains (the EM algorithm) has a runtime per iteration that is O(KNL+

KM2), where M is the number of di�erent page categories that can be requested by a

user. This complexity typically reduces to O(KNL) for web data where M is relatively

small. In Section 2.4, we investigate the overall runtime of our approach, and demonstrate

by experiment that the total runtime of the algorithm (over all iterations) scales linearly in

both N and K.

The paper proceeds as follows. Section 2 provides a detailed account of the underlying

mixture model and the associated EM clustering algorithm, including experimental results

on out-of-sample predictions comparing the quality of the Markov models with more tra-

ditional histogram approaches. Section 2.4 analyzes the scalability of the overall clustering

approach, using experimental results to validate the (often assumed) near-linearity of EM-

based algorithms. In Section 3, we illustrate how the Markov clustering approach can be

leveraged to support an interactive exploratory data analysis tool called WebCANVAS that

provides direct insight into the heterogeneous and dynamic nature of this type of web data.

Section 4 discusses why mixtures of Markov models are a useful model for navigation of

categorized Web pages, even though non-mixture �rst-order Markov models can be a poor

model for navigation of uncategorized (\raw") Web pages. Section 5 brie
y summarizes

related work, and Section 6 concludes the paper with a summary and possible extensions

3

of this work.

The primary novel contributions of this paper lie in (1) the introduction and evaluation

of mixtures of Markov models for clustering and modeling of web navigation data, and (2)

the use of the resulting clusters as the basis for interactive exploration and visualization of

massive web logs.

2 Clustering Methods

In this section, we provide details of our clustering approach. For reasons discussed in the

introduction, we concentrate on the model-based approach.

2.1 Model-Based Clustering

In the model-based approach to clustering, we assume that our data is generated as follows:

1. A user arrives at the web site and is assigned to one ofK clusters with some probability,

and

2. Given that a user is in a cluster, his or her behavior is generated from some statistical

model speci�c to that cluster.

We assume that the behavior of each user in the data set is generated independently (the

traditional i.i.d. assumption). Statisticians refer to such a model as a mixture model with

K components. Initially, of course, we do not have the model; we have only the data.

Nonetheless, we can apply standard statistical techniques to our data to learn our model|

namely, (1) the number of components, (2) the probability distribution used to assign users

to the various clusters, and (3) the parameters of each model component. Once the model

is learned, we can use it to assign each user to a cluster or fractionally to the set of clusters.

To describe the mixture model more formally, we need some notation. We denote a

variable by a capitalized token (e.g., X;Xi), and the state or value of a corresponding

variable by that same token in lower case (e.g., x; xi). We denote a set of variables by

a bold-face capitalized token (e.g., X;Xi). We use a corresponding bold-face lower-case

token (e.g., x;xi) to denote an assignment of state or value to each variable in a given set.

We use p(xjy) to denote the probability that X = x given Y = y. We also use p(xjy) to

denote a probability distribution for X given Y . Whether p(xjy) refers to a probability or

a probability distribution will be clear from context.

Now, let X be a multivariate random variable taking on values corresponding to the

behavior of individual users. Let C be a discrete-valued variable taking on values c1; : : : ; cK.

4

The value of C corresponds to the unknown cluster assignment for a user. A mixture model

for X with K components has the form:

p(xj�) =
KX
k=1

p(ckj�) pk(xjck; �) (1)

where p(ckj�) is the marginal probability of the kth cluster (
P

k p(ckj�) = 1), pk(xjck; �) is

the statistical model describing the distribution for the variables for users in the kth cluster,

and � denotes the parameters of the model.

For the work described in this paper, we consider the special case whereX = (X1; : : : ; XL)

is an arbitrarily long sequence of variables describing the user's path through the site. The

variable Xi takes on some value xi from among the M possible page categories that the

user could have requested. Thus, for example, the sequence (x1; x2; : : : ; xL) indicates that

the user �rst requests x1, then x2, and so on. Note that, in our analysis, xL is always the

\end" state, which indicates that no additional pages were requested.

In our main approach to modeling this data, we assume that each model component is

a �rst-order Markov model:

pk(xjck; �) = p(x1j�
I
k)

LY
i=2

p(xijxi�1; �
T
k):

where �Ik denotes the parameters of the probability distribution over the initial page-category

request among users in cluster k, and �Tk denotes the parameters of the probability distri-

butions over transitions from one category to the next by a user in cluster k. This model

captures (to some degree) the order of the user's requests. Speci�cally, it captures the

user's initial request, the dependency between two consecutive requests, and|by virtue of

the inclusion of the end state|the last category requested. In our work, each variable Xi

is �nite, p(x1j�
I
k) is a multinomial distribution, and p(xijxi�1; �

T
k) is a set of multinomial

distributions.

There are many variations of this simple model. For example, using higher order Markov

models for each component, we can capture dependencies beyond those in consecutive re-

quests. As we shall discuss in Section 4, this extension appears to be unnecessary for

modeling user tra�c on msnbc.com.

Another variation of this model is the zeroth-order Markov model (also called a unigram

model):

pk(xjck; �) =
LY
i=1

p(xij�
M
k):

where �Mk denotes the parameters of the marginal distribution over category requests for

a user in cluster k. Again, p(xij�
M
k) is a multinomial distribution. This variation is useful

5

when the site administrator does not care about the order in which the requests are made.

We note that, by using a model-based approach, it is straightforward to de�ne alternative

partitions of the user population. That is, for purposes of data exploration, we take the

position that there is no \correct" model for clustering{each model captures di�erent aspects

of the data. A domain expert can consider di�erent criteria of interest for partitioning

users, translate these criteria to alternative models, and evaluate each model in terms of

the usefulness of insights gained. In the case of clustering tra�c on a web site, a site

administrator may or may not feel that order of visits are important and use a �rst-order

or zeroth-order Markov model, respectively.

As we shall describe in the following Section, we can learn a mixture model (K and

the model parameters) given our data. Once the model is learned, we can use it to assign

users to clusters as follows. Given the observed behavior x of a user, we can compute the

probability distribution over the hidden variable C corresponding to the cluster assignment

of the user by Bayes' rule:

p(ckjx; �) =
p(ckj�) pk(xjck; �)PK
j=1 p(cjj�) pj(xjcj; �)

(2)

The probabilities p(ckjx; �) are sometimes called membership probabilities. Once we have

computed these probabilities, we can either assign the user to the cluster with highest

probability|a hard assignment|or assign the user fractionally to the set of clusters ac-

cording to this distribution|a soft assignment. Both types of assignment are commonly

used in practice. As we shall see, in the current implementation of our visualization tool

WebCANVAS, we use hard assignments.

2.2 Learning Mixture Models from Data

Let us begin by considering methods for learning the parameters of a mixture model with

known number of components K, given training data dtrain = fx1; : : : ;xNg. One possible

criterion for doing so is to identify those parameter values for � that maximize the likelihood

of the training data:

�ML = argmax� p(dtrainj�) = argmax�

NY
i=1

p(xij�)

where the second equality follows from our i.i.d. assumption. These parameters are often

referred to asmaximum likelihood or ML estimates. Alternatively, to encode prior knowledge

about the domain and/or to smooth the ML estimates, one can introduce a prior probability

distribution over the parameters, denoted p(�). In this situation, a criterion for learning

6

the parameters is to identify those parameters that maximize the posterior probability of �

given our training data:

�MAP = argmax� p(�jdtrain) = argmax� p(dtrainj�) p(�)=p(dtrain)

where the second identity follows by Bayes' rule. These parameters are often referred to

as maximum a posteriori or MAP estimates. When used in conjunction with vague or

non-informative priors, MAP estimates are smoothed (i.e., less extreme) versions of ML

estimates (see, e.g., Good, 1965). In the work described in this paper, we learn MAP

estimates for the parameters � using di�use Dirichlet priors with an e�ective sample size

of 10�2. (Neither the predictive nor visualization results are sensitive to variations in this

e�ective sample size between 1 and 10�4.) One exception is that, for the prior on the

mixture weights, we used an improper Dirichlet prior with an e�ective sample size of zero.

The priors are discussed in more detail in the Appendix.

We learn the parameters using the EM algorithm, an iterative algorithm that �nds local

maxima for the MAP (and ML) parameter estimates (e.g., Dempster, Laird, and Rubin,

1977). The algorithm chooses starting values for the parameters, and then iterates between

an Expectation or E step and a Maximization or M step until the parameters values converge

to stable values (as described in the next paragraph). In the E step of the algorithm, given

a current value of the parameters �, we fractionally assign a user with behavior x to cluster

ck using the membership probabilities given by Equation 2. In the M step of the algorithm,

we pretend that these fractional assignments correspond to real data, and reassign � to

be the MAP estimate given this �ctitious data. (See the Appendix for more details.) By

iteratively applying the E step and M step, we monotonically improve the estimates of

the model parameters �, ensuring convergence (under fairly general conditions) to a local

maximum of the posterior distribution for �.

There are several reasonable choices for a convergence criterion. In our implementation,

we say that the algorithm has converged when two consecutive iterations produce log like-

lihoods on the training data that di�er by less than 0:01%. To initialize the EM algorithm,

we use the noisy-marginal method of Thiesson, Meek, Chickering, and Heckerman (1999)

(see the Appendix for details). Finally, when learning a particular model, we run twenty

sets of initial parameters to convergence, and then use the value for � that has the high-

est posterior probability. We have found that such \restarting" yields a small systematic

improvement (roughly, 0:2%) in the log posteriors of the parameters.

In the remainder of this section, let us consider how to identify a good value for K.

If these clusters are to be used for visualization, as they are in our application, a sensible

method in principle for choosing K would be have a site administrator look at models

7

having K = 1, K = 2, and so on, and choose directly. Because this approach is usually too

time consuming, in practice, we choose the number of clusters by �nding the model that

accurately predicts Nt new (\test") cases dtest = fxN+1; : : : ;xN+Ntg. That is, we choose a

model with K clusters that minimizes the out-of-sample predictive log score:

Score(K;dtest) = �

PNt

j=1 log2 p(x
jj�K)

PNt

i=1 length(x
i)

(3)

where �K is the MAP estimate of the parameters obtained from the training data, and

length(xi) is the length of the sequence for user i. Note that log scores in general have

interesting properties and have been used extensively (Bernardo, 1979). Also note that this

particular log score, which uses a base-2 logarithm and a length-of-sequence normalization,

corresponds to the average number of bits required by the model to encode a category

request made by the user.

2.3 Application to Msnbc.com

We applied the learning techniques we have just described to a large Web navigation data

set. The data comes from Internet Information Server (IIS) logs for msnbc.com and news-

related portions of msn.com for the entire day of September, 28, 1999 (Paci�c Standard

Time). Each sequence in the dataset corresponds to page views of a user during that

twenty-four hour period. Each event in the sequence corresponds to a user's request for a

page. Requests are not recorded at the �nest level of detail|that is, at the level of URL,

but rather, they are recorded at the level of page category. The categories, developed for

site analysis prior to this investigation, are representative of the structure of the site. The

categories are frontpage, news, tech, local, opinion, on-air, misc, weather, health,

living, business, sports, summary, bbs (bulletin board service), travel, msn-news, and

msn-sports. The number of URLs per category ranges from 10 to 5000. Although the

time of each request is known, we model only the order in which the pages are requested.

Furthermore, any page requests served via a caching mechanism were not recorded in the

server logs and, hence, not present in the data. The full dataset consists of approximately

one million sequences (users), with an average of 5.7 events per sequence.

For various model types and various cluster sizes K, we learned models using a training

set of 100,023 sequences sampled at random from the original one million. (Increasing

the sample size did not appreciably change the resulting cluster model or the predictive

log-score). We then evaluated the models using the out-of-sample predictive log score in

Equation 3 on a di�erent sample of 98,687 sequences drawn from the original data. EM

was run in the manner speci�ed in Section 2.2. All runs, including those described in the

8

Number of Clusters [K]

0 20 40 60 80 100 120 140 160 180 200 3000

O
ut

 o
f S

am
pl

e
L

og
-L

ik
el

ih
oo

d
[b

its
/to

ke
n]

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0th-order
1st-order
1st-order, fixed
initial state

Figure 2: Number of bits (on average) needed to encode an out-of-sample event versus

number of clustersK for a mixture of �rst-orderMarkovmodels, the same model constrained

so that every user in the cluster has the same �rst page-category request, and a mixture of

zeroth-order Markov models.

next section, were performed on a desktop PC with a Pentium III Xeon processor running

at 500MHz with enough memory to avoid paging. In our largest runs with K = 200, only

11.5Mb of memory was used.

Figure 2 shows the out-of-sample predictive log scores for �rst- and zeroth-order Markov

models for various values of the number of clusters K. We see that the predictive accuracy

of both models increases rapidly as K increases initially. For the zeroth-order Markov

models, the predictive accuracy continues to increase substantially, although less rapidly,

as K increases further. For the �rst-order Markov models, the predictive accuracy reaches

what appears to be a stable limit aroundK = 60. Also note that, for values ofK of practical

interest (K < 400), the best zeroth-order model is worse at predicting out-of-sample data

than the worst (K = 1) �rst-order model.

In learning clusters for this data using the �rst-order Markov mixture model, we observe

an interesting phenomenon that is likely to occur for other domains. In particular, we �nd

that some of the individual model components encode two or more clusters. For example,

9

consider two clusters: a cluster of users who initially request category a and then choose

between categories b and c, and a cluster of users who initially request category d and

then choose between categories e and f . These two clusters can be encoded in a single

component of the mixture model, because the sequences for the separate clusters do not

contain common elements.

The presence of multi-cluster components does not a�ect the out-of-sample predictive

log score of a model. Nonetheless, when used in conjunction with our visualization tool, the

existence of such components is problematic. Speci�cally, the behaviors of users from more

than one cluster are presented in the same window, which can be confusing or distracting

for visualization. Consequently, there is a need to produce models without multi-cluster

components. One method to do so is to run the EM algorithm and then post-process the

resulting model, separating any multi-cluster components found. A second method is to

allow only one state (category) to have a non-zero probability of being the initial state in

each of the �rst-order Markov models.

Using the second method can have the unfortunate consequence that a cluster of users

that have di�erent initial states but similar paths after the initial state are divided into sepa-

rate clusters. Nonetheless, this potential problem was fairly insigni�cant for our msnbc.com

data. In particular, Figure 2 shows the out-of-sample predictive log score for mixture mod-

els constrained to have the same �rst request. We see that these constrained models have

a predictive power almost equal to that of the unconstrained models. Of course, when

introducing this constraint, more components are needed to represent the data than in the

unconstrained case. For this particular data, the constrained �rst-order Markov models

reach their limit in predictive accuracy around K = 100, as compared to the unconstrained

models, which reach their limit around K = 60. For our visualization in Section 3, we use

the constrained model with K = 100 to assign users to clusters.

2.4 Scalability

As noted in the introduction, one of the inherent di�culties in the analysis of server-log

data is in its size. In this section, we examine the scalability of the EM algorithm applied

to our task of clustering sequence data.

The memory requirements of the algorithm are O(NL+KM2 +KM), which typically

reduces to O(NL)|that is, the size of the data|for datasets where M is relatively small.

In fact, our implementation can easily process hundreds of thousands of user sessions|all

in memory|with RAM sizes that are typical for today's personal computers.

The runtime of the algorithm per iteration is linear in N and K. Nonetheless, it is

di�cult to mathematically characterize how the number of iterations required to reach

10

convergence depends on N and K. When the number of sequences and particularly number

of clusters increase, the shape of the likelihood surface changes, and new local maxima or

saddle points can appear. As a result, the number of iterations required for the algorithm

to converge may increase with N or K.

To address this issue, we measured the overall runtime of the EM algorithm applied to

our dataset for various N andK. We varied the number of sequences from 10,000 to 200,000

and the number of clusters from 10 to 200. Each data point in the graphs represents the

time required for our EM algorithm to converge. Figure 3 shows the overall runtime as a

function of K and N . The dotted lines represent linear �ts through the corresponding data

points. These results demonstrate that, at least for the msnbc.com dataset, the runtime of

the EM algorithm scales linearly with N and K.

3 Data Visualization

As discussed earlier, our approach to exploratory data analysis is to �rst cluster users and

then visualize the behavior of users in each cluster. We have implemented a software tool

that allows a site administrator to visually explore large sets of navigation sequences using

the results of the clustering. The tool is called WebCANVAS (Web Clustering ANalysis

and VisuAlization of Sequences).

In this section, we illustrate the visualization component of WebCANVAS using the

msnbc.com data described earlier. We show clusters generated using a mixture of �rst-

order Markov models applied to the same 100,023-sample described in Section 2.3. We note

that the K = 100 clusters obtained from this sample did not change appreciably for larger

samples.

Figure 4 shows WebCANVAS's initial display of twenty four of the one hundred clusters.

The clusters normally are ordered left-to-right and top-to-bottom in descending order by

the number of users in each cluster. This ordering provides useful information. For this

display, however, we have scrambled the order of the clusters so as not to reveal potentially

sensitive information about the msnbc.com site.

Each window corresponds to a cluster. The windows are tiled and each can be easily

resized and/or scrolled. Each row of squares in a cluster corresponds to a user sequence.

Note that WebCANVAS uses hard clustering, assigning each user to a single cluster. Each

square in a row encodes a page request in a particular category encoded by the color of the

square. (A category legend is shown in the lower-right corner of the screen.) For example,

the second user in the second cluster has the request sequence news, on-air, on-air,

local, opinion, opinion, on-air, opinion, news. Note that the use of color to encode

11

Number of Clusters [K]

0 20 40 60 80 100 120 140 160 180 200

T
im

e
[s

]

0

500

1000

1500

2000

2500

3000

100K sequences
50K sequences

200K sequences

Number of Sequences (in thousands) [N]

60 80 100 120 140 160 180 200

T
im

e
[s

]

0

500

1000

1500

2000

2500

3000

3500

50 Clusters

200 Clusters
100 Clusters

Figure 3: Running time of the �rst-order Markov Chain clustering algorithm. Dotted lines

(linear �t) are included for reference.

12

URL category limits the utility of this tool to domains where the number of categories can

be limited to �fty or so.

In our experience with WebCANVAS, a site administrator can identify useful and un-

expected information after only a few moments of looking at displays such as the one in

Figure 4. In this case, the site administrator (S.W.) discovered several unexpected facts:

1. there were large groups of people entering msnbc.com on tech (clusters 11 and 13)

and local (cluster 22) pages;

2. there was a large group of people navigating from on-air to local (cluster 12);

3. there was little navigation between tech and business sections; and

4. there were a large number of hits to the weather pages (cluster 1).

Each of these discoveries suggested actions to be taken to improve the site. For example,

the unusually large number of hits to weather prompted an investigation of that portion of

the site. The investigation revealed that response time was unacceptably slow (the many

hits were due to users multi-clicking on weather pages in rapid succession in order to elicit

a response from the site).

It is important to note that the visualization displays an (organized) sample of the raw

data, where the choice of the sample is guided by a statistical model. We call this approach

model-directed sampling. Although this approach is quite straightforward, we have found

it to be quite powerful in practice. In particular, we have found that people can garner an

understanding of the behaviors in each cluster (both typical and deviations from typical)

with a quick glance at each random sample.

In contrast, two other methods with which we experimented were not so transparent.

In one approach, we showed the zeroth-order and �rst-order Markov models corresponding

to a cluster as shown in Figure 5. In another approach, we used the \tra�c-
ow movie"

produced by Microsoft Site Server v3.0. All of the authors tried the three approaches and

unanimously found the model-directed sampling approach to be by far the most e�ective at

communicating cluster content. Our informal experiments suggest that model-directed sam-

pling is extremely e�ective for visualizing clusters, and may have more general application

in data visualization.

One additional advantage of model-directed sampling over the second alternative of

displaying the models themselves is that the former approach is not as sensitive to errors

in modeling. That is, by displaying sampled raw data, behaviors in the data not consistent

with the model used can still be seen and appreciated. In the next section, we shall provide

evidence that our mixture of �rst-order Markov models is a reasonable model for web tra�c

13

Figure 4: Initial display of msnbc.com data using WebCANVAS. Each window corresponds

to a cluster. Each row in a window corresponds to the path of a single user through the

site. Each path is color coded by category. The category legend is at the lower right of the

screen.

14

(at least on msnbc.com), and thus this advantage may not play an important role in this

particular application. Nonetheless, this advantage may be important in other domains.

4 On the Suitability of Mixtures of First-Order Markov Mod-

els

The �rst-order-Markov mixture model that we use in this paper is quite simple. Indeed,

there should be concern that this model is too simple. In this section, however, we describe

experiments that suggest that the use of this model is appropriate|at least when applied

to the msnbc.com data.

Before we do, we should make a connection with previous work (e.g., Sen and Hansen

(2001), Deshpande and Karypis (2001)) that shows the �rst-order Markov model to be an

inadequate model for empirically-observed page-request sequences. This result should not

be surprising. For example, if a user visits a particular page, there tends to be a greater

chance of he or she returning to that same page at a later time. A �rst-order Markov model

cannot capture this type of \long-term" memory.

We make this connection because it is important to note that these previous results

should not be used as evidence that our model is inadequate. First, although our model

is �rst-order Markov within a cluster, our overall unconditional model for Web navigation

patterns is not �rst-order Markov. Second, our msnbc.com data is di�erent from typical

\raw" page-request sequences. Namely, our use of URL categories results in a relatively

small alphabet size as compared to working with uncategorized URLs. The combined e�ects

of clustering and a small alphabet tend to|at least for the msnbc.com data set|produce

low-entropy clusters in the sense that a few (two or three) categories often dominate the

sequences within each cluster. This e�ect is apparent in Figure 4. Thus, the tendency to

return to a speci�c page that was visited earlier in a session can be well approximated by

our simple mixture of �rst-order Markov models, because the page categories visited by a

user in a given cluster are typically constrained to visit the \dominant" categories for that

cluster.

In Section 4.1, we emphasize the di�erence between our cluster model and the �rst-order

Markov model. In Section 4.2, we describe diagnostic checks of our model.

4.1 Mixtures of First-Order Markov Models are not First-Order Markov

As in Section 2, let x = (x1; : : : ; xL) be a sequence of length L where each xl is one of M

values from a �nite alphabet of symbols (the M page categories). We model x as being

15

Figure 5: An alternative view of a cluster (cluster 8 in Figure 4). This view displays

the zeroth-order and �rst-order Markov models for the cluster. Probabilities in the model

are encoded by intensity (higher probabilities are brighter). The �rst column displays the

zeroth-order distribution of category requests. That is, the �rst column shows, for each

category, the probability that a user in the cluster will request a page in that category.

The remaining columns show the �rst-order Markov model. The second column displays

the probability distribution over category requests for the �rst event. The middle block

displays the transition probabilities p(jji)|the probability that a user will request category

j given the previous request was category i. The last column shows, for each category, the

probability that a user in the cluster will end his/her session given a visit to that category.

In this particular display, users in the cluster start on frontpage and then may proceed to

almost any other category. Once in a category, users may browse for a while, but return to

frontpage before moving to another category. Users tend to leave the site from frontpage

and business.

16

generated by a mixture of �rst-order Markov models:

p(x) =
KX
k=1

p(xjck)p(ck) (4)

p(xjck) = p(x1jck)
LY
i=2

p(xijxi�1; ck)

Here, for simplicity, we have dropped the explicit mention of parameters.

It is informative to look at the predictive distribution for the next symbol xl+1 under

this mixture model|that is, p(xl+1jx[l;1]), where 1 � l � L, and x[l;1] = (x1; : : : ; xl). By

de�nition,

p(xl+1jx[l;1]) =
KX
k=1

p(xl+1; ckjx[l;1])

=
KX
k=1

p(xl+1jx[l;1]; ck)p(ckjx[l;1])

=
KX
k=1

p(xl+1jxl; ck)p(ckjx[l;1]) (5)

where the last line follows from the fact that, given component value ck, xl+1 only depends

on xl. Thus, from Equation 5 above, the �rst-order-Markov mixture model de�nes the

probability of the next symbol as a weighted convex combination of the transition probabil-

ities p(xl+1jxl; ck) from each of the individual �rst-order component models. The weights

are determined by the partial membership probabilities p(ckjx[l;1]) of the pre�x (\history")

subsequence x[l;1].

In contrast, the predictive distribution for a standard �rst-order Markov model (which

can be viewed as a special case of the mixture model with K = 1) is simply

p(xl+1jx[l;1]) = p(xl+1jxl):

Comparing the mixture predictive model of Equation 5 with this standard �rst-order

Markov model, we see that the two predictive distributions are not equivalent in the general

case. In particular, a mixture of �rst-order Markov models leads to a predictive distribution

that is itself not �rst-order Markov. More speci�cally, the transition probabilities in the

mixture model are a function of the membership weights p(ckjx[l;1]). These weights are in

turn a function of the history of the sequence (via Bayes rule), and typically depend strongly

on the pattern of behavior before xl.

As a speci�c example, consider the two sequences AAAAAC and BBBBBC. Consider the

problem of predicting the next symbol. In a �rst-order Markov model, the predictive distri-

bution on the next symbol will be the same for both sequences because it only depends on

17

the current symbol C. In contrast, consider using a mixture of two Markov models, where

cluster 1 produces sequences with long runs of A's, no B's, and an occasional C, and cluster

2 produces sequences with long runs of B's, no A's, and an occasional C. Under this mixture

model, the prediction for what follows symbol C will be quite di�erent for each of the se-

quences. Sequence AAAAAC is likely to have a probability near 1 of belonging to cluster 1,

so the conditional (predictive) probability of A will be near 1. In contrast, the conditional

probability of B will be near 1 for sequence BBBBBC.

Thus, a mixture of �rst-order Markov models is a semantically richer model than a non-

mixture �rst-order Markov model. The mixture can represent higher-order information for

predictive purposes because the weights can encode (in a constrained fashion) information

from symbols that precede the current symbol.

As an aside, we note that our model evaluation score has an additional interpretation

as a cumulative sum of the \one-step ahead" predictive distributions. To understand this

point, consider the logarithm of the most general form of the distribution over a sequence

x = (x1; : : : ; xL) of length L, and consider further its decomposition by the chain rule:

log p(x) = log p(x1; x2; : : : ; xL)

= log
h
p(x1) p(x2jx1) � � � p(xLjx[L�1;1])

i

= log p(x1) + log p(x2jx1) + � � �+ log p(xLjx[L�1;1])

When this equation is applied to the whole data set dtest we obtain:

log p(dtest) =
NX
i=1

2
4log p(xi1) +

LiX
l=2

log p(xiljx
i
[l�1;1])

3
5

Therefore, maximization of the log-likelihood on test data is equivalent to optimizing the

prediction of the next symbol.

Although the main focus of the work described in this paper is on clustering and visual-

ization rather than \one-step ahead" predictive modeling, it is nonetheless worth pointing

out that if the model were to be used for prediction, it is richer than a simple �rst-order

Markov model because it possesses the capability of capturing some higher-order depen-

dencies via the mixture mechanism. In fact, the experimental results presented in Figure 2

demonstrate that mixtures of �rst-order Markov models yield signi�cant improvements in

terms of out-of-sample prediction with respect to a simple �rst-order model for our do-

main. In addition, Anderson, Domingos, and Weld (2001) in a recent study have found

that mixtures of Markov models outperform the simpler �rst-order Markov models on a set

of selected Web-page prediction tasks.

18

4.2 Model Diagnostics

As a diagnostic check on the adequacy of the �rst-order Markov assumption, one can em-

pirically calculate the run lengths of page categories for several of the most likely clusters.

If the data are being generated by a �rst-order Markov model, then the distribution of these

run lengths will obey a geometric distribution and the empirical estimate of this distribution

should appear geometric within sampling error. Conversely, if the empirical distribution of

run lengths is decidedly non-geometric, then a non-Markov distribution is suggested.

Using the clustering methodology described in Section 3, we calculated the empirical

distribution of run lengths for each category for the �ve most populous clusters (those with

the �ve highest mixture weights). We used hard clustering to assign users to clusters, al-

though we would have obtained almost identical results had we used soft clustering, because

many of the cluster-membership probabilities were close to zero or one. To simplify our

report of the results, we plot for each cluster the three most frequently visited categories

that had at least one run length of four or greater. (Categories that have run lengths of

three or fewer provide relatively uninformative diagnostic plots.)

The results are shown in Figure 6. The asterisks mark the empirically observed counts.

The center dotted line on each plot is the expected count as a function of run length under

a geometric model using the empirically estimated self-transition probability of the Markov

chain for the corresponding cluster. The upper and lower dotted lines represent the plus

and minus three-sigma sampling deviations for each count under the model. With few

exceptions (e.g., category 2, cluster 4), the geometric model is a reasonable approximation

to the actual observed run lengths.

5 Related Work

Although there is a substantial amount of prior work on learning and modeling individual

user navigation patterns from web data, much of this work is non-probabilistic in nature and

focuses on �nding rules that describe common navigation patterns (rather than clustering)|

for example, Yan, Jacobsen, Garcia-Molina, and Dayal (1996), Chen, Park, and Yu (1998),

Zaine, Xin, and Han (1998), Spilopoulou, Pohle, and Faulstich, (1999), Cooley, Tan, and

Srivastava (1999), as well as numerous commercial systems.

There has also been some prior work that directly uses generative probabilistic models

to characterize web site navigation patterns. Huberman et al. (1997) use a random walk

approach to model the number of page-requests users issue at a particular web site. A

variety of Markov models have been applied to the problem of prefetching pages for users

conditioned on past pages visited|for example, Padmanabhan and Mogul (1996), Bestavros

19

0 10 20

0

5

10

lo
g

co
un

t(
R

)

Cluster 1: Category 13

0 10 20

0

5

10 Cluster 1: Category 14

0 20 40
−2

0

2

4 Cluster 1: Category 8

0 10 20

0

5

10

lo
g

co
un

t(
R

)

Cluster 2: Category 1

0 5 10

0

5

10 Cluster 2: Category 7

0 20 40
−2

0

2

4 Cluster 2: Category 8

0 10 20

0

5

10

lo
g

co
un

t(
R

)

Cluster 3: Category 12

0 5 10

0

5

10 Cluster 3: Category 1

0 10 20
−2

0

2

4 Cluster 3: Category 13

0 20 40

0

5

10

lo
g

co
un

t(
R

)

Cluster 4: Category 2

0 5 10

0

5

10 Cluster 4: Category 1

0 5 10

0

5

10 Cluster 4: Category 3

0 10 20

0

5

10

R = Run Length

lo
g

co
un

t(
R

)

Cluster 5: Category 9

0 2 4

0

5

10

R = Run Length

Cluster 5: Category 12

0 2 4

0

5

10

R = Run Length

Cluster 5: Category 6

Figure 6: Empirically observed run lengths superposed on a geometric model for the three

most requested categories in the �ve largest Markov clusters.

20

(1996) and Zukerman, Albrecht and Nicholson (1999). Pirolli and Pitkow (2000) investi-

gated k-th order Markov models, with k ranging from one to nine, for modeling which link

a typical user will follow from a given page. Borges and Levene (1999) also describe the

use of kth-order Markov models (in the form of probabilistic hypertext grammars) for web

navigation modeling. Deshpande and Karypis (2001) reported improved predictive perfor-

mance with high-order Markov models by selectively \pruning" certain state-dependencies

in the model. These approaches all share with this paper the underlying use of a Markov

representation for modeling of users' dynamic behavior, but focus on a single model for

aggregate population characteristics, rather than learning clusters of behavior for di�erent

groups of users.

Sarukkai (2000) uses �rst-order Markov models to model the sequence of pages (or cat-

egories of pages) requested by a user. A \personalized" Markov model is trained for each

di�erent individual and then used for various prediction-related tasks for that user in future

sessions. Sen and Hansen (2001) evaluated variations of second-order Markov and mixture

models for page-request prediction for prefetching, where the mixtures here are mixtures of

individual pages rather than of sequences. Anderson, Domingos, and Weld (2001) evalu-

ated variants of �rst-order Markov models, conditional independence models, and mixtures

of Markov models for the problem of predicting short-cuts in web page navigation and

found that mixtures of Markov models generally had the best predictive performance. Al-

though these papers use multiple Markov models (in various forms) to model page-request

sequences, their primary focus is on prediction rather than on clustering and visualization.

In fact, the problem of clustering users based on their web navigation patterns has

received little attention. Fu, Sandhu, and Shih (1999) applied BIRCH (a distance-based

clustering algorithm) to clustering user sessions, where each session is represented as a vector

of times spent by the user on each page|that is, a static representation of user behavior.

In a general (non-web) context, the use of model-based probabilistic clustering for mul-

tivariate vector data is well known and widely used. For general reviews see Titterington,

Smith and Makov (1985), McLachlan and Basford (1988), Ban�eld and Raftery (1993),

Cheeseman and Stutz (1995), and Fraley and Raftery (1998). In addition, there have been

numerous applications of this approach in areas as diverse as consumer marketing (Wedel

and Kamakura, 1998) and atmospheric science (Smyth, Ide, and Ghil, 1999).

Nonetheless, there is relatively little work on probabilistic model-based clustering of

sequences. Rabiner, Lee, Juang, and Wilpon (1989) provide an early algorithm for cluster-

ing di�erent speech utterances using mixtures of hidden Markov models. Poulsen (1990)

introduced a particular form of Markov mixtures for modeling heterogeneous behavior in

consumer purchasing data. Krogh (1994) mentions the possibility of using mixtures of hid-

21

den Markov models for clustering sequences. More general versions of sequence clustering

using Markov mixtures were independently developed by both Smyth (1997, 1999) and

Ridgeway (1997), including a general EM framework for learning. More recently, Cadez

and Smyth (1999) have shown that all of these algorithms can be viewed as special cases

of a general Bayesian hierarchical model. To our knowledge, the work reported here is the

�rst application of sequence-based probabilistic clustering to web navigation data.

In terms of visualization of navigation patterns, there are numerous commercial (and

often unpublished) systems that allow one to visualize user navigation patterns at a partic-

ular web site. These systems do not appear to use probabilistic dynamic cluster models. In

a similar vein, the Footprints work of Wexelblat and Maes (1999) provide a variety of tech-

niques and interface tools which allow web surfers to enhance their \information foraging"

experience by visualizing the history of other users using visual metaphors of maps, paths,

and signposts. Minar and Donath (1999) use planar graphs to visualize \crowds of users"

at particular web pages. This type of visualization work can be viewed as complementary

to the more quantitative modeling approach we pursue here.

6 Summary and Future Work

We have developed a simple approach for clustering and visualizing user behavior on a

web site, and implemented our method in a visualization tool called WebCANVAS. In our

approach, we �rst cluster user behaviors using a mixture of �rst-order Markov models. We

then display the behavior of a random sample of users in each cluster along with the size

of each cluster. We have applied this approach to the visualization of web tra�c on the

msnbc.com site, and have found the approach to yield easy-to-understand, surprising, and

useful insights.

In using �rst-order Markov models for clustering, we have taken into account the order

in which each user requests pages. In fact, experiments described in this paper suggest that

�rst-order Markov model mixture components are appropriate for the msnbc.com data.

Another feature of our use of model-based clustering is that learning time scales linearly

with sample size. In contrast, agglomerative distance-based methods scale quadratically

with sample size.

Finally, there are several extensions to our approach that could be investigated. One is

to model the duration of each visit. This extension can be achieved by using any number

of duration models (e.g., log-normal). Another set of extensions avoid the limitation of our

method to small M , modeling page visits at the URL level. In one such extension, we can

use Markov models to characterize both the transitions among categories and the transitions

22

among pages within a given category. Alternatively, we can use a hidden-Markov mixture

model to learn categories and category transitions simultaneously.

7 Acknowledgments

We thank Max Chickering for his comments on an draft of this paper. The data set for

this paper was provided by msnbc.com. The work of Igor Cadez and Padhraic Smyth was

supported in part by NSF award IRI-9703120.

References

[Anderson et al., 2001] Anderson, C., Domingos, P., and Weld, D. (2001). Adaptive web

navigation for wireless devices. In Proceedings of the Seventeenth International Joint

Conference on Arti�cial Intelligence, Seattle, WA. AAAI Press, Menlo Park, CA.

[Ban�eld and Raftery, 1993] Ban�eld, J. and Raftery, A. (1993). Model-based Gaussian

and non-Gaussian clustering. Biometrics, 49:803{821.

[Bernardo, 1979] Bernardo, J. (1979). Expected information as expected utility. Annals of

Statistics, 7:686{690.

[Bernardo and Smith, 1994] Bernardo, J. and Smith, A. (1994). Bayesian Theory. John

Wiley and Sons, New York.

[Bestavros, 1996] Bestavros, A. (1996). Speculative data dissemination and service to re-

duce server load, network tra�c, and service time in distributed information systems. In

Proceedings of the 1996 Conference on Data Engineering.

[Borges and Levene, 1999] Borges, J. and Levene, M. (1999). Data mining of user navi-

gation patterns. In Proceedings of the 1999 KDD Workshop on Web Mining. Also in

Web Usage Analysis and User Pro�ling, Masand, B., and Spiliopoulou, M. (eds.), Berlin:

Springer-Verlag, pp. 92{111.

[Cadez and Smyth, 1999] Cadez, I. and Smyth, P. (1999). Probabilistic clustering using

hierarchical models. Technical Report 99{16, UC Irvine, ICS.

[Cheeseman and Stutz, 1995] Cheeseman, P. and Stutz, J. (1995). Bayesian classi�cation

(AutoClass): Theory and results. In Fayyad, U., Piatesky-Shapiro, G., Smyth, P., and

Uthurusamy, R., editors, Advances in Knowledge Discovery and Data Mining, pages 153{

180. AAAI Press, Menlo Park, CA.

23

[Chen et al., 1998] Chen, M.-S., Park, J., and Yu, P. (1998). E�cient data mining for

traversal patterns. IEEE Trans. on Knowledge and Data Eng., 10:209{221.

[Cooley et al., 1999] Cooley, R., Tan, P.-N., and Srivastava, J. (1999). Discovery of inter-

esting usage patterns from Web data. In Proceedings of the 1999 KDD Workshop on Web

Mining. Also in Web Usage Analysis and User Pro�ling, Masand, B., and Spiliopoulou,

M. (eds.), Berlin: Springer-Verlag, pp. 163{182.

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likeli-

hood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

B 39:1{38.

[Deshpande and Karypis, 2001] Deshpande, M. and Karypis, G. (2001). Selective Markov

models for predicting web-page accesses. In Proceedings of the First SIAM International

Conference on Data Mining, Chicago. SIAM.

[Fraley and Raftery, 1998] Fraley, C. and Raftery, A. (1998). `how many clusters? Which

clustering method? Answers via model-based cluster analysis. Computer Journal, 41:578{

588.

[Fu et al., 1999] Fu, Y., Sandhu, K., and Shih, M.-Y. (1999). A generalization-based ap-

proach to clustering of web usage sessions. In Proceedings of the 1999 KDD Workshop

on Web Mining. Also in Web Usage Analysis and User Pro�ling, Masand, B., and

Spiliopoulou, M. (eds.), Berlin: Springer-Verlag, pp. 21{38.

[Good, 1965] Good, I. (1965). The Estimation of Probabilities. MIT Press, Cambridge,

MA.

[Huberman et al., 1997] Huberman, B., Pirolli, P., Pitkow, J., and Lukose, R. (1997).

Strong regularities in World Wide Web sur�ng. Science, 280:95{97.

[Krogh, 1994] Krogh, A. (1994). Hidden Markov models in computational biology: Appli-

cations to protein modeling. Journal of Molecular Biology, 235:1501{1531.

[McLachlan and Basford, 1988] McLachlan, G. and Basford, K. (1988). Mixture Models:

Inference and Applications to Clustering. Marcel Dekker.

[Minar and Donath, 1999] Minar, N. and Donath, J. (1999). Visualizing crowds at a Web

site. In CHI'99 late-breaking papers. ACM Press.

24

[Padmanabhan and Mogul, 1996] Padmanabhan, V. and Mogul, J. (1996). Using predic-

tive pre-fetching to improve World Wide Web latency. ACM Computer Communication

Review, 26:22{36.

[Pirolli and J. Pitkow, 1999] Pirolli, P. and J. Pitkow, J. (1999). Distribution of surfer's

paths through the world wide web. World Wide Web, 2:29{45.

[Poulsen, 1990] Poulsen, C. (1990). Mixed Markov and latent Markov modelling applied to

brand choice behavior. International Journal of Research in Marketing, 7:5{19.

[Rabiner et al., 1989] Rabiner, L., Lee, C., Juang, B., and Wilpon, L. (1989). Hmm clus-

tering for connected word recognition. In Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing. IEEE Press.

[Ridgeway, 1997] Ridgeway, G. (1997). Finite discrete Markov process clustering. Technical

Report MSR-TR-97-24, Microsoft Research, Redmond, WA.

[Saruukkai, 2000] Saruukkai, R. (2000). Link prediction and path analysis using markov

chains. InWWW-9: Proceedings of the Ninth International World Wide Web Conference.

Available on the Web at http://www9.org/w9cdrom/start.html.

[Sen and Hansen, 2001] Sen, R. and Hansen, M. (2001). Predicting a web user's next access

based on log data. Journal of Computational Graphics and Statistics.

[Smyth, 1997] Smyth, P. (1997). Clustering sequences using hidden Markov models. In

Mozer, M., Jordan, M., and Petsche, T., editors, Advances in Neural Information Pro-

cessing Systems 9, pages 648{654. MIT Press.

[Smyth, 1999a] Smyth, P. (1999a). Multiple regimes in northern hemisphere height �elds

via mixture model clustering. Journal of the Atmospheric Sciences, 56:3704{3723.

[Smyth, 1999b] Smyth, P. (1999b). Probabilistic model-based clustering of multivariate

and sequential data. In Proceedings of Seventh International Workshop on Arti�cial

Intelligence and Statistics, Ft. Lauderdale, Florida. Morgan Kaufmann.

[Spiliopoulou et al., 1999] Spiliopoulou, M., Pohle, C., and Faulstich, L. (1999). Improving

the e�ectiveness of a web site with Web usage mining. In Proceedings of the 1999 KDD

Workshop on Web Mining. Also in Web Usage Analysis and User Pro�ling, Masand, B.,

and Spiliopoulou, M. (eds.), Berlin: Springer-Verlag, pp. 142{163.

[Thiesson et al., 1999] Thiesson, B., Meek, C., Chickering, D., and Heckerman, D. (1999).

Computationally e�cient methods for selecting among mixtures of graphical models,

25

with discussion. In Bayesian Statistics 6: Proceedings of the Sixth Valencia International

Meeting, pages 631{656. Clarendon Press, Oxford.

[Wedel and Kamakura, 1998] Wedel, M. and Kamakura, W. (1998). Market Segmentation:

Conceptual and methodological foundations. Kluwer Academic Publishers.

[Wexelblat and Maes, 1999] Wexelblat, A. and Maes, P. (1999). Footprints: History-rich

tools for information foraging. In Proceedings of CHI-99. ACM Press.

[Yan et al., 1996] Yan, T., Jacobsen, M., Garcia-Molina, H., and Dayal, U. (1996). From

user access patterns to dynamic hypertext linking. In Proceedings of the Fifth Interna-

tional World Wide Web Conference.

[Zaine et al., 1998] Zaine, O., Xin, M., and Han, J. (1998). Discovering Web access patterns

and trends by applying OLAP and data mining technology on Web logs. In Proceedings

of the Advances in Digital Libraries Conference, pages 12{29.

[Zuckerman et al., 1999] Zuckerman, I., Albrecht, D., and Nicholson, A. (1999). Predicting

user's requests on the WWW. In Proceedings of the Seventh International Conference on

User Modeling, pages 275{284. Springer Wien.

A Appendix: The EM Algorithm for Mixtures of Markov

Models

In this appendix, we describe the �rst-order-Markov mixture model and the associated

learning algorithm in detail.

A.1 Notation and Model

As described in the main body of the paper, let dtrain = fx1; : : : ;xNg be a set of sequences,

where each sequence xi consists of Li observed states xi = (xi1; : : : ; x
i
Li
). Each state xij

takes values from a discrete alphabet xij 2 [1; : : : ;M]. In notation that is consistent with,

but more detailed than that in the main body of the paper, we write � = f�; �I ; �T g where:

� � is a vector of K mixture weights:

� = f�1; �2; : : : ; �Kg; �k = p(ckj�);
KX
k=1

�k = 1:

26

� �I is a set of K initial state probability vectors:

�I = f�I1; �
I
2; : : : ; �

I
Kg

where the per-component initial state probabilities �Ik; 1 � k � K are vectors of

length M :

�Ik = f�Ik;1; �
I
k;2; : : : ; �

I
k;Mg; �Ik;j = p(x1 = jjck; �);

MX
j=1

�Ik;j = 1:

� �T is a set of K transition matrices:

�T = f�T1 ; �
T
2 ; : : : ; �

T
Kg

where the per-component transition probability matrices �Tk ; 1 � k � K are matrices

of size M � 1�M :

�Tk =
h
�Tk;j;l

i
; �Tk;j;l = p(xt = ljxt�1 = j; ck; �);

MX
l=1

�Tk;j;l = 1:

The probability of observing a particular sequence xi under this K-component mixture

model is therefore given by

p(xij�) =
KX
k=1

p(cikj�) p(x
ijck; �)

=
KX
k=1

�k p(x
ij�Ik; �

T
k)

=
KX
k=1

�k p(x
i
1j�

I
k)

LiY
t=2

p(xitjx
i
t�1; �

T
k)

=
KX
k=1

�k�
I
k;xi

1

LiY
t=2

�T
k;xit�1

;xit
: (6)

The probability of observing a full data set dtrain = fx1;x2; : : : ;xNg is known as the

likelihood and is de�ned as

p(dtrainj�) =
NY
i=1

p(xij�)

=
NY
i=1

KX
k=1

�k�
I
k;xi

1

LiY
t=2

�T
k;xit�1

;xit
; (7)

where the product over the N sequences corresponds to an assumption that the individual

sequences are mutually independent given � (the i.i.d. assumption).

27

A.2 Prior Distributions

One approach to learning parameters from data is to �nd those parameter values that

maximize the likelihood of the data. For mixture models, such maxima can not be found

in closed form. Consequently, iterative algorithms such as the EM algorithm to be outlined

are used.

One di�culty associated with using this maximum-likelihood approach relates to zero

probabilities. For example, suppose there are no transitions from A to B in the data.

Then, our estimate of the transition probability from A to B in each mixture component

will be zero. That is, according to our model, the transition is impossible. To address this

di�culty, we can assign prior probabilities to �, re
ecting the belief that all transitions are

possible, and use the maximum of the posterior distribution over � as our estimate for the

parameters.

The posterior distribution for � given the data can be written (by Bayes' rule) as

p(�jdtrain) = p(dtrainj�)p(�)=p(dtrain), where p(�) is a prior distribution on �. The maxi-

mum a posteriori (MAP) parameter vector is de�ned as the parameter vector � that maxi-

mizes this posterior distribution, that is,

�MAP = argmax
�

p(dtrainj�)p(�)

where the term p(dtrain) is ignored since it is not a function of �. Thus, the MAP parameters

�MAP that correspond to the maximum of p(�jdtrain) can be found by maximizing the

product of the likelihood and the prior, both viewed as functions of �. In practice it is often

convenient to work with the log of this expression, the log posterior function,

lPdtrain(�) = log p(dtrainj�) + log p(�):

Again, for mixture models, closed-form solutions for �MAP do not exist; and iterative algo-

rithms (such as the EM procedure outlined in A.3) are used to search for maxima.

The parameters for the �rst-order-Markov mixture model (�, �Ik for every k, and each

row of �Tk for every k) are discrete probability distributions with unknown values|that is,

multinomial distributions. An often-used prior distribution for a multinomial distribution

is the Dirichlet distribution. A Dirichlet distribution for the multinomial distribution with

parameters � = (�1; : : : ; �a) is given by

p(�1; : : : ; �aj�1; : : : ; �a) =
�(
Pa

i=1 �i)Qa
i=1 �(�i)

aY
j=1

�
�j�1
j ;

subject to
Pa

i=1 �i = 1; 0 < �i < 1; �i > 0:

28

Given this Dirichlet prior for �, suppose we observe data (a multinomial sample) such

that there are ni occurrences of state i for i = 1; : : : ; a. Then, the posterior distribution

for � is another Dirichlet distribution with hyperparameters (�1 + n1; : : : ; �a + na). In

this regard, the Dirichlet distribution is said to be conjugate distribution for multinomial

sampling. Furthermore, the �'s, which are often referred to as hyperparameters of the

Dirichlet distribution, can thus be thought of as �ctitious counts. Under this interpretation,

the Dirichlet distribution is said to have an equivalent sample size of
Pa

i=1 �i.

The MAP values for any set of parameters will depend on the coordinate system used

to express the parameters. The MAP values for a multinomial distribution expressed in the

natural parameter space (see, e.g., Bernardo and Smith, 1994) is given by

�MAP
i =

ni + �iPa
j=1 nj + �j

; i = 1; : : : ; a

A.3 Our EM-Algorithm Implementation

To describe the EM algorithm for �nding a local maximum of our model parameters �, it is

convenient to de�ne the class-conditional probability distribution|namely, the probability

that sequence xi was generated by cluster (or mixture component) k given parameters �:

Pi;k(�) = p(ckjx
i; �) =

�k p(x
ijck; �)PK

k0=1 �k0p(x
ijck0 ; �)

:

The set of class-conditional distributions for a data set can be represented by a matrix of

probabilities

P (�) = [Pi;k] ; 1 � i � N; 1 � k � K

where each row corresponds to the class-posterior for individual sequence xi.

A key quantity in the description of the EM is the expected value of the objective

function over the class-posterior distribution using a �xed set of \current" parameters|the

Q function. When this function is maximized with respect to the parameters, an update

rule is derived that guarantees, under some weak conditions, that the objective function

will increase and ultimately converge to a �xed point. The Q function for the log-posterior

(MAP) function is de�ned as:

Q(�; �old) = hlPdtrain(�)iP (�old) =
NX
i=1

KX
k=1

Pi;k(�old) log
h
�kp(x

ijck; �)
i
+ log p(�):

If we maximize the Q function with respect to each subset of parameters � one can show

that the following are the update rules for each set of parameters:

29

� Mixture Weights:

�k =

PN
i=1 Pi;k(�old) + ��kPK

k0=1

hPN
i=1 Pi;k0(�old) + ��k0

i (8)

where ��k is the hyperparameter associated with �k ; k = 1; : : : ; K. Note that this

equation corresponds to computing MAP parameters as if the fractional assignment

of data to the mixture components corresponded to real data. The same is true for

the remaining update rules.

� Initial State Probabilities:

�Ik;j =

PN
i=1 Pi;k(�old)�(x

i
1; j) + �Ik;jPd

j0=1

hPN
i=1 Pi;k(�old)�(x

i
1; j

0) + �Ik;j0
i (9)

where �Ik;j is the hyperparameter corresponding to �Ik;j and �(xi1; j) is an indicator

function that is equal to 1 if the arguments are equal and 0 otherwise.

� Transition Probabilities:

�Tk;j;l =

PN
i=1 Pi;k(�old)nj;l(x

i) + �Tk;j;lPd
l0=1

hPN
i=1 Pi;k(�old)nj;l0(x

i) + �T
k;j;l0

i (10)

where �Tk;j;l; l = 1; : : : ;M is the hyperparameter associated with �Tk;j;l.

As mentioned in the main body of the paper, each multinomial distribution was assigned

its own uninformative Dirichlet prior: ��k = 0 for every k, �Ik;j = 0:01=M for every k and j,

and �Ik;j;l = 0:01=M for every k, j, and l.

Also as mentioned in the paper, our implementation of the EM algorithm consists of

one or more runs, where each run consists of an initialization phase and a re�nement

phase. In the initialization phase we select a set of random initial parameters (subject to

some constraints), whereas in the subsequent re�nement phase, we iteratively apply the

parameter update equations above to locally optimize the log-posterior function. Because

the procedure is guaranteed only to �nd a local maximum of the log-posterior function,

we perform several runs and report the solution with the highest value of the log posterior

function. In our experiments, we perform twenty runs (each with di�erent random initial

parameter settings) with the following two phases:

� Initialization. We choose the parameters �1; : : : ; �K to be equal. In addition, we use

the noisy-marginal method of Thiesson et al. (1999) to initialize �I and �T . In this

approach, we initialize the parameters for each component of the mixture model by

estimating the parameters for a single-component cluster model, and then randomly

30

perturbing the parameter values by a small amount to obtain K sets of parameters. In

particular, we �rst determine the maximum-likelihood parameter con�guration under

the assumption that there is only one class. This step can be done in closed form.

Next, for each multinomial distribution in this single-component model, we create a

Dirichlet distribution such that (1) the maximum values of this Dirichlet distribution

agrees with the corresponding maximum-likelihood estimates, and (2) the equivalent

sample size of each Dirichlet is given by the user. In our experiments, we use an

equivalent sample size of 2M for each Dirichlet distribution. We then sample the

parameters for each mixture component from this Dirichlet distribution.

� Re�nement consists of an iterative application of the update equations (8){(10) until

the relative change in the log-posterior function in consecutive iterations is less than

0:01%. In the experiments reported in this paper, the EM algorithm always converged

in less than 100 iterations.

31

