
Boolean Programs: A Model and Process For

Software Analysis

Thomas Ball Sriram K. Rajamani
ftball,sriramg@microsoft.com

February 29, 2000 (updated March 28, 2000)

Technical Report
MSR-TR-2000-14

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Boolean Programs: A Model and Process For Software Analysis

Thomas Ball Sriram K. Rajamani
ftball,sriramg@microsoft.com

Software Productivity Tools
Microsoft Research

Abstract. A fundamental issue in model checking of software is the choice of a model for soft-
ware. We present a model called boolean programs that is expressive enough to represent features in
common programming languages and is amenable to model checking. We present a model checking
algorithm for boolean programs using context-free-language reachability. The model checking al-
gorithm allows procedure calls with unbounded recursion, exploits locality of variable scopes, and
gives short error traces. Furthermore, we give a process for incrementally re�ning an initial skeletal
boolean program B (representing a source program P) with respect to a particular reachability
query in P . The presence of infeasible paths in P may lead to the model checker reporting false
positive errors in B. We show how to re�ne B by introducing boolean variables to rule out the
infeasible paths. The process uses ideas from model checking, symbolic execution, and program
slicing.

1 Introduction

What would model checking of software look like if it were a well established practice today?
If it had the attributes that model checking of hardware circuits does, it might look like this:

{ There would be a representation R for modeling software, analogous to the �nite state
machines (FSMs) used for modeling hardware circuits, and eÆcient algorithms to model
check R.

{ The model checking algorithms over R would report a shortest trace to an error when they
�nd errors, as model checkers for FSMs do.

{ Programming languages such as C, C++ and Java would have translations into R, just as
hardware description languages such as VHDL and Verilog can be compiled into FSMs.

{ An instance r in R could be re�ned into an instance r0 in R and proved correct (either by
construction, or by veri�cation), just as FSMs can be re�ned and proved correct using the
semantics of trace inclusion.

{ The model checking algorithms on R would be able to exploit the inherent modularity and
abstraction boundaries present in the source programs for eÆciency.

We investigate how to model check temporal properties of sequential programs with an eye
on these �ve desiderata. We consider programs written in a source language containing scalar
variables over �nite and in�nite domains, the usual structured control-
ow constructs, global
variables, and procedural abstraction with call-by-value parameter passing, local variables, and
recursion.

We de�ne a target representation R called boolean programs. Boolean programs are a subset
of the programs de�ned by the source language, namely those in which all variables and pa-
rameters have boolean type. What distinguishes boolean programs from FSMs is that boolean

numUnits: int;

level: int;

void getUnit() f
[1] canEnter: bool := F;

[2] if (numUnits = 0) f
[3] if (level > 10)f
[4] NewUnit();

[5] numUnits := 1;

[6] canEnter := T;

g
g else

[7] canEnter := T;

[8] if (canEnter)

[9] if (numUnits = 0)

[10] assert(F);

else

[11] gotUnit();

g

void getUnit() f
[1] ...;

[2] if (?) f
[3] if (?)f
[4] ...;

[5] ...;

[6] ...;

g
g else

[7] ...;

[8] if (?)

[9] if (?)

[10] ...;

else

[11] ...;

g

nU0: bool;

void getUnit() f
[1] ...;

[2] if (nU0) f
[3] if (?)f
[4] ...;

[5] nU0:=F;

[6] ...;

g
g else

[7] ...;

[8] if (?)f
[9] if (nU0)

[10] ...;

else

[11] ...;

g

nU0: bool;

void getUnit() f
[1] cE: bool :=F;

[2] if (nU0) f
[3] if (?)f
[4] ...;

[5] nU0:=F;

[6] cE:=T;

g
g else

[7] cE:=T;

[8] if (cE)

[9] if (nU0)

[10] ...;

else

[11] ...;

g

P B1 B2 B3

Fig. 1. An example program P and three boolean programs (B1, B2 and B3) that abstract P with an increasing
level of precision.

programs contain procedures with recursion. As procedural abstraction and recursion are key
components of all modern programming languages, we believe that boolean programs provide
a good starting point for investigating model checking of software.

Our goal is to check whether a sequential program P obeys a temporal property �. It is
well-known that this problem can be reduced to the problem of invariant checking (assertion
violation) in an instrumented version of P (a version of P containing extra code that simulates
the FSM corresponding to the complement of the property �). Therefore, we will focus on the
problem of checking whether or not a statement is reachable in P (which might correspond to
the reject state of the FSM). One of our motivating problems is to show that device drivers for
operating systems obey certain temporal properties. Device drivers form the interface between
an operating system and the devices that the operating system administers and controls. Most
device drivers are created by companies other than operating systems vendors. Because drivers
run in kernel space, a misbehaving driver can wreak havoc. Device driver programmers generally
use the C language and must obey many rules about the order in which the driver can access
operating system functions and resources. Although a device driver operates in a multi-threaded
environment, the majority of properties it must obey concern its sequential behavior.

To make our goal concrete, we consider the program P in Figure 1. In this program, \T"
denotes the boolean value true and \F" denotes false. We are interested in knowing if the
statement \assert(F)" at line 10 is reachable, as this would indicate that a \Unit" was acquired
improperly. We will start with a boolean program that coarsely abstracts P and incrementally
re�ne it, driven by the goal of answering our reachability query:

{ We �rst generate the \skeletal" boolean program B1 from P . Program B1 retains the control-

ow structure of P . However, every variable declaration of P has been removed, every
assignment statement has been replaced by skip (denoted by \..." for readability), and
every boolean expression has been replaced by \?" (non-deterministic boolean choice). We
say that that B1 abstracts P as the set of feasible (executable) paths in B1 is a superset of
the set of feasible paths in P .

{ We now ask the question: is line 10 reachable in B1? A model checker over B1 might be used
to answer this query. The answer is \yes" and one such path leading to line 10 is [1; 2; 7�10].
However, this path is infeasible in P because it constrains the variable numUnits to be both
equal to 0 (by the control transition from line 9 to 10) and not equal to 0 (line 2 to line 7).

{ We want to re�ne program B1 to eliminate this infeasible path, while ensuring that all
feasible paths in P are feasible in the new boolean program. What program state should
we choose to model in the boolean program? The condition (numUnits = 0) is an obvious
choice. We create a boolean variable nU0 to model this condition and a new boolean program
B2. Program B2 is constructed by examining the source statements of P , determining which
statements a�ect the condition (numUnits = 0) and updating the boolean variable nU0 so
that it will conservatively track the condition (numUnits = 0). That is, if nU0 is true at
line l in path p in B2 then (numUnits = 0) is true at line l in path p in P . Informally, B2

can be thought of as an abstract interpretation of program P with respect to the condition
(numUnits = 0).

{ In program B2, the path [1; 2; 7 � 10] is infeasible, since the boolean variable nU0 is false
due to the control transition from line 2 to line 7, which rules out the transition from 9 to
10. Notice that B2 eliminates another infeasible path from P , namely [1� 6; 8 � 10].

{ We again ask the question: is line 10 reachable in B2? The answer is still \yes" due to the
path [1� 3; 8� 10]. This path is infeasible in P , as the variable canEnter is initially set to
false and not updated subsequently, while the control transition from line 8 to 9 is taken,
indicating that canEnter is true, a contradiction. This suggests that we need to add a
boolean variable to model the canEnter condition, namely cE.

{ The boolean program B3 is the result of transforming the source program to correctly
update both variables nU0 and cE. Line 10 is not reachable in B3, so it is not reachable in
P . Note that B3 contains no mention of the variable level, as its value does not impact the
reachability of line 10.

In the above example, we have sketched a process for re�ning a program P into a boolean
program B based on the goal of invariant detection (\line 10 is not reachable"). The process
starts with a skeletal boolean program B with no boolean variables. The boolean program is
incrementally re�ned using the following iterative procedure:

1. We know that B abstracts P . Is there a path p in B that witnesses a violation of the
invariant? If not, then the invariant holds in P . This can be determined via model checking
of the boolean program B.

2. If there is such a path p, is p is feasible in P ? There are three possible outcomes to this
question, which generally is answered using an automated decision procedure:
� Path p is feasible in P . In this case, an error in P has been found and the process
terminates. Note that there is a one-to-one correspondence between the paths in P and
B, and every feasible path in P is a feasible path in B.

� Path p is infeasible in P . In this case, the process continues at step (3).
� The decision procedure used to determine the feasibility/infeasibility returns the answer
\don't know". In this case, the process terminates with a \don't know" answer.

3. What are the conditions that imply the infeasibility of path p in P ?
4. Using these conditions, create boolean variables to model the conditions and transform the

program P into a new boolean program B0 such that p is infeasible in B0, B abstracts B0,
and B0 abstracts P .

5. Replace B with B0 and go back to 1.

Due to the small size of program P in Figure 1, a model checker applied directly to program
P (or an encoding of P in a language such as Promela) would determine that line 10 is not
reachable in P . Of course, in general, it is undecidable to check if a program can reach some
statement. Even if P has only variables over �nite domains then model checking over P may
be impractical if the number of variables is large. In such situations, it is useful to construct
abstractions of P , which is what our process does.

The results of this paper, in addition to this re�nement process, are solutions to steps 1, 2
and 4. For step 3, we rely on existing techniques for symbolically executing a single path (such
as in [CL96] or [DE82]) and determining its feasibility, referred to here as path simulation. Our
results are the following:

{ Model checking of a boolean program with procedures and recursion. Using context-free lan-
guages, we give a trace-based and stackless semantics for our source language. We trans-
form the reachability problem for boolean programs to context-free language(CFL) reach-
ability [RHS95] and obtain a model checking algorithm for boolean programs. The model
checking algorithm is cubic in the size of the control
ow graph and exponential in the
maximum number of local variables in the program. Further, it provides short error traces
when errors are found.

{ Identi�cation of a small set of conditions that imply the infeasibility of a path. Strongest post-
conditions, suitably modi�ed for our application, yield a set of conditions that the boolean
program must model in order to eliminate the infeasible path. The strongest postcondi-
tion formalizes what interface a path simulator must present to be of use in our re�nement
process. We also present an algorithm for reducing the set of conditions that imply the
infeasibility of a path, which reduces the number of boolean variables needed in the boolean
program. This algorithm is based on a path abstraction called consistent path projections,
a new form of program slicing.

{ Derivation of a boolean program from the infeasibility conditions. Given the information
from the above step, we show how weakest preconditions (the dual of strongest postcon-
ditions) give a simple way to locally transform the statements of the source program P
into statements in the boolean program B. We present an algorithm to construct a boolean
program B from P that abstracts P and in which a particular path p (that is infeasible in
P) becomes infeasible. In general, several infeasible paths in P could become infeasible in
B through this construction, especially if few boolean variables are needed to explain the
infeasibility.

Our results should be of interest to the following communities:

Program := Declaration� Procedure�

Declaration ::= Identi�er : TypeIdentifer ;
Procedure ::= ProcHeader fProcBodyg
ProcHeader ::= Identi�er(Declaration�)
ProcBody ::= Declaration� LabeledComm

LabeledComm ::= 0[0Label 0]0Comm
Comm ::= Assignment j

if (BoolExpr) fLabeledCommg
else fLabeledCommg j

while (BoolExpr) fLabeledCommg j

Comm +::= assert (BoolExpr) j
Comm ; LabeledComm j
skip j
Identi�er (Expr�);

0[0Label 0]0skip = � call � = j
return = � return � = j

Assignment ::= (Variable)+:=(Expr)+

Fig. 2. BNF for the syntax of the X language.

{ Model Checking: Boolean programs could form an intermediate language on which model
checkers for software (based on BDDs or other representations) could be built to perform
eÆcient reachability analysis.

{ Program Analysis: Data
ow analyses typically assume that every control
ow path is po-
tentially executable and conservatively approximate at every point in which control
ow
from separate paths merges. Boolean programs could be a mechanism by which infeasible
paths could be ruled out by maintaining correlations between variables, thereby improving
the accuracy of data
ow analysis.

{ Path Simulation: When using a path simulator to uncover program errors, selecting which
paths to simulate is crucial to obtain good coverage. In general, path selection is a very hard
problem. Our process does away with path selection, and uses path simulators on only one
path at a time. One could view the model checker and the re�nement process as implicit
property-driven path selection.

The rest of this paper gives the background and techniques to implement the Steps 1{4 in the
above iterative procedure. Section 2 de�nes the syntax and semantics of a simple programming
language called X. Section 3 de�nes boolean programs and presents a model checking algorithm
for boolean programs based on CFL-reachability (Step 1). Section 4 formalizes path simulation
using strongest postconditions and shows how to check if a given path p is feasible in P (Step 2).
If p is infeasible, we produce a set of boolean expressions E and annotations A that \explain"
the infeasibility (Step 3). Using A and E, we construct a boolean program B̂(P;E;A) which
abstracts P , while maintaining the infeasibility of p (Step 4). Section 5 details how to �nd a
smaller set of conditions E0 and annotations A0 that explains the infeasibility of p, thus reducing
the number of variables needed in the boolean program abstraction. Section 6 discusses related
work. Section 7 concludes and points to future work.

2 The programming language X

We give a simple programming language called X that de�nes the source programs as well as
the boolean programs. Figure 2 presents the concrete syntax for X. We use labels to give a trace
semantics for X programs. TypeIdentifer ranges over integers and �nite enumerations. We lift
the traditional boolean type to a three-valued type: ftrue; false; ?g, where ? denotes the truth

^ true false ?

true true false ?

false false false false

? ? false ?

_ true false ?

true true true true

false true false ?

? true ? ?

!

true false

false true

? ?

Fig. 3. Kleene's three-valued interpretation of ^, _ and ! (negation).

value \unknown". Expr and BoolExpr are side-e�ect free, contain the usual operators and may
refer to constants of the appropriate types. Following [SRW99], we use Kleene's three-valued
logic to interpret boolean expressions (see Figure 3). This three-valued logic is useful when
de�ning boolean programs. A procedure call is required to be followed by a skip statement
so that the return point of the call is explicit and labeled. The parallel assignment operator is
useful in abbreviating a sequence of assignments such as tmp:=x;x:=y; y:=tmp to x; y:=y; x.
We use the parallel assignment operator in the construction of B(P;E) in Section 4.1.

The term statement denotes the portion of a command that is identi�ed by a label. Intu-
itively, statements are entities that execute when single stepping an X program in a source-level
debugger. Let P be an X program. L(P) denotes the set of labels in P and V (P) denotes the
set of variables in P . If P has assert statements, L(P) contains a special label err (for error
label). Let l 2 L(P) be a label. SP (l) denotes the statement at label l in P . Labels and variable
names are assumed to be globally unique.

Variables and Scope. Let Globals(P) be the set of global variables of P . Let FormalsP (l)
be the set of formal parameters of the procedure whose body contains label l. Let LocalsP (l)
be the set of local variables and formal parameters at label l. For all l 2 L(P), FormalsP (l) �
LocalsP (l). Let InScopeP (l) denote the set of all variables of P whose scope includes l. For all
l 2 L(P), InScopeP (l) = LocalsP (l) [Globals(P). For a set V � V (P), a valuation
 to V
is a function that associates every variable in V with a value of the appropriate type.
 can
be extended to expressions over V in the usual way. For any function f : D ! R, d 2 D,
r 2 R, f [d=r] : D ! R is de�ned as f [d=r](d0) = r if d = d0, and f(d0) otherwise. For example,
if x; y are integer variables, V = fx; yg, and
 = f(x; 1); (y; 2)g, then
(x + y) = 3, and

[x=5] = f(x; 5); (y; 2)g:

Successors. Let SuccP : L(P) ! 2L(P) be a function that maps each label to its control-
ow
successors. The value of Succp(l) depends on the statement SP (l). If SP (l) is an assignment
or skip, then Succp(l) is a singleton set containing the label of the next sequential state-
ment. If SP (l) is an if , while or assert statement, then Succp(l) = fTsuccP (l);FsuccP (l)g,
where TsuccP (l) denotes the successor of l when the boolean expression evaluates to true, and
FsuccP (l) denote the successor of l when the boolean expression evaluates to false. If SP (l) is
an assert statement, FsuccP (l) = err. If the boolean expression evaluates to ?, it is treated as
if the expression nondeterministically evaluated to true or false, independent of the state of
P . Thus, if , while and assert statements in which the boolean expression evaluates to ? can
behave nondeterministically.

For any procedure pr in P , let FirstP (pr) be the label of the �rst statement in procedure
pr. A procedure call at label l to procedure pr has FirstP (pr) as its unique successor. If SP (l)
is a procedure call then RetPtP (l) is the label of the skip statement immediately following the

S !MS
8hcall; l; �i 2 �(P) :
S ! hcall; l; �i S

S ! �

8hcall; l; �i; hret; l; �i 2 �(P) :
M ! hcall; l; �i M hret; l; �i

M !MM
M ! �
M ! �

Table 1. Production rules Rules(P) for grammar G(P).

procedure call. If SP (l) is a return statement in procedure pr, then SuccP (l) = fn jm;n 2 L(P)
and SP (m) is a call to pr and n = RetPtP (m)g.

States and Transitions. A state � of P is a pair hl;
i, where l 2 L(P) and
 is a valuation to
the variables in InScopeP (l). States(P) is the set of all states of P. Intuitively, a state contains
the program counter and values to all the variables visible at that point. Note that our de�nition
of state is di�erent from the conventional notion of a program state, which includes the call
stack (with activations records for all active procedures). The projection operator � maps a
state to its label: � (hl;
i) = l. We can extend � to operate on sequences of states in the usual
way.

We de�ne a set �(P) of terminals:

�(P) = f�g [f hcall; l;�i; hret; l;�i j 9l1 2 L(P);SP (l1) is a procedure call; and
l = RetPt(l1); and � is a valuation to LocalsP (l1)g

�(P) is in�nite if there are integer variables in P and �nite if there are no integer variables in P .
In particular, �(P) is �nite if all the variables in P are boolean variables. Intuitively, terminals
are either �, which is a place holder, or triples that are introduced whenever there is a procedure
call in P . The �rst component of the triple is either call or ret, corresponding to the actions
of a call to and return from that procedure, the second is the label of the return point of the
call, and the third component keeps track of values of local variables of the calling procedure at
the time of the call. We will use these terminals in a context-free grammar G(P) that speci�es
the legal sequences of calls and returns that a program P may make. A context-free grammar
G is a 4-tuple hN;T;R; Si, where N is a set of nonterminals, T is a set of terminals, R is a set
of production rules and S 2 N is a start symbol. For each program P , we de�ne a grammar
G(P) = hfS;Mg; �(P);Rules (P); Si, where Rules(P) is de�ned in Table 1.

If we view terminals hcall; l;�i and hret; l;�i as matching left and right parentheses, the
language L(G(P)) is the set of all strings over �(P) that are sequences of partially-balanced
parentheses. That is, every right parenthesis hret; l;�i is balanced by a preceding hcall; l;�i
but the converse need not hold. The � component insures that the values of local variables at
the time of a return are the same as they were at the time of the corresponding call (this must be
the case because the X language has a call-by-value semantics). The nonterminal M generates
all sequences of balanced calls and returns, and S generates all sequences of partially balanced
calls and returns. This allows us to reason about non-terminating or abortive executions. Note
again that the number of productions is in�nite if program P contains integer variables, but
�nite if P contains only boolean variables.

We use �1
�
!P�2, to denote that P can make an �-labeled transition from state �1 to state

�2. Formally, �1
�
!P �2 holds if �1 = hl1;
1i 2 States(P), �2 = hl2;
2i 2 States(P), � 2 �(P),

SP (l1) � l2
2

skip � = � l2 = SuccP (l1)
2 =
1

x1; x2; : : : ; xk :=
e1; e2; : : : ; ek

� = � l2 = SuccP (l1)
2 =
1[x1=
1(e1))] � � � [xk=
1(ek)]

if(e)
while(e)
assert(e)

� = �
l2 = Tsucc(l1)if
1(e) = true

l2 = Fsucc(l1)if
1(e) = false

l2 2 Succ(l1)if
1(e) = ?

2 =
1 if
1(e) 6= ?

2 2 S(f
1g; e; l2 = Tsucc(l1))

if
1(e) = ?

pr(e1; e2; : : : ; ek)
� = hcall;RetPtP (l1); �i,
�(x) =
1(x); x 2 LocalsP (l1)

l2 = FirstP (pr)

2(xi) =
1(ei); xi 2 FormalsP (l2)

2(g) =
1(g); g 2 Globals(P)

return � = hret; l2; �i l2 2 SuccP (l1)

2(g) =
1(g); g 2 Globals(P)

2(x) = �(x); x 2 LocalsP (l2)

Table 2. Conditions on the state transitions hl1;
1i
�
!P hl2;
2i, for each statement construct in X. See Figure 4

for the de�nition of the function S.

S(O;x; b 2 ftrue; falseg) = f
[x=b] j
 2 O;
(x) = ?g
S(O; !e; b 2 ftrue; falseg) = S(O; e; !b)
S(O; e1 ^ e2; true) = S(S(O; e1; true); e2; true)
S(O; e1 ^ e2; false) = S(O; e1; false) [S(O; e2; false)
S(O; e1 _ e2; true) = S(O; e1; true) [S(O; e2; true)
S(O; e1 _ e2; false) = S(S(O; e1; false); e2; false)

Fig. 4. De�nition of the function S.

where the conditions on �1, �2 and � for each statement construct are shown in Table 2. The
transitions for skip, assignment statements and procedure call/return are straightforward.

The transition for a conditional expression e (in if (e), while (e) or assert (e)) is com-
plicated by the use of three-valued logic. Consider the evaluation of a boolean expression e in
a conditional statement in state
1. If
1(e) = true or
1(e) = false then the control
ow
successor is uniquely determined and
2 =
1. However, if
1(e) = ? then the control
ow
successor l2 is nondeterministically chosen from Succ(l1). Furthermore, the state
2 must be
consistent with this choice. That is
2 must be drawn from a set of states in which e evaluates
to true (false) if l2 = Tsucc(l1) (l2 = Fsucc(l1)). This set of states is de�ned by the function
S, de�ned in Figure 4. To illustrate this function, consider the boolean expression e = x^y in a
state
1 where
1(x) =
1(y) = ?. Suppose that l2 = Fsucc(l1) is chosen nondeterministically
from Succ(l1). Then
2 must be drawn from the set:

S(f
1g; x ^ y; false) = f
1[x=false];
1[y=false]g

That is, there are two ways in which x^y could evaluate to false given that
1(x) =
1(y) = ?.
Note that we do not need to include the state
1[x=false][y=false], as both the states
2 =

1[x=false] and
3 =
1[y=false] are more general than this state (the former having
2(y) = ?
and the latter having
3(x) = ?).

We assume that there is a distinguished procedure named main, where P starts executing.
A state � = hl;
i is initial if l = FirstP (main) (all variables can take on arbitrary initial

values). A �nite sequence � = �0
�0!P �1

�1!P � � � �n1
�n�1
!P �n is a trajectory of P if (1) �0 is an initial

state of P , (2) for all 0 � i < n, �i
�i!P �i+1, and (3) �0�1 : : : �n�1 2 L(G(P)). If � is a trajectory,

then its projection to labels � (�0); � (�1); : : : ; � (�n) is called a trace of P . The semantics of an
X program is its set of traces. A state � of P is reachable if there exists a trajectory of P that
ends in �. A label l 2 L(P) is reachable if there exists a trace of P that ends in l.

3 Model Checking of Boolean Programs

A boolean program is an X program in which all variables and procedure parameters have
boolean type. An instance hB; li of the boolean program reachability problem consists of a boolean
program B, and l 2 L(B). The answer to the problem is \yes" if l is reachable in B and \no" if l
is not reachable in B. We give a decision procedure to answer the boolean-program-reachability
problem that has the characteristics of model checking. In particular, if l is reachable, the
procedure yields a trajectory that proves the reachability of l.

Context-free-language reachability. Let T be a set of terminals. A labeled graph over T is
a tuple G = hN;Ai where N is a set of nodes, and A � N � T �N is a set of labeled arcs.

An instance hG ;G; N1; N2i of the context-free-language (CFL) reachability problem is a
graph G = hN;Ai over a set of terminals T , a context-free grammar G = hN 0; T;R; Si, and a
pair of sets N1; N2, where N1 � N , and N2 � N . The answer to the problem is \yes" if there
exist n1 2 N1, n2 2 N2, and s 2 L(G), such that there is a path from n1 to n2 in G with
the string of labels s, and \no" otherwise. It is known that CFL-reachability can be solved in
O((jN j � jGj)3).

Boolean program reachability as CFL-reachability. We give a reduction of boolean pro-
gram reachability to CFL-reachability. Let hB; li be an instance of the boolean program reach-
ability problem. Construct a labeled graph, the exploded graph, GB = hNB ; ABi with labels
over �(B), where NB = States(B), and AB = fhs1; �; s2ijs1

�
!Bs2g. Let S1 be the set of initial

states of B, and S2 be the set of states of B with label l.

The boolean program reachability problem hB; li can be reduced to the CFL-reachability
problem hGB ;G(B); S1; S2i. In fact, we can use the CFL-reachability algorithm of Reps et
al. [RHS95], which uses a form of memoization at procedure calls and works in a directed
manner from the main procedure. If l is reachable in B, the CFL-reachability procedure or
Reps et al.'s algorithm can be used to give a trajectory that ends in a state labeled l.

Example. Figure 5 presents a program with four procedures (main, A, B, and C)
and a part of its exploded graph. In this program, there is one global variable g and
procedures A, B and C each have one formal parameter. In the exploded graph, we have
only considered the values false or true (and not ?) for the boolean variables. Thus,
there are two possible valuations for g in procedure main at each of the four labels in
main and four possible valuations for g and the formal parameter in each label of the
procedures A, B, and C. The trajectory in Figure 5 shows that the label [12] is reachable
(some transitions in the exploded graph are not shown in the �gure).

Initially, the global variable g is false. The call to procedure A results in a state in
which both g and the formal parameter a have the value false. Note that the transitions
associated with procedure calls and returns are labeled with terminals. For example,
the transition from [5] to [11] is labeled with hcall; [6]; fa = falsegi, recording that the

g: bool := false;

main() f
[1] A(g);

[2] skip;

[3] B(!g);

[4] skip;

g

A(a: bool) f
[5] C(a);

[6] skip;

[7] return;

g

B(b: bool) f
[8] C(!b);

[9] skip;

[10] return;

g

C(c: bool) f
[11] if (c) f
[12] assert(false);

g else f
[13] g := !g;

g
[14] return;

g

[1] [2] [3] [4]

[5]

[6]

[7]

[11]

[12]

[8]

[9]

[10]

[13]

[14]

main

A

C

B

<call,[2],�>

<call,[6],a=F>

<ret,[6],a=F>

<call,[4],�>

<call,[10],b=F>

<ret,[2], � >

Fig. 5. A program with four procedures and a trajectory in its exploded graph that shows that label [12] is
reachable. White nodes denote states in which g = true while black nodes denote states in which g = false. In
procedures with a formal parameter (A, B, and C), a square node denotes states in which the parameter has
value false, while a round node denotes states in which the parameter has value true.

return from procedure C must go to [6], and the value of variable a must be \restored"
to false. The transition from [14] to [6] is labeled with hret; [6]; fa = falsegi. The pair of
terminals hcall; [6]; fa = falsegi and hret; [6]; fa = falsegi are matched by the grammar
for this program. Of particular interest is the transition from [13] to [14], in which the
value of g changes from false to true. As a result, the value of the formal parameter b
in B is false when B is called at line [3] and the value of parameter c in procedure C is
true when C is called from B at line [8]. ut

Let m1 � jInScope(l)j for all l 2 L(B), and m2 � jLocals(l)j for all l 2 L(B). Let C be the
number of procedure calls in B. Then jNB j is O(jL(B)j�3

m1), and jG(B)j is O(C�3m2). Thus
the complexity of our algorithm for checking if l is reachable in B is O((jL(B)j�C)3�3m1+m2).
If B has a constant number of global variables then the complexity is asymptotically exponential
in the maximum number of local variables (over all procedures) in B. Thus, the model checking
exploits the inherent modularity from procedural abstraction.

4 Constructing Boolean Program Abstractions

It is undecidable to check if a program P in language X can reach a label l 2 L(P). Even if
P only has variables over �nite domains then model checking over P may be impractical if
P is large (although the previous section shows that the problem is decidable if a program's
variables have �nite domains). In such situations, it is useful to construct abstractions of P .
Let P and Q be X programs such that L(P) = L(Q). We say that P re�nes Q, or Q abstracts

P , written P � Q, if every trace of P is a trace of Q.

The most naive abstraction of P is de�ned by the control skeleton of P , written Skel(P).
Skel(P) is a boolean program that is constructed by:

{ deleting all variable declarations from P ;
{ replacing all assignments and asserts in P with skip statements;
{ replacing all boolean expressions in if and while statements of P with ?;
{ retaining all procedure calls in P (after deleting the actual parameter list) and deleting all
formal parameter lists.

By construction, P � Skel(P).

Let P be an X program and E be a �nite set of boolean expressions over variables in P and
constants in X. Section 4.1 describes the construction of a boolean program B(P;E), such that
P � B(P;E). Section 4.2 formalizes what a path simulator does in terms of strongest postcon-
ditions. Recall that we use a path simulator to provide a set of conditions that \explain" the
infeasibility of a path p in P . Section 4.3 shows how to construct E, and a set of \annotations"
A (de�ned later) so as to make path p infeasible in the boolean program B̂(P;E;A). Section 4.4
describes how to iteratively re�ne the boolean program using these results.

To simplify the technical presentation in Sections 4.1{ 4.4 we assume that P is in X-normal
form (de�ned below) and is a single procedure program. The extension to multiple procedures
is described in Section 4.5. An X program P is in X-normal form if all the following hold:

{ every assert statement in P is followed by a skip statement;
{ all boolean expressions in if and while statements of P are ?;
{ all assignment statements in P assign to a single variable.

If P is not inX-normal form, it is easy to transform it to P 0 inX-normal form without changing
its semantics, using the following transformations: the statement \if (e) f A g else f B g" is
transformed to

if(?) f assert(e); skip;A g else f assert(!e); skip;B g

The statement \while(e) f S g" is transformed to

while(?) f assert(e); skip;S g assert(!e); skip;

Parallel assignments are transformed to a sequence of single assignments using temporary vari-
ables to ensure that the semantics of parallel assignment is respected. For example x; y := y; x
is transformed to tmp1 := y; tmp2 := x;x := tmp1; y := tmp2;. In general P 0 has additional
labels and statements. However, for any l in L(P), l is reachable in P i� l is reachable in P 0.

Statement(s) in P Translation in B(P; E)

[i] if (0?0) [i] if (0?0)

[i] while (0?0) [i] while (0?0)

[i] x := e [i] b1; : : : ; bn := I(x := e; e1); : : : ; I(x := e; en)

[i] assert(e) [i] assert(!F(!e))
[j] skip [j] b1; : : : ; bn := I(assert(e); e1), : : : ,I(assert(e); en)

[i] skip [i] skip

Table 3. Transforming statements in a source program P into a boolean program B(P; E).

4.1 Constructing B(P,E)

Let E = fe1; e2; : : : ; eng be a set of boolean expressions over variables in P and constants in X.
Then B(P;E) has n boolean variables VB = fb1; b2; : : : bng, and the same control structure as P .
Intuitively, we wish to maintain that whenever bi = true(false) at a given state of a trajectory in
B(P;E), ei evaluates to true(false) at the corresponding state of the corresponding trajectory
in P . However, if bi evaluates to ? at a given state in B(P;E) then there is no guarantee of
what the value of ei is at the corresponding state in P .

Initially, all the bi are set to ? in B(P;E). Each statement s in P (with the exception
of asserts) is transformed to a corresponding statement in B(P;E). An assert statement is
transformed to two statements in B(P;E) (which is why we required the skip statement after
every assert in X-normal form). Table 3 shows the translation and uses the notation de�ned
below. (Our translation is quite naive, as we conservatively assume that an assignment statement
can a�ect every ei (and thus every bi). Optimizing the translation remains as future work.)

For a statement s and a boolean expression f , let WP(s; f) denote the weakest precondi-

tion [Gri81] of f with respect to statement s. Given an expression f , let f [x e] denote the
expression obtained by substituting each occurrence of x in f by expression e (with appropriate
renaming to avoid name capture). WP for assignments and asserts is de�ned as follows:

WP(x := e; f) = f [x e]
WP(assert(e); f) = e) f

Aminterm over VB is a conjunction ci1^ci2 � � �^cik , where each cij 2 fbij ; !bijg for some bij 2 VB .
For any boolean variable bi 2 VB , let E(bi) denote the corresponding boolean expression ei
and let E(!bi) denote the corresponding boolean expression !ei. Extend E to minterms and
disjunctions of minterms in the usual way. For any boolean expression e, let F(e) denote the
largest disjunction of minterms over VB such that E(F(e)) implies e. The function E(F(e))
represents the weakest expression over E that implies e. The computation of F is exponential
in n, in the worst-case. However, by considering minterms over pairs or triples of variables only,
we can compute a conservative approximation to F in O(n2) or O(n3). Given two boolean
expressions e and f , we de�ne the function H:

H(e; f) =
true if e
false if f
? otherwise

Note that for H(e; f) to be well de�ned, e and f should never be true simultaneously. We
ensure that this condition is satis�ed whenever we use H. Given a statement s and a boolean

expression e, let I(s; e) = H(F(WP(s; e));F(WP (s; !e))). Intuitively, I(s; e) denotes the truth
value for the boolean variable b corresponding to e, after executing statement s. We illustrate
the translations of the assignment and assert statements in the following two examples:

Examples. Let E = f(x = 1); (x = 2); (x � 3)g and let VB = fb1; b2; b3g be the three
boolean variables with E(b1) = (x = 1), E(b2) = (x = 2), and E(b3) = (x � 3). Consider
the assignment statement x := x+1. The following table shows the weakest preconditions
WP(x := x + 1; e), and WP(x := x + 1; !e) for each e 2 E. The table also shows the
strengthening of the weakest preconditions with respect to the boolean variables b1, b2
and b3.

e = (x = 1) e = (x = 2) e = (x � 3)

WP(x := x+ 1; e) x = 0 x = 1 x � 2

F(WP(x := x+ 1; e)) false b1 b1 _ b2
E(F(WP(x := x+ 1; e))) false x = 1 x = 1 _ x = 2

WP(x := x+ 1; !e) x 6= 0 x 6= 1 x � 3

F(WP(x := x+ 1; !e)) b1 _ b2_!b3 !b1 _ b2_!b3 !b3
E(F(WP(x := x+ 1; !e))) x = 1 _ x = 2 _ x > 3 x 6= 1 _ x = 2 _ x > 3 x > 3

We explain the entries in the last column of the table. First, considerWP(x := x+1; (x �
3)) = x � 2. The condition (x � 2) is not in E. However, we have that (x = 1) _ (x =
2)) (x � 2). Therefore, if b1 _ b2 is true before the execution of x := x + 1 then
b3 should be true afterwards. Now consider WP(x := x + 1; !(x � 3)) = x � 3. The
condition (x � 3) is not in E. However, we have that !(x � 3)) (x � 3). Therefore,
if b3 is false before x := x + 1 then b3 should be false after x := x + 1. Further note
that both b1 _ b2 and !b3 cannot be true at the same time (since this would imply that
x = 1 ^ x = 2 and x > 3 could be true at the same time). Thus, the e�ect of the
assignment statement x := x+ 1 on variable b3 is given by:

b3 := I(x := x+ 1; (x � 3)) =
true if (b1 _ b2)
false if !b3
? otherwise

The next example illustrates the translation of assert statements. Let E = f(x <
y); (x < z); (y < z)g, and let VB = fb4; b5; b6g with E(b4) = (x < y), E(b5) = (x < z),
and E(b6) = (y < z). Consider the assert statement assert(y < z). It can be checked
that F(!(y < z)) =!b6 _ (b4^!b5). If the assert statement assert(!F(!(y < z))) fails in
B(P;E), we are guaranteed that assert(y < z) fails in P . If assert(y < z) succeeds
in P , we must take into account how the truth of e impacts the truth values of the
expressions in E and their corresponding variables in VB. This is captured by the second
statement in the translation (which replaces the skip statement following the assert).
For the three expressions in E and their corresponding boolean variables we have that

{ F(y < z) x < y) = b4, and F(y < z)!(x < y)) =!b4_!b5. Note that if both b4 and
!b4_!b5 are simultaneously true, then it must be the case that b4^!b5 is true, which
implies that assert(!F(!(y < z))) should have failed. If assert(!F(!(y < z))) passes,

then b4 and !b4_!b5 cannot be true simultaneously. Thus, the translation for b4 is:

b4 := I(assert(y < z); (x < y)) =

true if b4
false if !b4_!b5
? otherwise

{ F(y < z) x < z) = b5 _ b4 and F(y < z)!(x < z)) =!b5 In this case, the truth
of (y < z) implies the truth of (x < z) if (x < z) or x < y already is true, and the
truth of (y < z) implies the truth of !(x < z) if !(x < z) is already true. Note that if
b5 _ b4 and !b5 are simultaneously true, then it must be the case that b4^!b5 is true,
which is not possible if assert(!F(!(y < z))) passes. Thus, the translation for b5 is:

b5 := I(assert(y < z); (x < z)) =
true if b5 _ b4
false if !b5
? otherwise

Since F(y < z) y < z) = true, the translation for b6 is:

b6 := I(assert(y < z); (y < z)) = true

ut

We have the following results:

Lemma 1. Let P be an X program in X-normal form, and let E = fe1; e2; : : : ; eng be a

set of expressions over V (P) and constants in X. Let B = B(P;E) be the boolean program

abstraction with variables fb1; b2; : : : ; bng (where bi corresponds to ei, for i � i � n). Then, for
every trajectory � = hl0;
0i !P hl1;
1i � � � !P hlN�1;
N�1i !P hlN ;
N i of P , there exists

a trajectory �0 = hl0;

0
0i !B hl1;

0
1i � � � !B hlN�1;

0
N�1i !B hlN ;

0
N i of B, such that for

every boolean variable bi in B, and 0 � k � N , we have that

((
0
k(bi) = true)) (
k(ei) = true)) and ((
0

k(bi) = false)))(
k(ei) = false))

Proof. By induction over k.
0
0(bi) is ? for all bi, so the base case k = 0 is easy. For the induction,

let s = SP (lk�1) (s is the last statement executed on the trajectory thus far). There are four
cases to consider:

{ s is an assignment statement: Suppose
0
k(bi) is true (a similar proof can be done for the

case in which
0
k(bi) is false). Since

0
k(bi) is true some minterm in F(WP(s; ei)) was true

in
0
k�1 (Note that no minterm can be in both F(WP(s; ei)) and F(WP(s; !ei))). Let that

minterm be cj1^cj2 � � �^cjm . Let fjr = E(cjr). By induction, for each 0 � r � m;
k�1(fjr) =

0
k(cjr) = true. By the de�nition of F we have fj1 ^fj2 � � � ^fjm)WP(s; ei). Thus,
k(ei)

is true as well.
{ s is of the form assert(e): In this case, we need to prove if assert in B(P;E) fails then the
assert in P fails as well. If assert(!F(!e)) fails, it follows that some minterm in F(!e) was
true in
0

k�1. Let that minterm be cj1^cj2 � � �^cjm . Let fjr = E(cjr). By induction, for each
0 � r � m;
k�1(fjr) =
0

k�1(cjr) = true. By the de�nition of F , fj1 ^ fj2 � � � ^ fjm)!e. It
follows that
k�1(!e) = true and assert(e) in P fails.

{ s is a skip that immediately follows assert(e): Suppose
0
k(bi) is true (a similar proof can

be done for the case in which
0
k(bi) is false). Since

0
k(bi) is true some minterm m in

F(e) ei) was true in
0
k�1. Note that m cannot be in F(e)!ei), because that would

imply that E(m))!e, which is not possible since assert(!F(!e)) passed in B(P;E). Let m
be cj1 ^ cj2 � � � ^ cjm . By induction , for each 0 � r �m;
k�1(fjr) = true. Further
k�1(e)
is true, because the assertion assert(e) just passed in P . Since fj1^fj2 � � �^fjm) (e) ei),
we have that
k�1(ei) = true. Since s is a skip, we have
k =
k�1, and
k(ei) = true.

{ s does not fall into any of the above categories: Since
k =
k�1, and
0
k =
0

k�1, we are
done.

ut

Theorem 1. Let P be an X program in X-normal form, and let E = fe1; e2; : : : ; eng be a set

of expressions over V (P) and constants. Then P � B(P;E).

Proof. Follows from Lemma 1. ut

4.2 Formalizing Path Simulation using Strongest Postconditions

A given error trace
 in the boolean program B(P;E) may not be a trace in P . We use the
technology of path simulation (symbolic evaluation of a single path through P) to �nd a set of
expressions E such that
 is not a trace of B(P;E). This section formalizes our requirements on
a path simulator using the foundation of strongest postconditions. The strongest postcondition
formulation we present is not the traditional one [Gri81], which we review quickly here, but can
be shown to be equivalent to it. The classic Hoare-logic formulation of strongest postconditions
for assignment and assert statements are de�ned as follows.

SPH(f; x := e) = 9x0:f [x x0] ^ (x = e[x x0])
SPH(f;assert(e)) = f ^ e

We note that if f and e do not contain any occurrences of the variable x then the �rst def-
inition can be simpli�ed to: SPH(f; x := e) = f ^ (x = e). For a sequence of statements,
p = s1; s2; : : : ; sn, we have:

SPH(f; p) = SPH(: : : SPH(SPH(f; s1); s2) : : : ; sn)

We formalize paths and their relationship to traces. Let P be an X program. A sequence p
of statements s1; s2; : : : ; sn is a path of P if there is a trace
 = l0; l1; : : : ; lm of Skel(P) such
that m > n, and p is the subsequence of SP (
) = SP (l0);SP (l1); : : : ;SP (lm) containing only
assertions and assignments. (Since P is a single-procedure program in X-normal form SP (
)
contains only assertions, assignments, skip, if statements, and while statements. Further, the
if and while statements have 0?0 as their deciders. The path p is obtained from SP (
) by
eliminating skip, if and while statements). We say that
 is a witnessing trace to the path
p. Let �̂ be a function that maps statement indices in p to their corresponding labels in the
witnessing trace
. A path p is feasible if its witnessing trace
 is a trace of P (
 is by de�nition
a trace of Skel(P)). Otherwise, path p is infeasible in P .

Uses and de�nitions. Given an expression e, let use(e) denote the set of variables used in e.
For every statement s, we de�ne two sets of variables use(s) and def (s). The set use(s) denotes
the set of variables whose values are used by s, and def (x) denotes the set of variables for
which new values are de�ned by s. If s is an assert statement assert(e), then use(s) = use(e),
and def (s) = ;. If s is an assignment statement x1; x2; : : : ; xk := e1; e2; : : : ; ek, then use(s) =
use(e1)[use(e2) � � �[use(ek), and def (s) = fx1; x2; : : : ; xkg. Let p = s1; s2; : : : ; sn be a path of
P . Let V (p) be the set of variables referenced (used or de�ned) in p. Let �(p) be a set of symbolic
constants in a one-to-one correspondence with the variables of V (p): �(p) = f�x;pjx 2 V (p)g.
Let Exp denote the (in�nite) set of expressions over �(p) and the constants in X.

Contexts. A context of the path simulator is a triple h
̂;�;�i, where
̂ is a partial function
V (p) ! Exp called the store, � � V (p) � Exp is a set called the history, and � is a set of
boolean expressions from Exp called the conditions.
̂ represents the current valuation to V (p),
� represents the past valuations to V (p), and � represents the constraints introduced by ex-
pressions in assert statements.
̂ is extended to expressions over V (p) in the usual way. Given a
store
̂ and a set of variablesX � V (p), let undef (
̂;X) = fhx; �x;pijx 2 X;
̂(x) not de�nedg.
We use undef (
̂;X) to assign variable x 2 X its symbolic constant �x;p when x is not de�ned
in
̂.

The strongest postcondition SP maps a context and a statement to a new context:

SP(h
̂;�; �i; x := e) = let �
 =
̂ [undef (
̂; use(e)) in
h �
[x= �
(e)]; � [fhx; �
(x)ij �
(x) de�nedg; �i

SP(h
̂;�; �i; assert(e)) = let �
 =
̂ [undef (
̂; use(e)) in
h �
; �; � [�
(e)i

As before, for a path p = s1; s2; : : : ; sn, we have:

SP(h
̂;�; �i; p) = SP(: : : SP(SP(h
̂;�;�i; s1); s2) : : : ; sn)

For a pair hx; ei in V (p)�Exp, let C(hx; ei) denote the boolean expression (x = e). We generalize
C to sets of pairs and sets of expressions in the usual way. Given a context h
̂;�; �i, let
C(h
̂;�;�i) =

V
e2(C(
̂)[�) e. Let ;

3 abbreviate the empty context h;; ;; ;i. There are three

interpretations of a context h
̂;�;�i = SP(;3; p) that are of interest:

{ The boolean expression F =
V
c2� c represents the conditions imposed by the asserts in the

path p. If F is not satis�able (i.e., a decision procedure shows that F cannot be satis�ed;
satis�ability is computationally hard but there are good heuristics for eÆciently checking
satis�ability) then p is infeasible in P . A decision procedure actually may report three
possibilities: \satis�able", \not satis�able", \don't know".

{ The boolean expression C(SP(;3; p)) is logically equivalent to SPH(true; p), where we extend
the alphabet of logical discourse to include the symbolic constants of p as well as the variables
of p. The di�erence is that the traditional strongest postcondition does not perform forward
substitution of symbolic values for variables in the interpretation of expressions.

{ As the next section shows, the set of expressions E = C(
̂) [C(�) [�, where h
̂;�; �i =
SP(;3; p), is suÆcient to make path p infeasible in B(P;E).

Example. Consider the following path p and how each statement transforms the context
h
̂;�;�i:

p
̂ � �

assert(b>0); hb; �b;pi �b;p > 0

c := b+b; hc; 2�b;pi

a := b; ha; �b;pi
a := a-1; ha; �b;p � 1i ha; �b;pi
assert(a<b); �b;p � 1 < �b;p
assert(c=a); 2�b;p = (�b;p � 1)

At the �rst statement the variable b is unde�ned in
̂, so it is assigned the symbolic
constant �b;p. The assert statement also constrains the value of �b;p to be greater than
zero, which is re
ected in the � column. The next two assignment statements simply
add to
̂. The assignment statement \a:=a-1" moves the pair ha; �b;pi, representing the

old value of a, from
̂ to � and adds ha; �b;p � 1i to
̂. The �nal context of the path

h
̂;�;�i = SP(;3; p) is thus:

̂ = fha; �b;p � 1i; hb; �b;pi; hc; 2�b;pig
� = fha; �b;pig
� = f(�b;p > 0); (�b;p � 1 < �b;p); (2�b;p = �b;p � 1)g

This path is infeasible because (�b;p > 0)) (2�b;p 6= �b;p � 1). In comparison, the
traditional Hoare-logic strongest postcondition of p is:

SPH(true; p) = (b > 0) ^ (c = b+ b) ^ [9a0 : (a0 = b) ^ (a = a0 � 1)] ^ (a < b) ^ (c = a)

Eliminating a0 yields: (b > 0) ^ (c = b+ b) ^ (a = b� 1) ^ (a < b) ^ (c = a). We add the
equality b = �b;p to get (b = �b;p)^ (b > 0)^ (c = b+ b)^ (a = b� 1)^ (a < b)^ (c = a).
Performing forward substitutions yields:

(b = �b;p) ^ (�b;p > 0) ^ (c = 2�b;p) ^ (a = �b;p � 1)^
(�b;p � 1 < �b;p) ^ (2�b;p = �b;p � 1)

which is equivalent to C(h
̂;�;�i). ut

4.3 Eliminating Infeasible Paths in a Boolean Program

A path p contains loops if its witnessing trace has two occurrences of the same label in L(P).
In the following, we assume that the given path p does not contain loops. If p contains loops,
we can unroll the loops in P a �nite number of times to create an equivalent program P 0 and
equivalent path p0, such that p0 does not contain loops.

In this section, we show that if path p is infeasible in program P then E = C(
̂)[C(�)[�,
where h
̂;�;�i = SP(;3; p), is a suÆcient set of conditions to make p infeasible in B(P;E).
However, since expressions in E can refer to symbolic constants in �p, we need to introduce

\annotations" to relate these symbolic constants to the boolean program. Given P and E, let
E0 � E be the expressions of the form (x = �x;p) in E. A pair a 2 L(P) � E0 is called an
annotation. Annotations are used to force values to variables of the boolean program B(P;E).
Let hl; eii be an annotation, where ei is (x = �x;p), and let bi be the boolean variable such
that E(bi) = ei. Let bj1 ; bj2 ; : : : ; bjk be the maximal list of boolean variables not including
bi, such that each of the expressions E(bj1); E(bj2); : : : ; E(bjk) reference �x;p. Applying hl; eii
to B(P;E) involves introducing the additional statement \bi; bj1 ; bj2 ; : : : ; bjk := true; ?; : : : ; ?"
immediately preceding the label l in B(P;E). Given P , E, and a set A of annotations, let
B̂(P;E;A) denote the program obtained by applying every annotation a 2 A to B(P;E).

SinceE could refer to symbolic constants that are not present in P , we also need to generalize
the de�nition of WP , as was done with SP . Let E = fe1; e2; : : : ; eng be a set of expressions
and VB = fb1; b2; : : : ; bng be the corresponding set of boolean variables. Recall that E =
C(
̂) [C(�) [�, where h
̂;�;�i = SP(;3; p). Let us (re)interpret F(WP(s; e)), where s
is an assignment or assert statement, as the set M of all minterms ci1 ^ ci2 � � � ^ cik such that
SPH(fi1^fi2 � � �^fik ; s)) e, where fij = E(cij) (Note that we are making use of the equivalence
of SP and SPH here to interpret the strongest postcondition with respect to a logical formula
rather than a context).

Example. Let E = fx = �x;p; y = �y;pg and let VB = fbx; byg be the corresponding
boolean variables. Now, consider WP(assert(x < y); �x;p < �y;p). By the Hoare-logic
formulation (see Section 4.2), we have

WP(assert(x < y); �x;p < �y;p) = (x < y)) (�x;p < �y;p)

Under the new interpretation of WP , we have that

E(F(WP(assert(x < y); �x;p < �y;p))) = (x = �x;p) ^ (y = �y;p)| {z }

because

SPH((x = �x;p) ^ (y = �y;p)| {z }
;assert(x < y)) = (x = �x;p) ^ (y = �y;p)| {z }

^(x < y)

)
(�x;p < �y;p)

ut

Given a path p = s1; s2; : : : ; sn and 1 � j � n, let upex (p; j) = fxjx 2 use(sj) and 8i < j; x 62
(use(si) [def (si))g.

Theorem 2. Let P be an X program in X-normal form, and let p be a path in P such that

C(SP(;3; p)) is not satis�able. Let SP(;3; p) = h
̂;�; �i, and let Ep = C(
̂) [C(�) [�. Let
Ap = fh�̂ (j); x = �x;pijx 2 upex (p; j)g be a set of annotations. Then the following statements

hold: (1) P � B̂(P;Ep; Ap), and (2) p is infeasible in B̂(P;Ep; Ap).

Proof. Let Ep = fe1; e2; : : : ; eng, and let V (B̂(P;Ep; Ap)) = fb1; b2; : : : ; bng. Let p0 be an
arbitrary path of P . We can prove by induction on the length of P (similar to the proof of

Lemma 1) that whenever a boolean variable bi is true (false) in B̂(P;Ep; Ap), then ei is true
(false) in the context of the path simulator simulating the same path in P . This proves (1).

We say that an expression e is in the context (
̂;�;�) if e 2 C(
̂) [�. Let � be the
trajectory in B̂(P;Ep; Ap) such that � (�) is the witnessing trace for the path p in P . To prove
(2), we prove that if ei (!ei) is in context of the path simulator simulating p then bi is true
(false) in the corresponding state of the trajectory � in B̂(P;Ep; Ap). The base case is trivial
since path simulation begins with the empty context ;33. Let (
̂1;�1; �1) be the context of the
path simulator before executing some statement s and let (
̂2;�2; �2) = SP((
̂1;�1; �1); s).
Let �1 = hl1;
1i be the state of B̂(P;Ep; Ap) before executing the translation of s and �2 =
hl2;
2i be the state of B̂(P;Ep; Ap) after executing the translation of s, in the trajectory �.
Since the translation introduces annotations, a single statement in s could translate to multiple
statements in B̂(P;Ep; Ap). Suppose ei 2 Ep is in the context (
̂2;�2; �2) (if !ei is in the context
(
̂2;�2; �2), we can handle it similarly). There must exist fj1 ; fj2 : : : fjm such that

{ fj1 ^ fj2 � � � ^ fjm)WP(s; ei).

{ for each 0 � r � m, fji 2 feji ; !ejig for some eji 2 Ep.

{ for each 0 � r � m, either

� fjr is in (
̂1;�1; �1),or

� fjr is of the form x = �x;p and hx; �x;pi 2 undef (
̂1; use(s)).

Consider fjr for each 0 � r � m. Suppose fjr is in (
̂1;�1; �1). If fjr = ejr , then
1(bjr)
is true by induction. If fjr =!ejr , then then
1(bjr) is false by induction. If fjr is of the form
x = �x;p, and hx; �x;pi 2 undef (
̂1; use(s)), then a statement \bjr := true" should have been
introduced in B̂(P;Ep; Ap) as a result of applying the annotation for (x = �x;p) in Ap. Thus, bjr
is set to true in B̂(P;Ep; Ap) by executing this statement. Since fj1 ^fj2 � � � ^fjm)WP(s; ei),
and each ejr 2 Ep for 0 � r � m, we know that bi is set to true in B̂(P;Ep; Ap) after executing
the translation of s. Note that we cannot claim this along some other path p0 because, ei might
become true because of some other reasons that we have not modeled. ut

4.4 Iterating the Re�nement Process

The previous sections showed how to complete one iteration of the re�nement process. The next
natural question is how to iterate this process. The following theorem shows the way:

Theorem 3. Let P be an X program in X-normal form, and let E1; E2 be sets of expressions
over V (P) and constants, such that E1 � E2. Then P � B(P;E2) � B(P;E1).

Proof. Silimar to proof of Lemma 1. ut

This theorem states that B is a monotone function with respect to the � relation. Thus, every
iteration of the re�nement simply adds to the set of expressions E (and corresponding boolean
variables) in order to rule out more infeasible paths in P .

We now address the termination properties of the re�nement process. The process will
terminate if one of the two following conditions is met:

{ Model checking of the boolean program B shows that label l is not reachable in B.

{ A path p (corresponding to a path in B that reaches label l) is found that is feasible in P .

{ The decision procedure cannot determine whether path p is feasible or infeasible in P . In
this case, the process terminates with the result \don't know".

If the path p is found to be infeasible. In this case, the process iterates. Because there may
be an unbounded number of infeasible paths in P , it is possible that the process may iterate
forever due to this case. However, at any time, we may halt the process and the current boolean
program is guaranteed to abstract P . Premature termination corresponds to giving a \don't
know" answer.

4.5 Transforming Multi-Procedure Programs

We now consider how to extend the above techniques when P is a multi-procedure program in
X-normal form. There are several basic issues to address:

{ How do we extend path simulation to interprocedural paths?

{ How do we determine the scope of boolean variables (as global variables, local variables or
formal parameters) in the boolean program?

{ How do we translate the source program into a boolean program in the presence of procedure
calls?

Path simulation and strongest postconditions generalize to interprocedural paths via a simple
two-step transformation to an interprocedural path containing calls:

{ All instances of the formal parameters and local variables in a procedure invocation are
renamed in the path to be unique to that invocation;

{ The procedure call A(e1; e2; � � � ; en) is transformed to a parallel assignment x1; x2; � � � ; xn :=
e1; e2; � � � ; en, where the xi are the (renamed) formal parameters of A.

Thus, the transformation faithfully models the call-by-value parameter passing of the X lan-
guage. Each statement in the transformed path has a corresponding statement in the original
interprocedural path.

Consider the program at the top of Figure 6. The path corresponding to the sequence of
labels [1; 5 � 7; 2 � 3; 5] is infeasible. The table in Figure 6 shows the transformed interpro-
cedural path (skip and return statements have been omitted since they have no e�ect on
SP), and the e�ect of each statement on
̂ and � (in this example, � = ; at all times).
Just before the second instance of label [5], the conditions over the symbolic constants are
�x < �y. Thus, the condition introduced by the assert statement at the second instance label
[5], �y < �x is contradictory. By the results of the previous sections, the set of boolean variables
fxTx; yTy; b1x; b2y; b1y; b2x; xLy; yLxg where

E(xTx) = (x = �x)
E(yTy) = (x = �y)

E(b1x) = (b1 = �x)
E(b2y) = (b2 = �y)

E(b1y) = (b1 = �y)
E(b2x) = (b2 = �x)

E(xLy) = (�x < �y)
E(yLx) = (�y < �x)

x,y: int;

A() f
[1] B(x,y);

[2] skip;

[3] B(y,x);

[4] skip;

g

B(b1,b2: int) f
[5] assert(b1<b2);

[6] skip;

[7] return;

g

Statement
̂ �

[1] b1.1, b2.1 := x, y; hx; �xi
hy; �yi
hb1:1; �xi
hb2:1; �yi

[5] assert(b1.1<b2.1); �x < �y
[3] b1.2, b2.2 := y, x; hb1:2; �yi

hb2:2; �xi

[5] assert(b1.2<b2.2); �y < �x

xTx,yTy: bool;

xLy,yLx: bool;

A() f
xTx,xLy,yLx := true,?,?;

yTy,xLy,yLx := true,?,?;

[1] B(xTx,false,yTy,false);

[2] skip;

[3] B(false,yTy,false,xTx);

[4] skip;

g

B(b1x, b1y, b2y, b2x: bool) f
[5] assert(! ((b1x & b2y & !xLy) | (b1x & b2x) |

(b1y & b2x & !yLx) | (b1y & b2y)));

[6] xLy,yLx :=

H (xLy|(b1x&b2y),!xLy|yLx|(b1y&b2x)),

H (yLx|(b1y&b2x),!yLx|xLy|(b1x&b2y));

[7] return;

g

Fig. 6. A program with an interprocedural infeasible path (as shown in the table on the right), and the corre-
sponding boolean program (bottom).

is suÆcient to rule out the infeasible path in the boolean program B(P;E;A): Note that we
have collapsed the unique instances of the formal parameters back to the single parameter name
from which those instances were generated. For example, b1.1 and b1.2 reduce back to b1.

Given the set of conditions to model, and their corresponding boolean variables, we must
choose the scope of these boolean variables in the boolean program. Let h
̂;�; �i = SP(;3; p),
let E0 = C(
̂)[C(�), and let E = E0 [�. Expressions in E0 are of the form (x = e), where e is
an expression over symbolic constants and constants of the X language. Expressions in � only
refer to symbolic constants, and constants in the X language (no program variables). Thus,
given an expression f 2 E, and its corresponding boolean variable bf , we have the following
rules for determining the scope of bf :

{ If f 2 � then bf is a global variable (we conservatively assume that every symbolic constant
introduced lives forever, and thus has global scope).

{ Otherwise, f is of the form x = e. There are three subcases, depending on the scope of x:
� If x is a global variable then bf is a global variable.
� If x is a formal parameter of procedure Q in program P , then bf is a formal parameter
of Q in the boolean program.
� Finally, if x is a local variable of procedure Q in program P , then bf is a local variable
of Q in the boolean program.

In our example, this means that the boolean variables fxTx; yTy; xLy; yLxg are global, while
the variables fb1x; b1y; b2y; b2xg are formal parameters of procedure B. Note that a single pa-
rameter in the original program (such as b1 in procedure B) can give rise to multiple parameters
in the boolean program (namely, b1x and b1y).

The translation of the source program P into the boolean program must be extended to
handle procedure calls. As with the single procedure case, if there is a loop in the path p (i.e.,
there is more than one instance of a label l) then some amount of �nite inlining may be needed
in order to make the path loop-free. In our example, there is a repeated label ([5]) but in this
case inlining is not needed (because no annotations are required in procedure B).

We have shown how the formal parameters of a procedure in the boolean program B(P;E;A)
are determined: for each formal parameter fp of procedure Q in the source program, the cor-
responding procedure Q in B(P;E;A) has one formal parameter for each expression in E of
the form (fp = e). The remaining issue in translating a procedure call is to determine the
actual parameters to a call in B(P;E;A). Given a pair (ap; fp) of actual parameter ap, and
corresponding formal parameter fp (in a call to procedure Q in the source program), and an
expression of the form (fp = e) from E, the actual parameter corresponding to the formal
parameter for (fp = e) is I(fp := ap; (fp = e)), with the following restriction. We restrict the
set of expressions E from which a minterm is constructed to be those that are visible at the
particular call to Q that we are translating.

In our example, procedure B has the formal parameter list b2x; b2y; b3y; b3x. Let us consider
the procedure call B(x; y), which is modeled by the parallel assignment b1; b2 := x; y. It is easy
to see that I(b1 := x; (b1 = �x))) = xTx. Now, consider I(b1 := x; (b1 = �y)). Given the
expressions in E, there is no way to make b1 = �y true through the assignment b1 := x. Thus,
I(b1 := x; (b1 = �y)) = false.

The translations (from Table 3) are unchanged, with the exception that the construction of
minterms in F respect the scope of the boolean variables corresponding to the expressions in
E. The bottom of Figure 6 shows the resulting boolean program.

5 Minimizing \Explanations" of Infeasible Paths

Given an infeasible path p, we now show how to �nd a smaller set of expressions E0 and
annotations A0 to P such that path p is infeasible in B̂(P;E0; A0). Intuitively, we wish to eliminate
statements from an infeasible path p to see if the resulting path is still infeasible. However, we
wish to do so in a way that is \consistent" with p. The motivation behind doing this is to
reduce the number of boolean variables needed to model the infeasibility of a path. Moreover,
fewer boolean variables that are needed, the more likely other infeasible paths will be ruled
eliminated.

5.1 Consistent Path Projections

Let path p = s1; s2; : : : ; sn, as before. Path q is a projection of path p if there is a sequence
of integers i1; i2; : : : ; im such that q = si1 ; si2 ; : : : ; sim , where m � n and for all j, ij < ij+1

and 1 � ij � n. If q is a projection of p and j is the index of a statement in q, let jp be the

p1
̂1 �1 p2
̂2 �2 p3
̂3 �3
assert(b>0); hb; �b;1i �b;1 > 0 assert(b>0); hb; �b;2i �b;2 > 0 assert(b>0); hb; �b;3i �b;3 > 0
c := b+b; hc; 2�b;1i c := b+b; hc; 2�b;2i c := b+b; hc; 2�b;3i
z := c; hz; 2�b;1i
a := b; ha; �b;1i a := b; ha; �b;2i
a := a-1; ha; �b;1 � 1i a := a-1; ha; �b;2 � 1i
x := b; hx; �b;1i
assert(a<b); (�b;1 � 1) < �b;1 assert(a<b); (�b;2 � 1) < �b;2 assert(a<b); ha; �a;3i �a;3 < �b;3
assert(c=a); 2�b;1 = (�b;1 � 1) assert(c=a); 2�b;2 = (�b;2 � 1) assert(c=a); 2�b;3 = �a;3

Fig. 7. Three paths annotated with their store (
̂) and conditions over the symbolic expressions (�). Path p1 is
infeasible. Paths p2 and p3 are both ICPPs of p1. In addition, p3 is an ICPP of p2.

index of the corresponding statement in p, namely ij . A q-annotation to a path p is a pair
hi; (x = �x;q)i such that i is an integer, 1 � i � n. A q-annotation di�ers from an annotation
(de�ned in Section 4.3) in that the �rst component is an integer index, and not a label. Given a
path p = s1; : : : ; sn and an q-annotation a = hi; (x = �x;q)i, applying a to p inserts the parallel
assignment \x := �x;q" immediately before statement si in q. Given a path p and a set Aq of
q-annotations, let pAq denote the path obtained by applying every q-annotation a 2 Aq to p.

Path q is a consistent path projection (or CPP) of path p if (1) q is a projection of p, and
(2) there exists a set Aq of q-annotations such that: C(SP(;3; pAq))) C(SP(;

3; q)). Let p be an
infeasible path ending with an assert statement such that every proper pre�x of p is feasible.
Path q is an infeasible consistent path projection (ICPP) of an infeasible path p if (1) q contains
the last assert statement of p (2) q is infeasible, and (3) q without its last assert statement is
a CPP of p without its last assert statement.

Example. Path p1 in Figure 7 is infeasible. In the two columns to the right of p1
are symbolic values of the variables (column
̂1) and the conditions over these values
(column �1). For each statement in p1, the columns show the additions to
̂1 and �1 that
the statement makes. Note that the statement \a:=a-1" replaces the existing binding for
variable a. Column �1 clearly explains the infeasibility, as �b;1 > 0) 2�b;1 6= (�b;1 � 1).
Path p2 is an ICPP of p1, as it does not contain the assignments to variables z and x
that are in p1, which are not referenced in any of the assert statements.1 Path p3 is
an ICPP of p1 as well as p2.

2 This path shows that the exact value of variable a is not
important in explaining the infeasibility. That is, (�b;3 > 0(^(�a;3 < �b;3)) 2�b;3 6= �a;3.
We show why p3 is an ICPP of p2, which by transitivity shows that p3 is an ICPP
of p1. Let p

0
2 and p03 be paths p2 and p3 without their last assert statements. Let

Ap0
3
= f h1; (b = �b;3)i; h5; (a = �a;3)ig. Applying this set of p

0
3-annotations to path p02

yields the program p002:

1 The ICPP p2 of p1 could be formed using traditional program slicing on p1 since the expression \a<b" is not
(transitively)
ow dependent on the assignment \x:=b" or \z:=c".

2 In this case, traditional program slicing could not be used to construct p3 from p2, as the expression \a<b" is
(transitively)
ow dependent on the assignments \a:=a-1" and \a:=b".

b := �b;3;
assert (b>0);

c := b+b;

a := b;

a := a-1;

a := �a;3;
assert(a<b);

It is straightforward to see that C(SP(;3; p002))) C(SP(;
3; p03)) This example shows

that reinterpreting the symbolic value of a in the statement \assert(a<b);" of p02 as
�a;3 (rather than �b;2 � 1) allows the infeasibility of the path p2 to be explained by a
weaker (larger) set of states. ut

5.2 Syntactically Consistent Path Projections

We now present a syntactic dependency condition that gives us a procedure for constructing
CPPs and ICPPs. Given a statement sj in path p, let

del(sj) = fsjg [fdel(si)ji < j; def (sj) \ (use(si) [def (si)) 6= ;g

If statement s in path p is an assignment \x := e", then del(s) contains s and the del set of
every statement preceding s in p that uses or de�nes variable x. If s is an assert statement then
del(s) = fsg, as an assert does not assign to any variable. Path q is a syntactically consistent

path projection (or SCPP) of path p if (1) q is a projection of p and (2) if statement s (from p)
is not in q then none of the statements in del(s) are in q.

Example. In Figure 7, paths p2 and p3 are SCPPs of path p1. Furthermore, path p3 is
an SCPP of p2. In path p1, the del set of the statement \a:=a-1" is f a:=b, a:=a-1

g, which means that in order to form an SCPP the statement \a:=b" must be removed
from q whenever the statement \a:=a-1" is removed from q. On the other hand, the del
set of the statement \assert(a<b)" consists of the statement itself. ut

To establish that every CPP of p is an SCPP of p, we de�ne the notion of control points. A
control point is a point of control between two statements in a path (a control point also exists
before the �rst statement of a path and after the last statement of a path). If path p = s1; :::; sn,
then p has n+1 control points c0; :::; cn, where c0 is the control point before statement s1 and,
for i > 0, ci is the control point after statement si. Given a control point c, let seq(p; c) be the
sequence of statements in p preceding c. If q is a projection of p, then for every control point c
in p there is a corresponding control point q(c) in q.

Lemma 2. Let p be the path s1; :::; sn with control points. c0; :::; cn. A variable x is in upex (p; j)3

i� hx; �x;pi 2 undef (
̂; use(sj)), where (
̂;�; �) = SP(;3; seq(p; cj�1)).

The proof of the lemma is straightforward. It is used in proving the following theorem.

3 See Section 4.3 for the de�nition of upex .

Theorem 4. For any two paths p and q, if q is an SCPP of p then q is a CPP of p.

Proof. Let Aq = fhjp; (x = �x;q)i j x 2 upex (q; j)g. Let path p0 = pAq be a sequence of
statements s1; :::; sn with n+ 1 corresponding control points c0; :::; cn. It is clear that since q is
a projection of p it is also a projection of p0. We prove, by induction on k, that

SP(;3; seq(p0; ck)) � SP(;3; seq(q; q(ck)))

from which it follows directly that C(SP(;3; seq(p0; ck)))) C(SP(;
3; seq(q; q(ck)))).

Base Case: Consider the initial control point c0 in p0. Because both c0 and q(c0) are the �rst
control points in their respective paths, SP(;3; seq(p0; c0)) = SP(;3; seq(q; q(c0))) = ;

3. So we
are done with the base case.

Induction Step: Consider a control point ck in p0 such that i > 0. Let P 0
k = (
̂p0

k
;�p0

k
; �p0

k
) =

SP(;3; seq(p0; ck)) and let Qk = (
̂qk ;�qk ; �qk) = SP(;3; seq(q; q(ck))). By the Induction Hy-
pothesis, we have that P 0

k � Qk. There are two cases to consider: sk+1 is in q or sk+1 is not in
q. In the �rst case, we want to show that

P 0
k+1 = SP(P 0

k; sk+1) � Qk+1 = SP(Qk; sk+1))

We perform a case analysis on statement sk+1 to show that P 0
k+1 � Qk+1:

{ Statement sk+1 is an assignment statement \x := e": We �rst show that
̂p0
k+1
�
̂qk+1 .

Let �
p0
k
=
̂p0

k
[undef (
̂p0

k
; use(e)) and �
qk =
̂qk [undef (
̂qk ; use(e)), per the de�nition

of SP for the assignment statement. Consider a variable y 2 use(e). By Lemma 2, we have
y 2 upex (q) i� hy; �y;qi 2 undef (
̂qk ; use(e)), and thus in �
qk . Since p

0 = pAq there also
must be an assignment statement preceding sk+1 in p

0 due to applying the annotation that
assigns �y;q to y. This means that hy; �y;qi is in �
p0

k
as well. Since �
p0

k
� �
qk , it follows that

�
p0
k
[x= �
p0

k
(e)] � �
qk [x=

�
qk(e)]

Now, we need only show that �p0
k+1
� �qk+1(since the � components remain unchanged by

SP for assignment statements). This follows straightforwardly from the fact that �
p0
k
� �
qk .

{ Statement sk+1 is an assert statement \assert(e)": The analysis follows that of the pre-
ceding paragraph. We again arrive at the point that �
p0

k
� �
qk , which means that
̂p0

k+1
�

̂qk+1 , since for assert statements
̂p0k+1
= �
p0k

and
̂qk+1 = �
qk . As a result, it is clear

that

�p0
k+1

= �p0
k
[f �
p0

k
(e)g � �qk+1 = �qk [f

�
qk(e)g

Since assert statements do not a�ect the � components, we are done.

Suppose sk+1 is not in q. In this case, we must show that SP(P 0
k; sk+1) � Qk. Because of the

assignment statements introduced by the q-annotations there are three cases to consider:

{ Statement sk+1 is an assignment statement \x := e" originally in p: By construction of
SCPPs, since sk+1 is not in q, no statement in seq(q; q(ck)) can refer to the variable x. This
means that Qk contains no element referring to x. As a result, it is clear that P 0

k+1 � Qk.

{ Statement sk+1 is an assignment statement introduced into p0 by the q-annotations: Consider
any of the variables x assigned to in sk+1. As before, no statement in seq(q; q(ck)) can refer
to the variable x (otherwise x would not be assigned to in sk+1 as a result of applying Aq).

{ Statement sk+1 is an assert statement \assert(e)": Trivial, from the de�nition of SP .

ut

5.3 A Greedy Algorithm for Constructing ICPPs

The following Lemma about CPPs (and thus SCPPs) gives us a way to construct ICPPs.

Lemma 3. If p is a feasible path of assignment statements and assert statements and q is a

CPP of p, then q is feasible.

Proof. Follows directly from the de�nition of CPPs. ut

We give the following greedy algorithm for computing an ICPP of an infeasible path p:

path ICPP (path p) f
for each statement si in p f

p0 = p n del(si);
if infeasible(p0) then

return(ICPP (p0))
g
return(p)

g

Once a (locally) small ICPP q has been found, the path simulator is used to retrieve the context
(
̂;�;�) = SP(;3; q) that contains the desired conditions Eq, and associated annotations Aq

for the construction of B̂(P;Eq; Aq).

6 Related Work

Model checking for state machines is a well studied problem, and several model checkers |
SMV [McM93], Mur� [Dil96], SPIN [HP96], COSPAN [HHK96], and MOCHA [AHM+98]|
have been developed. Several notions of re�nement, including trace containment, have been
studied before [Mil71] [AL88] [Kur94]. Boolean programs can be viewed as abstract interpre-
tations of the underlying program [CC77]. The connections between model checking, data
ow
analysis and abstract interpretation have been explored before [Sch98] [CC00]. The model
checking problem for pushdown automata has been studied before [SB92] [BEM97] [FWW97].
The CFL reachability framework from [RHS95] builds on earlier work in interprocedural data
ow
analysis from [KS92] and [SP81]. However, our notion of trace semantics for programs with un-
bounded recursion, and the use of CFL reachability as a model checking procedure for boolean
programs are new. Exploiting design modularity in model checking has been recognized as a

key to scalability of model checking [AH96] [AG00] [McM97] [HQR98]. However, the idea of
using a boolean program to harness the inherent modularity in procedural abstraction, and
exploiting locality of variable scoping for eÆciency in model checking is new.

Program slicing is a projection operation on programs that preserves the execution behavior
of statements in the projection [Wei82]. The semantics of slicing generally guarantees that the
projection will have \identical" behavior to the original program, if started in an \identical"
state. This form of slicing is used by Hatcli� and Dwyer [HD99] in their work on constructing
models from programs. If we apply their algorithm to the example program P of Figure 1, slice
would contain all the variables. In particular, the slice would determine that the variable level
is relevant in determining the reachability status of 10, which is not true. As our results on
consistent path projections show, if one's goal is to compute projections of a path that abstract
its behavior (rather than preserve it), one could slice more aggressively. Godefroid et al.'s work
on closing open system uses a program slicing operation for a di�erent goal [CGJ98]. In this
work, a sequential open program P (interacting with an environment E) is transformed into a
program P 0 such that for any environment E, the set of traces of P 0 is a superset of the set of
traces of EkP .

7 Conclusion and Future Work

We have presented a process for abstracting programs based on the model of boolean pro-
grams, which are sequential programs with procedure calls and boolean variables. The theory
of context-free-language reachability yields a model checking algorithm for boolean programs.
An initial boolean program B representing the source program P is incrementally re�ned with
respect to a particular reachability query in P . The presence of infeasible paths in P may lead
the model checker to report false positive errors in B. We have shown how to incrementally
re�ne B by introducing boolean variables to rule out the infeasible path. In addition, the use
of consistent path projections allows us to reduce the number of boolean variables needed to
eliminate an infeasible path.

There are several directions to pursue in the future:

{ Language extensions. We are considering how to extend our framework to handle pointers,
function pointers, dynamic memory allocation and concurrency. A single level of indirection
through pointers allows two names in a program to refer to the same storage cell. We believe
that we can accommodate single-level pointers in our framework without incorporating
pointers into boolean programs.

{ EÆcient algorithms. All of the algorithms in this paper will have to be re�ned in order
to make them practical. The CFL reachability algorithm can be optimized in a number of
ways. For example, we have found a way to use symbolic model checking techniques (BDDs
in particular) to encode the exploded graph of Section 3 and perform model checking of
boolean programs symbolically. We are also exploring direct ways of creating infeasible
consistent path projections from an infeasible path (rather than running the path simulator
over and over again on di�erent consistent path projections) based on connections between
consistent path projections and Stalmarck's method. Our re�nement process will bene�t also
from any improvements in the decision procedures that path simulators use to determine
the feasibility of a path.

{ Experimental Results. Our plans are to implement these algorithms for a subset of the C
language and experiment with them in the domain of device drivers. We will report on this
work in a later paper. A key issue that the experimental results will address is how many
infeasible paths are ruled out by each iteration of the re�nement process. Our process is
ineÆcient if only one path is ruled out per iteration. However, because of related empirical
evidence in the area of branch prediction that shows that branches in programs are highly
correlated with one another [PSR92], we expect many infeasible paths to be eliminated
per iteration. Consider N if-then-else statements in a chain. There are 2N potential paths.
Suppose that two of the branches, P and Q in the chain are strongly correlated (that is,
P , Q. This means that there can be at most 2N�1 feasible paths in the chain. By �nding
a single pair of strongly correlated branches, we have the potential to eliminate a large set
of infeasible paths in one iteration.

{ Re�nement. Our de�nition of re�nement (P � B) restricts the label sets of P and B to be
equivalent. This was natural, as we were concerned with constructing B from P automati-
cally. Given a program P , we construct abstractions B such that P � B by construction.
It also is natural to ask for two arbitrary boolean programs, B1 and B2, whether or not
B1 re�nes B2, by suitably generalizing the notion of re�nement. Given the similarity of this
question to the emptiness question of intersection of context-free languages, we conjecture
that it is undecidable.

Acknowledgements

We thank Manuel F�ahndrich for many enlightening discussions about the operation of path
simulators and for his insights into context-free reachability. Thanks also to the other members
of the Software Productivity Tools Group at Microsoft Research for their input, and to Todd
Millstein for his detailed comments on this paper.

References

[AG00] A. Alur and R. Grosu. Modular re�nement of hierarchic reactive modules. In Proceedings of the
Twenty Seventh Annual Symposium on Principles of Programming Languages. ACM Press, 2000.

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proceedings of the 11th Annual Symposium on
Logic in Computer Science, pages 207{218. IEEE Computer Society Press, 1996.

[AHM+98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran. Mocha : Mod-
ularity in model checking. In A. Hu and M. Vardi, editors, CAV 98: Computer Aided Veri�cation,
Lecture Notes in Computer Science, pages 521{525. Springer-Verlag, 1998.

[AL88] M. Abadi and L. Lamport. The existence of re�nement mappings. In Proceedings of the 3rd Annual
Symposium on Logic in Computer Science, pages 165{175. IEEE Computer Society Press, 1988.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application
to model-checking. In CONCUR'97: Concurrency theory, volume 1243 of Lecture Notes in Computer
Science (LNCS), pages 135{150. Springer-Verlag, 1997.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for the static analysis
of programs by construction or approximation of �xpoints. In Proceedings of the Fourth Annual
Symposium on Principles of Programming Languages. ACM Press, 1977.

[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Proceedings of the Twenty Seventh
Annual Symposium on Principles of Programming Languages. ACM Press, 2000.

[CGJ98] C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically closing open reactive programs. In
Proceedings of the ACM SIGPLAN '98 Conference on Programming Language Design and Implemen-
tation (PLDI'98), pages 345{357, June 1998.

[CL96] C. Colby and P. Lee. Trace-based program analysis. In Conference Record of the Twenty-Third ACM
Symposium on Principles of Programming Languages, pages 195{207, January 1996.

[DE82] R. B. Dannenberg and G. W. Ernst. Formal program veri�cation using symbolic execution. IEEE
Transactions on Software Engineering, SE-8(1):43{52, January 1982.

[Dil96] D. L. Dill. The Mur� Veri�cation System. In R. Alur and T.A. Henzinger, editors, CAV 96: Computer
Aided Veri�cation, Lecture Notes in Computer Science 1102, pages 390{393. Springer-Verlag, 1996.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown
systems. In INFINITY' 97: Veri�cation of In�nite-state Systems, July 1997.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.
[HD99] J. Hatcli� and M. Dwyer. Slicing software for model construction. In Proceedings of the 1999 ACM

Workshop of Partial Evaluation and Program Manipulation (BRICS Notes Series NS-99-1), January
1999.

[HHK96] R.H. Hardin, Z. Har'El, and R.P. Kurshan. COSPAN. In R. Alur and T.A. Henzinger, editors, CAV
96: Computer Aided Veri�cation, Lecture Notes in Computer Science 1102, pages 423{427. Springer-
Verlag, 1996.

[HP96] G.J. Holzmann and D.A. Peled. The State of SPIN. In R. Alur and T.A. Henzinger, editors, CAV
96: Computer Aided Veri�cation, Lecture Notes in Computer Science 1102, pages 385{389. Springer-
Verlag, 1996.

[HQR98] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee: methodology and case
studies. In A. Hu and M. Vardi, editors, CAV 98: Computer Aided Veri�cation, Lecture Notes in
Computer Science, pages 440{451. Springer-Verlag, 1998.

[KS92] J. Knoop and B. Ste�en. The interprocedural coincidence theorem. In P. Pfahler U. Kastens, edi-
tor, Proceedings of the 4th International Conference on Compiler Construction (CC'92), Paderborn
(Germany), volume 641 of Lecture Notes in Computer Science (LNCS), pages 125{140, Heidelberg,
Germany, 1992. Springer-Verlag.

[Kur94] R.P. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton University Press,
1994.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State-Explosion Problem. Kluwer
Academic Publishers, 1993.

[McM97] K.L. McMillan. A compositional rule for hardware design re�nement. In O. Grumberg, editor, CAV
97: Computer-Aided Veri�cation, Lecture Notes in Computer Science 1254, pages 24{35. Springer-
Verlag, 1997.

[Mil71] R. Milner. An algebraic de�nition of simulation between programs. In Proceedings of the 2nd Inter-
national Joint Conference on Arti�cial Intelligence, pages 481{489. The British Computer Society,
1971.

[PSR92] S-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch prediction using
branch correlation. ACM SIGPLAN Notices, 27(9):76{84, September 1992. Proceedings of the 5th
International Conference on Architectural Support for Programmming Languages and Operating
Systems.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow analysis via graph reachability.
In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages, pages 49{61,
January 1995.

[SB92] B. Ste�en and O. Burkart. Model checking for context-free processes. In CONCUR'92, Stony Brook
(NY), volume 630 of Lecture Notes in Computer Science (LNCS), pages 123{137, Heidelberg, Ger-
many, 1992. Springer-Verlag.

[Sch98] D.A. Schmidt. Data
ow analysis is model checking of abstract interpretation. In Proceedings of the
Twenty Fifth Annual Symposium on Principles of Programming Languages, pages 38{48. ACM Press,
1998.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, pages 189{233. Prentice-
Hall, 1981.

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In Proceedings of
the 26th ACM SIGPLAN-SIGACT on Principles of Programming Languages, pages 105{118, January
1999.

[Wei82] M. Weiser. Programmers use slices when debugging. Communications of the ACM, 25(7):446{452,
July 1982.

