
The Content and Access Dynamics of a Busy Web

Server: Findings and Implications

Venkata N. Padmanabhan Lili Qiu

padmanab@microsoft.com lqiu@cs.cornell.edu

Microsoft Research Cornell University

February 2000

Technical Report

MSR-TR-2000-13

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

The Content and Access Dynamics of a Busy Web Server: Findings and

Implications

Venkata N. Padmanabhan Lili Qiu

padmanab@microsoft.com lqiu@cs.cornell.edu

Microsoft Research Cornell University

February 2000

Abstract

In this paper, we study the dynamics of one of the bus-

iest Web sites in the Internet today. Unlike many other

efforts that have analyzed client accesses as seen by prox-

ies, we focus on the server end. We analyze the dynam-

ics of both the server content and client accesses made

to the server. The former considers the content creation

and modification process while the latter considers page

popularity and locality in client accesses. Some of our

key results are: (a) files tend to change little when they

are modified, (b) a small set of files tends to get modi-

fied repeatedly, (c) file popularity follows a Zipf-like dis-

tribution with a parameter α that is much larger than

reported in previous, proxy-based studies, and (d) there

is significant temporal stability in file popularity but not

much stability in the domains from which clients access

the popular content. We discuss the implications of these

findings for techniques such as Web caching (including

cache consistency algorithms) and prefetching or server-

based “push” of Web content.

1 Introduction

The exponential growth rate of World Wide Web has

led to a dramatic increase in Internet traffic, as well as

a significant degradation in user-perceived latency while

accessing “Web pages”. This has spawned significant re-

search efforts aimed at reducing the Internet bandwidth

consumption caused by the web, as well as improving

user-perceived latency. Techniques such as Web caching

and prefetching or server-based “push” of Web content

have been widely studied, and several new algorithms

and protocols for these have been proposed. We believe

understanding the characteristics of the Web workload

and traffic are very important for the design and eval-

uation of these algorithms. In this paper, we study the

dynamics of one of the busiest Web sites in the Internet

today, and discuss the broad implications of our find-

ings for techniques such as Web caching (including cache

consistency algorithms) and prefetching or server-based

“push” of Web content.

The Web basically consists of servers, clients, and

proxies. The servers are typically the originators of con-

tent while the clients are the consumers of content. Prox-

ies, when present, mediate the communication between

a set of clients and a subset/all of the servers. As such,

each of these three components provides a unique per-

spective on the functioning of the Web. However, by

far the majority of Web characterization studies have

focused on data gathered at a proxy host (or by a net-

work packet sniffer placed at a location where a proxy

host might have been). Proxy-based studies are use-

ful for many purposes: the design and evaluation of

caching and prefetching algorithms, the characterization

1

of server popularity, etc. However, proxy-based studies

have their limitations because they offer only a limited

perspective on the goings-on at clients and at servers, i.e.,

a proxy is not in a position to observe all of the events

occurring either at clients (e.g., scrolling up and down

in a browser window) or at servers (e.g., the servers’

communication with clients that do not connect via the

proxy).

A significant difficulty that researchers face in do-

ing a server-based study is the very limited availabil-

ity of server traces. The few pioneering studies in this

area [2] [3] have had to make do with data from rela-

tively small departmental servers, typically at universi-

ties. While they have certainly been valuable, the main

limitation of these studies is that the bulk of Web traffic

is served out by large commercial servers. It is unclear

how well inferences drawn from the study of a small de-

partmental server would scale to the large commercial

sites in the real world.

We have been fortunate to have obtained access to de-

tailed traces from a large commercial server site, which,

to preserve anonymity for SIGCOMM review, we will

refer to simply as FooBar. FooBar is a typical large

commercial news site in the same category as the likes

of CNN [8], MSNBC [23], and ABCNews [1], and is con-

sistently ranked among the busiest sites in the Web [22].

The trace data we obtained was of two kinds: (a) content

logs, which record file creation and modification events,

and also include copies of successive versions of (a sub-

set of the) files, and (b) access logs, which record client

accesses to the HTML content (but not to the inline im-

ages). Aside from traces from several ”normal” days, our

data set includes traces from a couple of days that saw

significant flash crowds because of a hot news story. The

combination of content logs and access logs enabled us

to study (certain aspects of) both the back-end (i.e., con-

tent dynamics) and the front-end (i.e., access dynamics)

of the FooBar site.

A detailed discussion of the results appears later in

the paper, but here are some of our key findings: (a)

file modification, although more frequent than file cre-

ation, often tends to change little in the file being modi-

fied, (b) a small subset of the files tends to get modified

repeatedly, (c) file popularity follows a Zipf-like distri-

bution with a parameter α that is much larger than re-

ported in previous, proxy-based studies, and (d) there is

significant temporal stability in file popularity but not

much stability in the domains from which clients request

the popular content. Our findings have implications for

the effectiveness of Web caching and prefetching, cache

consistency algorithms, and optimizations such as delta-

encoding [21]. We discuss these in more detail later in

the paper.

A limitation of our study is that it is difficult to deter-

mine how well the results derived from the FooBar site

generalize to the other large sites in the Internet. While

there may certainly be characteristics that are peculiar

to the FooBar site, we believe that the operation of the

site is quite typical of large news sites such as CNN,

MSNBC, and ABCNews. Our analysis of traces from

the server end enabled us to study the dynamics of Web

content, which is difficult to do with proxy traces. We

believe that these points, coupled with the fact that it

is challenging to obtain detailed server-end traces from

large commercial sites (even from just a single such site!),

make our study a valuable step towards characterizing

the workload of such busy sites.

The rest of this paper is organized as follows. In Sec-

tion 2, we survey previous work. We present a discussion

of the architecture of the FooBar site, our trace collec-

tion methodology, and the traces themselves in Section 3.

Then in Section 4 and 5, we present a detailed analy-

sis of the content logs and the access logs, respectively.

In Section 6, we summarize our key results and discuss

the broader implications of our findings. Finally, in Sec-

tion 7, we point out upon ongoing and future work.

2

2 Previous Work

As discussed above, much of the work thus far in Web

workload characterization has focused on proxies. In

many instances, the goal is to evaluate the effective-

ness of proxy caching. The hit rate of proxy caches have

been found to be quite low, often not much higher than

50% [10] [13]. A substantial fraction of the misses arise

from first-time accesses to files (i.e., compulsory misses).

Proxy logs have also been used to study the effectiveness

of cooperative caching. In this context, a recent study

[28] [29] reports that the organizational membership of

clients is significant in that clients belonging to the same

organization are more likely to request the same docu-

ments than clients picked at random. Our analysis of

spatial locality (Section 5.3) shows this significance can

be diminished, for instance, by the occurrence of a ”hot”

news event that is popular globally, i.e., across organiza-

tional boundaries.

The relative popularity of Web pages accessed via a

proxy has also been studied extensively. The almost uni-

versal consensus is that page popularity follows a Zipf-

like distribution where the popularity of the ith most

popular file is proportional to 1/iα. The value of α is

typically less than 1, which makes popularity distribu-

tion as seen by the proxy rather flat (e.g., [5] reports

that it takes 25-40% of pages to draw 70% of the client

accesses). Our results (Section 5.4) show that while the

Zipf-like distribution holds for the FooBar server site as

well, α tends to be much larger, typically 1.4-1.6. This

rather steep distribution of file popularity suggests that

replicating or reverse caching (which refers to placing a

cache right in front of a server so as to intercept all in-

coming client requests) a small set of the server’s files

could cut down the server load significantly.

Proxy logs have also been used to study the rate

of change and age distribution of files (e.g., [9]).

Such information has been deduced indirectly using the

last-modified timestamp in the HTTP response header,

which opens up the possibility of missed updates. In con-

trast, we use file modification logs obtained directly from

the FooBar site back-end in our study, so the possibility

of missed updates is diminished/eliminated.

Server-based studies are far fewer in number than

proxy-based ones. A few of these have focused pri-

marily on the network dynamics of busy Web servers

[20] [4]. Others have focussed on very specific aspects

of the server’s operation (e.g., [18] discusses the perfor-

mance of reverse DNS lookups in the CNN server cluster

[8]). These studies are interesting but orthogonal to the

focus of this paper.

A few of the server-based studies have been along

lines similar to this paper. [2] studied access logs from

a set of Web servers, the busiest of which saw under

50000 accesses in a day. They showed that file popularity

followed Zipf’s distribution (i.e., Zipf-like with α = 1).

They also demonstrated the presence of temporal locality

in file accesses. [3] studied various aspects of server

behavior using data from a set of servers. They reported

that 10% of the files accessed accounted for 90% of the

server requests, and that 10% of the (client) domains

accounted for over 75% of the server requests. However,

the busiest of the servers they studied only saw a total of

around 350,000 accesses in a day. In contrast, the FooBar

server cluster sees, on average, over 25 million accesses

each day to the its HTML content alone (image accesses,

which are not included in our traces, would increase this

number significantly).

In summary, we see our study of the FooBar site as

complementing the existing body of literature on Web

workload and traffic characterization. We believe both

the extent of the dataset we have analyzed and the use of

back-end logs to characterize the content dynamics make

our study valuable.

3

3 Experimental Setup and

Methodology

In this section, we briefly describe the essential aspects

of the FooBar server site, and discuss the trace data that

we gathered and processed.

3.1 Server Site Architecture

The FooBar server site comprises a cluster of over 40

server nodes, each running the Microsoft Internet In-

formation Server (IIS) [19]. These server nodes are

grouped together into sub-clusters containing approxi-

mately 6 nodes each. Load balancing is done at two

levels. First, each sub-cluster is assigned a virtual IP

(VIP) addresses and DNS round-robin cycles through

the 6 VIP addresses for the entire FooBar site. Second,

within each sub-cluster that shares a VIP address, the

Windows Load Balancing Service (WLBS) [19] is used to

spread load evenly across the nodes. The main point to

take away is that at different times, a particular client’s

request may be served by any of the 40 nodes.

3.2 Server Access Logs

Each server node maintains a standard HTTP access log

that records several pieces of information for each client

access: a timestamp, the client’s IP address, the URL

accessed, the response size, the server status code, etc.

For administrative reasons, the server site operator chose

to turn off logging for image accesses. So the logs only

record accesses to HTML content. While the absence of

image access logs is a limitation of our data set, we do

not believe it interferes with our study in any significant

way since our analysis of access dynamics focuses on Web

pages (as defined by the HTML content) rather than on

the individual files.

Table 1 summarizes the overall statistics of the server

access logs we used in our study. For our analysis, we

picked traces from several different periods, each span-

ning a few consecutive days. In some periods, we had

only an hour’s worth of traces per day, while in oth-

ers we had traces from the entire day. The traces from

12/17/98 and 12/18/98 1 were especially interesting, be-

cause these corresponded to a ”hot” news event, namely

the launching of Operation Desert Fox by the US military

against Iraq.

The FooBar server site saw, on average, over 25 mil-

lion client accesses for its HTML content alone (image

hits were in addition to this). We used all 40 server nodes

when analyzing the 1-hour or the 3-hour long traces.

However, due to disk and memory limitations, we only

used logs from 9 or 12 (i.e., 22.5–30%) of the server nodes

out of the cluster of 40 when analyzing the logs from

a whole day period. Since requests are randomly dis-

patched to the server nodes, considering only a subset of

the server nodes is unlikely to significantly bias or other-

wise impact the results of our analysis. Moreover, most

our results based on the partial set of server nodes are

consistent with those based on all the server nodes.

In some of our analyses, we clustered clients together

into domains, which we defined to be all but the host-

name part of the clients’ DNS names (e.g., the domain for

foo.bar.com is bar.com). We determined the DNS name

of a host via reverse DNS lookup on its IP address. We

had a fairly high success rate — typically over 70% —

as reported in Table 1. For the analyses that involved

domain information, we ignored clients for which the re-

verse DNS lookup failed. We realize that our definition

of a domain is simplistic, and are currently looking at

more sophisticated alternatives that also consider net-

work topology.

1Throughout this paper, dates appear in the format

month/day/year.

4

12/17 - 12/18/98 8/1 - 8/5 8/3 - 8/5 9/27 - 10/1 10/7 - 10/11 10/14 - 10/18

Period 9 AM - 12 AM 10 - 11 AM 9 AM - 12 AM all all day all day

% total logs used 100 100 100 30 22.50 22.50

HTTP Requests 10413866 7061572 14183820 38191388 28102751 30000981

Objects 34443 30199 35359 57053 60323 52429

Clients 253484 440151 656449 1948609 1831027 1938437

% Domain found2 58.587 - 76.227 78.967 78.344 -

Domains 41025 - 75569 117615 396528 -

% GET 99.818 99.050 99.065 99.065 99.008 99.059

% POST 0.088 0.448 0.464 0.474 0.512 0.475

% HEAD 0.082 0.406 0.392 0.327 0.350 0.336

% Other methods 0.012 0.096 0.079 0.134 0.130 0.130

% status=200 58.084 55.913 57.104 56.195 55.088 54.744

% status=302 4.554 15.017 15.267 17.647 16.047 18.443

% status=304 36.946 27.529 26.231 23.812 26.517 24.501

% status=400 0.010 0.023 0.025 0.031 0.029 0.026

% status=403 0.003 0.024 0.018 0.013 0.015 0.018

% status=404 0.327 1.347 1.241 1.738 1.654 1.661

% status=500 0.012 0.089 0.070 0.131 0.125 0.126

% Other status 0.064 0.058 0.044 0.433 0.525 0.481

Table 1: Overall trace statistics

5

3.3 Content Creation and Modification

Logs

The back-end of the FooBar site uses the Microsoft Con-

tent Replication System (CRS) [19] to replicate content

from a staging server to each of the 40 server nodes. Each

replication event is logged, specifying the time of repli-

cation and the file being replicated together with its size.

However, all that a CRS log entry says is that a file was

replicated, which by itself does not enable us to deter-

mine whether a new file was created or an existing one

was updated. We disambiguate between file creation and

modification by using several days’ worth of CRS logs to

prime our list of files that already exist, and thereafter

(once the spike in the number of file ”creation” events

has subsided) treating CRS replication events for files

not seen before as file creations 3. The CRS system did

not log file deletions, although, in general, it could have.

The CRS logs we analyzed corresponded to the 4-week

period from 10/1/99 through 10/28/99.

3.4 Content Logs

For a small fraction of the content hosted by FooBar, we

were able to obtain a log of HTML content itself, i.e.,

successive versions of the files as and when they were

modified. A new version of the file was logged on the

hour if the file had been modified (at least once) in the

past hour. The subset of files logged in this manner was

determined by the server site operator 4. The content

log, although limited in scope, enables us to get some

insight into the evolution of files as they undergo modi-

fication.

3As a validation of this heuristic, we confirmed that the number

of file creation events beyond the priming period does not diminish

with time, as would have happened had the file creation events

been ”bogus”.
4One of the reasons the site operator generated the content

log was to feed it into various search engines for re-indexing the

corresponding pages.

3.5 Proxy Logs

In some of our analyses (Section 5.4), we compare the

access characteristics of the FooBar server with that of

a busy caching proxy. We obtained logs from a proxy

cache that serves a large campus population with over

50000 client hosts. The logs were gathered over a 2-day

period — 10/6/99 and 10/7/99.

4 Server Content Dynamics

In this section, we analyze the dynamics of file creation

and modification. The content dynamics is important to

study because it has profound implication for the effec-

tiveness of Web caching, in particular, cache consistency

control mechanism.

4.1 File Creation and Modification Pro-

cesses

We studied the dynamics of file creation and modifica-

tion using information derived from the CRS logs. Fig-

ure 1(a) shows the number of file creation and modifi-

cation events (computed hourly) over a one-week period

(midnight Saturday, 10/9/99 through midnight Friday,

10/15/99 local time). Not surprisingly there is a clear di-

urnal cycle in the file creation and modification process.

There is a trough at nighttime, and several peaks during

the daytime. We believe the reason for these peaks is

that even if the actual content generation/modification

process is spread out uniformly, the CRS replication pro-

cess is only scheduled to run from time to time (i.e., it

replicates a bunch of files at a time rather than individual

files; the only exception is a ”hot” file that needs to be

updated immediately). The time of replication is what

really matters because only after it is replicated that the

new content becomes available to clients.

A weekly cycle is also evident from Figure 1(a).

There tend to be fewer events on the weekend (the first

two days shown in the figure) than during the week.

6

In Table 2, we tabulate a more detailed breakdown

of the event counts. We note there are nearly four times

as many file modification events as creation events dur-

ing the course of the week. A closer examination of the

modification events reveals that they tend to be concen-

trated on a small number of files. On average, there were

around 10 modification events per file (only considering

files that were modified at least once during the week).

The large numbers of creation and modification

events have broad implications. The creation of new files

poses a challenge to latency/bandwidth saving schemes

such as prefetching [24] [11] or server-initiated ”push”

[25]. These schemes depend on the past history of ac-

cesses to the file. But for a newly created file, there exists

no such history. The large number of modification events

suggests that it may be worthwhile deploying efficient

protocol mechanisms for the validation/invalidation of

files cached at proxies and/or clients (e.g., [7, 30]).

Table 2 also reveals that around 1% of the modi-

fication events corresponded to GIF/JPEG image files.

Intuitively, we would not expect images to get modified

very much; instead we would expect new images to be

assigned new names. On closer examination, we discov-

ered that the images being modified were almost exclu-

sively maps, primarily weather maps but also maps of

other kinds (e.g., a weekly “health” map indicating the

current status of disease outbreak in the country). In-

terestingly, however, as found in [28], the cachability of

images is lower than that of HTML due to server policy.

For example, advertisements mostly consist of images,

and are often not cachable.

4.2 Distribution of Modification Inter-

vals

Next, we turn to Figure 1(b), which shows the cumu-

lative distribution function (CDF) of the time duration

between two successive modifications (i.e., the modifica-

tion interval) of a file. (Note that we only considered

files that were modified during the 4-week period of our

CRS logs. In other words, the CDF is conditioned on

the file being modified during the 4-week period.) The

CDF exhibits two distinct knees. The first is around the

5% level and occurs at a modification interval of around

3000 seconds (about 1 hour). The second is around

the 95% level and occurs at a modification interval of

around 80000 seconds (approximately 1 day). Both of

these observations are in agreement with our intuition.

By default, the CRS replication process is scheduled to

run approximately once an hour. More frequent updates

happen only when there are ”hot” news events, which is

typically an infrequent occurrence. Hence there are only

a small number of instances of modification happening

within an hour of the previous one. At the other end of

the spectrum, a day seems like a natural ”upper bound”

for the update period. Of course, it is certainly possi-

ble for files to be modified on longer timescales such as

weekly, monthly, etc. (or even aperiodically), but this is

likely to be an infrequent occurrence.

4.3 Implications of Modification History

We now turn to examining the relationship between suc-

cessive modification intervals of a file. We are interested

in determining whether the modification dynamics of a

file in the past is a good predictor of the future. This

finding would have significant implications for Web cache

consistency mechanisms such as adaptive TTL [15].

Figure 2(a) shows a scatter plot of pairs of successive

modification intervals for a file. If duration of the pre-

vious modification interval were indicative of the next

one, we would have expected the points to be clustered

along a positively-sloped line. It is clear from the fig-

ure that this is not the case. There are several instances

where a short modification interval for a file is followed

immediately by a long one, and vice versa. Indeed, the

coefficient of correlation [16] is only 0.23: mildly posi-

tive.

We then explored the possibility of using a larger

7

0

50

100

150

200

250

300

350

400

450

0 24 48 72 96 120 144 168

N
um

be
r

of
 e

ve
nt

s

Time (hours)

Creation
Modification

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06 1e+07

Time between modification events (seconds)

 (a) (b)

Figure 1: (a) An hourly count of file creation and modification events over a one-week period (Saturday through

Friday). (b) CDF of the time interval between successive modifications of a file (conditioned on the file being

modified).

Creation Modification Unique Files Modified GIF/JPEG Modification

6007 23343 2453 287

Table 2: Count of various events during the week from 10/9/99 through 10/15/99.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 2000030000 400005000060000 7000080000 90000100000

T
im

e
to

 th
e

ne
xt

 f
ile

 m
od

if
ic

at
io

n
(s

ec
on

ds
)

Duration of a file modification interval (seconds)

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

T
im

e
to

 th
e

ne
xt

 f
ile

 m
od

if
ic

at
io

n
(s

ec
on

ds
)

Mean duration of a file modification interval (seconds)

(a) (b)

Figure 2: (a) A scatter plot where a point (x, y) represents two successive modification intervals for a file, the first

of duration x and the second of duration y. (b) A scatter plot of points (x, y) where x is the mean duration of the

modification interval for a file (computed using past history), and y is the duration of a new modification interval

for that file.

8

amount of history than just a single piece of information,

i.e., the duration of the previous modification interval.

We divided the 4-week duration of our CRS logs into

roughly equal halves. Using the data from the first half,

we determined the mean modification interval for each

file. In the end, we only retained the set of files for which

the mean was computed over 10 or more samples (i.e.,

there was ”sufficient” modification history). Then using

the second half of the log data, we determined the length

of the first modification interval for each of the files in the

set. The question we wanted to answer was how good

a predictor the mean was of the duration of the new

modification interval. Figure 2(b) shows the scatter plot

of these two quantities. We observe that there is a fairly

strong positive correlation between the mean duration of

the modification interval from the past and the duration

of the new interval. The coefficient of correlation 0.79

confirms this.

Thus, we believe it may be appropriate to use the

modification interval from the past as a predictor of the

future so long as a sufficient number of samples from the

past are averaged. In the context of Web cache consis-

tency, this suggests that an adaptive TTL scheme, that

uses past modification behavior of a file to adapt future

TTL settings on the file [15], would work well provided

there is an invalidation mechanism (e.g., callbacks) avail-

able as a backup.

4.4 Extent of Change upon File Modifi-

cation

We now examine just how much a file changes when it

is modified. First, we consider the change in file size.

Figure 3(a) shows the CDF for the change in file size

(unsigned magnitude) in terms of bytes. We observe

that there is little change in file size despite the modifi-

cation. Over 70% of the modifications cause less than a

1% change in the file size (due to space limitations, we

have not shown the graph of file size change expressed

as a percentage). Although it is certainly possible for

the content to change significantly while maintaining the

same file size, intuitively it seems too coincidental to be

likely. The analysis based on content logs we present

next sheds more light on this. (Despite the ambiguity

associated with inferring the extent of change in file con-

tent from the change in file size, we analyzed the latter

as well because we had file size information for a lot more

files than we had content logs for.)

We used the content logs (which, as described in

Section 3.4, were available for a small subset of the

HTML content) to explore more carefully how much a

file changes upon modification. Since we were examining

just HTML content, we decided to focus on the visible

textual content, i.e., text that would be displayed by a

client browser. To this end, we extracted the visible text

by stripping out the HTML tags from each version of a

file. We then quantified how similar two successive ver-

sions of a file were using the cosine similarity metric [14].

This is a standard metric used in information retrieval.

For each document, a term (i.e., word) frequency vec-

tor is constructed. The cosine similarity metric is then

just the inner-product of the two vectors divided by the

product of their lengths, i.e., the cosine of the angle be-

tween the vectors. The more similar the files are, the

closer the metric is to 1. The similarity metric is simple

in that it only considers word frequency without caring

about the order in which the words appear. To prevent

”insignificant” words such as ”and”, ”the”, etc. from

overwhelming the more significant ones, we created a

list of common words to disregard in the similarity com-

putation. However it is not perfect, since it does not

consider the order of words.

Figure 3(b) shows the CDF of the text similarity met-

ric computed over successive versions of files. We see that

the metric tends to be close to 1, which indicates that

little changes in terms of the visible textual content. On

closer examination, we found (at least) a couple of com-

mon modes of (minor) textual change: (a) a date/time

9

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

Change in file size (bytes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Text similarity metric

(a) (b)

Figure 3: (a) The CDF of change in file size (in bytes) between successive versions. (b) The CDF of the text

similarity metric computed over successive versions of files.

string contained within the TITLE HTML tag is updated

from time to time, and (b) the links to related pages are

updated while leaving the bulk of the page unchanged.

In conclusion, our analysis suggests that successive

versions of files are very similar, both in terms of size and

in terms of content. This implies that techniques such

as delta-encoding [21] would be very useful, especially

in the context of slow links (e.g., dialup links).

4.5 Summary of Content Dynamics

In summary, our study of server content dynamics re-

veals that (i) files are modified and created frequently;

(ii) the amount of modification is relatively small; and

(iii) past modification behavior, with sufficient averag-

ing, is a good predictor of future modification behavior.

These server dynamics have significant implications for

the design of efficient protocols for the Web. In partic-

ular, it suggests that the potential benefit of an efficient

cache consistency mechanism is large and that an adap-

tive TTL based scheme is likely to be useful.

5 Server Access Dynamics

In order to further explore the impact of the server con-

tent dynamics on the Web traffic and to better under-

stand the effectiveness of Web caching and prefetching,

in this section, we study the access dynamics seen by

the FooBar server site. Access dynamics is crucial to the

effectiveness of Web caching. In particular, insights to

the following issues may significantly affect the way we

should improve the efficiency of the future Web:

• Relationship between server content dynamics and

access dynamics, and potential benefit of cache

consistency mechanisms

• Stability of user access patterns

• Significance of a user’s domain membership

• The applicability of Zipf’s law to Web requests and

its implication for the effectiveness of Web caching

in reducing Internet traffic

As shown in Table 1, over 99% of the requests employ

the GET method. Moreover, among all the requests, the

ones with HTTP response status code 200 (action suc-

cessful) account for 55%. Around 15% to 18.5% of the re-

quests have response status code 302 (moved temporar-

ily), and around 23% to 37% have response status code

304 (not modified). The latter implies that the poten-

10

tial benefit of an efficient Web objects consistency pro-

tocol could be large. Unless otherwise specified, in our

analysis of the access dynamics, we do not distinguish

among different HTTP methods (i.e., GET, HEAD, and

POST) and different status code. Instead we treat them

all equally as Web accesses.

5.1 Relationship between Server Con-

tent Dynamics and Access Dynamics

In this section, we analyze the relation between server

content dynamics and access dynamics.

5.1.1 Correlation between document age and

popularity

First, we examined the correlation between document

age (i.e., the time elapsed since its creation) and popular-

ity. Our results are shown in Figure 4, where the x-axis

denotes the time elapsed since document creation and

the y-axis denotes the document ID sorted in increasing

order by the total number of accesses. It is evident from

the graphs that most documents receive a lot more ac-

cesses soon after their creation than afterwards. On the

other hand, there are a number of documents (the ones

denoted with a large document ID) that remain hot for

the entire five-day period under study. These files are in-

dex pages, such as the default front page for the FooBar

site.

5.1.2 Classification of accesses according to file

modification/creation

Previous research [26] has shown that up to 40% of ac-

cesses are to the objects that have not been accessed

before by clients in the same domain. In a caching con-

text, these lead to first-time (i.e., compulsory) misses. It

is very useful to understand what comprises these first-

time accesses/misses. Using both access logs and modi-

fication logs, we have found that most first-time accesses

(which we determined on a per-domain basis) are to old

objects that were created at least a day ago. This is ev-

ident from Table 3 (columns 2 and 3). We believe such

accesses are very hard to predict. This is because ob-

jects that have not been accessed by a certain domain

for several days following their creation are considered

unpopular. Accesses to unpopular documents are hard

to predict. Moreover because these documents are un-

popular, it is not cost-effective to prefetch them in ad-

vance.

We also classify repeated accesses to objects accord-

ing to their modification history. Specifically, we divide

the accesses into two groups: accesses to objects that are

modified on the day of access, and those that are not. As

shown in Table 3 (columns 4 and 5), over half of the re-

peated accesses are to the modified objects. This again

suggests that designing a good cache consistency control

mechanism will be very useful.

5.2 Temporal Stability of User Access

In this section, we analyze the temporal stability of Web

accesses. In particular, the following questions are espe-

cially important to understand:

• How much does the popularity of Web pages vary

with time? That is, do popular web pages on one

day remain popular on the subsequent days?

• For each web page, how much does the set of do-

mains interested in it vary from one day to the

next?

OB Answers to these questions are critical for designing

sensible prefetching or server-initiated push algorithms.

Any prefetching algorithm based on past history relies

on a certain degree of stability, both in ranking and in

the interest group (i.e., the set of domains requesting

the pages). Our trace analysis helps shed light on how

well such reactive prefetching algorithms might perform

in practice.

11

0

50

100

150

200

250

300

0 50000 100000 150000 200000 250000 300000 350000

D
oc

um
en

t I
D

 (
so

rt
ed

 b
y

th
e

to
ta

l n
um

be
r

of
 a

cc
es

se
s)

Time elapse since documents creation (second)

Access evolution since document creation (10/8/99 - 10/11/99)

0

20

40

60

80

100

120

140

160

180

200

0 50000 100000150000200000250000300000350000400000450000

D
oc

um
en

t I
D

 (
so

rt
ed

 b
y

th
e

to
ta

l n
um

be
r

of
 a

cc
es

se
s)

Time elapse since documents creation (second)

Access evolution since document creation (10/14/99 - 10/18/99)

(a) (b)

Figure 4: Distribution of accesses to documents since their time of creation.

Date First & New First & Old Repeated & Mod Repeated & Unmod

10/8/99 72362 240119 1317246 1014821

10/9/99 14652 96167 697338 576113

10/10/99 15156 99248 758626 610435

10/11/99 47619 206743 1163424 919085

Table 3: Breakdown the Web accesses according to file modification/creation history.

5.2.1 Stability of Web Page Popularity Ranking

We study the stability of web page ranking as follows.

We consider Web access logs from several consecutive

days. For each day, we pick the n most popular docu-

ments. We then compare the overlap in the most popular

pages selected from one day to the next. Our results are

illustrated in Figure 5. X-axis is the number of most

popular documents picked (e.g. x = 10 means we pick

the 10 most popular documents), and Y -axis is the per-

centage of overlap. Figure 5(a) plots the ranking stability

in a week period. We make the following observations.

First, the overlap is mostly over 60%, which essentially

means many documents are hot on both days. Second,

for the several consecutive days period, the overlap is

mostly the same. For example, the amount of overlap

between 8/1/99 vs 8/2/99 is quite close to that between

8/1/99 vs 8/5/99. This implies the web accesses in the

same short time-frame (within 1 week period) are equally

good for predicting which Web pages will be most popu-

lar in the near future. That is, last week’s trace is almost

as useful as yesterday’s trace for predicting web pages

ranking. The reason for this is that many of the very

popular pages are index pages (such as the default front

page for the FooBar site) that contain pointers to other

pages. Third, the ranking stability tends to decrease as

the number of documents selected increases. This indi-

cates that very ”hot” documents are more likely to re-

main hot than moderately hot documents. We observe

similar results in the traces from other periods as well.

We also study the ranking stability in a larger time

window considering the overlap between the two days

that are more widely separated. Our results are shown in

Figure 5(b). As we would expect, the overlap decreases

as the time interval gets longer. For example, the overlap

between 12/17/98 and 10/18/99, which are 10 months

apart, is considerably smaller, mostly below 20%. On the

12

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

O

ve
rl

ap

Top Documents Picked

’19981217_19991018_all’
’19990801_1018_all’
’19991017_1018_all’

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

O

ve
rl

ap

Top Documents Picked

8/1/99 vs 8/2/99
8/1/99 vs 8/3/99
8/1/99 vs 8/4/99
8/1/99 vs 8/5/99

(b)(a)

Figure 5: Stability of document popularity in both short and long period

other hand, even for the two months separation (8/1/99

and 10/18/99), although the overlap is lower than with

a one-day separation, it is still quite significant. For the

top 100 documents, the overlap is above 60%. However

compared to the one day separation, the overlap in the

two month separation decreases much faster as the num-

ber of documents selected increases.

We further explore this issue by breaking down the

overlap and disjoint regions into four groups (assuming

Day 1 is prior to Day 2):

• Common & unmodified: documents that are popu-

lar on both days and have not been modified since

Day 1

• Common & modified: documents that are popular

on both days, and have been modified since Day 1

• Different & old: documents that are popular on

only one of the days, but are in existence on both

days

• Different & new: documents that are created after

Day 1, and are popular only on Day 2

Our results are shown in Figure 6. We observe that

many of the popular files in common between the two

days are remain unmodified through both days. This

implies that Web caching is potentially able to reduce

Web traffic significantly. However, there exists a signif-

icant discrepancy between the number of files that are

potentially cachable (i.e. not modified) and the num-

ber of files that are actually allowed to be cached by the

server. Bridging this gap will help reduce Internet traffic

substantially as well as improving client latency.

Moreover the disjoint region in the set of popular

files on the two days is mostly not due to the creation

of new files, since most of the disjoint region consists of

the accesses to Web pages that were in existence on both

days. Even though the number of modified files is not

very large, because of the frequent updates made to a

small set of files (as observed in Section 4.1), designing

good invalidation techniques for web documents is still

very desirable.

To summarize, in this section, we studied the ranking

stability of web pages, and found that the stability is

reasonably high on the scale of days. The ranking tends

to change only gradually over time. We also examined

what contributes to the overlap and disjoint regions of

popular documents between a pair of days. Our results

show the disjoint region mostly consists of old pages, not

newly created pages. In the overlap region, the number

of modified documents exceeds the number of unmodified

documents, although both counts are of the same order

of magnitude.

13

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

%
 R

eq
ue

st
s

Top Documents Picked

10/14/99 vs 10/15/99 Traces

common & unmodified
common & modified
different & new
different & old

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

%
 R

eq
ue

st
s

Top Documents Picked

10/14/99 vs 10/18/99 Traces

Figure 6: Stability of document popularity

5.2.2 Stability of Interest Group

We now consider how the interest group for each web

page changes over time. Our approach is as follows: For

every web page that receives over 100 accesses on the first

of the pair of days in our study, we find the set of domains

which access the page on each day, and determine the

extent of overlap between these sets. As mentioned in

Section 3.2, we ignore requests from clients for which

the reverse DNS lookup fails. Since the percentage of

failure is reasonably low (Table 1), it should not make a

significant difference in our results.

Figure 7 shows the extent of overlap (as a percent-

age) for several pairs of days we studied. As we can see,

the overlap is not very large. Only a few documents that

have over half of the domains making requests on both

days. We observe similar results during other periods

of traces as well. One explanation for this can be that

the interest groups for the documents may not stabilize

within a day, possibly because our definition of domains

is too fine-grained. Another explanation could be that

domain-level proxy caching can reduce the likelihood of

multiple requests for a Web page emanating from a do-

main. As part of our future work, we plan to investigate

why there is a large variation in the set of domains that

request a Web page, from one day to another.

5.3 Spatial Locality

In this section, we are interested in understanding

whether the domain membership is significant, that is,

whether clients belonging to the same domain are more

likely to share requests than clients picked at random.

This kind of spatial locality has obvious implications for

performance, particularly with respect to the effective-

ness of proxy caching.

Our approach is to compute the degree of local shar-

ing (i.e. intra-domain sharing) and non-local sharing (i.e.

inter-domain sharing) under the following two situations:

(i) assign clients to domains based on their DNS names,

and (ii) assign clients randomly to domains while pre-

serving the size of each domain.

The top two graphs in Figure 8 show the intra-

domain and inter-domain sharing on 12/17/98, and the

lower two graphs show the results for 10/7/99. In both

cases, the inter-domain sharing with random assignment

is comparable to that with the true assignment, as we

would expect. In contrast, intra-domain sharing with

true assignment is noticeably higher than with random

assignment for 10/7/99. This is also observed in the

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800 900 1000

%
 O

ve
rl

ap

Document ID (sorted by %overlap)

10/7/99 vs 10/8/99
10/7/99 vs 10/9/99

10/7/99 10/10/99
10/7/99 vs 10/11/99

Figure 7: Stability of interest group

traces of many other periods. On the other hand, the

intra-domain sharing on 12/17/98 (the day of Operation

Desert Fox) is comparable with both true and random

assignment.

From these results, we conclude the following. In

most cases domain membership is significant, i.e., clients

belonging to the same domain are more likely to share

requests than clients picked at random. This also con-

forms with the findings reported in [28]. However, when

there is a “hot” event, the global interest can become

so dominant that even clients picked at random tend to

share many requests, thus diminishing the significance of

domain membership.

5.4 The Applicability of Zipf’s Law to

Web Requests

Several prior studies have investigated the applicability

of Zipf’s law to web accesses. For example, [5], one of

the more recent pieces of work, gives a comprehensive

summary of previous work on this issue. They report

that the distribution of web requests from a fixed group

of users follows a Zipf-like distribution, C/iα, very well.

The value of α varies from trace to trace, ranging from

0.64 to 0.83.

We investigate this issue further by studying access

logs from both the server and the proxy. We plot the

number of document accesses versus document ranking

on log-log scale. Due to space limitation, we only show

the plots for the server traces (Figure 9).

We make the following observations:

• The curves for both the server traces and the proxy

traces (not shown) fit a straight line reasonably

well when ignoring the first 100 documents as in

[5]. The few most popular documents’ popularity

deviates from the straight line especially in left of

Figure 9. The remaining documents’ popularity

fits a straight line reasonably well. The straight

line on the log-log scale implies that the request

frequency is proportional to 1/iα. The values of

α are obtained using least square fitting, exclud-

ing the top 100 documents (as in [5]), and also

excluding the flat tail.

• The value of α varies from trace to trace. The

values of α in the server traces are consistently and

significantly higher than those in the proxy traces.

Specifically, the values of α in the server traces are

mostly around 1.4 - 1.6, with lowest being 1.3970

and highest being 1.816. In comparison, the α in

the proxy traces are much lower, around 1.0 for

both the days we had proxy logs for. The consis-

tently high α values of the web server is a very

interesting phenomenon, and we discuss its cause

15

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000

%
 R

eq
ue

st
s

Domain ID

12/17/99 Intra-domain Sharing (Local)

Trace
Random 1
Random 2
Random 3

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000

%
 R

eq
ue

st
s

Domain ID

12/17/99 Inter-domain Sharing (Non-local)

Trace
Random 1
Random 2
Random 3

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000 70000

%
 R

eq
ue

st
s

Domain ID

10/7/99 Intra-domain Sharing (Local)

Trace
Random 1
Random 2
Random 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

%
 R

eq
ue

st
s

Domain ID

10/7/99 Inter-domain Sharing (Non-local)

Trace
Random 1
Random 2
Random 3

Figure 8: Compare the intra-domain and inter-domain sharing in the real traces with four random client to domain

assignments

0.1

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1 10 100 1000 10000 100000

of

 R
ef

er
en

ce
s

Document Ranking

Server Traces on 12/17/98, 9-11 AM

alpha=1.8160
Traces

0.1

1

10

100

1000

10000

100000

1e+006

1 10 100 1000 10000 100000

of

 R
ef

er
en

ce
s

Document Ranking

Server Traces on 8/1/99, 10-11 AM

alpha=1.3970
Traces

Figure 9: Frequency of document accesses versus document ranking (server traces)

16

and its implications in Section 5.4.1.

• The value of α is highest on 12/17/98, when there

was an unusual global event interesting to people

all over the world. This is as we would expect.

Since during such period users all over the world

are interested in a small set of pages related to the

event, making hot documents extremely hot and

cold documents colder than usual, the difference in

the hits count of hot pages and cold pages is thus

enlarged, which contributes to a larger α value.

To further study the impact of different α values, we

also plot the cumulative distribution of requests to pop-

ular documents. Figure 10 shows the cumulative proba-

bility of access for the top r% of documents for the server

traces on 12/17/98 (the highest α) and the proxy traces

on 10/6/99 (one of the most recent trace). As we can

see, the top 2% documents account for 90% of accesses

in the server traces. In contrast, it takes 36% to 39%

of the documents to account for 90% of the accesses in

the proxy traces. So, as [5] discovered, the 10/90 rule

(i.e. 90% of the accesses go to 10% of the documents)

does not apply for the web accesses seen at the proxies.

On the other hand, according to our server traces, the

web accesses observed at the server side are sometimes

even more concentrated than the 10/90 rule. This im-

plies that techniques such as reverse caching (i.e., placing

a Web cache right in front of a server so that it is in a

position to intercept all client requests) and replication

could go a long way in alleviating server load.

5.4.1 Reason and Implication of Larger α at

Web server

We have observed that the α values in the server traces

are consistently and significantly higher than those in

the proxy traces. Although our access logs are deficient

in that they do not contain accesses to images, such defi-

ciency is unlikely to consistently bias α towards a higher

value. As found in [27], the α value for accesses to image

and HTML files (based on a large university proxy trace)

are 0.80 and 0.76, respectively. This suggests excluding

the accesses to images are unlikely to bias α towards a

higher value. The following straight-forward calculation

sheds more light on this.

Suppose, when we exclude image files, two HTML

files receive W and W ’ accesses each. The ranking

of the two are R and R′ respectively. Then we have

α = log(W)−log(W ′)
log(R)−log(R′) . After including image files, we have

α = log(W)−log(W ′)
log(k+i+R)−log(k+R′) , where k ≥ 0, and i ≥ 0.

Adding k to the original ranking of both objects is be-

cause including more files can move the original files’

ranking behind (e.g. After including image files, a file

ranked 100th popular can now become 200th popular).

Adding i to one of the object is because adding more

files can possibly enlarge the difference in ranking of two

files. Now we make the following observations:

• If i = 0, then α would increase after including im-

age files.

• If i is large enough to offset k, then α would de-

crease after including image files.

From both analysis and other’s trace study, we con-

clude that lacking image accesses should not consistently

bias towards a higher α value. Rather we believe the

higher α value is due to our study of server logs as op-

posed to proxy logs in the previous work. This can be ex-

plained as follows: A number of previous studies [5, 28]

show popular web pages are spread almost evenly across

hot web servers. This implies that the proxy aggregat-

ing requests to a number of popular servers should have

a slower decay in popularity than any individual server.

This can be illustrated by the following simplified exam-

ple:

Suppose a proxy accesses s web servers. The web

server i has ni documents, with decay coefficient αi. In

addition, it receives Ai accesses to its most popular web

page. Then according to the Zipf-like distribution, we

have

log(Ai) = αi ∗ log(ni)

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

en
ta

ge
 o

f
R

ef
er

en
ce

s

Document Ranking

12/17/98 Server Traces
10/6/99 Proxy Traces

Figure 10: Cumulative distribution of requests to documents

The decay coefficient at the proxy can be computed

as follows:

αproxy =
log(max(A1, A2, ..., As))
log(n1 + n2 + ... + ns)

For a simple case when A1 = A2 = ... = As = A,

n1 = n2 = ... = ns = n, and α1 = α2 = ... = αs =

αserver , we have

αproxy =
log(A)

log(s ∗ n)
= αserver ∗ log(n)

log(s ∗ n)
< αserver

The exact difference between αproxy and αserver de-

pends on s (the total number of popular servers). Of

course, things are much more complicated in practice:

(i) the Web accesses do not strictly follow a Zipf-like

distribution, especially for the most popular documents;

(ii) Web servers are very heterogeneous. It is very hard

to compute α exactly. On the other hand, as long as

it is true that the popular web pages are spread almost

evenly across hot web servers, the α at the proxy is lower

than at each individual popular web server.

In summary, we observe the access patterns at both

the server and the proxy exhibit a Zipf-like distribution.

The value of α is much higher for the server accesses than

for the proxy. In some cases, the top 2% documents ac-

count for 90% accesses. In contrast, the accesses seen at

the proxy traces are more heterogeneous. They take up

to 40% to account for 90% accesses. This suggests that

the hit rate for reverse caching or replication is likely

to be significantly higher than that observed with tradi-

tional proxy caching, and that caching or replicating a

small set of files would cut down server load significantly.

5.5 Access Pattern at Lower-level Prox-

ies vs. Higher-level Proxies

Given the increasing widespread deployment of Web

caching both at the edges and in the core of network, it

is very useful to study how such deployment affects the

web access pattern. In particular, we want to answer

the following questions: (i) given the access pattern of

the lower level proxies (or end-users), what is the access

pattern at the higher- level proxies (HP)? (ii) If the ac-

cess pattern at the lower level proxies exhibits a Zipf-like

distribution, will the access pattern still have a Zipf-like

distribution at the higher level? If so, what will the value

of α at the higher level proxies be?

Answers to these questions depend on how lower-level

proxies are assigned to higher-level proxies By assigning

a lower-level proxy A to a higher-level proxy B, we mean

whenever there is a cache miss at the lower-level proxy A,

the request will be forwarded to the higher-level proxy B

18

for service. To make our analysis straight-forward, here

we consider random assignments from lower-level proxies

to higher-level proxies.

5.5.1 Analysis

We formulate the problem as follows:

Suppose without hierarchical caching, a page receives

m accesses. When we employ a two-level caching hier-

archy with x higher level proxies, shown in Figure 11,

what is the average number of higher level proxies, z,

that access the page?

To simplify our analysis, we ignore document invali-

dation, and also assume infinite cache size at all the prox-

ies (both higher-level and lower-level proxies). Therefore

multiple requests for a single document will be forwarded

up towards the root only once by a higher-level proxy

cache (basically, upon receipt of the request for the time

from any of its children).

Based on these assumptions, we can derive the fol-

lowing formula:

z =
x ∗ m

x + m − 1

The detailed analysis is shown in Appendix A. Using

the above result, we know if the ith popular page has

C/iα accesses from the lower level proxies, then it will

have C/(iα + C
x) accesses from the higher level proxies

(ignoring the −1 in the denominator since x+m is likely

to be much larger). When C
x is much smaller than iα,

(or equivalently when i is large enough), then the access

pattern at the higher level proxies looks very similar to

the access pattern at the lower level. So the α values in

both cases are close to each other for large i.

We validate the above analysis using our server

traces. Our traces analysis matches the above deriva-

tion results, and show that the Zipf-like distribution also

holds at the higher level proxies, and the value of α tends

to be a little lower than at the lower level proxies.

6 Conclusions

In this paper, we have studied the dynamics of a large

commercialWeb site, which is consistently ranked among

the busiest in the Internet. We have analyzed the dy-

namics of both the content and the client accesses at

this site.

6.1 Summary of Key Results

Our main findings are:

1. The server content tends to be highly dynamic with

around 6000 files created and 24000 files modified

over a one-week period. For the subset of files that

are modified, the time gap between successive mod-

ifications tends to lie between an hour and 24 hours

(i.e., a day).

2. Past modification behavior of a file, if averaged

over a sufficient number of samples, tends to be

a reasonably good predictor of future modification

behavior.

3. Most (HTML) file modifications tend to be minor

in terms of the change both in the file size and in

the visible textual content.

4. File popularity tends to be distributed according

to a Zipf-like distribution. However, the param-

eter α tends to be in the range 1.4–1.6, which is

much larger than has been reported in the liter-

ature (based on the analysis of proxy logs). The

large value of α implies, for instance, that just the

top 2% of documents could account for 90% of the

accesses.

5. The popularity of files tends to be stable over a

timescale of days. Of the top 100 documents in

terms of popularity on a given day, 60–100% tend

to remain among the top 100 for up to 5 days.

However, the set of domains from which accesses to

the popular documents are made tends to change

significantly from day to day. For example, there

is only a 40% overlap when considering the top

19

x

m

Figure 11: Two-level caching hierarchy

100 documents. This may be a consequence of our

(fine-grained) definition of a domain, and we are

currently exploring this further.

6. Organizational (i.e., domain) membership of

clients tends to have a significant (positive) im-

pact on the degree of local sharing, unless there

is a globally-interesting event (such as Operation

Desert Fox in December 1998) that cuts across or-

ganizational boundaries.

7. In the case of most popular documents, their pop-

ularity tends to drop off with age. However, some

documents tend to maintain their popularity for a

significant length of time.

8. Majority of first-time accesses (i.e., the first access

to a document by any client in a domain) are to

documents that are at least a day or more old and

are unpopular.

6.2 Broad Implications

Our study of both server content dynamics and access

dynamics has broad implications for the future evolution

of the Web.

6.2.1 Implications for Cache Consistency Con-

trol Algorithms

We find the files are modified very frequently (in Sec-

tion 4.2), and a large part of user’s requests are to the

modified objects (in Section 5.1.2). In particular, over

half of the repeated accesses (accesses made to previously

requested objects by the same domain) are to a modi-

fied object. The high frequency of modification rate and

access rate underscore the importance of having efficient

cache consistency control mechanisms (e.g., [7] [30]).

Second, the degree to which files are modified tends

to be small (in Section 4.4), so techniques such as delta

encoding [21] appear promising.

6.2.2 Implications for Prefetching or Server-

based “Push”

Our study has the following implications on the prefetch-

ing or server-based “push”:

• File creation tends to be a frequent event (in Sec-

tion 4.1). When a popular news story is updated,

it may be assigned a new file name. The absence of

past access history for this new file makes the task

of prefetching or preemptively pushing out these

newly created content challenging.

• High frequency of modifications and accesses sug-

gests prefetching or pushing the modified objects is

potentially very useful. Moreover, since the popu-

lar objects stay popular for a relatively long period

of time (in Section 5.2.1), it makes sense to prefetch

(or push) previously popular files that have under-

gone modification.

• There is significance in domain membership. That

is clients belonging to the same domain are more

likely to share requests than clients picked at ran-

dom (in Section 5.3). On the other hand, the

stability of interest groups is not very high (in

Section 5.2.2), so it may be very challenging to

20

have server push documents discriminatively to the

clients. That is, if the stability of spatial locality is

low, then it may be hard for server to decide where

to push it if not to all clients. As part of our future

work, we will investigate this issue further.

6.2.3 Implications for Web Caching

The implications of our findings for Web caching are two-

fold.

On the positive side, we find the accesses seen by

the Web server are more concentrated to a small set of

documents than the previous proxy-based studies, with

a higher α (in Section 5.4). This implies caching (or

replicating) a small number of popular documents may

potentially reduce server load and/or Web traffic signif-

icantly.

On the negative side, it seems that first-time misses,

though as high as 40% of the all accesses [26], are hard

to cut down significantly. This is because most first-time

accesses tend to be to old and unpopular documents (in

Section 5.1.2), and it is very hard to accurately predict

these kinds of accesses. However, prefetching or pushing

modified objects to users is still beneficial due to the high

frequency of modification rate and access rate. There-

fore, we believe designing efficient cache consistency al-

gorithms, and making more uncachable objects cachable

are two major directions to improve the efficiency of Web

caching, and consequently reduce the Internet traffic.

Replication done under server control may be a viable

solution to both issues.

7 Ongoing and Future Work

We are currently analyzing a larger content log set, inves-

tigating better heuristics for identifying client domains,

and examining why the stability in interest group is low.

For the longer term, we would like to study data sets

from other large server sites to confirm the findings re-

ported in this paper. We also plan to develop efficient

cache consistency algorithms that are optimized based

on the insights we gained from this paper.

References

[1] http://www.abcnews.com

[2] V. Almeida, A. Bestavros, M. Crovella, and A.

Oliveira. Characterizing Reference Locality in the

WWW. Technical Report TR-96-11, Boston Univer-

sity, 1996.

[3] M. F. Arlitt and C. L. Williamson. Web Server Work-

load Characterization: The Search for Invariants. In

Proc. of SIGMETRICS’96, May 1996.

[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M.

Stemm, and R. H. Katz. TCP Behavior of a Busy Web

Server: Analysis and Improvements. In Proc. Infocom

1998, March 1998.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and

S. Shenker. Web Caching and Zipf-like Distribu-

tions: Evidence and Implications. In Proc. of INFO-

COMM’99, March 1999.

[6] P. Cao, J. Zhang, and K. Beach. Active Cache:

Caching Dynamic Contents on the Web. In Proc. of

Middleware’98.

[7] E. Cohen, B. Krishnamurthy, and J. Rexford. Im-

proving End-to-End Performance of the Web Using

Server Volumes and Proxy Filters. In Proc. SIG-

COMM’98, September 1998.

[8] http://www.cnn.com

[9] F. Douglis, A. Feldman, B. Krishnamurthy, and J.

C. Mogul. Rate of Change and Other Metrics: A Live

Study of the World Wide Web. In Proc. USITS ’97,

December 1997.

[10] B. M. Duska, D. Marwood, and M. J. Feeley. The

Measured Access of World Wide Web Proxy Caches.

In Proc. USITS ’97, December 1997.

21

[11] L. Fan, Q. Jacobson, P. Cao, and W. Lin. Web

Prefetching Between Low-Bandwidth Clients and

Proxies: Potential and Performance. In Proc. of SIG-

METRICS’99, May 1999.

[12] Performance of Web Proxy Caching in Heteroge-

neous Bandwidth Environments. Anja Feldmann, Ra-

mon Caceres, Fred Douglis, Michael Rabinovich. In

Proc. INFOCOM’99, March 1999.

[13] S. D. Gribble and E. A. Brewer. System Design

Issues for Internet Middleware Services: Deductions

from a Large Client Trace. In Proc. USITS ’97, De-

cember 1997.

[14] D. A. Grossman, O. Frieder. Information Retrieval

— Algorithms and Heuristics. Kluwer International

Series in Engineering and Computer Science, Septem-

ber 1998.

[15] J. Gwertzman, M. Seltzer. World-Wide Web Cache

Consistency. In Proc. USENIX ’96, January 1996.

[16] R. Jain. The Art of Computer Systems Performance

Analysis. John Wiley and Sons, 1991.

[17] D. Li and D. R. Cheriton. OTERS (On-Tree Ef-

ficient Recovery using Subcasting): A Reliable Mul-

ticast Protocol, In Proc. of 6th IEEE International

Conference on Network Protocols (ICNP’98). October

1998, pp. 237-245.

[18] W. LeFebvre and K. Craig. Rapid Reverse DNS

Lookups for Web Servers. In Proc. USITS ’99, Oc-

tober 1999.

[19] Microsoft Corporation. http://www.microsoft.com

[20] J. C. Mogul. Network Behavior of a Busy Web

Server and its Clients. Research Report 95/5, Com-

paq Western Research Lab, October 1995.

[21] J. C. Mogul, F. Douglis, A. Feldman, and B. Krish-

namurthy. Potential Benefits of Delta Encoding and

Data Compression for HTTP. In Proc. SIGCOMM

’97, September 1997.

[22] http://www.mediametrix.com

[23] http://www.msnbc.com

[24] V. N. Padmanabhan and J. C. Mogul. Using Predic-

tive Prefetching to Improve World Wide Web Latency.

ACM SIGCOMM Computer Communication Review,

July 1996.

[25] J. Touch. The LSAM Proxy Cache - a Multicast

Distributed Virtual Cache.

[26] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggar-

wal, Active Names: Flexible Location and Transport

of Wide-Area Resources. In Proc. USITS ’99, October

1999.

[27] G. Voelker. Personal Communication, Feb 2000.

[28] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,

M. Brown, T. Landray, D. Pinnel, A. Karlin, H. Levy.

Organization-based Analysis of Web-Object Sharing

and Caching. In Proc. USITS ’99, October 1999.

[29] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,

M. Brown, T. Landray, D. Pinnel, A. Karlin, H. Levy.

On the Scale and Performance of Cooperative Web

Proxy Caching. In Proc. SOSP ’99, December 1999

[30] H. Yu, L. Breslau, and S. Shenker. A Scalable

Web Cache Consistency Architecture. In Proc. of SIG-

COMM’99, September 1999.

A Appendix

Given there are m lower-level proxies requesting the ob-

ject, and x higher-level proxies, derive the average num-

ber of higher-level proxies that access the page.

Let nj be the number of different ways a page is ac-

cessed by j Higher-level proxies, and z be the average

22

number of accesses the page receives from the higher

level proxies. Then we have

z =

∑x
j=1 j ∗ nj∑x

j=1 nj

Now let’s compute nj . As we know, nj denotes the

total number of ways of assigning m accesses from lower

level proxies to j (out of m) higher level proxies. This

means

nj =


 x

j


 ∗ N

where N is the number of ways of putting m balls into

j bins. By definition, N is the total number of ways

of assigning ai such that a1 + a2 + ... + aj = m, where

ai > 0. This is equivalent to the number of ways of

assigning si such that s1 = a1, s2 = a1 + a2, ... , sj =

a1 + a2 + ... + aj = m. Since ai > 0, si is an increasing

serie. Therefore N =


 m − 1

j − 1


. So we have

nj =


 x

j


 ∗


 m − 1

j − 1




So

z =

∑x
j=1 j ∗


 x

j


 ∗


 m − 1

j − 1




∑x
j=1


 x

j


 ∗


 m − 1

j − 1




Note that

x∑
j=1


 x

j


 ∗


 m − 1

j − 1




=
x∑

j=1


 x

x − j


 ∗


 m − 1

j − 1




=


 x+ m − 1

x − 1




x∑
j=1

j ∗

 x

j


 ∗


 m − 1

j − 1




= x ∗
x∑

j=1


 x − 1

j − 1


 ∗


 m − 1

j − 1




= x ∗
x∑

j=1


 x − 1

x − j


 ∗


 m − 1

j − 1




= x ∗

 x + m − 2

x − 1




With simple algebraic manipulations, we immedi-

ately get

z =
x ∗ m

x + m − 1

23

