
The SIMBA User Alert Service Architecture for Dependable Alert Delivery

Yi-Min Wang
Paramvir Bahl
Wilf Russell

March 26, 2001

Technical Report
MSR-TR-2000-117

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

To appear in Proc. IEEE International Conference on Dependable Systems and Networks (DSN, formerly 
FTCS), July 2001. 
 
© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this 
material for advertising or promotional purposes or for creating new collective works for resale or 
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must 
be obtained from the IEEE.



The SIMBA User Alert Service Architecture for Dependable Alert Delivery

Yi-Min Wang Paramvir Bahl Wilf Russell

Microsoft Research, Redmond WA

Abstract

Alerts refer to the delivery of user-subscribed
information to the user. As the number of alert services
and the types of information delivery devices increase, a
new model that allows users to manage alert delivery and
avoid alert overflow is needed. The unique dependability
challenge in the management of alerts is in the proper use
of redundancy to achieve timeliness and reliability without
being unduly intrusive or cumbersome.

We describe the design, implementation, and user
experience of an alert service architecture, called SIMBA.
SIMBA utilizes Instant Messaging with acknowledgements
as the universal, reliable alert delivery channel, with
emails being the fallback channel. All alerts that a user
subscribes to are first directed to the user’s MyAlertBuddy,
which allows centralized delivery preference customization
and acts as a personal alert router to protect the privacy of
user addresses. Delivery modes, each of which involves
multiple user addresses to accommodate communication
failures, are supported as an abstraction for specifying
personalized dependability levels. A working
implementation of the SIMBA system, which integrates five
different types of alert services, is described. Challenges
and techniques in maintaining a highly available
MyAlertBuddy to avoid single-point of failure are
discussed. The concept of exception-handling automation
is introduced for enhancing the robustness of applications
that drive third-party communication client software
through automation interfaces.

1. Introduction
The explosive growth of the Web has created a

gigantic networked data store that contains a wealth of
information for immediate access by anyone with an
Internet connection. However, such high availability of
potentially useful information has also created information
overflow problem for individuals. One way to alleviate the
problem is to switch the data access model from
information polling and navigation to eventing (or
alerting). Instead of periodically browsing through all Web
sites with potentially useful information, each individual
user specifies the kinds of information that she is interested
in from each of the Web sites. In subscribing to such
events, the user also specifies a "callback address", e.g., an
email address, to which the notification should be sent
when the event subscription has a match. Many Web sites
already provide such eventing services, usually under the

category of "alerts". For example, Amazon.com offers to
send alerts to users when a particular artist’s new CD
album comes out. The company Alerts.com maintains all
kinds of alert services for other Web information sites.
General Web portal sites such as Yahoo!
(http://alerts.yahoo.com/) and MSN Mobile
(http://mobile.msn.com/) provide alert services for stock
quotes, weather, sports, lottery, career, real estate, etc. We
analyzed a recent one-week usage log from a commercial
portal site, and it showed that on average around 225
thousands of people received around 778 thousands of
alerts every day from that site.

Several other types of alerts are also emerging. On-
line communities, such as MSN Web Communities
(http://communities.msn.com/) and Groups@AOL
(http://community.aol.com/), allow users from different
parts of the world who share similar interests to create
virtual communities. Members of a community can share
photos, activity calendars, etc. in a password-protected
private area. It would be very useful if on-line community
members can subscribe to alerts triggered by changes
made to any community contents. Another example is the
Aladdin home networking system [9], which integrates
diverse devices and sensors at home and connects them to
the Internet. Aladdin generates an alert when any critical
sensor fires. Wireless user-location tracking systems (e.g.
RADAR [1]) are yet another example. Such systems can
provide alert services that notify authorized users of
location changes of the people being tracked. Finally,
desktop assistant software can send alerts to a user’s cell
phone when it detects important reminders or incoming
emails while the user is away from the desktop.

The current model of alert subscription and delivery
has several dependability-related problems. First, most of
the alerts today are delivered as email messages, which are
not suitable for delivering time-critical, high-importance
alerts. Second, alert users usually require different
timeliness and reliability levels for different categories of
alerts. Most of today’s alert services do not provide
customizability at this finer granularity. Third, the above
requirements may change over time. Since alerts from
multiple sources may belong to the same category, having
to visit multiple Web sites to modify or disable alert
delivery mechanisms is a cumbersome task and greatly
impacts the usability of alert services. Finally, to receive
alerts as SMS (Short Message Service) messages on a cell
phone, the user needs to supply the SMS email address.
Since the SMS address typically contains the



corresponding cell phone number, providing that
information to multiple alert services creates serious
privacy concerns.

In this paper, we describe the design, implementation,
and user experience of an alert service architecture, called
SIMBA, to address the above issues. Throughout the paper,
we use the term dependability to refer to the overall user
experience of using alert services; more specifically, we
focus on the capability of delivering alerts in a timely and
reliable fashion without being unduly intrusive or
cumbersome. The motivation for this unusual definition of
dependability is as follows. Clearly, the timeliness and
reliability of alert delivery can be enhanced through heavy
use of redundancy; for example, each alert can be
delivered as N duplicated emails and N duplicated SMS
messages. However, when considering dependable
services that involve human end-users, heavy redundancy
often makes the services too irritating and cumbersome to
use. The challenge is to take into account the “irritability
factor” and figure out the proper trade-off between
timeliness/reliability and usability in order to make the
overall user experience comfortable. Since such
assessment of dependability is clearly a subjective matter,
our goal is to provide a framework that simplifies the user
task of configuring personalized dependability levels and
associating them with the delivery of various alerts based
on each individual user’s experience.

The overall contribution of SIMBA is to study the
dependability issues and solutions in the context of a new-
style distributed, Web-based service. Specific
contributions include:

• To support delivery of time-critical, high-importance
alerts, SIMBA utilizes Instant Messaging (IM) with user
acknowledgements for end-to-end synchronous, reliable
delivery. Like emails, instant messaging is becoming
another standard way of communication over the Internet
for people to exchange short, fast messages. SIMBA
extends the use of instant messaging to communications
between potentially non-human entities.

• To support personalized dependability requirements for
alert delivery, SIMBA introduces the concept of delivery
modes. Each delivery mode involves potentially multiple
addresses to accommodate communication delays and
failures. The user defines a set of personalized delivery
modes, each of which corresponds to a personalized
dependability level.

• To support easy customizability, SIMBA introduces
MyAlertBuddy (MAB) as a level of indirection between
alert services and users. Each user has a MAB, which is
always online for receiving and acknowledging IM-alerts.
The MAB uses an email address as its fallback
mechanism. All alerts to a user are first directed to the
user’s MAB, which then determines the best way at that
time to route the alerts to the user. The best way is based

on her static and dynamic preference of dependability.
Since only the addresses of the MAB are revealed to the
various alert sources, the privacy of user addresses is
greatly improved.

• In terms of implementation, we incorporate extensive
fault-tolerance mechanisms into MyAlertBuddy to avoid
single-point of failure. In particular, we introduce the
concept of exception-handling automation and demonstrate
how it enhances the robustness of applications that drive
the IM and email communication client software through
automation interfaces.

The rest of this paper is organized as follows. Section
2 describes the alert services that have been connected to
SIMBA. The diversity of these alert sources was the main
motivation for our dependability study. Section 3 describes
the dependability issues associated with the current model
of user alert service, and the approach taken by SIMBA to
address these issues. Section 4 presents the design and
implementation of SIMBA, with emphasis on exception-
handling automation and its use in maintaining a highly
available MyAlertBuddy. Section 5 presents experimental
results. Section 6 surveys related work. Section 7
summarizes the paper.

2. Alert Services
In this section, we describe a number of alert services

that we consider, as illustrated in Figure 1. We classify
them into five different types, and give a brief description
of each type with sample scenarios that demonstrate the
benefits they provide. In today’s world, for each
interesting alert service, the user visits the service’s alert
subscription page and enters subscriptions based on
categories, keywords, etc. The user also supplies a
preferred email or SMS address, to which the alerts should
be sent.

2.1. Information Alert Services
Information alert services including the five shaded

boxes in Figure 1 and many other general news and
special-purpose alert services are currently supported in
SIMBA. For example, eBay can send alerts to users when
they are outbid or when an auction is about to be closed.
CNN Sports Illustrated can send an alert when a particular
news column is updated. Most of them follow the
traditional delivery mechanism of sending alerts as emails.

For Web sites that provide interesting information but
do not yet support alert services, we use an alert proxy to
generate alerts for them. For each Web site, the user
specifies the URL, the polling frequency, the starting and
ending keywords enclosing the interesting block of
information. The alert proxy periodically polls the site and
generates an alert when the interesting block changes. For
example, an alert proxy was constructed to monitor the
year 2000 presidential election results and configured to



send an alert whenever the Florida recount updated the
number of votes.

Slick
Deals.net

eBay

Yahoo!

MSN
Mobile

Web Communities &
Data Stores

Home Networking
System

User Location Services

Desktop Assistant

SMS

Email

CNN Sports
Illustrated

Figure 1. Current Model of User Alert Service: user
enters alert subscriptions as well as alert delivery
preference at each alert service.

2.2. Web Store Alert Services
In contrast with information alert services that

generally provide information interesting to the public,
Web store alert services notify users when changes are
made to their private data or shared community data stored
on the Web. For example, some of today’s credit card
companies provide confirmation alerts when they cash
customers’ payment checks. In the future, users are
expected to store more and more data on the Web in a
device-independent format so that they can get access to
the data at any time, from any place, and on any device. As
a result, we speculate that alert services that report data
changes by, for example, authorized agents will become
popular.

To allow timely delivery of certain alerts that a user
may be eagerly waiting for on a particular day, we use the
alert proxy to periodically monitor the community sites
and send alerts upon detecting changes. For example,
when a new photo is added to the shared community photo
album, interested members can receive an alert containing
the URL, which they can click to see the picture.

2.3. Home Networking Systems
The Aladdin system provides a distributed system

infrastructure and a programming toolkit for building
dependable home networking applications [9]. Aladdin
integrates diverse devices and sensors attached to
heterogeneous in-home networks including powerline,
phoneline, RF (Radio Frequency) and IR (InfraRed), and
connects them to the Internet through a home gateway
machine. In addition to supporting secure, email-based
remote home automation, Aladdin generates alerts when
any critical sensor fires or when any critical device fails.
For example, flooding in the basement would generate a

“Basement Water Sensor ON” alert; garage door sensors
running out of battery would trigger a “Garage Door
Sensor Broken” alert.

To minimize the potential problem of message loss
and delay, Aladdin by default sends all alerts as two emails
and two cell phone SMS messages. However, such heavy
use of redundancy has not worked well. For critical alerts,
there is still no guarantee that any of the four messages can
reach the user in time. For less critical alerts, four
messages per alert are irritating and cumbersome. As we
will discuss later, moving Aladdin to the SIMBA
architecture with Instant Messaging and MyAlertBuddy
greatly improves its usability and dependability.

2.4. User Location Services
Tracking of mobile users has long been considered a

necessary service for building location-aware applications
[1]. The WISH system, developed at Microsoft Research,
is a location-determination system that addresses privacy
concerns by leaving the control of location information
dissemination solely with the user. The WISH client
software, running on the user’s handheld device, extracts
from its RF wireless network card the identity of the
Access Point (AP) the device is connected to and the
strength of the signals received from the AP. It then sends
that information along with the user's name and activity
status to a WISH server. The WISH server maintains an
RF signal propagation model and a table that maps each
AP to a physical location. Using the information provided
by the client, the WISH system is able to determine the
user's real-time location to within a few meters. A
confidence percentage is associated with each estimate.

The WISH location alert service provides a Web-
based interface for people to request location tracking of
wireless users. A user of the alert service specifies the
name of the person to track and the address for alert
delivery. An alert can be generated when the tracked
person enters a building, moves to a different part of the
building, and/or leaves the building.

2.5. Desktop Assistants
At work, people are spending an increasing percentage

of their time using the email/calendar software. In addition
to sending and receiving emails, the software also serves
as a personal alert service that generates time reminder
alerts on a user’s screen. Ideally, if the user is not there to
see the reminders pop up, the important ones should be
routed to a device that can get the user’s attention.

We have built a SIMBA Desktop Assistant that runs
on a user’s primary machine and remains inactive until the
idle time of interactive activities exceeds a user-specified
threshold and the software determines that the user has not
processed emails from other places. Currently, the
Assistant software generates alerts when high-importance
emails come in and when high-importance reminders pop



up. Since the user is likely to be away from any machine,
all alerts are generated as SMS messages.

3. Dependability Issues and the SIMBA
Approach

The current model of user alert services as illustrated
in Figure 1 suffers from several dependability-related
issues. We discuss them in this section and present the
approach we adopted in SIMBA to address these issues.

3.1. End-to-end Reliable Delivery of Time-critical
Alerts

It is well understood that email delivery is not
guaranteed to be reliable, and the unpredictable delivery
time can range from seconds to days. Our experience with
the cell phone SMS delivery time with a large carrier
shows a similar range of unpredictability. This is clearly
not acceptable for delivering time-sensitive alerts. For
example, alerts from Web bargain sites such as
http://slickdeals.net/ should preferably be delivered before
the hot deals or electronic coupons expire. Weather
Advisory Alerts from http://www.alerts.com/ should reach
users before the severe weather affects their travel or
commute. Date reminders from MSN Calendar
(http://calendar.msn.com/) must be delivered in time for
users to catch their appointments. Critical sensor events
from Aladdin home networking system such as water
leakage, power outage, door opening, etc. must be
delivered as fast and as reliably as possible for users to
prevent damages. Finally, the location information of a
wireless user is only useful if it can be delivered before the
user changes the location significantly.

To support timely delivery of critical alerts, SIMBA
makes heavy use of Instant Messaging (IM) as an alert
delivery mechanism. Following emails and Web browsing,
IM is becoming another Internet communication standard,
supported by most of the large Internet Service Providers
and used by tens of millions of people worldwide. Instant
Messaging allows each user to specify a list of buddies (or
contacts), get notified when any of them logs in, and
initiate synchronous, text-based message exchange. As IM
moves beyond the desktops and starts to appear on cell
phones and PDAs, it will become a ubiquitous
communication channel. SIMBA extends the use of IM to
communications between potentially non-human entities,
essentially turning it into a general application-level
communication protocol.

To guarantee end-to-end, reliable delivery of alerts,
SIMBA relies on application-level acknowledgements
tagged with IM message sequence numbers. Note that
Instant Messaging services do provide presence and
activity status information of a user’s buddies. So one may
be tempted to simply use such information to determine
whether synchronous, reliable communication can be
performed successfully. In SIMBA, we decided against

such an approach because the user may be separated from
the devices and because such information is always
potentially stale. Only an explicit acknowledgement from
the user can confirm end-to-end reliable delivery of any
alert.

3.2. Delivery Modes
One disadvantage of using Instant Messaging for alert

delivery is that the delivery would fail if the subscribing
user is not logged on to the IM service. A natural way to
solve this problem is to use emails as a fallback
mechanism when IM delivery fails. In other words, Instant
Messaging can be used as the primary delivery mechanism
to synchronously and reliably deliver alerts whenever
possible, while emails are used as a fallback mechanism
for asynchronous, store-and-forward type of delivery.

In the SIMBA architecture, we generalize the above
notion to the concept of delivery modes. Each user
supplies multiple addresses for receiving alerts. These may
typically include the user’s work and personal IM
addresses, cell phone SMS addresses, and email addresses.
Each delivery mode contains one primary delivery block,
optionally followed by one or more ordered backup
delivery blocks. Each delivery block consists of one more
delivery actions. Each action involves exactly one address,
specifies whether an acknowledgement is required and, if
so, how long the send operation should wait for the
acknowledgement. Alert delivery is first carried out using
the actions in the primary block. If any of the actions fails,
the block is considered to have failed and the remaining
blocks are tried in sequence until one of them succeeds or
the list is exhausted. An action may fail either because the
associated address has been temporarily disabled, or
because the send operation to that address returns an error
(e.g., network disconnection, server unavailability, IM user
not logged on, third-party communication client software
hanging), or because the required acknowledgement is not
received within the specified amount of time.

For each alert category, the user specifies a delivery
mode, instead of a single IM or email address, as the alert
delivery mechanism. For example, for extremely urgent
alerts (e.g. laundry room flooding) from a home
networking system, the user may specify a delivery mode
that includes actions involving all available addresses in
the primary delivery block to ensure that the alerts reach
the user as soon as possible. For time-critical but less
urgent alerts (e.g., date reminders), the user may specify a
primary block that uses IM and requires an
acknowledgement, followed by a backup block that
contains one action through SMS and another one through
emails. For less time-critical alerts (e.g. weather, lottery,
and stock quotes), the user may stay with the traditional
delivery mode that uses only email delivery.

The concept of delivery modes is essentially a
simplified version of rule-based communication



redirection. It had been pointed out that, in the area of
general person-to-person communications, the design of
user interfaces for rule-based communication filtering has
been a notoriously hard issue [6]. With potentially multiple
rules in action, it is difficult for users to understand exactly
how a message containing certain contents will be routed.
The issue is simplified as we focus on only alerts because
alert services typically separate alert subscription (which
performs content filtering) and alert delivery (which
performs communication routing) into two steps. The
proposal of delivery modes is an attempt to provide a
simple abstraction for users to reason about the second
step, while accommodating unavoidable potential
communication failures.

3.3. MyAlertBuddy: Decoupling Alert Subscription
from Alert Delivery

Even with added IM capability for dependable
delivery and the use of delivery modes to allow flexible
specification of delivery mechanisms, the current alert
service model still suffers from another dependability-
related problem: it makes dynamic customization difficult.
In short, the current model maps a service to a delivery
mechanism at the service site, while the ideal model from a
user’s perspective would be to map each personal alert
category to a delivery mechanism at a central,
personalized site.

Specifically, today’s Web portal sites usually provide
alerts of multiple categories, some of which require more
delivery dependability than the others. But the users are
usually forced to specify a single delivery mechanism for
all alerts from the same service. In addition, alerts from
multiple services may naturally belong to the same
category. For example, a user may consider that stock
quote alerts from Yahoo!, financial news from the Wall
Street Journal, and news column alerts from CBS
MarketWatch all belong to her personal “Investment” alert
category and should share the same delivery mechanism.
Today’s service model requires the user to specify the
delivery mechanism at each of these services, making
subsequent changes a cumbersome task. Suppose the user
specifies the SMS address at all three services. If one day
the user needs to make timely investment decisions and
would like to temporarily switch the delivery mechanism
for all “Investment” alerts from SMS to IM, she would
need to visit all three services to make the change. In
another scenario, the same efforts would be required if the
user travels to an area where her cell phone doesn’t work
and so needs to switch the delivery mode from SMS to
emails. In yet another scenario, she may need to disable
these alerts during certain hours to avoid distractions;
some of these services may not provide consistent or even
compatible interfaces for such customization.

To simplify dynamic customization of alert categories
and delivery in response to changes in either user

preference or the availability of certain delivery
mechanisms, we introduce MyAlertBuddy in the SIMBA
service architecture, as shown in Figure 2. Each user has
such an alert buddy, operating between all alert services
and the user. MyAlertBuddy has its own IM and email
addresses, and is always logged on to the IM and email
servers. When subscribing to any alert service, the user
supplies the buddy’s IM and email addresses, instead of
her own, for alert delivery. All alerts for a user are first
sent to the user’s MyAlertBuddy, which then performs
personalized alert routing.

This architecture has several advantages. It protects
the user’s privacy because the user’s cell phone numbers
and IM addresses are not revealed to any alert source.
Receiving unwanted alerts at those addresses would have
been extremely intrusive. For alert services that support
SIMBA delivery modes (see Section 4.2), most alerts
would be instantly delivered to and acknowledged by
MyAlertBuddy, greatly enhancing the chance of
dependable delivery of critical alerts. To existing alert
services that support only email delivery, MyAlertBuddy
looks just like any other regular human user. To the user,
MyAlertBuddy serves as a highly customizable, private
alert source. The user registers all her addresses with the
buddy and defines several personalized delivery modes,
each identified by a friendly name. The user also defines a
set of personal alert categories and specifies how the native
alerts from other sources should be mapped to these
personal categories. For each personal category, the user
assigns a delivery mode that matches the dependability
requirement.

Later on, whenever the user needs to change the
delivery modes of some alerts, she only needs to update
MyAlertBuddy. When the user’s cell phone runs out of
battery power or when the carrier does not cover the area
of the user’s location, she only needs to ask MyAlertBuddy
to temporarily disable her SMS address. Any delivery
block that contains an SMS action will automatically fail
and fall back to the next backup block. Enabling and
disabling of some categories of alerts and specifying
delivery time constraints can also be conveniently and
consistently performed with the alert buddy. Effectively,
MyAlertBuddy serves as a personal alert aggregator that
absorbs alerts from diverse sources and re-classifies them
based on the user’s preferences; a personal alert filter that
temporarily blocks unwanted alerts, which might have
been useful before and may be useful in the future; and a
personal alert router that knows at any given time what
the user’s preferred way of receiving a particular type of
alert is.



Slick
Deals.net

eBay

Yahoo!

MSN
Mobile

Desktop Assistant

SMS Email IM

IMEmail

MyAlertBuddy

CNN Sports
Illustrated

Web Communities &
Data Stores

Home Networking
System

User Location Services

ACKACK

Figure 2. The SIMBA Model of User Alert Service:
user enters alert subscriptions at each service and asks
all alerts to be delivered to MyAlertBuddy.

4. Design and Implementation of SIMBA
In this section, we describe the implementation of the

SIMBA library and MyAlertBuddy. The library is used by
both MyAlertBuddy and some of the alert sources.
Currently, MyAlertBuddy runs on a desktop PC owned by
the user.

4.1. The SIMBA Library
Figure 3 illustrates the main components of the

SIMBA library and how they interact with other third-
party software. The library is divided into two layers:

(1) Subscription Layer: this layer provides APIs for users
to register their addresses, personal alert categories, and
personal delivery modes. It provides a subscription API for
mapping a category name to a user with a particular
delivery mode. Each category can have multiple
subscribers, each of which can specify a different delivery
mode.

Both user addresses and delivery modes are expressed
in XML (eXtensible Markup Language) to allow
extensibility for accommodating new communication
addresses. An XML document for user addresses consists
of a list of all of a user’s addresses for alert delivery. Each
address is associated with a communication type (e.g.,
“IM”, “SMS”, and “EM”) and identified by a friendly
name such as “MSN IM”, “Work email”, etc. An XML
document for a delivery mode contains one or more
communication blocks, each of which contains one or
more actions. Each action maps to the friendly name of an

address. Figure 4 shows a sample delivery mode document
with two communication blocks. When a native alert
arrives, the subscriptions of the matching category are
identified and the corresponding delivery mode XML
documents are parsed. Only actions that map to enabled
addresses at that time are performed.

Email
Manager

IM
Manager

Browser
Manager

Email Client IM Client Web Browser

Delivery
Modes

User
Addresses

Category
Names

Internet

Category
Subscriptions

Subscription layerThe SIMBA Library

Communication layer

Figure 3. Components of the SIMBA library.

<comm_mode>
<comm_block>

<comm_action>
<name>MSN_IM</name>
<ack_mode>yes</ack_mode>
<ack_time>20</ack_time>

</comm_action>
</comm_block>
<comm_block>

<comm_action>
<name>AT&T_Text_Messaging</name>
<ack_mode>no</ack_mode>

</comm_action>
<comm_action>

<name>Work_email</name>
<ack_mode>no</ack_mode>

</comm_action>
</comm_block>

</comm_mode>

Figure 4. Sample XML Delivery Mode Document.

(2) Communication Layer: this layer provides APIs for
programmatically performing Internet communications
that are usually performed by humans. It currently consists
of three Communication Manager components: the Email
Manager, Browser Manager, and IM Manager. These
Manager components encapsulate all interactions with
their respective third-party, GUI-centric communication
client software. (The current implementation uses
Microsoft Outlook, Internet Explorer, MSN Messenger.)

4.1.1. Exception-Handling Automation
To allow MyAlertBuddy to be interposed between the

services and the users in a fully compatible fashion, it is



desirable for MyAlertBuddy to use exactly the same email
and IM client software that human users use to send and
receive alerts. Some of these GUI-centric communication
client software packages support automation interfaces for
exactly this purpose: they allow programmatic access to
virtually all the operations that can be performed by human
users so that programmers no longer need to use low-level
networking APIs to send raw data and implement Internet
communication protocols. All the Communication
Manager components use automation interfaces to drive
the client software.

However, our experience in using automation
interfaces to build highly available daemon processes
reveals that the current design of automation interfaces
suffers from a crucial dependability problem: while they
are designed to model the normal use of software by
human beings, they do not model and simulate human
operations in case of exceptions. Specifically, when a
human user is using the software and observes that it is not
working properly, the user usually performs simple
diagnosis by clicking around in the GUI. Sometimes that
forces the software to reestablish a clean connection with a
remote server and be able to resume correct operation.
Other times the software is badly hung and the only thing
the user can do is to kill and restart the software. In
addition, sometimes either the software itself or other parts
of the system may pop up a dialog box to report problems.
The user has to click a button on the dialog box to allow
the software to continue operation.

To guarantee continuous operation, it is essential for
any daemon processes built upon automation interfaces to
be able to programmatically perform all the above
exception-handling operations. In SIMBA, we encapsulate
these operations in the Communication Managers, which
provide the three APIs described below to support
exception-handling automation for their associated
communication client software.

• Sanity Checking API: the API starts by checking if
the process of the client software is still running and if the
pointers to the client software are still valid. Then it
performs a series of application-specific checks. For
example, the IM Manager checks if the IM client software
is still logged on to the server. If it has been logged out due
to, for example, server recovery or network disconnection,
it will be re-logged in. The IM Manager also checks to see
if it can launch IM sessions, obtain the status of the
buddies, etc.

• Shutdown/Restart API: this API encapsulates the
details needed to shut down and restart the associated
client software. When an application invokes the sanity
checking API to learn of any unfixable anomaly and calls
the restart API, the Manager terminates the currently
running instance of the client software, restarts another
instance, and refreshes all its pointers to point to the new
instance.

• Dialog-box Handling API: the third API deals with
dialog boxes. In GUI applications, dialog boxes are
commonly used as a way to report information or warnings
to the user, and to receive user input on the preferred
course of action. Such dialog boxes should never pop up
when the software is driven by a program through
automation interfaces because the program cannot interact
with the boxes, which then stay on the screen forever and
prevent the entire application from making progress.
Unfortunately, the email and IM client software used in
SIMBA do pop up some dialog boxes that cannot be
closed through any automation interfaces. What makes the
situation even more complicated is that other parts of the
system can pop up dialog boxes that are out of the control
of the client software.

A comprehensive solution to the above problem
requires careful redesigns of both the applications and the
OS to support so-called headless operations. In SIMBA,
we adopted a temporary fix that has proved to be effective
in solving the hanging dialog box problem. Each
Communication Manager maintains a “monkey thread”,
whose only job is to look for dialog boxes with matching
captions and “click” on the appropriate buttons by sending
mouse-button-down and then mouse-button-up messages.
In each Manager, some of the caption-button pairs are
system-generic, while the rest are specific to the associated
client software. To handle dialog boxes that are specific to
each operating environment, each Manager provides an
API for specifying additional caption-button pairs.

4.2. MyAlertBuddy
To better integrate the alert services into the SIMBA

architecture, we modified the information alert proxy, web
store alert proxy, Aladdin home gateway server, WISH
alert server, and the desktop assistant to use the “IM-with-
acknowledgement followed by email” delivery mode of
the SIMBA library to deliver alerts to MyAlertBuddy.
Upon receiving an alert, the operations and functionality of
MyAlertBuddy can be divided into four parts.

Alert classification: MyAlertBuddy first invokes the
Alert Classifier to extract category information from the
alert. In advance, the user customizes the classifier by
specifying the list of accepted alert sources, and how to
extract category-related keywords from the alerts. For
example, the keywords in alerts from Yahoo! and
Alerts.com appear as part of the email sender name, while
the keywords in MSN Mobile alerts and desktop assistant
alerts reside in the email subject field. As part of the alert
classification procedure, MyAlertBuddy also helps the user
maintain a list of all the subscribed alert services, and the
information about how to unsubscribe them.

Alert aggregation: The user can also specify the
mappings from those keywords to a set of personalized
alert category names. For example, alert aggregation can
be achieved by mapping all of “Stocks”, “Financial news”,



and “Earnings reports” to a single category called
“Investment”.

Alert filtering: MyAlertBuddy can also provide alert
filtering through selective sub-categorization. For example,
since the Aladdin system does not support content-based
event subscriptions, all state changes of any sensor
declared as critical will trigger alerts to be sent to
MyAlertBuddy. By mapping “Sensor ON” and “Sensor
OFF” to two different subcategories, the user can treat one
of them as more urgent than the other and assign different
delivery modes to them.

Alert routing: Once an incoming alert is assigned a
personalized category, MyAlertBuddy enumerates through
all subscriptions of that category, parses each delivery
mode, and invokes appropriate Email and IM Manager
APIs to deliver the alert. Although MyAlertBuddy provides
primarily a personalized service, it supports multiple
subscribers per category to allow alert sharing.

4.2.1. Achieving High Availability
The most critical dependability task in the SIMBA

architecture is to maintain a highly available
MyAlertBuddy. We next describe the various failure
scenarios that MyAlertBuddy must recover from and how
we apply several fault-tolerance techniques including
pessimistic logging, watchdog, self-stabilization, and
software rejuvenation to achieve that goal.

• Pessimistic Logging
It is possible that, after MyAlertBuddy receives and

acknowledges an IM alert and before it finishes processing
the alert, MyAlertBuddy may crash or get terminated due to
some anomaly. Since the sender has received the
acknowledgement and will not resend the alert, the alert
would be lost in such a case. To solve this problem, we use
pessimistic logging [3]: upon receiving an IM,
MyAlertBuddy instructs the SIMBA library to save a copy
to a log file before sending the acknowledgement. After
processing the IM, MyAlertBuddy marks the saved copy as
“Processed”. Every time MyAlertBuddy is restarted, it first
checks the log file for unprocessed IMs before accepting
new alerts. Another problem is that duplicated alert
deliveries may occur if MyAlertBuddy fails after sending
out an alert and before marking the corresponding received
IM as “Processed”. We use timestamps to allow the user to
detect and discard duplicates.

• Watchdog
MyAlertBuddy is always launched by a watchdog

process called Master Daemon Controller (MDC), which
monitors MyAlertBuddy and restarts it upon detecting its
termination. The MDC also periodically invokes a non-
blocking AreYouWorking() function call and restarts
MyAlertBuddy if it is hung and fails to respond to the call.
The AreYouWorking() function is implemented as follows.
Upon starting, MyAlertBuddy makes a call to

MDCInitialize() with the function pointer to
AreYouWorking() as a parameter. The call MDCInitialize()
creates an MDC client thread, which communicates with
the MDC using Windows NT event synchronization
objects. The MDC invokes the checking by signaling the
event to trigger the client thread to call AreYouWorking()
inside MyAlertBuddy. If the call successfully returns, the
client thread signals another event as a reply. If the reply
event is not signaled within a time limit, the MDC
terminates and restarts MyAlertBuddy. If the number of
failed restarts exceeds a threshold, the MDC reboots the
machine.

• Self-Stabilization
MyAlertBuddy interacts with third-party software that

in turn interacts with remote email and IM servers.
Problems occurring at any of these involved entities may
cause unexpected behaviors. Since it is very difficult to
anticipate all possible failures and to detect and recover
them on the spot, MyAlertBuddy incorporates self-
stabilization mechanisms that periodically check system
invariants and correct violations. Inside the
AreYouWorking() callback made by the MDC,
MyAlertBuddy checks the health of the process and the
threads by monitoring the timestamps of their progress and
unusual system resource consumption caused by, for
example, memory leaks in rarely executed branch of code
or in third-party software. On a higher frequency,
MyAlertBuddy periodically invokes the APIs provided by
the Email and IM Managers to check the sanity of the
communication client software and the availability of their
corresponding servers. It also checks for violations of other
application-specific invariants including unprocessed
emails and IMs due to potential loss of new-email and
new-IM events, unprocessed dialog boxes, etc. Currently,
the AreYouWorking() callback is invoked every three
minutes, the sanity checking APIs are invoked every
minute, and unprocessed dialog boxes are checked every
20 seconds.

• Software Rejuvenation
Rejuvenation is a technique that gracefully terminates

an application and immediately restarts it at a clean
internal state [5] It has been recognized as a useful
technique for increasing the availability of continuously-
running service applications. We perform three kinds of
rejuvenation tasks in MyAlertBuddy: (1) whenever
MyAlertBuddy catches an exception that cannot be handled
or any of the self-stabilization checks reveals invariant
violations that cannot be rectified, MyAlertBuddy
gracefully terminates and gets restarted by the MDC. (2)
Every night at 11:30PM, MyAlertBuddy requests an
orderly shutdown of all the communication client software
and terminates itself. (3) To facilitate remote
administration of MyAlertBuddy, SIMBA allows users to



send IMs or emails with special keywords to explicitly
trigger rejuvenation.

5. Experimental Results
The experimental setting illustrated in Figure 5 was

used to measure the performance and effectiveness of
SIMBA. The one-way IM delivery time from any of the
alert sources to MyAlertBuddy is typically less than one
second. With pessimistic logging, the alert source receives
an acknowledgement in about 1.5 seconds. An alert proxy
was set up to monitor the Florida recount numbers and the
availability of the PlayStation2 game consoles by polling
the associated Web sites. When the proxy detected a
change, it sent out an alert, which on average took 2.5
seconds to route through MyAlertBuddy to reach the user.

The Soft-State Store (SSS) server [9] is a daemon
process that maintains a store of soft-state variables, each
of which is associated with a required refresh frequency
and the maximum number of allowed missing refreshes
before the variable is timed out. Clients of SSS can define
data types, create variables, read/write variables, and
subscribe to events relating to changes in the types or
variables. The SSS is used in the Aladdin system as
described in the following scenario: the kid returned home
from school and used a remote control to disarm the
security system. The RF signal was received by a
powerline transceiver and converted into a powerline
signal. A powerline monitor process running on a PC
picked up the signal and converted it into an update on the
local SSS server, which replicated the update to other PCs
through a multicast over the phoneline Ethernet. The SSS
server running on the home gateway machine fired an
event to the Aladdin home server, which then sent out an
IM alert. From the time the button on the remote control
was pushed to the time an IM popped up on the user’s
screen, the end-to-end delivery took an average of 11
seconds.

In the wireless location service scenario, the WISH
client software running on the user’s laptop periodically
sends the location information to the WISH server. The
server updates the Soft-State Store, in which each user is
represented by a soft-state variable. If another person has
entered an alert subscription corresponding to that update,
the WISH Alert Service sends an alert through SIMBA.
From the time the laptop sends out the information
wirelessly to the time the subscriber gets notified by an IM
alert, the average end-to-end delivery time was measured
to be 5 seconds.

We also measured the elapsed time for MyAlertBuddy
to perform rejuvenation. The entire process started with
MyAlertBuddy shutting down the IM and email client
software before it itself exited, and ended when
MyAlertBuddy restarted the software and successfully
logged on to the two servers. Depending on the server
response time, rejuvenation time ranged from 8 seconds to

40 seconds. Since rejuvenation is performed either at night
when there is little alert traffic or when an exception that
cannot be handled occurs, we have found that the short
period of unavailability due to rejuvenation is acceptable.
Table 1 summarizes all performance numbers.

Alert Proxy

MyAlertBuddy

IM

Florida
Recount
Numbers

Aladdin
Home
Server

Remote
Control

Powerline
Transceiver

Powerline
Monitor

Soft-State Store

WISH
Alert

Service

Soft-State Store

WISH
Client on
Laptop

WISH
Server

Access
Point

Sony Play
Station 2

Availability

Figure 5. Service Configurations for SIMBA
Performance Measurements.

Table 1. Performance Numbers

Elapsed Time
(in seconds)

IM with acknowledgement 1.5

Alert proxy to user 2.5

Home remote control to user 11

Tracked laptop to subscriber 5.0

Rejuvenation Between 8 and 40

To measure the effectiveness of the fault-tolerance
techniques described previously, we have instrumented
both the SIMBA library and the MyAlertBuddy to log all
recovery actions. Preliminary results from the log file
show that, within a one-month period of time, there were
five extended IM downtimes lasting from 4 to 103
minutes. These could be due to actual IM service
unavailability, corporate proxy server unavailability,
network connection problems, etc. In addition, there were
nine instances where MyAlertBuddy was logged out and
simple re-logon attempts worked. In another nine
instances, the hanging IM client had to be killed and
restarted in order to re-log in. There were 36 restarts of
MyAlertBuddy by the MDC. Most of them were triggered
by IM exceptions caused by the use of an earlier version of
undocumented interfaces. The fault-tolerance mechanisms
effectively recovered MyAlertBuddy from all failures



except three: one failure was caused by a rare power
outage in the office; another two were caused by
previously unknown dialog boxes. UPS and dialog-box
handling APIs were then used to fix the problems.

In summary, the experimental results show that
SIMBA successfully leverages IM to provide efficient alert
routing and delivery, and the fault-tolerance techniques for
maintaining a highly available MyAlertBuddy are crucial
and effective.

6. Related Work
Several recent efforts have been proposed to address

the issue of user mobility for general person-to-person
communications. Universal Inbox [7] proposed a scalable
and extensible architecture for supporting user mobility
across devices attached to heterogeneous networks. For
each type of network, an Access Point is provided to
bridge network-specific sessions to generic sessions to the
Internet core. Name translation, preference-based
redirection, etc. are provided as reusable components
inside the Internet infrastructure. In contrast, the Mobile
People Architecture (MPA) [6] provides similar
functionalities through a Personal Proxy, which protects
the privacy of the user’s reachability information and is
deployable without requiring modifications to existing
networking infrastructures.

In contrast with the above efforts that mostly deal with
the functional aspects of general inter-person
communications, SIMBA focuses on a specific type of
one-way communications, namely, the delivery of alerts,
and places emphases on dependability issues. As pointed
out in Section 3.2, the focus on alerts has greatly
simplified the hard issue of providing usable user
interfaces for rule-based communication redirection. The
abstraction of delivery modes has proved to be useful in
providing overall dependable delivery of alerts. The
SIMBA MyAlertBuddy plays a similar role as the MPA
Personal Proxy. Although both MPA and SIMBA allow
personal-level routing without modifications to existing
networking infrastructures, they introduce a single point of
failure in their respective architectures. The fault-tolerance
techniques that we have adopted to successfully maintain a
highly available MyAlertBuddy can also be applied to
constructing a robust Personal Proxy.

The PRIORITIES system [4] adopted decision-
theoretic approach to attention-sensitive alerting. It
provides automatic assessment of the expected criticality
of email messages, and makes context-sensitive decisions
on whether and how to alert users about the messages.
Such techniques are essentially orthogonal to SIMBA,
which focuses on the service architecture for dependable,
mechanical delivery of alerts.

Finally, there has been a significant amount of work
on event notification services [2][8], which are mostly
orthogonal to our work on alert delivery services: while the

former focuses on enabling distributed applications to
generate events/alerts at the user-alert sources, the latter
focuses on taking those alerts and delivering them to the
multiple devices of end users.

7. Summary
We have presented the SIMBA user alert service

architecture and demonstrated its four contributions. First,
we have proposed the use of Instant Messaging (IM) with
acknowledgements for end-to-end, timely and reliable
delivery of critical alerts. Second, we have introduced
delivery modes as a simple and effective abstraction for
users to specify their personalized dependability
requirements, taking into account unavoidable
communication failures. Third, we have described the use
of MyAlertBuddy to protect the privacy of user addresses
as well as to support flexible and effective alert
management. Finally, we have introduced the concept of
exception-handling automation; presented an
implementation for IM and email client software; and
described how it is used to enhance the robustness of
MyAlertBuddy. At the time of this writing, the SIMBA
system has been operational for about 6 months and is
being used on a daily basis. The fault-tolerance techniques
for maintaining a highly available MyAlertBuddy have
proven to be most critical and very successful.

References
[1] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building

RF-Based User Location and Tracking System,” in Proc. IEEE
INFOCOM, March 2000.

[2] W. K. Edwards, “Core Jini”, Prentice-Hall Inc., 1999.
[3] E. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A

Survey of Rollback-Recovery Protocols in Message-Passing
Systems,” CMU Technical Report CMU-CS-99-148, June
1999.

[4] E. Horvitz, A. Jacobs, and D. Hovel, “Attention-Sensitive
Alerting,” in Proc. Conf. on Uncertainty and Artificial
Intelligence (UAI’99), pp. 305-313, 1999.

[5] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton,
“Software Rejuvenation: Analysis, Module and Applications,”
in Proc. FTCS-25, pp.381-390, June 1995.

[6] M. Roussopoulos, P. Maniatis, E. Swierk et al., "Personal-
level Routing in the Mobile People Architecture," in Proc.
USENIX Symp. on Internet Technologies and Systems, Oct
1999.

[7] B. Raman, R. H. Katz, and A. D. Joseph, “Universal Inbox:
Providing Extensible Personal Mobility and Service Mobility
in an Integrated Communcation Network,” in Workshop on
Mobile Computing Systems and Applications, Dec. 2000.

[8] D. Sturman, G. Banavar, and R. Strom, “Reflection in the
Gryphon Message Brokering System,” Reflection Workshop at
Object-Oriented Programming Languages and Applications,
1998.

[9] Y. M. Wang, W. Russell, and A. Arora, “A Toolkit for
Building Dependable and Extensible Home Networking
Applications,” in Proc. USENIX Windows Systems Symp., pp.
101-112, Aug. 2000.


