
Parameterized Veri�cation of Multithreaded Software Libraries

Thomas Ball Sagar Chaki Sriram K. Rajamani
Microsoft Research Computer Science Department Microsoft Research
Microsoft Corp. Carnegie Mellon University Microsoft Corp.

tball@microsoft.com chaki+@cs.cmu.edu sriram@microsoft.com

December 5, 2000

Technical Report
MSR-TR-2000-116

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Parameterized Veri�cation of Multithreaded Software Libraries

Thomas Ball Sagar Chaki1 Sriram K. Rajamani
Microsoft Research Computer Science Department Microsoft Research
Microsoft Corp. Carnegie Mellon University Microsoft Corp.

tball@microsoft.com chaki+@cs.cmu.edu sriram@microsoft.com

Abstract. The growing popularity of multi-threading has led to a great number of software li-
braries that support access by multiple threads. We present Local/Global Finite State Machines
(LGFSMs) as a model for a certain class of multithreaded libraries. We have developed a tool called
Beacon that does parameterized model checking of LGFSMs . We demonstrate the expressiveness
of LGFSMs as models, and the e�ectiveness of Beacon as a model checking tool by (1) modeling a
multithreaded memory manager Rockall developed at Microsoft Research as an LGFSM , and (2)
using Beacon to check a critical safety property of Rockall.

1 Introduction

Software libraries traditionally have been designed for use by single-threaded clients. Due to the in-
creasing use of multi-threading both on servers and clients, most libraries designed today accommodate
simultaneous access by a multitude of threads. A software library typically provides its interface through
a set of functions that a thread can call. Furthermore, the library usually maintains internal state be-
tween calls from clients. Even though multiple threads can access a library simultaneously, the library
provides a consistent sequential semantics to all threads.

We are interested in checking properties of multithreaded software libraries. In particular, we are
interested in checking that a library is well-behaved with respect to sequences of calls made upon it by
a multitude of client threads.

We recently proposed boolean programs [BR00b,BR00a] as a model for representing abstractions
of imperative programs written in languages such as C. Boolean programs are imperative programs in
which all variables have boolean type. Boolean programs contain procedures with call-by-value parameter
passing and recursion. Questions such as invariant checking and termination (which are undecidable in
general) are decidable for boolean programs.

In order to model multi-threaded programs, we have extended the boolean program model with
threads. Threads in a multi-threaded boolean program execute asynchronously, and communicate with
each other using shared global variables. If B1 and B2 are two threads of a boolean program, we denote
their asynchronous composition by B1kB2. Unfortunately, even for boolean programs with only two
threads, invariant checking is undecidable (this can be proved along the lines of [Ram99]).

Nonetheless, in practice we believe that the interaction between threads (in boolean programs as
well as programs in general) usually can be modeled by a �nite state machine. Therefore, we further
abstract each thread of a boolean program to a LGFSM (local/global �nite state machine), which
makes the distinction between local and (shared) global states explicit. The relationship between a
boolean program B and its LGFSM abstraction F is one of re�nement: the boolean program re�nes the
interaction behavior speci�ed by its LGFSM abstraction. We write this as B) F .

Suppose B1 and B2 are two threads of a boolean program B, whose interactions are described by
LGFSMs F1 and F2 respectively. Then the following proof rule can be used to check if the composition

1 This work performed during the summer of 2000 at Microsoft Research.

of B1 and B2 satis�es invariant ':

(1) B1) F1

(2) B2) F2

(3) F1kF2 j= '

(4) B1kB2 j= '

Note that proof obligations (1) and (2) involve checking re�nement between a boolean program, and
an LGFSM , and proof obligation (3) involves checking if a composition of two LGFSMs satis�es an
invariant. All these questions are decidable.

Now, suppose that we want to check if a boolean program with an arbitrary number of threads
satis�es an invariant '. Let B� denote the composition of an arbitrary number of threads of a boolean
program B. Then the following proof rule can be used to check if B� satis�es invariant ':

(5) B) F

(6) F � j= '

(7) B� j= '

In this paper, we give an algorithm to automatically check proof obligation(6), which has been imple-
mented in a tool called Beacon. We model each thread (F) of a multi-threaded library by a local/global
�nite state machine, or LGFSM . An arbitrary number of instances of an LGFSM (F �) comprise a pa-
rameterized library system, or PLS for short. We consider the question of whether or not a particular
global state (a particular valuation to the global variables) is reachable in a PLS . We show that this
problem is decidable, even when there are an arbitrary number of LGFSMs .

The results of this paper are four-fold:

{ We formally de�ne the LGFSM and PLS models, which can be used to model a wide class of
concurrent software systems, namely those in which multiple anonymous clients require the services
of a centralized library.

{ Given a PLS system with m global states and n local states, we show that: (1) a global state is
reachable in a PLS comprised of an arbitrary number of threads i� it is reachable in a PLS comprised
of 2mn! threads; (2) the global state reachability problem for a PLS can be decided deterministically

in space O(22nlog(n)+2loglog(m)) and time O(22
2nlog(n)+2loglog(m)

). These complexity results are based
directly on the work of Racko� [Rac78].

{ We present an LGFSM model of an industrial-strength multi-threaded memory manager called
Rockall, developed in Microsoft Research. Rockall is written in C++.We manually wrote a boolean
program abstraction of a single thread of Rockall, and (automatically) inlined the procedure calls
to obtain a LGFSM . The LGFSM model has m = 2048 global states and n = 256 local states. In
the LGFSM for Rockall, the global states represent the internal data structures of the memory
manager while the local states represent the states of the clients of the memory manager.

{ We present an algorithm for checking the reachability of a global state in a PLS that is similar
to the algorithm for computing the minimal coverability graph for Petri nets presented in [Fin93].
The algorithm has been implemented in a tool called Beacon. When applied to the Rockall model,
Beacon was able to prove a critical safety property of the model in about 4 hours, despite the fact
that the algorithm might have had to explore a system with 2� 2048256! threads, in the worst case.

The paper is organized as follows. Section 2 de�nes the LGFSM and PLS models, de�nes the global
state reachability problem and shows that it is decidable. Section 3 introduces the Rockall memory
manager and describes our LGFSM model of Rockall. Section 4 gives our algorithm for determining
the reachability of a global state in a PLS , proves that the algorithm terminates and is sound and
complete, and describes our experiences applying Beacon to Rockall. Section 5 discusses related work
and Section 6 concludes the paper.

2 Modeling Multi-threaded Libraries

This section formally de�nes the concepts of the local/global �nite-state machine (LGFSM) model and
a parameterized library system (PLS), presents the reachability problem for a PLS , and shows that this
problem is decidable. Finally it highlights some relationships between PLS and Petri nets.

2.1 Model

An LGFSM P is a 4-tuple h�P ; �P ; �̂P ;TP i, where

{ �P is a �nite set of local states.
{ �P is a �nite set of global states.
{ �̂P 2 �P � �P is the initial state.
{ TP � �P � �P � �P � �P is a transition relation that prescribes how a pair of a local and global
states transitions to another pair of local and global states.

Given an LGFSM P , and f � 1, the parameterized library system Pf consists of an interleaving
composition of f instances of P , where all the instances share the same global states. Formally, Pf is a
�nite state machine h�Pf ; �̂Pf ;TPf i, where

{ �Pf are (f + 1)-tuples in �P
f � �P . For a state � = hl1; l2; : : : ; lf ; gi in �Pf , we de�ne projection

operators �(i), for 1 � i � f + 1 to extract the components of �.

{ �̂Pf is hl̂; l̂; : : : ; l̂; ĝi, where hl̂; ĝi = �̂P and the j�̂Pf j = f + 1.
{ TPf � �Pf � �Pf is a set of transitions, such that hhl1; l2; : : : ; lf ; gi; hl

0
1; l

0
2; : : : ; l

0
f ; g

0ii if for some
1 � i � f , we have that � = hhli; gi; hl

0
i; g

0ii 2 TP , and for all j, where 1 � j � f and i 6= j, we have
that lj = l0j . We say that the second state of the transition is the image of the �rst state under the
transition. Formally, hl01; l

0
2; : : : ; l

0
f ; g

0i = Image(hl1; l2; : : : ; lf ; gi; �).

A sequence � = �0; �1; �2; : : : ; �j over �Pf is a trajectory of Pf if (1) �0 = �̂Pf , and (2) for all
0 � i < j, we have h�i; �i+1i 2 TPf . A state � is reachable in Pf if there exists a trajectory that ends in
�. A global state g 2 �P is reachable in Pf if there exists a reachable state � in Pf such that �(f+1) = g.

2.2 Decidability of the Reachability Problem

An instance of the parameterized reachability problem for software libraries consists of an LGFSM P

and a global state g 2 �P . The answer to the parameterized reachability problem is \yes" if there exists
some f � 1 such that g is reachable in Pf , and \no" otherwise.

We exploit two characteristics of LGFSM models. First, in an PLS , each state transition can change
the local state component of at most one LGFSM . Because of this restriction, it is not possible for an
arbitrary number of clients to change their local states in a single instant in a PLS .2 Second, because the
size of the global state component is bounded and the number of clients unbounded, it is not possible
for clients to communicate their identity to each other through the global state.

We give an upper bound to the number of threads we need to consider, in order to to decide the
global state reachability problem for LGFSMs . In the sequel, we denote the number of global states in
a LGFSM (j�P j) by m and the number of local states (j�P j) by n. The proofs of the following theorems
are present in Appendix A.

Theorem 1. Let P be an LGFSM with m global states and n local states. Let g 2 �P . For all f � 1,
global state g is reachable in Pf i� g is reachable by a trajectory of length at most 2mn! in Pf .

2 This is consistent with the interleaving semantics usually given to threads.

Corollary. Let P be an LGFSM with m global states and n local states. A global state g is reachable
in Pf for some f � 1 i� g is reachable in P2mn! .

Theorem 2. An instance of the parameterized reachability problem with a LGFSM that has m global
states and n local states can be decided deterministically in space O(22nlog(n)+2loglog(m)) and time

O(22
2nlog(n)+2loglog(m)

).

2.3 Relationship between PLS and Petri nets

The PLS and Petri net (PN) models of computation are quite intimately related, as underscored by
the following two claims. Given a Petri net P (respectively PLS Pf), we denote by R(P) (respectively
R(Pf)) the set of its reachable states.

Claim 1. PLS and Petri nets are computationally equivalent in the following sense. Given a PLS Pf ,
there exists a Petri net P and a mapping
 from the states of Pf to the states of P such that for each
s 2 R(Pf),
(s) 2 R(P). Also given a Petri net P , there exists a PLS Pf and a mapping Æ from the
states of P to the states of Pf such that for each s 2 R(P), Æ(s) 2 R(Pf).

Claim 2. An instance of the parameterized reachability problem for software libraries can be reduced
to an instance of the coverability prblem for Petri nets and vice-versa.

The justi�cations for these claims are quite simple and are left as an exercise for the reader. The
decidability of the coverability problem for PNs has been known since [KM69]. Combined with claim 2,
this result gives another proof for the decidability of the parameterized reachability problem for software
libraries.

3 The Rockall Memory Manager

In this section, we describe the Rockallmemory manager and our boolean program and LGFSM models
of it.

3.1 A Quick Tour of Rockall

Rockall is a parameterized thread-safe object-oriented memory manager. The basic data structure that
Rockall uses for managing memory is the \bucket". Each bucket is responsible for allocating chunks of
memory of a particular size. Buckets are arranged in a tree-like hierarchy. When a bucket runs out of
memory, it requests a larger chunk of memory from its parent and then breaks up this big chunk into
smaller chunks (corresponding to its own size), which it can then allocate as needed. The bucket at the
root of this hierarchy gets its memory directly from the operating system. The number of buckets, their
allocation sizes, and the tree hierarchy can be con�gured by the user at startup.

Rockall has a number of other features that are pertinent to our modeling. First, unlike most memory
managers, Rockall maintains all information regarding the allocated memory chunks (two bits per
chunk) separately in its own data structure (a hash table) rather than padding the memory chunk given
to the user process with these bits. This prevents the user process from accidentally (or intentionally)
trampling on the manager's data. This information is require for Rockall to determine which bucket a
memory chunk was allocated from when memory is deallocated. Several locks are used in Rockall to
ensure that each thread sees a consistent view of memory and also to achieve high performance.

The critical safety property of Rockall that we want to ascertain is the following : no memory location
should be allocated or deallocated by Rockall twice or more in succession. In other words, allocation
and deallocation of every memory location should occur alternately. Since the actual addresses of the
memory chunks are not important for the veri�cation of this property, we abstract away the address

values completely. Also, we consider a scenario where Rockall has only two buckets, B0 and B1, where
B1 is B0's parent, and there is only one memory chunk present. Even with these restrictions, the abstract
model for Rockall is of non-trivial complexity.

3.2 Boolean program model

We �rst describe an abstract Boolean Program model for Rockall. There are nine global boolean vari-
ables in this model:

{ B0 lock : this variable is used to lock bucket B0. It protects the variable B0 allocated. The lock must
be acquired before B0 can allocate or deallocate a chunk. The lock is initially free (the variable has
the value false).

{ B1 lock : this variable is used to lock bucketB1 and protects the variablesB1 allocated and B1 subdivided.
The must be acquired before bucket B1 can allocate or deallocate a chunk. The lock is initially free.

{ newpage lock : this lock must be acquired before the ownership of a chunk is transferred from one
bucket to another. The lock protects the variables available and �nd. It is initially free.

{ �nd lock : this lock must be acquired before the hash table is searched to �nd the bucket that owns
a chunk. This lock must also be acquired before the ownership of a chunk is transferred from one
bucket to another, as the hashtable will be updated as a result (newpage lock comes before �nd lock
in the lock order).

{ B0 allocated : this variable is true if bucket B0 has allocated its chunk to the user process, otherwise
it is false. The variable is initially false.

{ B1 allocated : this variable is true if bucket B1 has allocated its chunk to bucket B0 or to the user
process, otherwise it is false. The variable is initially false.

{ B1 subdivided : this variable is true if bucket B1 has allocated its chunk to bucket B0, otherwise it
is false. The variable is initially false.

{ available : this variable is true if bucket B1 has the right to allocate the chunk and false if bucket
B0 has the right to allocate it. It is initially true.

{ �nd : this variable is true if bucket B1 holds the chunk and false if bucket B0 holds it. This variable
models the hash table. It is initially true.

The boolean program abstraction of Rockall contains seven procedures, whose behavior we summarize
below:

{ B0 New(): this procedure models the allocation of a chunk to the user by bucket B0. It returns true
if a successful allocation occurs and false otherwise. It calls the procedure FetchFromB1() in the
case that B0 has no available memory and needs to get memory from B1 before completing the
allocation request.

{ FetchFromB1() : this procedure models the allocation of B1's chunk to B0. It returns true if a
successful allocation occurs and false otherwise.

{ B1 New() : this procedure models the allocation of B1's chunk to the user. It returns true if a
successful allocation occurs and false otherwise.

{ B0 Delete() : this procedure models the deallocation of B0's memory chunk. It returns true if a
successful deallocation occurs and false otherwise, and calls the procedure GiveToB1() in case B0
needs to return the chunk to B1 after the deallocation.

{ GiveToB1() : this procedure models the return of the chunk by B0 to B1.

{ B1 Delete() : this procedure models the deallocation of B1's chunk. It returns true if a successful
deallocation occurs and false otherwise.

3.3 Instrumented program

Recall that we want to check if no memory location should be allocated or deallocated by Rockall twice
or more in succession. We add the following instrumentation to our Rockall model, in order to reduce
the problem of checking this safety property to a problem of checking an invariant.

We add two variables safe0 and safe1 to the boolean program. These variables summarize the allo-
cation/deallocation behavior seen so far:

{ if both variables are false then there have been an equal number of alternating allocations and
deallocations;

{ if safe1 is false and safe0 is true then there has been an additional allocation;
{ if safe1 is true and safe0 is false then there has been an additional deallocation;
{ �nally, if both variables are true then there have been two or more successive allocations or deallo-
cations (this is the error state)

Part of the instrumentation is a new procedure UpdateState() that updates the two shared vari-
ables safe1 and safe0 in accordance with the allocation/deallocation that has occurred and the above-
mentioned protocol for updating these two variables. It is called every time a successful allocation/deallocation
occurs.

3.4 Translation to LGFSM

Since the boolean model does not have any recursion, it can easily be transformed to a �nite state
model by inlining all procedure calls. An LGFSM abstraction of Rockall was obtained by automatically
inlining the procedures of the boolean program. Local variables are used to explicitly track important
control locations in the boolean program (which are implicit in the boolean program representation).
The abstract LGFSM for Rockall has eleven global variables and eight local variables. Let us denote the
set of global variables by
P and the set of local variables by �P . We then have m = j�P j = 2j
P j = 2048
and n = j�P j = 2j�P j = 256.

4 The Beacon Tool

The decidability result from Section 2 is of theoretic interest only, as it is infeasible to explicitly check
all trajectories of length 2mn! even for small values of m and n. We have implemented an algorithm
which has the e�ect of exploring all such trajectories but employs certain key optimizations to reduce the
amount of exploration required. In this section, we present the algorithm and prove that the optimizations
are sound and complete. Although the algorithm could, in the worst case, still explore all trajectories of
length at most 2mn!, the optimizations seem to be extremely e�ective in practice.

The Beacon tool was able to verify the desired safety property of Rockall for an arbitrary number
of threads. It ran on a 800 MHz Pentium III machine with 512 MB of RAM and took about 240 minutes
to complete. In the process it explored roughly 2 million states. The complexity result of section 2
implies that (in the worst case) the algorithm might check all trajectories of length at most 2� 2048256!

which is of the order of 1010
600

. The fact that Beacon managed to verify the property indicates that the
optimization techniques we employ might be quite e�ective in practice.3

3 We had initially attempted to verify the safety property for a �xed number of threads of the LGFSM using
SMV [McM]. We wrote descriptions of the composition of a �xed number of threads of the LGFSM in the
SMV language and tried to model check the safety property using Cadence's SMV tool. However the tool was
unable to verify the property for more than 4 threads when run on the above mentioned machine.

4.1 The Algorithm

We start by de�ning an alternate representation for the states of a PLS Pf . As before, let m = j�P j and
let n = j�P j. A state � of Pf , for any f � 1, can be represented as (n + 1)-tuple � 2 INn � �P . where
the global states of � and � are the same, and for 1 � i � n, the i-th component of � is equal to the
number of times li occurs in �. Formally, we have (1) �(n + 1) = �(f + 1) , and (2) for 1 � i � n, �(i)
is equal to the number of occurrences of �i in �. The advantage of this alternate representation is that
it provides a uniform way to represent the states of Pf for all f .

Representing In�nite Sets of States With Con�gurations. The number of reachable states of
Pf for all f , is potentially in�nite. We use the following trick to represent certain in�nite sets of states.
We allow a special symbol � in our state representation to implicitly represent the set of all natural
numbers. Formally, a con�guration is an element of the set fIN [f�ggn� �P . Note that every state is a
con�guration. A con�guration � which contains one or more occurrences of �, is interpreted to represent
the in�nite set of states obtained by replacing each occurrence of � by some natural number. For example,
if n = 4, then the con�guration h3; �; 0; �; gi represents the set of states fh3; i; 0; j; giji 2 IN; j 2 INg. Note
that we cannot use this trick to represent any in�nite set of states compactly. For example, we cannot
represent the set of states fh3; 2i; 0; 5; giji 2 INg using a con�guration.

We de�ne two unary operators Inc and Dec over the domain IN[f�g. If k 2 IN then Inc(k) = k+1,
and Dec(k) = k � 1. For k = �, we have Inc(�) = Dec(�) = �. Let �1 = hk1; k2; : : : ; ki; : : : ; kj : : : ; kn; gi
be a con�guration. Consider i; j such that ki > 0 and � = hhg; lii; hg

0; ljii 2 TP . Then, the image of �1
under � is de�ned as

Image(�1; �) = hk1; k2; : : : ;Dec(ki); : : : ; Inc(kj); : : : ; kn; g
0i

We note that the image operator is distributive with respect to the states in a con�guration. That is,
Image(�1; �) exactly represents the set f�2 j 9�1 2 �1:�2 = Image(�1; �)g.

We extend the comparison operators � and < to operate over the natural numbers extended with

�. Let �IN and <IN be the usual comparison operators in IN. Let i, j be in IN [f�g. We say that i � j

if (1) j = �, or (2) i; j 2 IN and i �IN j. We say that i < j if (1) j = � and i 2 IN, or (2) i; j 2 IN and

i <IN j.

Given two con�gurations
1, and
2 , we say that
2 covers
1 , written
1 �
2 if (1)
1(n+1) =

2(n + 1), and (2) for every 1 � i � n, we have that
1(i) �
2(i). We say that
2 dominates
1,
written
1 <
2, if (1)
1 �
2, and (2) for some 1 � i � n, we have that
1(i) <
2(i). Note that if

1 �
2, then all the global states reachable from
1 are also reachable from
2.

Let
1 and
2 be two con�gurations such that
1 <
2. Then, we de�ne Closure(
1;
2) to be the
con�guration
3 obtained in the following way:

{
3(n+ 1) =
1(n+ 1) =
2(n+ 1), and
{ for every 1 � i � n, if
1(i) =
2(i), then
3(i) =
1(i), otherwise
3(i) = �.

The Algorithm and Its Properties. Figure 1 presents our algorithm for the parameterized reacha-
bility problem. The algorithm constructs a reachability graph hReachv ;Reachei, where Reachv is a set
of vertices, and Reache is a set of directed edges. Each vertex in Reachv is a con�guration (we use the
terms \vertex", and \con�guration" interchangeably in the ensuing description). We maintain a worklist
of unexplored con�gurations. The worklist is initialized with the initial con�guration. The algorithm
proceeds by picking a con�guration c from the worklist and investigating every transition � enabled in c
(which leads to a con�guration d). If d is covered by an existing reachable con�guration a then no new

WorkList := f�g, where let �̂P = hli; gi in
�(n+ 1) = g,
�(i) = �, and
�(j) = 0 for 1 � j � n, j 6= i

Reachv := WorkList
Reache := fg
while (Nonempty (WorkList)) do

c := Remove (WorkList)
foreach transition � enabled in c

[1] d := Image(c; �)
[2] if there exists a vertex a 2 Reachv such that d � a then

[3] drop d and do nothing
[4] elsif there exists a vertex a 2 Reachv such that a < d and

there is a path from a to d through edges in Reache then

[5] e := Closure(a; d)
let V be the set of vertices reachable so far from a (excluding a) in

delete vertices from V from WorkList and Reachv
[6] delete edges connecting to/from vertices in V from Reache
[7] replace a with e in Reachv and Reache
[8] add e to WorkList

else

[9] Reachv := Reachv [fdg
[10] Reache := Reache [hc; di
[11] add d to WorkList

if ;
endfor

endwhile

Fig. 1. Algorithm for global state reachability in a PLS .

global states can be reached from d that could not be reached from a, so d is \dropped". Instead, if d
dominates a con�guration a from which d is reachable then a compression step is possible (lines [5-8]).
Otherwise, d is added to the set of reachable con�gurations and is added to the worklist.

Three properties remain to be proved about this algorithm:

{ Completeness: Every reachable state in Pf for all f is contained in some con�guration reached by
the algorithm.

{ Soundness: Every state contained in con�gurations reached by the algorithm is reachable in Pf for
some f .

{ Termination: The algorithm terminates.

The proofs of these properties are similar to proofs of the minimal coverability graph algorithm for
Petri Nets presented in [Fin93] (the interested reader is referred to Appendix B for details).

4.2 Implementation Details

Below we summarize some key features of the implementation of the Beacon tool:

{ Beacon constructs a reachability tree instead of a graph by ensuring that the same state is not
explored more than once. Maintaining a tree makes it much easier to perform the check in step [4]
since there can be at most one trajectory between two vertices in a directed tree.

{ The reachability tree is constructed in a depth-�rst manner. We are currently experimenting with a
breadth-�rst implementation.

{ We represent � by the largest unsigned integer. While computing the image in step [1] we check for
over
ows. In our experiments we have found that the non-zero local state counts are either � or small
integers.

{ The representation of � as a �nite integer coupled with the over
ow check automatically puts a bound
on the length of any explored trajectory, and hence on the running time of Beacon. The bound on
the length of the trajectory is much smaller than what is required by the result of section 2 but we
have found it to be more than suÆcient for Rockall. This bound can be increased to an arbitrary
level simply by using a larger value for �.

{ A con�guration could be represented as an array of n unsigned integers. However we discovered
that most of these counts are actually zero in the explored states. To reduce space requirements, we
use a sparse representation where we only maintain the non-zero local state counts along with the
corresponding local states.

5 Related Work

Petri nets (PNs) [Pet62] were introduced in 1962 by C. A. Petri in his doctoral dissertation. A few years
later, Karp and Miller [KM69] independently proposed Vector Addition Systems (VASs) for analyzing
the properties of parallel program schemata. Ultimately it was realised that they are mathematically
equivalent. An excellent survey of PNs, VASs, and various decidability issues relating to them can be
found in Esparza [EN94]. Over the years several other models were proposed for representing in�nite
state systems. Many of them, like timed PNs were extensions to PNs, and some, like VASSs, were shown
to be mathematically equivalent to VASs. There has been a lot of interesting work on decidability of
problems like reachability and coverability for in�nite-state systems [ACJYK96,AJ97]. Very recently,
there has been a remarkable attempt at trying to unify a diverse set of in�nite-state systems having
similar decidability properties under a single framework of well-structured transition systems [FS00].

The coverability problem for VASs has been known to be decidable since [KM69]. But the algorithm
proposed there is notorious for its complexity. It involves the construction of a coverability tree, and
might require non-primitive recursive space in the worst case. Lipton [Lip76] proved that deciding the
coverability problem for VASs requires at least exponential space in the size of the VAS. More speci�cally,
Lipton showed that for some constant d > 0, the problem cannot be decided in space 2d

p
n. His lower

bounds are valid even if one only considers input whose vectors have components of value -1, 0, or 1.
Nobody has been able to propose an algorithm that matches Lipton's lower bound. Racko� [Rac78] gave
a near-optimal algorithm that requires space bounded by an exponential of nlog(n), where n is the size
of the VAS. Unfortunately, Racko�'s algorithm is impractical for even VASs of moderate size. According
to [FS00], all implemented algorithms for the coverability problem [Fin90,Fin93] use Karp and Miller's
coverability tree, or the coverability graph, or some complex forward-based method. The work most
related to ours is the construction of the minimal coverability graph for PNs given by Finkel [Fin93].
To the best of our knowledge, this approach has not been applied to the parameterized veri�cation of
multi-threaded software libraries, and has not succeeded on a design as large as Rockall. The Petri
net for the PNCSA communication protocol used in [Fin93], for example, has only 31 places and 36
transitions.

The link between PNs and parameterized networks has also been known for a long time. German
and Sistla investigated temporal logic model checking of parameterized networks [GS92]. Out of the
two models presented by them, one is comparable to PLS . The algorithm they present for this model is
based on Racko�'s algorithm and has double-exponential time complexity. There has also been signi�cant
research on model checking of programs written in languages like Java which support multi-threading
[CDH+00,HP00]. These approaches however concentrate on general Java programs and do not consider

arbitrary numbers of threads. They impose an apriori bound on the number of threads in order to do
model checking.

6 Conclusion and Future Work

In this paper, we have presented a model called LGFSM for representing multi-threaded libraries. Using
the model, we have been able to extend well-known complexity results and algorithms from the domain
of PNs and VASs to multi-threaded software libraries. We have implemented our algorithm in a tool
called Beacon and use it to verify critical safety properties of an industrial-strength memory manager
called Rockall. Below we summarize some interesting and challenging research directions:

{ The current implementation of Beacon could be optimized further. In particular, it would be inter-
esting to see if data structures employed in similar algorithms for veri�cation of cache coherence
protocols [EN96,Del00] can be used in the domain of LGFSMs .

{ As mentioned before, we believe that in most concurrent programs the interaction between threads
is regular can be captured using �nite state machines. One of the major challenges in software model
checking is extracting this �nite state behavior (sometimes called a synchronization skeleton) from
concurrent program descriptions. Often the actual program description is too large to be veri�ed,
and the synchronization skeleton is suÆcient to decide the property of interest. We are interested in
extracting such �nite state models automatically and eÆciently.

{ Another challenging problem is to eÆciently check re�nement between a LGFSM and a boolean
program. The motive behind doing this is that if we prove a safety property about a LGFSM and
then prove that the LGFSM is re�ned by a C program, we could conclude that the safety property
holds for the C program also.

{ Finally we would also like to develop parameterized veri�cation techniques for other, slightly more
relaxed models. For example we would like to model PLS where the threads have a sense of identity
of themselves and others, say through a thread identi�er.

Acknowledgement

We thank Michael Parkes for giving us access to Rockall, and for laboriously explaining its internal
details. We also thank Giorgio Delzanno for useful comments and suggestions.

References

[ACJYK96] P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability theorems for in�nite-
state systems. In Proc. 11th IEEE Symp. Logic in Computer Science (LICS '96), pages 313{321,
July 1996.

[AJ97] P. A. Abdulla and B. Jonsson. Ensuring completeness of symbolic veri�catiom methods for in�nite-
state systems. Theoretical Computer Science, 1997. To appear.

[BR00a] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN 00:
SPIN Workshop, Lecture Notes in Computer Science 1885, pages 113{130. Springer-Verlag, 2000.

[BR00b] T. Ball and S. K. Rajamani. Boolean programs: A model and process for software analysis. Technical
Report MSR-TR-2000-14, Microsoft Research, February 2000.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcli�, Corina Pasareanu, Robby, Shawn Laubach, and
Hongjun Zheng. Bandera : Extracting �nite-state models from Java source code. In Proceedings of
ICSE 2000 : International Conference on Software Engineering, 2000.

[Del00] G. Delzanno. Automatic Veri�cation of Parameterized Cache Coherence Protocols. In CAV 00:
Computer Aided Veri�cation, Lecture Notes in Computer Science 1855, pages 53{68. Springer-Verlag,
2000.

[EN94] J. Esparza and M. Nielsen. Decibility issues for petri nets - a survey. Journal of Informatik Processing
and Cybernetics, 30(3):143{160, 1994.

[EN96] E. A. Emerson and K. S. Namjoshi. Automatic Veri�cation of Parameterized Synchronous Systems.
In CAV 96: Computer Aided Veri�cation, Lecture Notes in Computer Science 1102, pages 87{98.
Springer-Verlag, 1996.

[Fin90] A. Finkel. Reduction and covering of in�nite reachability trees. Information and Computation,
89:144{179, 1990.

[Fin93] A. Finkel. The minimal coverability graph for petri nets. Advances in Petri Nets, Lecture Notes in
Computer Sceince, 674:210{243, 1993.

[FS00] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere ! Theoretical Com-
puter Science, 2000. To appear.

[GS92] S. M. German and A. P. Sistla. Reasoning about systems with many processes. JACM, 39(3), July
1992.

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using JavaPathFinder. International
Journal on Software Tools for Technology Transfer (STTT), 2(4), April 2000.

[KM69] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System Sciences,
3:147{195, 1969.

[Lip76] R. J. Lipton. The reachability problem requires exponential space. Technical report, Department of
Computer Science, Yale University, 1976.

[McM] K.L. McMillan. http://www-cad.eecs.berkeley.edu/~kenmcmil.
[Pet62] C. Petri. Fundamentals of a theory of asynchronous information
ow. In Information Processing 62,

Proceedings of the 1962 IFIP Congress, pages 386{390, 1962.
[Rac78] C. Racko�. The covering and boundedness problem for vector addition systems. Theoretical Com-

puter Science, 6:223{231, 1978.
[Ram99] G. Ramalingam. Context sensitive synchronization sensitive analysis is undecidable. Technical

Report RC21493, IBM T.J.Watson Research, May 1999.

Appendix A: Proofs of Theorems 1 and 2

Our proof of Theorem 1 runs along the same lines as that given by Racko� [Rac78]. But the property
that each state transition can change the local state component of at most one LGFSM enables us to
obtain a bound with smaller constants.

The proof uses the alternative representation of states given in Section 4. We denote the number of
global states (j�P j) by m and the number of local states (j�P j) by n. A vector of dimension k is any
member of (Z [f�g)k. All vectors will be implicitly assumed to be of dimension n, unless otherwise
mentioned. A con�guration consists of two components: a global state and a vector of dimension n. Note
that this is a more general de�ntion of con�guration than the one in Section 4, in that the components
of the vector can be negative integers as well. The generalization to include negative integers is necessary
for the proofs below. For any state S, we denote the global state component as G(S) and the vector
component as L(S). Without loss of generality, let us assume that the �rst component of the vector
corresponds to the initial local state. The operators Inc and Dec from Section 4 are extended to operate
over (Z[f�g).The image operator Image is also extended to operate over the more general con�gurations.

We require the other following de�nitions and two lemmas to prove Theorem 1.

De�nition 1. A vector A is said to be i-bounded if, for 1 � k � i, A(k) � 0 or A(k) = �

De�nition 2. A vector A is said to be i{j-bounded if, for 1 � k � i, 0 � A(k) � j or A(k) = �.

De�nition 3. Let us denote by �1 the set of all vectors X such that X(1) = �.

De�nition 4. Given an LGFSM M , let GM be the graph whose nodes are the global states of M such
that there exists an edge between global states G1 and G2 if there exists two local states L1 and L2 such
that (G1; L1; G2; L2) is a valid transition of M .

Consider any LGFSM M . Let A and B be two arbitrary global states of M .

De�nition 5. An i-path between A and B is a sequence of con�gurations � = �0; �1:::�s with the
following properties: (1) For all k, 0 � k � s, L(�k) is i-bounded; (2) G(�0) = A and L(�0) 2 �1; (3)
G(�s) = B; (4) for each 0 � i < s, there exists a transtion �i such that �i+1 = Image(�i; �i).

De�nition 6. An i{j-path between A and B is any sequence of con�gurations with the following prop-
erties: (1) For all k, 0 � k � s, L(�k) is i{j-bounded; (2) G(�0) = A and L(�0) 2 �1; (3) G(�s) = B;
(4) for each 0 � i < s, there exists a transtion �i such that �i+1 = Image(�i; �i).

De�nition 7. Let us denote by �(A;B; i) the length of a shortest i-path between A and B. If no i-path
exists between A and B then �(A;B; i) = 0. Now let us de�ne �(i) = max over all A and B of �(A;B; i).

Lemma 1. �(1) � m where m is the number of global states.

Proof. If two distinct global states A and B are connected in GM , there must be a path P of length
less than m between them in GM . From this path it is possible to construct a 1-path of the same length
as P between A and B. Thus, there is a 1-path of length less than m between A and B. If the global
states are disconnected in GM then (by de�nition) �(A;B; 1) = 0.

Lemma 2. �(i+ 1) � m(�(i))i + �(i).

Proof. Consider any two global states A and B. Let P be a shortest i+1-path from A to B. There
are two cases to consider:

Case 1. P also is a i+1{�(i)-path. Since P is a shortest i+1-path from A to B it must be the case
that no two states of P have vector components that are identical in their global states as well as the
�rst i+1 components of their local state vectors. Since the �rst component of the local state vectors is
� (by assumption), the length of path Q must be less that m(�(i))i.

Case 2. P is not a i+1{�(i)-path. In this case, P must be of the form P 0P 00 such that P 0 is a i+1{
�(i)-path and the �rst state of P 00 has a vector component which is not i+1{�(i)-bounded, say without
loss of generality the (i+1)-th component is greater than �(i). By an argument similar to Case 1 we can
choose P 0 to be of length less than m(�(i))i. Now let the �rst state of P 00 be � and the global state
component of � be C. Since P 00 is an i+1-path (and thus an i-path), there must be a shortest i-path Q

from C to B that shares the same �rst state as P 00. The length of Q is less than �(i). Since the (i+1)-th
component of Q is greater than �(i), and since at any step, any component can decrease by at most 1, Q
is also a shortest i+1-path between C and B. Hence P 0Q is a shortest i+1-path between A and B with
length less than m(�(i))i + �(i).

Theorem 1. If any global state is reachable, then it is reachable by a path of length atmost 2mn!.

Proof. By Lemma 1 and Lemma 2, it is clear that �(i) � 2mi!, and there must be a path to a reachable
global state which is of length less than �(n).

Theorem 2. An instance of the parameterized reachability problem with a LGFSM that has m global
states and n local states can be decided deterministically in space O(22nlog(n)+2loglog(m)) and time

O(22
2nlog(n)+2loglog(m)

).

Proof. By Theorem 1, to decide reachability requires examining trajectories of length at most 2mn!.
This can be done non-deterministically using space O(2nlog(n)+loglog(m)). Hence by Savitch's Theorem,

it can be done deterministically using space O(22nlog(n)+2loglog(m)) and so in time O(22
2nlog(n)+2loglog(m)

).

Appendix B: Soundness, Completeness and Termination of the Beacon Algorithm

Completeness is easy to prove. If the algorithm drops a con�guration d at line [2]-[3], then there is
a con�guration a such that d � a. Thus, every state reachable from d is also reachable from a. In
lines [5]-[8], the algorithm deletes all vertices reachable from a and replaces a by e. Since a � e, every
con�guration reachable from a is covered by some con�guration reachable from e. Thus, the algorithm
is complete.

The only place in the algorithm that needs to be proved sound is at lines [5]-[8]. When the algorithm
replaces a with e, we must show that the algorithm is adding no more states than those reachable in Pf ,
for some f . We know there exists a trajectory p from a to d. Let �e be any state in e. By starting from
a, and repeatedly executing transitions along p suÆciently many times, it is possible to reach a state �0e
such that �e � �0e. Thus, replacing a by e does not introduce any unsoundness.

Termination is not obvious since the number of con�gurations is in�nite. Suppose the algorithm does
not terminate. Since the number of transitions in P is �nite, each vertex in Reachv has a �nite out-degree.
Then there exists a trajectory p in Reachv that passes through an in�nite number of vertices. Since there
are a �nite number of global states, there exists an in�nite number of vertices in this trajectory with the
same global state, say g. Let q be the restriction of p to con�gurations with global state g. Note that q
is an in�nite trajectory as well.

Suppose a and d are any two vertices such that a precedes d in q. It cannot be the case that d � a,
because d would have to be dropped by lines [2]-[3] of the algorithm. Thus vertices in trajectory q are
non-decreasing. The only question is: Can they be non-increasing as well?. We prove that the answer is
\No".

If there exist two vertices a and b in q such that a precedes b in q and a < b, then lines [5]-[8] of the
algorithm will result in the deletion of a and we get a contradiction.

We prove by induction on n that in any in�nite non-decreasing trajectory q produced by the algorithm,
there exist vertices a and b, such that a precedes b in q and a < b. Suppose n = 1, then the second vertex
of q has to dominate the �rst, and we are done. Suppose n = k, then consider the projection s of q to
the �rst component of each con�guration. Two cases are possible:

{ s contains an in�nite increasing subsequence s0, or
{ s contains an in�nite subsequence s00 in which all elements are equal.

In either case, by restricting q to the corresponding elements in the subsequence s0 or s00, we obtain an
in�nite sequence q0 of con�gurations such that either the �rst components are monotonically increasing or
the �rst components are all identical. By induction on the remaining k�1 components of con�gurations
in q0, we prove the existence of a and b with the desired properties.

