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Abstract

A nonuniform modulated complex lapped transform (NMCLT) is introduced in this

paper as a two-stage extension of the modulated complex lapped transform (MCLT).
The NMCLT is a new nonuniform oversampled �lter bank with a better combination of

time- and frequency-domain localization than previous designs. Adaptive nonuniform

subband decompositions can be easily generated by varying the number of coe�cients

brought to the second stage on a frame-by-frame basis. The NMCLT is ideally suited

for processing wideband signals such as audio, with reduced time-spreading artifacts.

Index terms|Filter banks, modulated �lter banks, lapped transforms, audio processing.

1 Introduction

The modulated lapped transform (MLT) [1] is as a kind of cosine-modulated �lter bank [2]

with the perfect reconstruction property. For applications such as audio coding, the MLT

has two main advantages over block transforms such as the discrete cosine transform (DCT):

no blocking artifacts and better rate-distortion performance [1]. That's why the MLT has

been used in many audio coding systems, such as MPEG Layer III (MP3) and Dolby AC-3

[3].

A disadvantage of the MLT is that it introduces ringing artifacts (or pre-echo [3] in audio

coding) at low bit rates because of the poor time resolution of the basis functions. One

way to alleviate this problem is to switch to a shorter block length during high-frequency

transient sounds, as it is done in MP3. Another way is to use hierarchical lapped transforms

[1] or tree-structured wavelet packet [4] decompositions, both of which produce a nonuniform

subband structure. This generates highpass basis functions with good time resolution but

very poor frequency resolution due to aliasing. An alternative was introduced in [5, 6] to

increase the time resolution of MLT basis functions by merging subbands such that basis

functions with the same frequency resolution can have di�erent time localizations. However,

the number of subbands merged was very small (two or four) and no systematic way of

merging subbands was o�ered in [5,6]. Although a method similar to subband merging was

used in [7, 8] to construct frequency-varying MLTs by cascading MLTs with smaller inverse

MLTs, the resulting basis functions do not have as much time-domain separation as those

in [5, 6].
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In a related work, the modulated complex lapped transform (MCLT) was introduced

in [9] as a simple extension to the MLT. A key observation made in [9] is that, with a

2� oversampling ratio in the MCLT, time-domain aliasing terms in the real and imaginary

reconstruction parts have opposite signs, i.e., they cancel each other.

In this paper, we introduce a nonuniform modulated complex lapped transform (NMCLT)

by cascading a MCLT with shorter size MCLTs. Each shorter size MCLT plays the role of

merging subbands. Time-aliasing terms in the NMCLT basis functions can be made to cancel

each other in the inverse NMCLT. This allows us to construct basis functions (after aliasing

cancellation) with desirable (e.g., wavelet paket-like) frequency resolutions and almost ideal

time localizations. Fast algorithms for computing the modulated lapped sine and cosine

transforms can be used to implement the NMCLT. Potential applications of the NMCLT

include audio coding, denoising, and watermarking.

2 The Modulated Complex Lapped Transform

The basis functions of the MCLT are de�ned by cosine and sine modulation of the analysis

window ha(n) and synthesis window hs(n) in the following form [9]:

pa(n; k) = ha(n)[�
c(n; k) + j�s(n; k)]

ps(n; k) =
hs(n)

2
[�c(n; k)� j�s(n; k)]

with j =
p�1, 0 � n � 2M � 1, 0 � k �M � 1, where M is the block size, and
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For a real 2M -sample signal block x, its corresponding vector X of M MCLT coe�cients

X(k) is computed as X = PT
ax, that is

X(k) =
2M�1X
n=0

x(n)pa(n; k); 0 � k � M � 1: (1)

The transform matrix Pa = Ca + jSa is formed with pa(n; k) on its n-th row and k-th

column. Likewise, the inverse transform matrix Ps = Cs � jSs is formed with ps(n; k) as

its entries. For a vector X̂ of processed MCLT coe�cients, the reconstructed 2M -sample

vector x̂ is given by x̂ = RefPsX̂g. Neighboring x̂ vectors are superimposed with M -sample

overlap to form the reconstructed signal x̂(n) [9].
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The analysis and synthesis windows are usually set to the MLT sine window [1]

ha(n) = hs(n) = sin
��
n+

1

2

�
�

2M

�
(2)

for 0 � n � 2M � 1, or they are related by (assuming the symmetry h(n) = h(2M � 1� n)

for both windows)

ha(n) =
hs(n)

h2s(n) + h2s(M � 1� n)
; 0 � n � M � 1 (3)

for a biorthogonal construction [5].

Clearly, the MLT of a signal is given by the real part of its MCLT. In addition, when

there is no quantization or processing in the MCLT domain, i.e. X̂ = X, we have1

x̂ = RefPsX̂g = RefPsP
T
a xg = RefPsP

T
a gx

= (CsC
T
a + SsS

T
a )x = diagfha(n)hs(n)gx:

(4)

The fact that RefPsP
T
a g is diagonal is due to the 2� oversampling in the MCLT, which allows

the time-domain aliasing terms in CsC
T
a and SsS

T
a to cancel each other before overlapping

blocks of two neighboring x̂ vectors are superimposed. This fact suggests that it might

be possible to cascade MCLTs of di�erent sizes to construct basis functions with good time

localizations (or no time-domain aliasing). This is indeed the main idea behind the NMCLT.

Finally, we note that

ImfPsP
T
a g = SsCT

a �CsS
T
a 6= 0: (5)

This limits the input signal to the MCLT to be real. In addition, the MCLT reconstruction

formula is not unique { one can also reconstruct the original signal from the only the real

part or only the imaginary part of its MCLT [9].

3 The Nonuniform MCLT

Let the block size of the NMCLT be M . We construct the NMCLT from the MCLT, whose

basis functions have uniform frequency resolution. Suppose we want to reduce the frequency

resolution of the last rK MCLT basis functions by a factor of K, i.e., to improve the time

localization of each of these basis functions by a factor of K. If we let N = M � rK, then

what we want is to generate a (N + r)-band nonuniform decomposition using the NMCLT,

such that each of the �rst N bands has bandwidth �=M and each of the last r bands has

bandwidth K�=M .

1Throughout the paper, the superscript T when applied to a complex matrix denotes transpose (not
conjugate transpose).

3



To generate such a nonuniform subband decomposition, we start with a signal vector x

of length 2M , compute its corresponding MCLT vector X of length M , and decompose it in

two parts XT =
h
XT

1
XT

2

i
with X1 = [X(0); :::;X(N�1)]T and X2 = [X(N); :::;X(M�1)]T .

Then, we apply a second stage of MCLTs of length K to X2. Note that the second-stage

MCLTs are applied separately on the real and imaginary part of X2 because the input to an

MCLT has to be real.

From this point on, we assume ha(n) and hs(n) are identical sine windows, as in (2). This

allows us to drop the subscript in Ca and Sa and thus simplify the notation in the following

description, which still holds when ha(n) and hs(n) are related according to (3).

Recall that X = PT
ax = (CT + jST )x. Also, let's partition C and S as C = [C1 j C2]

and S = [S1 j S2], where the submatrices C1 and S1 are of size 2M �N , and C2 and S2 are

of size 2M � rK. Then we can write XT = xT [C1 + jS1 j C2 + jS2].

The second stage of MCLTs applied to RefX2g = CT
2
x and ImfX2g = ST

2
x can be

characterized in one single rK � rK transform matrix

Q = CQ + jSQ =

2
6666664

P1 0

P0

:
P0

0 P2

3
7777775

where P0 is the 2K � K transform matrix corresponding to a length-K MCLT. P1 and

P2 are introduced because the �rst and last blocks of RefX2g and ImfX2g only have one

neighboring block [1].

Let theM�M matrixU =

"
IN 0

0 Q

#
be an augmented version ofQ, where IN is the N�

N identity matrix. Then, the two M -sample vectors of NMCLT coe�cients corresponding

to the 2M -sample signal block x are given by

Wa = UTRefXg =
"
IN 0

0 QT

# "
CT

1

CT
2

#
x

=

"
CT

1

QTCT
2

#
x =

"
CT

1

CT
QC

T
2
+ jSTQC

T
2

#
x

(6)

and

Wb = UT ImfXg =
"
IN 0

0 QT

# "
ST
1

ST
2

#
x

=

"
ST
1

QTST
2

#
x =

"
ST
1

CT
QS

T
2
� jSTQS

T
2

#
x:

(7)
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length-M MCLT

Second stage: two sets of
length-K MCLTs
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coefficients

X

Figure 1: Simpli�ed block diagram for the forward NMCLT. After a �rst MCLT stage
producing complex coe�cients in X, two sets of length-K MCLTs are applied separately to
the last Kr samples of the real and imaginary parts of X.

De�ne Ta = [C1 j C2CQ + jC2SQ] and Tb = [S1 j S2CQ � jS2SQ] as the two forward

NMCLT transform matrices. Then, the forward NMCLT transform is computed by

Wa = T
T
a x; Wb = T

T
b x: (8)

The steps above are depicted in Fig. 1.

An example of NMCLT basis functions Ta(n; k) and Tb(n; k) is shown in Fig. 2. As

expected, the responses for Ta and Tb are quite similar. Each of them is a linear combination

of basis functions in C2 or S2, with weights coming from CQ and SQ. In other words, the

NMCLT basis functions are generated by combiningMCLT subbands via shorter size MCLTs,

as shown in Fig. 1.

We see from (6){(8) that the amount of oversampling in the NMCLT is larger than 2� (as

in the MCLT). This is because the �rst N elements ofWa andWb are real, whereas their last

Kr elements are complex. Thus, there are more options for NMCLT reconstruction than for

MCLT reconstruction. We also see from Fig. 2 that there are still time-domain aliasing terms

in the NMCLT basis functions (in fact, a bit more aliasing than in the NMLBT construction

in [5]). However, by combining the basis functions of Ta and Tb as discussed below, the

aliasing terms in the NMCLT basis functions can be e�ectively eliminated.

LetW =Wa+ jWb and T = Ta+ jTb. Then, we see from (6) and (7) thatW = UTX

and from (8) thatW = TTx, with T = [C1+jS1 j (C2CQ+S2SQ)+j(C2SQ�S2CQ)]. The

aliasing terms in C2CQ and S2SQ have opposite signs, while those in C2SQ and S2CQ have

the same sign. In other words, the aliasing terms in RefTag and ImfTbg have opposite signs,
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Figure 2: The NMCLT basis functions Ta(n; k) and Tb(n; k) for 21 � k � 24, with M = 128,
N = 16, and K = 4. Their real parts are plotted in solid lines, and the imaginary parts of
Ta and Tb are plotted in dashed and dotted lines, respectively.

while those in ImfTag and RefTbg have the same sign. Therefore, all time-domain aliasing

terms are cancelled. An example showing the better time-domain concentration of the basis

functions in the combined transform matrix T is shown in Figs. 3 and 4. We see from Fig. 4

that these new basis functions generated by the second stage have very good frequency

domain characteristics; for each new set of K subbands, their passbands correspond to the

sum of the K original MCLT subbands, without sacri�cing stoppband performance.

An inverse NMCLT transform can be computed by essentially reversing the steps in

Fig. 1. If we call Ŵa and Ŵb the processed versions of the NMCLT transform coe�cients,

we can apply the inverse steps corresponding to second stage in Fig. 1 to obtain X̂, the

processed version of X̂. Note that X̂1 = [Ŵa(0); :::;Ŵa(N � 1)]T + j[Ŵb(0); :::;Ŵb(N �
1)]T . The reconstruction formula for X̂2 is not unique. Based on the fact that the aliasing

terms in RefTag and ImfTbg have opposite signs, we choose to compute RefX̂2g from

Imf[Ŵa(N); :::;Ŵa(M�1)]Tg via the inverse modulated lapped sine transform and ImfX̂2g
from Ref[Ŵb(N); :::;Ŵb(M � 1)]Tg via the inverse MLT. Finally, we generate the time-

domain reconstructed signal x̂(n) by the MCLT inversion formula x̂ = RefPsX̂g.
Assuming equal quantization error levels in RefŴb(k)g and ImfŴb(k)g for N � k �

M �1, this choice of the NMCLT reconstruction formula guarantees that, after the cancella-

tion of aliasing terms, the time-domain quantization error in x̂(n) will be a linear combination

of basis functions in T with almost ideal time localizations. This feature is very attractive

in applications like compression and denoising, since the modi�cation of high-frequency sub-
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Figure 3: Time- domain responses of the original MCLT subbands Pa(n; k) (top) and the
corresponding new NMCLT subbands T (n; k) (bottom) for 21 � k � 24, with M = 128,
N = 16, and K = 4.

bands will generate much shorter ringing, and therefore fewer reconstruction artifacts. For

compression applications, the oversampling of the NMCLT is an issue; however, by appro-

priately taking into account the correlations among the NMCLT basis functions, we believe

that rate-distortion performance of the NMCLT can be made very close to that of the MLT.

This is currently a topic under investigation.

4 Conclusion

We have introduced the NMCLT as a new nonuniform oversampled �lter bank design, by

extending the MCLT with a second stage of shorter MCLTs applied to the high-frequency
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Figure 4: Frequency-domain responses of the original MCLT subbands Pa(n; k) (top) and
the corresponding new NMCLT subbands T (n; k) (bottom) for 21 � k � 24, with M = 128,
N = 16, and K = 4.

subbands in a particular way. The resulting NMCLT has excellent time- and frequency-

domain localization. Adaptive nonuniform subband decompositions can be easily generated

by varying N on a frame-by-frame basis, which in many applications may be a better alter-

native than window-length switching. The NMCLT is ideally suited for processing wideband

signals such as audio, in applications such as noise reduction and watermarking, with reduced

time-spreading artifacts.
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