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Abstract. Program verifiers based on first-order theorem provers model
the program heap as a collection of mutable maps. In such verifiers, pre-
serving unmodified facts about the heap across procedure calls is diffi-
cult because of scoping and modification of possibly unbounded set of
heap locations. Existing approaches to deal with this problem are either
too imprecise, require introducing untrusted assumptions in the verifier,
or resort to unpredictable reasoning using quantifiers. In this work, we
propose a new approach to solve this problem. The centerpiece of our
approach is the call invariant, a new annotation for procedure calls. A
call invariant allows the user to specify at a call site an assertion that
is inductively preserved across an arbitrary update to a heap location
modified in the call. Our approach allows us to leverage existing tech-
niques for reasoning about call-free programs to precisely and predictably
reason about programs with procedure calls. We have implemented the
approach and applied it to the verification of examples containing dy-
namic memory allocations, linked lists, and arrays. We observe that most
call invariants have a fairly simple shape and discuss ways to reduce the
annotation overhead.

1 Introduction

Floyd-Hoare logic is a framework for decomposing the partial correctness check-
ing of a program into smaller proof obligations, where a Floyd-Hoare triple
{P} s {Q} is associated with each statement s in the program [10]. Verification
condition (VC) generation based on Dijkstra’s weakest liberal precondition (wp)
predicate transformer allows precise reasoning about Floyd-Hoare triples with-
out requiring intermediate assertions for loop-free and call-free statements [7].
The use of automated theorem provers (including satisfiability modulo theories
(SMT) solvers [19]) for checking the verification conditions provide a scalable
and precise approach to program verification, and forms the basis of several
tools (e.g. ESC/Java [8], Spec# [5], HAVOC [12]).

However, this framework is not as effective in the presence of the heap and
procedure calls. The main issue is to preserve unmodified facts about the part
of the heap in the caller’s scope that is not in scope of the callee. More formally,
a procedure specification comprises of (a) preconditions, (b) postconditions and
(c) set of variables modified by the procedure. Since the heap is modeled as a
collection of maps, a procedure that modifies a location in a map has to spec-
ify that the entire map is potentially modified. The only facts related to such a



modified map, known after a procedure call has to come from the postconditions
of the callee procedure. However, the postconditions can only refer to part of
the map in scope, i.e. the locations reachable from globals and parameters. This
means that unmodified facts at caller’s scope about a modified map may not be
preserved across a procedure call. Matters are further complicated as a proce-
dure call might update an unbounded number of locations in a map. Efficiently
decidable SMT-based logics (e.g. linked lists [12], arrays [6]) that deal with a
bounded number of heap updates (for a loop-free, call-free program fragment)
are rendered ineffective in the presence of the unbounded number of updates.

An existing approach to address this problem has been to introduce frame
axioms to allow preserving certain unmodified facts [13]. These axioms are not
verified in the same spirit as the rest of the user annotations, and may introduce
unsoundness in the verifier. Moreover, these frame axioms are encoded using
complex quantified facts in the verification condition that severely compromises
the predictability of the underlying theorem prover. Verification of such quanti-
fied formulas require expert users to be able to guide the theorem provers. These
shortcomings make wp based Floyd-Hoare reasoning less appealing for reasoning
about programs with scoping and the heap.

In this work, we present an alternative approach based on the following in-
sight:

For any statement s in the program, if an assertion R is preserved by an
abstract (re-)execution of s in which the heap locations modified by s are
updated nondeterministically, then R is preserved across the statement
s.

We use an instance of this general rule for procedure calls to deal with the im-
precision due to scoping. We also provide a new annotation called call invariant
for the user to specify an inductive hypothesis when the abstract execution could
be unbounded. Given a program with call invariant annotations, we perform a
source-to-source transformation to create another program that can be reasoned
with any existing technique for call-free programs. In particular, this allows a
user to leverage existing wp-based verifiers to analyze programs with procedure
calls with unbounded heap updates.

One can also view our approach as a strategy to augment the underlying first-
order theorem provers with an induction scheme to verify formulas containing
unbounded number of heap updates. The call invariant (provided by the user)
plays the role of an inductive hypothesis and the underlying theorem prover is
used to discharge the proof obligations for establishing the inductive hypothesis.
However, there are several advantages of formalizing the inductive hypothesis at
the program level instead of at the level of a formula:

1. The call invariants are specified as program annotations independent of the
underlying prover. Therefore, the user does not need to interact with the
specific syntax of the underlying theorem provers.

2. We formulate the call invariants as loop invariants. This opens the possibility
to leverage existing loop invariant synthesis techniques to infer call invariants
in many cases.



We have augmented the Boogie [3] verifier with call invariant annotations,
and have applied it to verify a set of examples containing dynamic memory al-
location, linked lists and arrays. These examples were already annotated with
preconditions and postconditions — we discuss the additional annotation bur-
den due to call invariants. We introduce useful syntactic sugars and observe the
common shape of most call invariants and additional specification required to
prove these examples. We also discuss tradeoffs in reducing the additional bur-
den at the cost of slight complication of the assertion logic, without sacrificing
soundness.

2 Motivation

Consider two versions of a program in Figure 1 written in a variant of the
Boogie language [3]. The example is an abstraction of a real-life device driver
kbdclass [20] that uses multiple lists of device extensions. The first version (on
the left) has single procedure with no procedure calls, and the second version
(on the right) has a procedure call.

2.1 Program without procedure calls

Let us first look at the example in Figure 1(a). Initially ignore the lines starting
with pre, post, inv and modifies, which denote annotations. The example
contains two map (or array) variables N and D to model two fields in an object.
The procedure Proc1 takes two pointers p and q to denote the heads of the
two disjoint acyclic lists {p,N[p],N[N[p]], . . . , nil} and {q,N[q],N[N[q]], . . . , nil}
respectively. The procedure first initializes the D field of all the pointers in the
linked list starting at p in a while loop, and then non-deterministically deletes
some entries from the list starting at q — this mimics removing elements from a
list that satisfy some criteria. We would like to prove that the D field has been
correctly initialized for the list from p.

The assertions in pre and post denote preconditions and postconditions
of a procedure. The precondition states that the two lists are disjoint and
acyclic: we use the set constructor Btwn(m,u, v), where m is a map value of
type int → int and u and v are values of type int, to denote the set of values
{u,m[u],m[m[u]], . . . , v} when v lies in the set, or {} otherwise [16, 12]. The
postcondition states that the value of D map at all the elements of list from p

is 1. The “modifies” clause in modifies says that the maps N and D are mod-
ified by the procedure, possibly at all locations. Loop invariant assertions are
provided using inv annotations. The expression old(x) denotes the value of a
variable x at the entry to a procedure (when used in a postcondition), or at the
entry of a loop (when used in a loop invariant). The loop invariants on the first
loop states that the variable iter points to the list from p, and all the entries
upto iter have been initialized to 1. The first loop establishes the postcondition
of the procedure on exit from the loop — the problem is to preserve it across
the second loop. The first loop invariant for the second loop states that the set



var N : int → int;
var D : int → int;

pre Btwn(N, p, nil) ∩ Btwn(N, q, nil) = {nil}
post ∀u ∈ Btwn(N, p, nil).u = nil ∨ D[u] = 1
modifies D,N
proc Proc1(p : int, q : int) : void =

var iter : int;
iter := p;

inv iter ∈ Btwn(N, p,nil)
inv ∀u : int ∈ Btwn(N, p,nil).

u ∈ Btwn(N, iter, nil) ∨ D[u] = 1
while (iter) do D[iter] := 1; iter := N[iter];

iter := q;

inv Btwn(N, p, nil) = Btwn(old(N), p, nil)
inv iter ∈ Btwn(old(N), q, nil)
while (iter ∧ N[iter]) do

if (∗) N[iter] := N[N[iter]];
iter := N[iter];

var N : int → int;
var D : int → int;

pre Btwn(N, p, nil) ∩ Btwn(N, q, nil) = {nil}
post ∀u ∈ Btwn(N, p,nil). u = nil ∨ D[u] = 1
modifies D,N
proc Proc1(p : int, q : int) : void =

var iter : int;
iter := p;

//Loop invariants omitted
while (iter) do D[iter] := 1; iter := N[iter];

cinv cframe(Btwn(N, p, nil))
call Proc2(q);

updates N @ Btwn(N, t, nil)
proc Proc2(t : int) : void =

var iter : int;
iter := t;

inv iter ∈ Btwn(old(N), t, nil)
while (iter ∧ N[iter]) do

if (∗) N[iter] := N[N[iter]];
iter := N[iter];

Fig. 1. Example with (a) no procedure calls and (b) a procedure call.

of pointers in the list from p remains unchanged. The second loop invariant says
that the iterator variable iter points to elements in the list from q.

These annotations are sufficient to prove the postcondition, since the map
D does not change in the second loop. The annotated program can be encoded
precisely in the assertion logic if the logic is closed under weakest (liberal) pre-
condition [7] of statements in the programming language. Such logics with deci-
sion procedures have been proposed in [12], thereby providing an algorithm for
checking such annotated programs.

2.2 Program with procedure calls

Now let us look the second version in Figure 1(b), where the second loop has
been moved to a procedure Proc2. Let us initially ignore the annotation in cinv,
and the updates N @ . annotation on Proc2. Instead, let us pretend that we
only have a modifies N annotation for Proc2. Since Proc2 modifies the map N,
any fact involving N will be invalidated after the call to Proc2. Therefore, the
postcondition of Proc1 will not be provable. It is not hard to see that we cannot
write any specification about the heap in the scope of Proc2 (namely the pointers



in the list reachable from t) that would allow us to prove the postcondition for
Proc1.

One approach to address the imprecision has been to use frame axioms that
allow the user to specify how to preserve certain unmodified facts [13]. However,
the use of frame axioms can lead to unsoundness as they are not verified. Besides,
these frame axioms have complex quantified structure that may destroy the
predictability of the underlying theorem provers. In the rest of this section, we
show how our approach helps retain precision in the presence of procedure calls,
without requiring the use of frame axioms.

First, let us look at the new annotation on Proc2. The annotation updates X@ S
denotes that the map X could have been modified only at locations in S by the
procedure., where the set-expression S is interpreted at entry to a procedure.
This annotation is actually a syntactic sugar for a particular postcondition that
we explain in Section 3.2, and does not introduce any new annotation construct.
In this example, the annotation is used to specify that the map N is only modified
in the locations present in the list from t at the start of the procedure.

Second, we introduce a new annotation construct called call invariants (using
cinv) that allows the user to annotate a call site of a procedure. A user can
specify an assertion R inside cinv at a call site of a procedure — with the
intention that R is preserved across modifications to the maps in the callee. We
use the syntactic sugar cframe(e) to denote the assertion that the value of the
expression e is preserved across the call. In this example, the assertion in cinv

states that the set of pointers in the list from p is the preserved across the call
to Proc2.

These annotations suffice to prove the postcondition of Proc1. Indeed, we
can prove the specifications of this example (including the new proof obligations
for showing that assertions in cinv are really preserved across a call). Not only
that, the proof obligations can be encoded using the same logic that was used
to prove the example without a procedure call in Figure 1(a).

3 Call invariants

3.1 Source and assertion language

Figure 2 shows a simple programming language. The language supports scalar
and map variables (Scalars and Maps respectively) and various operations on
them. Let Vars = Scalars ∪ Maps . The type of any variable x ∈ Scalars is
integer (int), and the type of any variable X ∈ Maps is a map from integers to
integers (int → int). The standard assignment statement for scalars is extended
with assignment statements for maps. The statement for variable introduction
var x in s endvar introduces a variable x with an arbitrary value in s (the variable
introduction rule for a map variable is similar). The statement assert φ behaves
as a skip when the formula φ evaluates to true in the current state; else the
execution of the program fails. The statement assume φ behaves as a skip

when the formula φ evaluates to true in the current state; else the execution



x, y ∈ Scalars
X,Y ∈ Maps
e ∈ Expr ::= x | c | e± e | X[e]
s, t ∈ Stmt ::= skip | assert φ | assume φ | x := e | X := Y | X[e] := e |

var x in s endvar | var X in s endvar | s; s | x := call f(e) |
if (e) then s else t | while (e) do s

P,Q,R,φ, ψ ∈ Formula ::= e ≤ e |φ ∧ φ | ¬φ | e ∈ S | S ⊆ S | . . .
S ∈ SetExpr ::= Btwn(X, e, e) | Inverse(X, e) | [e, e) | . . . |S ∪ S | S \ S | . . .

Fig. 2. A simple programming language and assertion logic.

of the program is blocked. Expression terms of the statements and formulas are
denoted by Expr , and include scalar variables, constants, arithmetic expressions
and map lookups. The language also supports sequential composition, procedure
calls, conditional statements and while loops. Allocation and deallocation can
be modeled by introducing a special map Alloc to track the allocation status of
objects, but is not built into the language. We show an example of dymamic
allocation in the next section 4.1.

The formulas in Formula constitute the assertion logic for specifying con-
tracts for programs in this language. The language of formulas in Formula is ex-
tensible, and includes relational, Boolean operations and set operations. SetExpr
represent set-valued expressions and can be constructed from various set con-
structors such as Btwn and [e, e) and other operations on sets. The weakest
(liberal) precondition of an assertion φ ∈ Formula with respect to a statement
s ∈ Stmt is denoted as wp(s, φ). Intuitively, wp(s, φ) is a formula that repre-
sents the set of states for which executing s does not fail any assertions in s
and moreover if the execution terminates, it does so in a state satisfying φ. Fig-
ure 6 in Appendix A shows the weakest precondition for the simple statements
in our language, and are fairly standard [4]. The assertion logic in Formula is
closed under wp, when for any φ ∈ Formula and s ∈ Stmt, wp(s, φ) ∈ Formula.
The following proposition relates checking partial correctness of statements us-
ing Floyd-Hoare triples [10] and provability in a logic. Let us refer to loop-free
and call-free statements as simple statements.

Proposition 1. If the assertion logic in Formula is closed under wp for simple
statements in Stmt, then for any simple statement s, (i) the logical formula
(P =⇒ wp(s,Q)) is in Formula, and (ii) is valid if and only if the Floyd-Hoare
triple {P} s {Q} holds.

In such a case, an automated theorem prover for checking assertions in
Formula provides a method (an algorithm when the theorem prover is com-
plete and terminating) to check Floyd-Hoare triples expressed in the logic. In
the presence of loops that may have unbounded updates, the user decomposes
the problem by specifying a loop invariant.



However, the presence of procedure calls and heap makes reasoning in Floyd-
Hoare logic imprecise because it introduces the challenge of preserving unmod-
ified facts about the heap in the callers scope (and not in the callee’s scope)
across (a possibly unbounded) update to the heap in the callee.

3.2 Call invariant and program instrumentation

First, for each global map X ∈ Maps , we introduce a state variable MSX, whose
interpretation is a set of locations. Intuitively, the value of MSX at exit from a
procedure captures the set of locations where X was modified between the entry
and exit to the procedure. The source program is automatically instrumented to
update the MSX variables as follows:

– For any explicit update to the map X, X[e1] := e2;, we insert MSX := MSX ∪
{e1}; before the update to X.

– Every procedure has a precondition pre MSX = {}.
– Before any procedure call that has a modifies X annotation, we save the

current value of MSX into a caller local variable, set MSX to {}. Upon return
from the procedure, we union the saved set with the value of the set after
the procedure call.

It is not hard to see that the value of MSX at exit from a procedure captures
the set of locations where X was modified between the entry and exit to the
procedure. For this instrumented program, the user can specify preconditions,
postconditions and loop invariants in terms of MSX variable just as any other
state variable.

Next, we introduce an annotation construct called call invariant at the call
site of a procedure specified using cinv R, where R ∈ Formula. For a call site
that may (transitively) modify locations in the map X, we provide the following
instrumentation in addition to the updates for MSX :

var Xpre,Xpost in

Xpre := X;
call Foo(e); //procedure call
Xpost := X;
X := Xpre;

inv R[Xpre/old(X)]
while (∗) do
var u, v in assume u ∈ MSX;X[u] := v; endvar

assume X = Xpost;
endvar

First, it copies the value of X before and after the call into local variables
Xpre and Xpost respectively. It restores X to the value before the call, and intro-
duces a non-deterministic loop that updates X at one of the locations in MSX.



Finally, the assume relates the value of X after the loop with the value at the
end of the procedure call Xpost. The purpose of the loop is to model the abstract
re-execution of the procedure call that nondeterministically modifies the heap
locations modified by the callee, starting from the state before the call. The call
invariant R (specified using cinv R) is checked as a loop invariant for this loop;
any occurrence of old(X) is replaced with copy Xpre, the value of X just before
the procedure call. Although we have described the instrumentation for a single
map variable, our implementation allows for multiple maps and is presented in
the Appendix B.

Syntactic sugars We introduce two syntactic sugars to make the specifications
concise and readable:

1. We introduce updates X @ S for a set-valued expression S, as a syntactic
sugar for the following annotations:

modifies X,MSX;
post MSX ⊆ old(S)

2. The use of old(X) in a call invariant R refers to the value of X prior to the
procecudure call (same as Xpre at the time of the call). We provide a sugar
cframe(.) to denote that an expression is preserved by the procedure. For
an expression e, cframe(e) expands to e = old(e). This is most useful when
specifying that the value of a scalar expression or a set-valued expression is
preserved.

Bounded updates Recall that the scoping problem exists even when a callee
modifies a bounded number of heap locations. Our program instrumentation
is still essential to preserve facts at the callers scope. However, if callee has a
postcondition that bounds MSX to a bounded number of locations (say n), then
one does not require the user to specify a call invariant R. In such cases, it
suffices to unroll the loop that modifies locations in MSX n times, and eliminate
the need for the call invariant.

4 Evaluation

We have built a prototype implementation of call invariant annotations over the
Boogie program verifier [3]. In addition to specifying procedure preconditions,
postconditions and loop invariants, the user can specify call invariants at call
sites using the cinv annotation. We highlight the annotations required related
to call invariants in the program in addition the already provided preconditions
and postconditions. We discuss more about the cinv . call invariants (the call
invariants that are both highlighted and underlined) later in Section 4.4.

We perform the program instrumentation to create the transformed program
where the call invariants are desugared as loop invariants as described earlier.



var Alloc : int → bool;
var D : int → int;

updates D @ Inverse(Alloc, false)
proc Proc4() : void =

var y : int;
while (∗) do

y := new;D[y] := 0;
/* Add y to a list */

proc Proc3() : void =
var x : int;
x := new;
D[x] := 5;

cinv cframe(D[x])

call Proc4();

assert D[x] = 5;

Fig. 3. Example with dynamic memory allocation and the Inverse set constructor.

The resultant annotated program is verified by Boogie by generating a logi-
cal formula (verification condition) and checking the formula with satisfiability
modulo theories (SMT) solvers. The assertion logics used in these programs use
sophisticated set constructors in addition to the usual theories of uninterpreted
functions, select-update arrays and arithmetic supported by most SMT solvers.
In spite of the complexity, the assertion logics used in these examples are closed
under the wp predicate transformer with respect to call-free and loop-free state-
ments in the language. For a few cases, we even have decision procedures (i.e. a
sound, complete and terminating procedure) for deciding formulas in the asser-
tion logic [6, 12].

4.1 Dynamic allocation

In the example in Figure 3, we consider a map Alloc whose range contains two
Boolean values true and false. The map is used to track the set of allocated
elements of the domain; Alloc[u] = true if and only if u is an allocated element.
The statement x := new is a sugar for the following statements: {var u in x :=
u endvar; assume Alloc[x] = false;Alloc[x] := true; }. In this example, the map
D is mutated at an unbounded set of freshly allocated locations in procedure
Proc4 — namely at the locations u for which Alloc[u] = false at entry to Proc4 .
In this case, this modified set excludes x in Proc3 .

To specify the modified set, we use the set constructor Inverse : (int → int) ∗
int → 2int, which takes a map and returns all elements of the domain that map
to a given value; i.e. Inverse(X, v)

.
= {u | X[u] = v}. For this set constructor,

wp(X[x] := y, u ∈ Inverse(X, v)) is given by [12]:

(y = v ∧ u ∈ Inverse(X, v) ∪ {x}) ∨ (y 6= v ∧ u ∈ Inverse(X, v) \ {x})

4.2 Linked lists

Reverse Consider the recursive implementation of list reversal in Figure 4(a).
This implementation performs an in-place reversal of an input list. The precon-
dition requires the argument h to point to a nonempty acyclic list. The procedure



var N : int → int;

pre h 6= nil

pre nil ∈ Btwn(N, h, nil)
updates N @ Btwn(N, h,nil)
post Btwn(old(N), h, nil) = Btwn(N, r, nil)
post ∀u ∈ Btwn(old(N), h, nil).

u = nil ∨
Btwn(old(N), h, u) = Btwn(N, u, h)

proc reverse(h : int) : (r : int) =
if (N[h] = nil) {

r := h;
} else {

cinv cframe(N[h])

r := reverse(N[h]);
N[N[h]] := h;
N[h] := nil;

}

var N : int → int;
var D : int → int;

pre r ∈ Btwn(N, l, r)
updates N @ ROS(N, l, r);
post Sorted(N,D, hd, r)
post r ∈ Btwn(N, hd, r)
post ROS(old(N), l, r) = ROS(N, hd, r)
proc quick sort(l : int, r : int) returns (hd : int) =

var ret : int;

if (l = r ∨ N[l] = r) {
hd := l;

} else {
hd := partition(l, r);
cinv cframe(ROS(N, hd,N[l]));
cinv cframe(N[l]);

ret := quick sort(N[l], r);
N[l] := ret;
cinv cframe(ROS(N,N[l], r));
cinv Sorted(N,D,N[l], r);
ret := quick sort(hd,N[l]);
hd := ret;

}

Fig. 4. List examples (a) reverse, (b)list-based quick sort

may modify the N map only at the pointers in this list. The first postcondition
asserts that the set of elements in the output list is the same as the set of ele-
ments in the input list. The second postcondition strengthens this assertion to
ensure that the ordering in the output list is the reverse of the ordering in the
input list.

The recursive call to reverse requires a call invariant stating that the value
of N[h] remains unchanged by the call. This assertion is crucial for ensuring that
subsequent updates to N first, do not trash the list reversal performed by the
recursive call itself and second, successfully reverse the link from h to N[h].

List sort We have also verified an implementation of quick sort for lists. This
example (present in Figure 4(b)), required nontrivial call invariants. We have
used the following helper predicates to define the annotations for this example:

ROS (X , u, v)
.
= Btwn(X,u, v) \ {v}

UpperBound(X ,Y , l , r , d)
.
= ∀u ∈ ROS (X , l , r) : Y [u] ≤ d

LowerBound(X ,Y , l , r , d)
.
= ∀u ∈ ROS (X , l , r) : Y [u] ≥ d

Sorted(X ,Y , l , r)
.
= ∀u ∈ ROS (X , l , r) : ∀v ∈ ROS (X , u, r) : Y [u] ≤ Y [v ]



var A : int → int;

post idx ∈ [l, r)
post Deref(A, [l, r)) = Deref(old(A), [l, r))
updates A @ [l, r)
proc Partition(l : int, r : int, pivot : int) : (idx : int) =

/* Partitions A and returns the final index of pivot */

pre 0 < l ≤ r

post Deref(A, [l, r)) = Deref(old(A), [l, r))
updates A @ [l, r)
proc QuickSort(l : int, r : int) : void =

var pivot : int, idx : int;
if (l = r) return;
pivot := A[l];
idx := Partition(l, r, pivot);
cinv cframe(Deref(A, [idx, r)));
QuickSort(l, idx);
cinv cframe(Deref(A, [l, idx+ 1)));
QuickSort(idx+ 1, r);

Fig. 5. Example of quicksort over an array A.

The example requires reasoning about shapes of lists, properties of a collec-
tion of pointers, and arithmetic relationship on the data elements of the list. The
recursive nature of the procedure makes the proof highly non-trivial — which
explains the complexity of the call invariants. The proof illustrates the bene-
fits of combination frameworks present in first-order theorem provers for precise
reasoning of such examples.

Merge and append In addition to these programs, we have also successfully
verified recursive implementations for appending and merging two lists. These
implementations and their specifications are described in the appendix. Inter-
estingly, in spite of the presence of recursive calls and unbounded number of
updates, no call invariants were required for proving the correctness of these
examples.

4.3 Arrays

In this example, we illustrate the use of two new set constructors, (i) the range
set constructor [i, j), and (ii) a set constructor Deref to collect the content of a
set of locations. Consider the quicksort algorithm in Figure 5 where the array
map A is being sorted with recursive invocations to QuickSort. The procedure
QuickSort sorts the indices of the array A in the range [l, r). The procedure
Partition (we omit the procedure body) takes a value pivot and returns an index
idx such that idx ∈ [l, r).



Let us check a simple property that the algorithm preserves the contents of
A, assuming distinct elements in the array. Since the postcondition of Partition
establishes this constraint, the main challenge is in establishing this fact across
the two recursive calls to QuickSort. The two call invariants serve to preserve
facts at the call-site required to establish the postcondition. For example, the
first call invariant states that the contents of A in the range [idx, r) is preserved by
the call to QuickSort(l, idx) since the procedure does not modify these locations.

The specifications for this example refer to a dependent set constructor
Deref : (int → int) ∗ 2int → 2int that takes a map and a set and constructs
a set with the union of values of the map at elements in the set. Formally,
Deref(X, S)

.
= {X[u] | u ∈ S}. Interestingly, this assertion logic is still closed

under wp with respect to statements of our language. For this set constructor,
wp(X[x] := y, u ∈ Deref(X, S)) is defined as follows:

∨
x 6∈ S ∧ u ∈ Deref(X, S)∨
x ∈ S ∧ X[x] ∈ Deref(X, S \ {x}) ∧ u ∈ Deref(X, S) ∪ {y}∨
x ∈ S ∧ X[x] /∈ Deref(X, S \ {x}) ∧ u ∈ (Deref(X, S) \ {X[x]}) ∪ {y}

The first disjunct corresponds to the case when Deref(X, S) remains unchanged;
the second (and the third) disjunct corresponds to the cases when the value X[x]
is contained (respectively not contained) in X at an index other than x.

4.4 Discussion

We now discuss the call invariant annotations highlighted as cinv . . These call
invariants are interesting because their specification can be obviated by adding
the following postcondition automatically for each procedure:

post ∀u : int :: u ∈ MSX ∨ X[u] = old(X)[u]

This postcondition ensures that the map X is preserved at a location disjoint from
MSX. However, the postcondition introduces a quantifier, which may compromise
the termination of a theorem prover. For example, the decision procedure for
reasoning about linked lists with sets [12] may not terminate when reasoning
with quantified facts of the above form. The invariants marked with cinv . are
the ones that do not have to be specified, when the theorem prover can prove
the program with this quantified postcondition. The reader may observe that
these are precisely those call invariants that do not contain a set constructor or
a predicate that depends on the map being modified by the callee. This explains
why most call invariants using Btwn are not removed.

The example of the list implementation of quick sort uses a call invariant
which is not specified using the cframe(.) syntactic sugar. We needed to specify
a single-state predicate to specify the sortedness of the list, instead of a set or
a scalar expression inside cframe(.) — one may view this as a way to preserve a
relation (in this case sortedness). Finally, several examples did not need a call
invariant (e.g. list append and merge) even in the presence of unbounded updates
in callees. This is due to the fact that these recursive procedures are actually
tail-recursive, where one does not need to carry facts before the procedure call.



5 Related work

In this work, we provide a simple approach for leveraging precise verifiers for
call-free programs to reason about programs with procedure calls. An important
benefit of our approach is that it does not require adding additional unchecked
or complex frame axioms [13] to the verification conditions. However, the benefit
comes at the cost of additional user-specified annotations. Our contribution is
complementary to the large body of work on modular verification in the presence
of data hiding [5, 11, 2]. The implementations of these approaches invariably use
complex quantifiers to encode variants of frame axioms that make verification
unpredictable [1]; our work could potentially be used to eliminate or simplify
these frame axioms.

Separation logic [17] is a specialization of Floyd-Hoare logic that requires
a specialized assertion logic. The assertion logic contains formulas to describe
heaps, where the formula φ ∗ ψ denotes a heap with two disjoint subheaps for
which φ and ψ hold respectively. The following frame rule [15] allows preservation
of the fact R whose domain does not intersect with the modified locations in the
statement s.

[Frame rule]
{P} s {Q}

{P ∗R} s {Q ∗ R}

However, the specialized extension prevents leveraging existing tools for doing
precise verification of call-free programs. Many of the inference rules for Floyd-
Hoare logic do not apply in a straightforward manner; for example, the rule of
constancy is no longer sound [17] in this extension. In addition, the specifications
of s has to precisely describe the locations in the heap that s reads or write from,
which is not required in Floyd-Hoare logic. Besides, one cannot use the standard
wp-based methods to generate verification conditions. Although scalable and au-
tomatic shape analysis engines have been recently developed based on separation
logic [21], proof obligations for expressive separation logic properties are often
checked with higher order theorem provers [14].

The frame problem due to procedure scoping has also been explored in the
context of automatic shape analysis [18, 9], where the caller’s heap is separated
from the callee’s heap by identifying a set of cutpoints which are dominators for
any location in the heap of the callee. These cutpoints are treated as ghost pa-
rameters, but precision is lost when when the set of cutpoints can be unbounded.
We believe that call invariants may alleviate the need to introduce cutpoints to
pass a local heap to a callee.

6 Conclusion

This paper makes two important contributions. First, we provide an automatic
program instrumentation to address the imprecision due to procedure scoping.
The call invariant annotation allows a user to specify an inductive hypothesis
while dealing with unbounded updates in a callee. Such an instrumented and
annotated program can be verified using any off-the-shelf verifier without any



need to interact with the lower-level theorem prover to specify the inductive
hypothesis. This has allowed us to leverage existing precise verifiers for call-free
programs to verify non-trivial examples with a small annotation burden. Second,
we have separated the problem of specifying the frame from inferring the frame
automatically for procedure calls. We imagine exploiting various loop invariant
inference algorithms to synthesize most call invariants, given their restricted
shape in practice. However, it still allows the user to explicitly specify the frame
when the inference algorithm fails to discover the necessary frame.
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A Weakest liberal precondition for simple statements

Figure 6 shows the weakest precondition for the simple statements in our lan-
guage, and are fairly standard [4]. We use φ[e/x] to denote syntactic substitution
of all occurrences of a variable x with e in the formula φ.

wp(skip, φ) = φ
wp(assert ψ, φ) = ψ ∧ φ
wp(assume ψ, φ) = ψ =⇒ φ
wp(x := e, φ) = φ[e/x]
wp(X := Y, φ) = φ[Y/X]
wp(X[e] := y, φ) = φ[X[e := y]/X]
wp(var x in s endvar, φ) = ∀x : wp(s, φ)
wp(var X in s endvar, φ) = ∀X : wp(s, φ)
wp(s; t, φ) = wp(s,wp(t, φ))
wp(if (e) then s else t, φ) = (e 6= 0 ∧ wp(s, φ)) ∨ (e = 0 ∧ wp(t, φ))

Fig. 6.Weakest precondition for simple statements (without loops and procedure calls).

For any φ ∈ Formula, it is easy to see the wp(s, φ) ∈ Formula for most
commmands s. For the statement X[e] := y, the resultant formula contains an
update of a map, which is captured by the select-update theory of arrays.



B Multiple maps

Here is the program instrumentation in the presence of multiple maps being
modified by a procedure call. Let us consider the case of two maps X and Y —
the generalization is evident from the case of two maps.

var Xpre,Xpost,Ypre,Ypost in

(Xpre,Ypre) := (X,Y);
call Foo(e); //procedure call
(Xpost,Ypost) := (X,Y);
(X,Y) := (Xpre,Ypre);

inv R[Xpre/old(X)][Ypre/old(Y)]
while (∗) do
if (∗) var u, v in assume u ∈ MSX;X[u] := v; endvar

if (∗) var u, v in assume u ∈ MSY;Y[u] := v; endvar

assume X = Xpost;
assume Y = Ypost;

endvar

C Examples

We provide the remaining examples in the appendix. We omit the formal spec-
ifications for these examples, and instead informally describe the specifications.
Note that for the proof of both these examples, we did not require any call
invariants.

C.1 Recursive list append

The append procedure takes two acyclic and disjoint lists starting at p and q

respectively and appends the second list at the tail of the first list. We have
shown that the list returned is an actual append of the two lists and the relative
order of the nodes in each list remains unchanged. Finally the procedure modifies
the map Next only at the pointers of list from p.

C.2 Recursive list merge

The procedure merge takes as input two acyclic and disjoint lists which are
sorted according to the values in Data, and outputs a sorted list which contains
the union of the two lists. The procedure only modifies the pointers in the union
of the two lists.



var Next: [int]int;

procedure append(p: int, q: int) returns (r: int)

{

var t: int;

if (p == 0) {

r := q;

} else {

call t := append(Next[p], q);

Next[p] := t;

r := p;

}

}

Fig. 7. Recursive list append

var Next: [int]int;

var Data: [int]int;

procedure merge(p:int, q:int) returns (r: int)

{

var a: int;

if (p == 0) {

r := q;

} else if (q == 0) {

r := p;

} else if (Data[p] < Data[q]) {

call a := merge(Next[p], q);

Next[p] := a;

r := p;

} else {

call a := merge(p, Next[q]);

Next[q] := a;

r := q;

}

}

Fig. 8. Recursive list merge


