
End-to-end Verification of Security Enforcement is Fine

Nikhil Swamy
Microsoft Research

nswamy@microsoft.com

Juan Chen
Microsoft Research

juanchen@microsoft.com

Ravi Chugh
University of California, San Diego

rchugh@cs.ucsd.edu

Abstract

Proving software free of security bugs is hard. Programming lan-
guage support to ensure that programs correctly enforce their secu-
rity policies would help, but, to date, no language has the ability to
verify the enforcement of the kinds of policies used in practice—
dynamic, stateful policies which address a broad range of concerns
including forms of access control and information flow tracking.

This paper makes two main contributions. First, we present
FINE, a new source-level security-typed language that, through the
use of a simple module system and dependent, refinement, and
affine types, can be used to check the enforcement of dynamic se-
curity policies applied to real software. Second, we define DCIL, a
small extension to the type system of the .NET Common Intermedi-
ate Language, and show how to compile FINE in a type-preserving
manner to DCIL. Our approach allows FINE programs to run on
stock .NET virtual machines and to interface with .NET libraries.
Additionally, our type-preserving compiler allows code consumers
to download DCIL programs and check them for security while re-
lying on a small trusted computing base. We have proved our source
and target languages sound, our compilation type-preserving, and
have made a prototype implementation of our compiler and several
example programs available.

1. Introduction

Many modern software systems are assembled from components
provided by multiple vendors. Whether due to malice or mistakes,
third-party components can pose a security risk. To help a user pro-
tect her sensitive information from abuse by plugins, a software
platform can aim to apply a security policy to control a plugin’s
behavior. However, the policies used in practice are often complex
and simultaneously address various aspects of security including,
for example, role-based access control and information flow track-
ing. Reliably enforcing such policies is difficult, and reports of se-
curity vulnerabilities due to incorrect enforcement are common.

Researchers have proposed a number of security-typed lan-
guages to ensure that programs correctly enforce their security
policies. However, languages like FlowCaml (Simonet 2003),
Jif (Chong et al. 2006), Fable (Swamy et al. 2008), Aura (Jia et al.
2008), and F7 (Bengtson et al. 2008) cannot handle many common
policies. For example, all these languages assume that authoriza-
tion policies are stateless, but prevalent security idioms like role- or
history-based access control are inherently stateful. In role-based
access control, for instance, the privileges granted to principals de-
pend on an ever-changing set of activated roles. Another shortcom-
ing of existing languages is their limited applicability to mobile-
code settings and plugin-based applications. Ideally, we would like
code consumers to download binaries and check them against their
security policies before installing them. However, the compilers of
these security-typed languages do not generate verifiable binaries.

1.1 FINE and DCIL

This paper makes two main contributions. The first is FINE, a new
programming language that can be used to check that the state-
ful authorization and information-flow policies applied in practice
are correctly enforced. Our main example is an implementation of
a reference monitor and a plugin for LOOKOUT, a plugin-based
office-utilities client that we have begun to build. LOOKOUT de-
fines an interface that allows a plugin to read email from a user’s
inbox, send email, make appointments in the calendar and so on.
A useful plugin could scan a user’s inbox for messages that ap-
pear to be a meeting request, automatically make appointments in
the calendar, and send email notification to the sender confirming
the appointment. To ensure that such a plugin cannot steal sensi-
tive emails from a user’s inbox, a user can customize the behavior
of LOOKOUT’s reference monitor by defining a security policy that
combines, say, aspects of information flow tracking with role- and
history-based access control. The type system of FINE ensures that
plugins always use a reference monitor’s API correctly, and in do-
ing so, comply with the user’s security policy.

Our representation of stateful policies is based on a general
framework for reasoning about dynamic policies due to Dougherty
et al. (2006), and is applicable to checking the enforcement of the
stateful, Datalog-based policies they explore. As such, our work is
relevant beyond the space of plugin-based software. Indeed, one
of our case studies includes a model of Continue, a widely-used
conference management server, whose stateful security policy has
been formalized by Dougherty et al.

The technical contribution of FINE is a new type system that
includes dependent types and refinement types—these can be used
to express authorization policies by including first-order logical
formulas in the types of program expressions. We also include
affine types, a facility that allows us to model changes to the state of
an authorization policy. The combination of affine and dependent
types is subtle and can require tracking uses of affine assumptions
in both types and terms. Our formulation shows how to keep the
metatheory simple by ensuring that affine variables never appear in
types, while still allowing the state of a program to be refined by
logical formulas. We also formalize a module system for FINE that
provides a powerful information-hiding property. In combination
with the other features, the module system allows FINE programs
to properly track information flow.

Programming with these advanced typing constructs can place
a significant burden on the programmer. For this reason, languages
like Fable and Aura position themselves as intermediate languages
because verification depends on intricate security proofs too cum-
bersome for programmers to write down. To alleviate this con-
cern, FINE draws on the experience of languages like F7 and uses
Z3 (de Moura and Bjorner 2008), an SMT solver, to automatically
discharge proof obligations. However, unlike prior languages, we
remove the solver from the TCB by extracting proofs from Z3 as
typeable FINE values. Our interface with Z3 is simplified by our

1

1 module AC
2 type prin = U : string→ prin | Admin : prin
3 private type cred :: prin→ ? = Auth: p:prin→ cred p
4 (∗ Authenticating principals and obtaining credentials ∗)
5 val login : p:prin→ pw:string→ option (cred p)
6 let login p pw = if (check pwd db p pw) then Some (Auth p) else None
7 (∗ A proposition and axiom for defining file permissions ∗)
8 type CanWrite :: prin→ file→ ?
9 assume Ax1: forall f:file, CanWrite Admin f

10 (∗ A secure wrapper for a system call ∗)
11 val fwrite: p:prin→ cred p→{f:file | CanWrite p f}→ string→ unit
12 let fwrite p c f s = Sys.fwrite f s
13 (∗ A utility function to test the policy ∗)
14 val check: p:prin→ cred p→ f:file→{b:bool | b=true⇒ CanWrite p f}
15 let check p c f = match p with Admin→ true | → false
16 end
17 open AC
18 let client (p:prin) (c:cred p) (f:file) =
19 if check p c f then fwrite p c f ‘‘Hello’’ else ()

Figure 1. Password authentication and access control in FINE

careful treatment of the combination of affine and dependent types.
Refinement formulas only involve the standard logical connectives,
avoiding the need for an embedding of linear logic in Z3.

Our second main contribution is a type-preserving translation of
FINE to DCIL, a new extension to the type system of CIL, the byte-
code language of the .NET runtime (ECMA 2006). DCIL augments
CIL with type-level functions, classes parametrized by values, and
affine types. DCIL programs can be checked purely syntactically,
without reliance on an external solver, and all the additional typing
constructs of DCIL can be accommodated within the existing spec-
ifications of CIL—value parameters can be encoded in fields, affine
types using type modifiers, and type-level functions using custom
attributes. Our approach makes it possible to run FINE programs on
stock .NET virtual machines; to interface with the vast libraries and
tool support (such as IDEs) for .NET; to validate the translation per-
formed by our compiler with a small TCB; and, perhaps most im-
portantly, allows us to build plugins for programs like LOOKOUT
using FINE, taking advantage of state-of-the-art theorem provers
to ease programming, while distributing plugins as DCIL programs
that can be type checked for security by end users.
Outline. We begin in Section 2 by describing FINE using several
examples. Section 3 formalizes FINE and proves it sound. Section 4
discusses our method of extracting and type-checking proof terms
from Z3. Section 5 formalizes DCIL, proves it sound, and proves
that our compilation strategy preserves types. Section 6 discusses a
prototype implementation of our compiler and example programs,
including a brief description of Continue. Section 7 compares re-
lated work, and Section 8 concludes. The appendix contains full
formalizations and proofs of all theorems discussed in the main
body of the paper.

2. FINE, by example
This section presents FINE using several examples. The first ex-
ample shows how to enforce a simple authentication and access
control policy. We build on this example to construct a reference
monitor for LOOKOUT, the plugin-based office utilities application
described in the Introduction. We show how the reference moni-
tor can be customized by a user-specified policy, and how it can
be used to enforce a stateful role- and history-based authorization
policy while tracking information flow.

2.1 Simple authentication and access control

Our first example is intended as an introduction to the syntax and
typing constructs used in FINE. The policy enforced by module
AC in Figure 1 can also be expressed in languages like Fable

and Aura. However, even with this simple policy, a key difference
is that programmers in Fable and Aura must manually construct
explicit security proofs, whereas in FINE, the type checker uses
an SMT solver, Z3, to automatically discharge proof obligations.
Using an external solver is also a feature of languages like F7
and Sage (Flanagan 2006). However, both these languages include
the solver in the TCB. In contrast, our compiler extracts and type
checks proof terms from Z3, and removes the solver from the TCB,
and enabling a type-preserving translation—a key to our goal of
providing lightweight checking of plugin binaries at the client.

In order to specify and enforce security policies, FINE program-
mers define modules that mediate access to sensitive resources. The
module AC in Figure 1 is a reference monitor for a file system. The
policy enforced by a FINE module has two components: the axioms
introduced through the use of the assume construct (e.g., Ax1 at line
9), and the types given to values exposed in the module’s interface
(e.g., the type of fwrite at line 11). A security review of AC must
confirm that the assumptions and the types ascribed to values ade-
quately capture the intent of a high-level policy. Importantly, client
code need not be examined at all—typing ensures that clients com-
ply with the reference monitor’s security policy.

The AC module implements a password-based authentication
mechanism combined with a permission-based access control pol-
icy. AC defines prin (line 2), a standard variant type that represents
principal names as either a string for the user’s name, or the dis-
tinguished constant Admin. The type cred (line 3) is a dependent-
type constructor that is given the kind prin→ ? , e.g., (cred Admin)
is a legal type of kind ? (the kind of normal types, distinguished
from the kind of affine types, introduced in the next section) and
represents a credential for the Admin user. By declaring it private,
AC indicates that its clients cannot directly use the data constructor
Auth. Instead, the only way a client module can obtain a credential
is through the use of the login function. The login function (lines
5-6) is given a dependent function type where the first argument p
is the name of principal, the second argument pw is a password
string, and, if the password check succeeds, login returns a cre-
dential for the user p. By indexing the cred with the name of the
principal which it authenticates, we can statically detect common
security errors, such as those that arise due to confused deputies,
e.g., a client cannot use login to obtain a credential for U ‘‘Alice’’
and later pass it off as a credential for Admin.

Line 8 defines a dependent-type constructor CanWrite that is
used to describe authorization permissions—AC interprets the type
CanWrite p f as the proposition that the principal p can write to the
file f. At line 9, AC defines a single policy assumption, Ax1, that
states that the principal Admin can write to any file. A client pro-
gram can use axioms like Ax1 to produce evidence of the propo-
sitions required to call functions like fwrite, which wraps a call to
Sys.fwrite. Client programs are assumed to not have direct access
to sensitive system calls like Sys.fwrite. The first two arguments
of fwrite require the caller to present a credential for the princi-
pal p. The third argument is a file handle with a refined type—the
type {f:file | CanWrite p f} is inhabited by any value f of type file for
which the proposition CanWrite p f can be proved. The final argu-
ment to fwrite is the string to be written to the file.

AC also provides a utility function check that clients can use to
query the policy. For this simple policy, the only principal that can
write to a file is Admin. To type this function, our type checker
utilizes information about runtime tests to refine types. For ex-
ample, in the first branch, to prove that true can be given the
type {b:bool | b=true⇒ CanWrite p f}, we pass the assumption p =
Admin (derived from the result of the pattern match) and the axiom
Ax1 to our solver, Z3, which decides that CanWrite p f is valid.

At lines 18-19 we show a client of the AC module, a function
with three arguments: a principal name p, a credential c for p, and

2

1 module LookoutRM
2 open AC
3 private type email = {sender:prin; contents:string}
4 private type appt = {who:prin; starttime:date; endtime:date; note:string}
5 val mkEmail : prin→ string→ email
6 val sender : e:email→{p:prin | p=e.sender}
7 val mkAppt : prin→ date→ date→ string→ appt
8 (∗ Constructs for information flow tracking ∗)
9 type prov = E:email→ prov | A:appt→ prov | J:prov→ prov→ prov

10 private type tracked::?→ prov→ ? = Tag:α→ p:prov→ tracked α p
11 val fmap : (α →β)→ p:prov→ tracked α p→ tracked β p
12 val popt : p:prov→ tracked (option α) p→ option (tracked α p)
13 (∗ Constructs for a stateful authorization policy ∗)
14 type role = User : role | Friend : role | Plugin : role
15 type att = Role : prin→ role→ att
16 | HasRepliedTo : prin→ email→ att
17 type st = list att
18 type action = ReadEmail : email→ action
19 | ReplyTo : email→ p:prov→ tracked email p→ action
20 |MkAppt : p:prov→ tracked appt p→ action
21 type perm = Permit : prin→ action→ perm
22 type In :: att→ st→ ?
23 type Derivable :: st→ perm→ ?
24 type dst<p:perm> = {s:st | Derivable s p}
25 (∗ An affine type to assert the validity of the authorization state ∗)
26 private type StateIs::st→ A = Sign:s:st→ StateIs s
27 (∗ An API for plugins ∗)
28 val readEmail : p:prin→ cred p→ e:email→
29 s:dst<Permit p (ReadEmail e)>→StateIs s→
30 (tracked string (E e) ∗ StateIs s)
31 val mkAppt : p:prin→ cred p→ q:prov→ a:tracked appt q→
32 s:dst<Permit p (MkAppt q a)>→StateIs s→StateIs s
33 val replyTo : p:prin→ cred p→
34 orig:email→ q:prov→ reply:tracked email q→
35 s:dst<Permit p (ReplyTo orig q reply)>→ StateIs s→
36 (s1:{x:st | In (HasRepliedTo p orig) x} ∗ StateIs s1)
37 val installPlugin: u:prin→ cred u→ p:prin→
38 s:{x:st | In (Role u User) s} → StateIs s→
39 (s1:{x:st | In (Role p Plugin) x} ∗ StateIs s1)

Figure 2. A fragment of a reference monitor for LOOKOUT

a file f. In order to call fwrite, client must prove the proposition
CanWrite p f. It does so by calling check and calls fwrite if the
check is successful. Once again, the type checker uses the result
of the runtime test to conclude that CanWrite p f is true in the then-
branch, and the call to fwrite type checks. A call to fwrite without
the appropriate test (e.g., in the else-branch) results in a type error.

2.2 A reference monitor for LOOKOUT

In this section, we present a more substantial example of program-
ming in FINE, where we model a fragment of a stateful authoriza-
tion and information flow policy for use with LOOKOUT. We begin
by showing a reference monitor LookoutRM, which exposes an API
for plugins to read and reply to emails and make appointments in
a calendar. In Section 2.3, we show how a user can specify policy
rules to restrict the way in which a plugin can use LookoutRM’s
API. Section 2.3 also shows the code for a plugin. Our approach al-
lows a user to download .NET assemblies for a plugin, type check
it against a policy using a lightweight syntactic checker, and only
install it if the check succeeds.
Security objectives. LookoutRM provides a way to track informa-
tion flow. A user can use information flow tracking to ensure, for
example, that emails sent by a plugin never disclose information not
meant for the recipient. Additionally, LookoutRM models a state-
ful role and history-based authorization policy. This will allow a
user to organize her contacts into roles, granting privileges to some
principals but not others, and will allow the user to change role
memberships dynamically. The state of the policy will also record

events like the sending of emails. A user can define a policy over
these events to, for example, ensure that plugins never spam a user’s
contacts by responding to emails repeatedly.
Technical aspects of our encoding. Expressing and enforcing
these security objectives exercises various aspects of FINE’s type
system. Information flow policies are specified using dependent
types, where the type of a secure object is indexed by a value in-
dicating its provenance, i.e., its origin. Stateful policies are spec-
ified by refining the type of the authorization state using logical
formulas. For instance, a refinement formula could require the au-
thorization state to record that a principal is in a specific role before
a permission is granted. Finally, changes to the state are modeled
using affine types (Walker 2004). Affine types are closely related to
linear types, with the distinction that affine variables can be used at
most once. Our approach keeps affine types separate from refine-
ment formulas, simplifying both programming and the extraction
of proof terms from Z3. We discuss the code in Figure 2 sequen-
tially, considering each of these three technical aspects in turn.

2.2.1 Information flow tracking

LookoutRM allows plugins to read emails and aims to track infor-
mation flow for any data that is derived from the contents of an
email. At lines 3-4 of Figure 2, LookoutRM defines the types email
and appt, records that represent emails and appointments, respec-
tively. To ensure that clients cannot directly inspect the contents
of an email we make email a private type. LookoutRM includes a
function mkEmail to allow plugins to construct emails, and sender,
to allow a plugin to inspect the sender of an email. But, in order to
read the contents of an email, a plugin will have to use readEmail
(discussed in detail in Section 2.2.4).

Information flow tracking in LookoutRM is based on a pattern
developed in the context of the Fable calculus. In this scheme,
information flow policies are specified and enforced by tagging
sensitive data with security labels that record provenance. At line 9,
LookoutRM defines the type prov (values of this type will be used
as security labels) and at line 10, the dependent-type constructor
tracked provides a way of associating a label with some data.
For example, tracked string (E x) will be the type of a string that
originated from the email x. Importantly, tracked is defined as a
private type. Client programs can only manipulate tracked values
using functions that appear in the interface of LookoutRM, e.g.,
fmap is a functor that allows functions to be lifted into the tracked
type. Several other functions can also be provided to allow client
programs to work with the tracked datatype. Prior work on Fable
showed that encodings of this style can be proved to correctly
enforce security properties like noninterference.

2.2.2 Refined state for stateful authorization

The model of stateful authorization implemented by LookoutRM
is based on a framework due to Dougherty et al. (2006) for rea-
soning about the correctness of Datalog-style dynamic policies. In
this model, policies are specified as inference rules that derive per-
missions from a set of basic authorization attributes. For example,
the attributes may include assertions about a principal’s role mem-
bership, and the policy may include inference rules that grant per-
missions to principals in certain roles. Over time, whether due to a
program’s actions or due to external events, the set of authorization
attributes can change. For example, in order to access a resource, a
principal may alter the state of the authorization policy by activat-
ing a role. In this state, the policy may grant a specific privilege to
the principal. A subsequent role deactivation causes the privilege
to be revoked. Dougherty et al. show that many common policies
can be captured by this model in a manner conducive to reasoning
about policy correctness. Section 6 discusses an implementation of
this model in the Continue conference management server.

3

The set of basic authorization attributes in LookoutRM is rep-
resented by the type st (lines 14-17). Attributes include values
like Role (U ‘‘Alice’’) Friend to represent a role-activation for a
principal, or values like HasRepliedTo p e to record an event that
a principal p has sent an email in response to e. Permissions
(the relations derived using policy rules from the basic authoriza-
tion attributes) are represented using the type perm. For example,
Permit (U ‘‘Plugin’’) (ReadEmail e), represents a permission that a
user may grant to a plugin. Line 22 shows a type In, a proposition
about list membership, e.g., In a s is a proposition that states that a
is a member of the list s. We elide standard assumptions that ax-
iomatize list membership. The proposition Derivable s p (line 23) is
used to assert that a permission p is derivable from the collection of
authorization attributes s. The type abbreviation dst<p> refines the
state type st to those states in which the permission p is derivable.

2.2.3 Affine types for state evolution
The type constructor StateIs at line 26 addresses two concerns.
A value of type StateIs s represents an assertion that s contains
the current state of authorization facts. LookoutRM uses this as-
sertion to ensure the integrity of its authorization facts—StateIs
is declared private, so, untrusted clients cannot use the Sign con-
structor to forge StateIs assertions. Moreover, since the authoriza-
tion state can change over time, FINE’s type system provides a
way to revoke StateIs assertions about stale states. For example,
after a principal p has responded to an email e, we may add the
fact HasRepliedTo p e to the set of authorization facts s. At that
point, we would like to revoke the assertion StateIs s, and assert
StateIs ((HasRepliedTo p e)::s) instead. o

Types in FINE are classified into two basic kinds, ? , the kind
of normal types, and A, the kind of affine types. By declaring
StateIs :: st→ A we indicate that StateIs constructs an affine type
from an argument of type st. When the state of the authorization
policy changes from s to r, LookoutRM constructs a value Sign r to
assert StateIs r, while destructing a StateIs s value to ensure that the
assertion about the stale state s can never be used again.

2.2.4 A secure API for plugins
Lines 28-39 define the API that LookoutRM exposes to plugins.
Each function requires the caller p to authenticate itself with a
credential cred p. Using the refined state type dst<p>, the API
ensures that each function is only called in states s where p has
the necessary privilege. For example, in order to read the contents
of an email e, the readEmail function requires ReadEmail p e to be
derivable in the state s. To ensure that information flows are tracked
on data derived from an email, readEmail returns the contents of
e as a string tagged with its provenance, i.e., the label E e. To
indicate that the authorization state s has not changed, readEmail
also returns a value of type StateIs s. The mkAppt function allows p
to make an appointment a only in states s where p has the MkAppt
permission. The type of a indicates that its provenance is q, and,
like readEmail, mkAppt leaves the authorization state unchanged.
As we will see shortly, a user can grant a plugin permission to make
an appointment a depending on a’s provenance.

The function replyTo allows a plugin p to send a reply with
provenance q to an email orig when the ReplyTo orig q reply has
been granted to p. Unlike the other functions, replyTo modifies
the authorization state to record a HasRepliedTo p orig event. The
return type of replyTo, a dependent pair consisting of a new list
of authorization attributes s1, and an assertion of type StateIs s1 to
indicate that s1 is the current authorization state. Finally, we show
a function installPlugin that allows a user u to register a plugin p.

2.3 A LOOKOUT user’s policy and a plugin
Figure 3 shows a module UserPolicy that configures the behavior
of the LookoutRM reference monitor with several user-provided

1 module UserPolicy : LookoutRM
2 let init = let a = [Role (U "Alice") Friend; ...] in (a, Sign a)
3 assume U1: forall (p:prin) (e:email) (s:st).
4 In (Role p Plugin) s && In (Role e.sender Friend) s⇒
5 Derivable s (Permit p (ReadEmail e))
6 assume U2: forall (p:prin) (e:email) (a:tracked appt (E e)) (s:st).
7 In (Role p Plugin) s && In (Role e.sender Friend) s⇒
8 Derivable s (Permit p (MkAppt (E e) a))
9 assume U3: forall (p:prin) (e:email) (reply:tracked email (E e)) (s:st).

10 In (Role p Plugin) s && not (In (HasRepliedTo p e) s)⇒
11 Derivable s (Permit p (ReplyTo e (E e) reply))
12 end
13 open LookoutRM
14 (∗ Utility functions for checking authorization attributes ∗)
15 val checkAtt: s:st→ r:attr→{b:bool | (b=true⇔ In r s)}
16 let rec checkAtt s r = match s with
17 | []→ false
18 | a::tl→ if r=a then true else check tl r
19 (∗ Custom plugin logic ∗)
20 val detectAppt: prin→ string→ option appt
21 val mkNotification: appt→ email
22 (∗ Type abbreviation for the current set of authorization facts s ∗)
23 type state = (s:st ∗ StateIs s)
24 val processEmail: p:prin→ cred p→ email→ state→ state
25 let processEmail p c em (s, tok) =
26 let c1 = checkAtt s (Role p Plugin) in
27 let c2 = checkAtt s (Role (sender em) Friend) in
28 let c3 = checkAtt s (HasRepliedTo p em) in
29 if c1 && c2 && not c3 then
30 let (pstr, tok) = read email p c em s tok in
31 let opt appt = fmap (detectAppt (sender em)) (E em) pstr in
32 match popt (E em) opt appt with
33 | None→ (a, tok) (∗ no appointment extracted; do nothing ∗)
34 | Some appt→
35 let tok = mkAppt p c (E em) appt s tok in
36 let reply = fmap mkNotification (E em) appt in
37 replyTo p c em (E em) reply s tok
38 else (s,tok) (∗ can’t read email, or already sent notification ∗)

Figure 3. A user’s policy and fragment of plugin code

policy assumptions. At line 2, we show init, the initial collection
of authorization attributes. The user includes facts like the roles
of friends in a list a, and, using the data constructor Sign, attests
that a is the authorization state. The Sign data constructor requires
the privilege of the LookoutRM module—FINE’s module system
allows this privilege to be granted to UserPolicy using the notation
module UserPolicy : LookoutRM.

The assumptions U1-U3 show how permissions can be derived
from attributes. Assumption U1 allows a plugin to only read emails
from friends. U2 allows a plugin to make an appointment a, only if
the provenance of a is an email e that was sent by a friend. U3 allows
a plugin to reply to an email e only if a reply has not already been
sent. Moreover, the reply should only contain information derived
from the original email, ensuring that plugins do not leak emails
from one contact to another. Of course, more elaborate information
flow constraints could also be specified. Section 6 briefly discusses
a more traditional, lattice-based information flow policy that we
have implemented.

The utility function checkAtt on lines 15-18 is a standard tail-
recursive membership test on a list, and allows the authorization
state to be queried. Type-checking checkAtt requires using standard
axioms about In, e.g., assume forall (a:att). In a [a], which we have
omitted for simplicity.

2.3.1 An example plugin
The rest of Figure 3 shows fragments from a plugin program. The
processEmail function is meant to extract an appointment from
an email, update the calendar with the appointment, and send
an automated reply. It relies on two functions detectAppt and

4

mkNotification, that implement some plugin-specific logic. The
type of processEmail shows its arguments to be a credential c of
type cred p, the email em that is to be processed, and the current
authorization state (s, tok):state. This is a pair consisting of the set
of authorization attributes s, and a token, tok:StateIs s, asserting
the integrity and validity of s. Lines 26-28 show several checks on
the authorization state to ensure that p has the privilege to read em
and to send a response. If the authorization check fails, the plu-
gin does nothing and returns the state unmodified. Otherwise, at
line 17, it reads em and obtains pstr:tracked string (E em). It uses
fmap and popt to try to extract an appointment from the email in
a manner that tracks provenance. If an appointment was found, it
makes an appointment and sends a reply. Several subtle points in
processEmail reveal features of FINE—we discuss these next.
Non-affine state simplifies programming. Programming with
affine types can sometimes be difficult, since affine variables can
never be used more than once. Our approach of using an affine as-
sertion StateIs s to track the current authorization state minimizes
the difficulty. Importantly, the collection of authorization facts s is
itself not affine and can be freely used several times, e.g., s is used
in several calls to checkAtt. Non-affine state also enables writing
functions like checkAtt, which, if s was affine, would destroy the
state of the program. Only the affine token, tok:StateIs s, must be
used with care, to ensure that it is not duplicated.
Non-affine refinement formulas simplify automated proofs.
Even ignoring the inability of prior languages to handle stateful
policies, the proof terms required for a program of this style in a
language like Fable or Aura would be extremely unwieldy. The
FINE type checker can use Z3 to synthesize proof terms for the
proof obligations in this example. By ensuring that refinement for-
mulas always apply to non-affine values, our proof system is kept
tractable. A naı̈ve combination of dependent and affine types would
allow refinements to apply to affine values, necessitating an embed-
ding of linear logic in Z3. Our approach avoids this complication,
while retaining the ability to refine the changing state of a program
with logical formulas.
Affine types ensure purity. When enforcing information flow poli-
cies, implicit flows due to side effects can be a concern. For exam-
ple, fmap reveals the contents of an email as a string (rather than a
tracked string p) to detectAppt. One may be worried that detectApp
could subvert the information flow policy by sending the string in
an email (a side effect). Our type system guarantees that detectAppt
is a pure function which cannot cause side effects by calling func-
tions like replyTo, or mkAppt. To see why, observe that in order to
call replyTo, a caller must pass an affine StateIs s token as an argu-
ment. These tokens serve as capabilities (Walker et al. 2000) that
permit the caller to cause side effects, such as sending emails. The
types of detectAppt and mkNotification ensure that these values do
not have access to any such capabilities—capabilities are affine and
expressions that capture affine values must themselves be affine.

3. Formalizing FINE

This section presents a core formalism for FINE based on a poly-
morphic lambda calculus with dependent, affine and refinement
types. We also model the module system of FINE using syntactic
type abstraction, a technique developed by Grossman et al. (2000).
We prove our type system sound, and present a general-purpose se-
curity result for the source language, namely that the module sys-
tem correcly establishes an information-hiding property. On a first
reading, a reader comfortable with the typing constructs used in
FINE may wish to skip ahead to Section 3.4, and beyond, for a de-
scription of our type-preserving compilation technique.

principals p, q, r ::= p | > | ⊥
terms e ::= x | D | λx:τ.e | Λα::κ.e

| fix f :τ.e | e1 e2 | e τ | 〈e〉p
| match vp with D ~τ ~x→ e1 else e2

types τ, φ ::= α | x:τ1 → τ2 | ∀α::κ.τ
| T | τ1 τ2 | τ e | {x:τ |φ} | !τ

kinds κ ::= ? | A | ?→ κ | A→ κ | τ → κ
signature S ::= T ::κ | D:(p, τ) | p v q | S, S | ·
type env. Γ ::= α::κ | x:(p, τ) | vp

.
= v′p | Γ,Γ′ | ·

pre p-values up ::= x | D ~τ ~v
p-values vp ::= up | λx:t.e | Λα::κ.e | 〈uq〉q

Figure 4. Syntax of FINE

3.1 Syntax

Figure 4 defines the syntax of FINE. Source terms are anno-
tated with the names of principals, ranged over by the meta-
variables p, q, r. Principals in our formalization correspond to mod-
ule names, and expressions granted the privilege of p are allowed
to view the types defined in module p concretely; other principals
must view p’s types abstractly. A principal constant is denoted p,
and we include two distinguished principals: > includes the privi-
leges of all other principals, and ⊥ has no privileges.

The term language is standard for a polymorphic lambda cal-
culus with data constructors D and a pattern matching construct.
The form 〈e〉p represents an expression e that has been granted
p-privilege. Types τ include dependent function types (pi types)
x:τ → τ ′, where x names the formal parameter and is bound in τ ′.
Polymorphic types ∀α::κ.τ decorate the abstracted type variable
α with its kind κ. We include type constructors T , which can be
applied to other types using τ1 τ2 or terms using τ e. Refinement
types are written {x:τ |φ}, where φ is a type in which x is bound.
An affine qualifier can be attached to any type using !τ . Types are
partitioned into normal kinds ? and affine kinds A. Type construc-
tors can construct types of kind κ from normal types (? → κ),
affine types (A→ κ), or terms of type τ (τ → κ).

FINE programs are parameterized by a signature S, a finite map
which, using T ::κ, ascribes a kind to a type constructor T . The no-
tationD:(p, τ) associates a principal name p and type τ with a data
constructor. This gives D the type τ and limits its use to programs
with p-privilege. The signature also records relations between prin-
cipals p v q, to indicate that q includes the privileges of p. For ex-
ample, the Sign constuctor from Figure 2, is represented in this no-
tation as Sign:(LookoutRM, a:st → StateIs a), and indicates that it
is a data constructor which requires the privilege of the LookoutRM
module. The notation module UserPolicy : LookoutRM from Fig-
ure 3, is represented as the relation LookoutRM v UserPolicy,
which grants the UserPolicy module the privilege to use the Sign
constructor. Axioms introduced via the assume construct are repre-
sented as data constructors (cf. Section 4).

The typing environment Γ records the kind of type variables.
Just as with data constructors in the signature, variables x are
associated with both their type τ and a principal name p. The
assumption vp

.
= v′p records the result of pattern matching tests

and is used to refine types.
Values in FINE are partitioned into families corresponding to

principals. A pre-value for code with p-privilege is either a vari-
able, or a fully-applied data constructor. Values for p are either
its pre-values, abstractions, or pre-values uq for some other prin-
cipal q, delimited within angle brackets to denote that uq carries
q-privilege. Following Grossman et al., we give a dynamic seman-
tics that tracks the privilege associated with an expression using
these bracket delimiters. This allows us to prove, in Section 3.4,
that programs without p-privilege view p-values abstractly.

5

For simplicity, our formalization omits dependent pairs (x:τ ∗
τ ′) although we use these in our examples. Pairs can be derived
using a standard higher-order encodings, e.g., using terms of type
∀α:: ? .f :(x:τ → y:τ ′ → α)→ α. Of course, our implementation
provides primitive support for pairs (and record types), rather than
requiring programmers to use this encoding. Our translation to
DCIL is simplified by allowing only values to be discriminated by
pattern matching (a source program can always be put in this form).

3.2 Static semantics

Two principles guide the static semantics FINE, defined in Figure 5.
First, we aim for our target language DCIL to be a minimal exten-
sion of the type system of CIL. As such, we omit useful features like
abstraction over types with higher-order kinds, because they require
changes to the core CIL type system. Second, we limit the interac-
tion between affine and dependent types to keep proof checking
tractable. In particular, we forbid refinement formulas from using
affine assumptions, thereby avoiding the need for an embedding
of linear logic in our prover. The examples in the previous section
show how this restriction can be turned to our advantage by always
representing the state of a program by refining a non-affine value.

The first judgment S `i κ defines a well-formedness relation
on kinds. Intuitively, this judgment establishes two properties. First,
types constructed from affine types must themselves be affine—this
is standard (Walker 2004). Without this restriction, an affine value
can be stored in non-affine value and be used more than once. To
enforce this property, we index the judgment using i ::= · | 1,
and when checking a kind A → κ, we require κ to finally produce
an A-kinded type. The second restriction, enforced by (WF-Dep),
ensures that only non-affine values appear in a dependent type.

The judgment S; Γ ` τ :: κ states that τ can be given kind
κ. Types that are inhabited by terms are always given either kind
? or A, and in (K-Fun), we require that the type τ1 of a function’s
parameter always have kind ? or A. Additionally, we require func-
tions which take affine arguments to produce affine results. These
two constraints are captured using an auxiliary relation on kinds,
κ ≤ κ′. In (K-Uni) we allow abstraction only over ? and A-kinded
types. (K-Afn) rules out “doubly-affine” types (!!τ). (K-Ref) re-
quires refinement formulas φ to be non-affine.

The rule that checks the well-formedness of dependent types,
(K-Dep), has two subtle elements. First, we restrict type-level
terms to be values, e.g., Eq (+ 1 2) 3 is not a well-formed type, even
with Eq::int→ int→ ? . This simplifies the metatheory while limit-
ing expressiveness—languages like Aura and F7 impose a similar
restriction. In contrast, Fable permits types to be indexed by arbi-
trary expressions and, at the cost of decidability of type checking,
can perform type-level computation to equate types. With this fa-
cility, Fable can statically check that certain kinds of information
flow policies are properly enforced. Such policies in FINE would
require dynamic checks. The second premise of (K-Dep) makes
use of the typing judgment—we discuss it in detail below.

The typing judgment is written S; Γ;X `p e : τ , and states that
an expression e, when typed with the privilege of principal p in an
environment Γ and signature S, can be given the type τ . The set X
records a subset of the variable bindings in Γ, and each element of
X represents a capability to use an assumption in Γ.

The rule (T-D) requires data constructors declared to be usable
only by code with p-privilege to be used in a context with that
privilege. In the second premise of (T-Match), we type check a
patternD ~τ ~x to ensure that data constructors are also destructed in
a context with the appropriate privilege. To translate FINE to DCIL,
we include a side-condition that requires data constructors to be
fully applied—we elide this for brevity.

In (T-X) we type a non-affine variable x by looking up its type in
the environment. (T-XA) allows an affine variable to be used only

when a capability for its use appears in X . Unlike in linear typing,
affine assumptions need not always be used. (T-Drop) allows an
arbitrary number of assumptionsX ′ to be forgotten, and for e to be
checked with a privilege q that is not greater than privilege p that it
has been granted. An expression is granted privilege by enclosing
it in angle brackets, as shown in (T-Bracket).

Returning to the second premise of (K-Dep), we check a type-
level term vp with the privilege of>. The intuition is that type-level
terms have no operational significance and, as such, cannot violate
information-hiding. We also check vp in (K-Dep) with an empty
set of capabilitiesX . According to (WF-Dep), no well-formed type
constructor can be applied to an affine value, so a type-level term
like vp never uses an affine assumption.

In (T-Fun), we check that the type of the formal parameter is
well-formed, and type check the body in an extended context. We
record the privilege p of the program point at which the variable
x was introduced to ensure that x is not destructed in unprivileged
code in the function-body e. In the conclusion of (T-Fun), we use
the auxiliary function Q(X, τ), which attaches an affine qualifier
to τ if the function captures any affine assumptions from its envi-
ronment. (T-Uni) is similar. In (T-Fix), we require fixed variables f
to be given a non-affine types, and for the recursive expression to
not capture any affine assumptions.

When typing an application e1 e2 in (T-App), we allow e1 to
be a possibly affine function type—the shorthand ?τ captures this,
and we use the same notation in (T-TApp). In (T-App) we split the
affine assumptions among the sub-terms, and, in the third premise,
require the well-formedness of τ2[e2/x]—this ensures that non-
values never appear in types as the result of an application.

In (T-Match), we split the affine assumptions between vp and
the branches. In the second premise, we type check the pattern and
derive bindings for each pattern-bound variable xi. Constructed
types in FINE are a form of generalized algebraic datatype (Xi et al.
2003). For simplicity, we do not induce equalities among types as
a result of a pattern match. We do, however, record equality as-
sumptions among values that appear in the type τ ′ of the discrimi-
nated expression (if any) and the pattern bound variables. These are
shown as the xi

.
= vi assumptions in the second premise. The true-

branch e1 is checked with an additional assumption that records
the result of the successful pattern match. To illustrate using an ex-
ample from Figure 2, if the discriminated expression vp has type
τ ′ = tracked string (E mail), and the pattern is Tag string x y, we
include the assumptions x:(p, string), y:(p, prov), and y .

= (E mail)
when typing the pattern in the second premise. When typing the
true branch, we also record vp

.
= Tag string x y in Γ.

We include a transitive subtyping relation S; Γ ` τ <: τ ′,
which does not include any structural rules, e.g., contra- and co-
variant subtyping in function types. The type system of CIL uses
nominal subtyping, and structural rules of this form are not easily
translated. Coercions can be used to represent a richer subtyping re-
lation, if necessary (Swamy et al. 2009). The rule (S-UnRef) treats
a refined type {x:τ |φ} as a subtype of the underlying type τ . (S-
Ref) allows a type τ to be promoted to a refined type {x:τ ′ |φ(x)}
when τ is a subtype of τ ′, and when a proof of the formula φ(x) can
be constructed in context Γ extended with a binding for x. (S-Ref)
shows the proof term generated non-deterministically as a value vp.
Proof terms are typed with⊥-privilege and so can only use the pub-
lic data constructors of every module in scope. For each variable y
bound to a refined type {x:τ1 |φ1(x)} in the environment, we let ŷ
denote a proof of the formula φ1(x). The premise ŷ ∈ FV (vp) in-
dicates that vp makes use of other proof terms ŷ from the context. In
Section 4, we discuss how these proof terms are synthesized using
an external prover (Z3) and type checked in FINE. Finally, subtyp-
ing includes an equivalence relation on types S; Γ ` τ ∼= τ ′. The

6

S `i k where i ::= · | 1 Well-formedness of kinds

S ` ? (WF-?)
S `i A

(WF-A)
S `i κ

S `i ?→ κ
(WF-TFun)

S `1 κ

S `i A→ κ
(WF-TFunA)

S; · ` τ :: ? S `i κ
S `i τ → κ

(WF-Dep)

S; Γ ` τ :: κ where ? ≤ ?, A ≤ A, ? ≤ A Kinding of types

S; Γ ` α :: Γ(α)
(K-Var)

S; Γ ` T :: S(T)
(K-TC)

S; Γ ` τ :: ?

S; Γ `!τ :: A
(K-Afn)

S; Γ, α:κ ` τ :: κ′ κ, κ′ ∈ {?, A}
S; Γ ` ∀α::κ.τ :: ?

(K-Uni)

S; Γ ` τ1 :: κ κ ≤ κ′
S; Γ, x:(p, τ1) ` τ2 :: κ′

S; Γ ` x:τ1 → τ2 :: ?
(K-Fun)

S; Γ ` τ1 :: κ′ → κ
S; Γ ` τ2 :: κ′

S; Γ ` τ1 τ2 :: κ
(K-App)

S; Γ ` τ1 :: τ → κ
S; Γ; · `> vp : τ

S; Γ ` τ1 vp :: κ
(K-Dep)

S; Γ ` τ :: ?
S; Γ, x:(p, τ) ` φ :: ?

S; Γ ` {x:τ |φ} :: ?
(K-Ref)

S; Γ;X `p e : τ where X ::= · | x,X; Q(X, τ) =!τ , Q(·, τ) = τ ; and ?τ denotes τ or !τ Expression typing

S(D) = (p, t)

S; Γ; · `p D : τ
(T-D)

Γ(x) = (p, τ) S; Γ ` τ :: ?

S; Γ; · `p x : τ
(T-X)

Γ(x) = (p, τ)

S; Γ;x `p x : τ
(T-XA)

S; Γ;X `q e : τ q v p ∈ S
S; Γ;X,X ′ `p e : τ

(T-Drop)

S; Γ ` τ1 :: κ κ ∈ {?, A}
S; Γ, x:(p, τ1);X,x `p e : τ2

S; Γ;X `p λx:τ1.e : Q(X,x:τ1 → τ2)
(T-Fun)

κ ∈ {?, A}
S; Γ, α::κ;X `p e : τ ′

S; Γ;X `p Λα::κ.e : Q(X, ∀α::κ.τ ′)
(T-Uni)

S; Γ ` τ :: ? unrefined(τ)
S; Γ, f :(p, t); · `p vp : τ

S; Γ; · `p fix f :τ.vp : τ
(T-Fix)

S; Γ;X `p e1 :?x:τ1 → τ2
S; Γ;X ′ `p e2 : τ1 S; Γ ` τ2[e2/x] :: κ

S; Γ;X,X ′ `p e1 e2 : τ2[e2/x]
(T-App)

S; Γ;X `p e :?∀α::κ.τ
S; Γ ` τ ′ :: κ

S; Γ;X `p e τ ′ : τ [τ ′/α]
(T-TApp)

S; Γ;X `q e : τ

S; Γ;X `p 〈e〉q : τ
(T-Bracket)

S; Γ;X `p vp : τ ′ S; Γ, xi:(p, τi), xi
.
= vi; ~x `p D ~τ ~x : τ ′

S; Γ, xi:(p, τi), xi
.
= vi, vp

.
= D ~τ ~x;X ′, ~x `p e1 : τ S; Γ;X ′ `p e2 : τ

S; Γ;X,X ′ `p match vp with D ~τ ~x→ e1 else e2 : τ
(T-Match)

S; Γ;X `p e : τ ′

S; Γ ` τ ′ <: τ

S; Γ;X `p e : τ
(T-Sub)

S; Γ ` τ <: τ ′ where S; Γ; · ` x : {y:τ |φ} ⇒ S; Γ, y:(p, τ) ` x̂ : φ Subtyping

S; Γ ` τ1 ∼= τ2
S; Γ ` τ1 <: τ2

(S-Eq)
S; Γ ` {x:τ |φ} <: τ

(S-UnRef)
S; Γ ` τ <: τ ′ ŷ ∈ FV (vp) S; Γ, x:(p, τ) `⊥ vp : φ

S; Γ ` τ <: {x:τ ′ |φ}
(S-Ref)

S; Γ ` τ ∼= τ ′ S; Γ ` e ∼= e′ Equivalence of types and type indices

S; Γ ` τ ∼= τ
(TE-Id)

S; Γ ` τ1 ∼= τ ′1 S; Γ ` τ2 ∼= τ ′2

S; Γ ` τ1 τ2 ∼= τ ′1 τ
′
2

(TE-App)
S; Γ ` τ1 ∼= τ ′1 S; Γ ` vp ∼= v′p

S; Γ ` τ1 vp ∼= τ ′1 v
′
p

(TE-Dep)

S; Γ ` vp ∼= vp
(EE-Id)

vp
.
= v′p ∈ Γ ∨ v′p

.
= vp ∈ Γ

S; Γ ` vp ∼= v′p
(EE-Match)

∀i, j S; Γ ` τi ∼= τ ′i S; Γ ` vj ∼= v′j

S; Γ ` Dτ1 . . . τmv1 . . . vn ∼= Dτ ′1 . . . τ
′
mv
′
1 . . . v

′
n

(EE-Cons)

Figure 5. Static semantics of FINE

key rule, (EE-Match), allows a type-level term vp to be equated
with v′p when an assumption vp

.
= v′p appears in the context.

3.3 Dynamic semantics

The operational semantics of FINE are instrumented to account for
two program properties. First, our semantics places affinely typed
values in a memory M . Reads from the memory are destructive,
which allows us to prove that in well-typed programs, affine values
are never used more than once. The semantics also tracks the priv-
ilege of expressions by propagating brackets through reductions.
This allows us to prove an information-hiding property for our
module system. The main judgment is written (M, e)

p
 (M ′, e′),

and states that given an initial memory M an expression e steps to
e′ and updates the memory to M ′. The p-superscript indicates that
e steps while using the privilege of the principal p.

Figure 6 shows the interesting rules from our small-step oper-
ational semantics for FINE. Evaluation contexts define a standard
left-to-right, call-by-value semantics. As for values, evaluation con-
texts Ep are divided into families corresponding to principals. The
omitted rules include congruences that allow reduction under a con-
text, standard beta-reduction for type and term applications, un-
rolling of fixed points, and pattern matching.

Reduction rules that do not involve reading from memory are
written e

p
 e′. All the interesting rules that manage privileges

and brackets fall into this fragment. Redundant brackets around
p-values can be removed using (E-Strip). However, not all nested
brackets can be removed, as (E-Nest) shows. In (E-Ext), a λ-binder
is extruded from a function with q-privilege so that it can be applied
to a p-value. We have to be careful to enclose occurrences of the
the bound variable in e within p-brackets, to ensure that e treats

7

p-Evaluation context Ep ::= • | Ep e | vp Ep | EP τ | match Ep with D ~τ ~x→ e1 else e2 Store M ::= (x, vp),M | ·

〈vp〉p
p
 vp (E-Strip) 〈〈vq〉q〉r

p
 〈vq〉q (E-Nest) 〈λx:t.e〉q

p
 λy:t.〈e[〈y〉p/x]〉q (E-Ext) 〈Λα::κ.e〉q

p
 Λα::κ.〈e〉q (E-TExt)

e
q
 e′

〈e〉q
p
 〈e′〉q

(E-Br)
S; ·; · ` vp : τ S; · ` τ :: A M ′ = M, (x, vq) x fresh

M, vp
p
 M ′, x

(E-Construct)
M = M ′, (x, vq)

M,x
p
 M ′, vq

(E-Destruct)

M, e
p
 M ′, e′

M,Ep[e]
p
 M ′, Ep[e

′]
(E-Cong)

e
p
 e′

M,Ep[e]
p
 M,Ep[e

′]
(E-Pure)

vp
.
= θ(D ~τ ~x)⇒ e = θ(e1) e = e2 otherwise

match vp with D ~τ ~x→ e1 else e2
p
 e

(E-Match)

λx:τ.e vp
p
 e[vp/x] (E-Beta) Λα::κ.e τ

p
 e[τ/α] (E-TBeta) fix f :t.vp

p
 vp[(vp[fix f :t.vp/f])/f] (E-Fix)

Figure 6. Dynamic semantics of FINE

its argument abstractly. (E-TExt) extrudes a Λ-binder. Since type-
level terms are always checked with >-privilege, we do not need
to enclose α in p-brackets. Finally, (E-Br) allows evaluation to
proceed under a bracket 〈·〉q with q-privilege.

The only two rules in our semantics that manipulate the store are
(E-Construct) and (E-Destruct). The former allocates a new loca-
tion x for an affine value vp into the storeM , non-deterministically,
and replaces vp with x. When a location x is in destruct position,
(E-Destruct) reads a value vp from M and deletes x.

Theorem 1 proves the soundness of the FINE type system
through the standard progress and preservation lemmas. In addition
to showing that well-typed programs never get stuck, our soundness
result guarantees that affine values are destructed at most once—a
result that shows that state changes are modeled accurately. The
appendix contains the full statement and proof.

Theorem 1 (Soundness). The FINE type system is sound.

3.4 Security
FINE’s module system provides two general purpose security
properties—proofs appear in the appendix. The first, corresponding
to a secrecy property, is value abstraction. Theorem 2, stated be-
low, states that a program e without p-privilege cannot distinguish
p-values. As a corollary, we can also derive an integrity property,
namely that a program without p-privilege cannot manufacture a
p-value to influence the behavior of code with p-privilege.
Theorem 2 (Value abstraction).

∀S, x, p, q, τ, τ ′, v1
p, v

2
p, e. where e, a non-value free of p-privilege

(S;x:(p, τ);x `q e : τ ′ ∧ p v q 6∈ S ∧ ∀i.S; ·; · `p vip : τ)

∃e′. S;x:(p, τ) `q e′ : τ ′ ∧ ∀i.e[vip/x]
q
 e′[vip/x]

Type soundness and these general-purpose security theorems
provide a useful set of primitives using which application-specific
security properties can be proved. For example, applying our type
soundness and security theorems to LookoutRM, it is straightfor-
ward to show (with suitable type-correct implementations of the
functions in LookoutRM’s API) that state updates are modeled ac-
curately. Specifically, one can show that a reduction sequence of
any program using LookoutRM will never use more than a sin-
gle memory location of type StateIs s, for any s. Additionally, fol-
lowing prior work on Fable, we can show that our mechanism for
information-flow tracking accounts for dependences accurately.

Ultimately, we would like to formalize and prove higher-level
security theorems for applications. For example, we would like to
prove that LookoutRM and UserPolicy correctly ensure that plugins
never leak the contents of emails from one friend to another, and
that no plugin ever replies to an email more than once. Formalizing
and proving these properties for specific programs is beyond the
scope of this work. However, we plan to investigate the integration

of tools like Margrave (Fisler et al. 2005), specifically designed for
the analysis of the style of state-modifying authorization policies
investigated here, with the analysis of FINE programs.

4. Proof extraction
Our compiler extracts proofs of refinement formulas from Z3 as ty-
peable FINE proof terms. This section discusses our representation
of proofs, and an initial “derefinement” translation of source pro-
grams. The result of this translation is a FINE program in which
all values v given a refinement type {x:τ |φ} are replaced (to a
first approximation) with pairs of the form (x:τ ∗ proof φ), i.e., de-
pendent pairs containing the value v and a proof term that serves
as evidence for the refinement formula φ. This approach removes
the prover from our TCB, and enables a translation to our target
language DCIL, described in detail in Section 5.

4.1 Representation of proof terms
At the source level, we interpret user-provided assumptions and
the types φ that appears in refinements {x:τ |φ} as formulas in
a classical first-order logic. To give a value v a refined type, we
present a theory with the user axioms, equality assumptions accu-
mulated in the context, and the negated formula ¬φ[v/x] to Z3.
If Z3 can refute the formula, it produces a proof trace. We use an
LCF-style (Milner 1979) approach to translate the proof traces re-
ported by Z3 into proof terms in FINE.

The proof system in FINE axiomatizes a classical first-order
logic with equality by defining an abstract datatype proof::? → ?.
Inference rules of the logic and user-provided axioms are repre-
sented using data constructors for the proof type. Logical con-
nectives in formulas are represented using type constructors, e.g.,
And::? → ? → ?, Not::? → ?, and quantified formulas are rep-
resented using the binding constructs provided by dependent func-
tion types. A selection of the constructors in the kernel of our proof
system are shown below. These include inference rules and con-
structors that allow proof terms to be composed monadically. We
also show the translation of the user axiom Ax1 from Figure 1.

T: proof True
Contra: proof (not α)→ proof α→ proof False
Destruct false: proof False→ proof α
Bind pf: proof α→ (α → proof β)→ proof β
Ax1: proof (f:file→ proof (CanWrite Admin f))

In addition to the core inference rules, we generate proof princi-
ples for a first-order treatment of equality. A more compact higher-
order treatment of equality is not possible, since our target language
does not support quantification over types with higher-order kinds.
For example, for the prin type defined in Figure 1, we automati-
cally generate a type Eq prin corresponding to equality for prin val-
ues, and substitution principles relating Eq prin to other proposi-

8

tions in the program. Some of the auto-generated types and axioms
are shown below.

type Eq prin:: prin→ prin→ ?
Refl eq prin: p:prin→ proof (Eq prin p p)
Mono CanWrite: p1:prin→ p2:prin→ proof (Eq prin p1 p2)→ f:file→

proof (CanWrite p1 f)→ proof (CanWrite p2 f)

For a flavor of the proof terms we generate, consider the check
function from Figure 1. In order to type check its return value, we
must prove the validity of CanWrite p f in a context that includes the
assumption p

.
= Admin and the Ax1 axiom. We currently translate

Z3 proofs directly into corresponding FINE terms. For example, Z3
proofs often end with applications of the Contra and Destruct false
rules, even when these are not necessary. We omit these rules in the
following proof term, for clarity.

(Mono CanWrite Admin p (Refl eq prin p)
(Bind pf (x:file→ proof (CanWrite Admin x))

(CanWrite Admin f)
Ax1 (λg: f0:file→ proof (CanWrite Admin f0). g f))))

The sub-term Refl eq prin p can be given the type Eq prin Admin p
in a typing context that includes an assumption p

.
= Admin (using

the (TE-App) and (EE-Match) rules).
FINE includes recursion. So, we do not claim that this proof sys-

tem is logically consistent. However, our type soundness and value
abstraction theorems guarantee that proof terms are constructed us-
ing only the data constructors from our proof system and the user-
supplied axioms, and that if a proof term has a normal form, then
that normal form has the desired type. As a defense against obvi-
ously incorrect proofs, we implement a simple syntactic check to
ensure that values of the proof α type are constructed in a recursion-
free fragment of FINE (and also DCIL). In the future, we plan to in-
vestigate approaches such as Operational Type Theory (Stump et al.
2008) to recover logical consistency in the presence of recursion.

4.2 Derefinement of FINE

Our compiler normalizes the type structure of FINE programs so
that every type is of the form {x:τ |φ}, where both τ and φ are
unrefined types—a type can always be put in this form. After
type checking and generating proof terms for all refinement for-
mulas, we replace all refinement types with dependent pair types,
i.e., the translation [[·]] of a normalized type {x:τ |φ} is the type
(x:[[τ]] ∗ proof [[φ]]). In other words, our translation “boxes” every
τ -value with a proof term for a refinement formula. The uniform
structure of a derefined program simplifies our translation and al-
lows us to properly account for proof and non-proof values by dis-
tinguishing the kind of boxed types from unboxed types—the ap-
pendix contains the details. However, this representation is ineffi-
cient and requires inserting code to unbox a value by projecting out
its non-proof component when a boxed value appears in destruct
position. An optimization pass to remove redundantly boxed terms
is straightforward and can be used to give fwrite the type:

fwrite: p:prin→ cred p→ f:file→ proof (CanWrite p f)→ string→ unit

We assume the optimized type for fwrite in Section 5, to keep our
examples compact.

5. Translating FINE to DCIL

This section presents DCIL, an extension of a functional fragment
of CIL. We use CIL generics to translate many basic FINE con-
structs (Kennedy and Syme 2004). DCIL extends CIL with affine
types, type-level functions, and classes parametrized by values. We
discuss how to represent all our extensions in standards-compliant
.NET assemblies. Code consumers can choose to use a type checker
for DCIL for security checking, but otherwise can run FINE pro-
grams on stock virtual machines.

module mod. ::= {−→tdcl,−−→ddcl in e}
vis. qual. ψ ::= public | internal

abs. class tdcl ::= ψ T 〈~α::~κ, ~x:~τ〉::κ{−→fdcl,−−→mdcl}
data class ddcl ::= ψ D〈~α::~κ, ~x:~τ〉:T 〈~τ,~v〉{−→fdcl,−−→mdcl}
fld. decl. fdcl ::= f :τ
meth. decl. mdcl ::= τ m〈α::κ〉(x:τ){e}
expr. e ::= v | D〈~τ,~v〉 | v.f | v.m〈τ〉(v)

| v isinst D〈~τ,~v〉 then et else ef
| let x = e1 in e2 | 〈e〉p

value v ::= x | D〈~τ,~v〉
type τ ::= α | T 〈~τ,~v〉 | !τ | \x:τ1.τ2 | τ v
kind κ ::= ? | A | τ → κ

Figure 7. Syntax of DCIL

5.1 Syntax
Figure 7 shows the syntax of DCIL. We re-use metavariables from
FINE for syntactic categories in DCIL—the context will make the
distinction clear. Modules in FINE are translated to modules in
DCIL, and we use visibility qualifiers to model information-hiding
in DCIL. All types in FINE are translated to abstract classes T . FINE
values v:τ are translated to instances of data classes D, where D
extends T , the class corresponding to τ . Classes are parametrized
by a list of type parameters ~α::~κ and also by a list of value param-
eters ~x:~τ . Classes include field and method declarations, as usual.

The syntax of expressions in DCIL is presented in a form that re-
sembles ANF (Flanagan et al. 1993), which helps simplify our typ-
ing rules. For this reason, expressions include let-bindings. Expres-
sions also include values v (variables or instances of data classes
D), field projections, method calls, and a runtime type-test con-
struct, (v isinst D〈~τ,~v〉 then et else ef), used to translate pattern
matching. As in FINE, 〈e〉p records the privilege of e to be mod-
ule p. Let-bindings and type-tests are macro instructions in DCIL—
each corresponds to several CIL instructions.

Types include type variables and fully-instantiated abstract
classes T 〈~τ,~v〉. Affine types are written !τ , as in FINE. DCIL in-
cludes a restricted form of type-level function \x:τ1.τ2 to represent
dependent types. Type-level function application is denoted τ v.
The kind language in DCIL includes ? and A to categorize normal
and affine types, respectively, and τ → κ, the kind of type-level
functions.

5.2 Static semantics of DCIL

The main innovation of DCIL is in the following three features.
First, in addition to ?-kinded type parameters, classes in DCIL can
include affine type parameters, type-function parameters and value
parameters. We show how value parameters can be represented
using standard field declarations. The appendix discusses how type
functions can be encoded using custom attributes. Importantly,
DCIL does not include type parameters of kind ? → κ or A → κ
even though these kinds appear in FINE. We show how to translate
uses of these kinds in FINE using parametrized class declarations.

Second, we formalize affine types and use this to model state-
ful programming in FINE. The appendix shows how affine types
can be represented in CIL using .NET type modifiers. Affine type
modifiers are opaque to the .NET runtime, and only need to be in-
terpreted by a DCIL-aware bytecode verifier.

Finally, we distinguish DCIL classes that represent source-level
types (abstract classes T 〈~τ,~v〉) from data classes (D〈~τ,~v〉). This
allows us to account for affine assumptions in a manner that cor-
responds closely to the source language. A naı̈ve formulation that
does not include this distinction results in a more complex metathe-
ory, in which affine typing has to account for uses of variables both
within terms as well as in types.

9

Σ; ∆; Γ;X `p e : τ Expression typing

Σp(D) = ψ D〈~α::~κ, ~x:~τ ′〉 : T 〈 ~τ ′′, ~v′〉 ∀i.Σ; ∆; Γ `p τi :: κi ∀j.Σ; ∆; Γ, Xj `p vj : τ ′j [~τ/~α][v1 . . . vj−1/x1 . . . xj−1]

Σ; ∆; Γ;X1 . . . Xm `p D〈τ1 . . . τn, v1 . . . vm〉 : T 〈 ~τ ′′, ~v′〉[~τ/~α][~v/~x]
(T-New)

Σ; ∆; Γ;X `p v : T 〈~τ3, ~v3〉 Σp(T 〈~τ3, ~v3〉) = τ2 m〈α::κ〉(x:τ1) Σ; ∆; Γ ` τ :: κ Σ; ∆; Γ;X ′ `p v′ : τ1[τ/α]

∆; Γ;X,X ′ `p v.m〈τ〉(v′) : τ2[τ/α][v′/x]
(TT-App)

Σ; ∆; Γ ` τ :: κ Kinding of types

Σ; ∆; Γ ` τ1 :: ?
Σ; ∆; Γ, x:τ1 ` τ2 :: κ

Σ; ∆; Γ ` \x:τ1.τ2 :: τ1 → κ
(TK-Fun)

Σ; ∆; Γ ` τ :: τ1 → κ
Σ; ∆; Γ; · ` v : τ1
Σ; ∆; Γ ` τ v :: κ

(TK-App)

Σ(T) = T 〈~α::~κ, ~x::~τ ′〉::κ′ Σ; ∆; Γ ` τi :: κi
Σ; ∆; Γ; · `> vj : τ ′j [~τ/~α][v1 . . . vj−1/x1 . . . xj−1]

Σ; ∆; Γ ` T 〈~τ,~v〉 :: κ′
(TK-T)

Figure 8. Static semantics of DCIL (selected rules)

Figure 8 shows key elements from the static semantics of DCIL.
The typing judgment uses Σ, a context that records the class dec-
larations in scope, corresponding to the signature S in FINE; ∆, a
context that records type variables and their kinds; Γ, a typing en-
vironment with variable bindings and equations resulting from run-
time type-tests (as in FINE); and X , a subset of the variable bind-
ings in Γ, corresponding to the set of affine capabilities in FINE.
Expressions e are typed in the context of a module p, correspond-
ing to source-level principals.

The rule (T-New) shows the typing rule for D〈~τ,~v〉, the con-
structor of a data class D with type parameters ~τ and value argu-
ments ~v. In the first premise, we look up the declaration of class
D in Σp, the restriction of the signature Σ to declarations visible in
module p. In the second premise, we check that each type parameter
has the kind expected by the declaration. The third premise checks
each value argument vj with a subset of the affine assumptionsXj .
The expected type of each vj is dependent on all the type parame-
ters ~τ , and the prefix of arguments v1 . . . vj−1. Importantly, in the
conclusion, we give D〈~τ,~v〉 a type of the form T 〈~τ,~v〉, where T
is the abstract super-class of D. This allows us to ensure that affine
variables never appear in DCIL types, simplifying the connection
between the typing and kinding judgment (discussed shortly).

The type and term application constructs in FINE are collapsed
into a single method invocation construct in DCIL. The first two
premises of (TT-App) check that v, the object on which the method
is invoked, has a declaration for method m. The third and fourth
premises check that the arguments to m have appropriate kinds
or types, and the conclusion substitutes the actual type and term
arguments in the return type τ2. DCIL’s use of A-normal form
ensures that non-values never escape into types.

A selection of the kinding rules are also shown in Figure 8.
(TK-Fun) ensures that the argument of a type function is always
non-affine, echoing a similar restriction on kinds in the source lan-
guage. (TK-App) and (TK-T) check type-function application and
instantiations of abstract classes, respectively. Both rules show that
type-level values are checked using an empty set of affine capabil-
ities X . Although affine variables can appear in data class instan-
tiations, our separation of data classes D from abstract classes T
ensures that affine variables never escape into types.

The semantics of DCIL also includes a type-equivalence judg-
ment Σ; ∆; Γ ` τ ∼= τ ′. This is similar to the corresponding judg-
ment in FINE, with the addition of a single rule that equates types
related by β-reduction of type-function applications. Since DCIL
does not contain refinement types, its semantics does not contain
an analog of FINE’s semantic sub-typing relation S; Γ ` τ <: τ ′.

We have proved DCIL sound, using the standard progress and
preservation lemmas. Additionally, we have shown that DCIL pro-

grams respect their visibility qualifiers, a property analogous to the
value abstraction for FINE programs. The appendix contains the
complete semantics of DCIL and the proofs of these theorems.

Theorem 3 (Soundness). The DCIL type system is sound.

Theorem 4 (Visibility qualifier). Well-typed DCIL programs re-
spect visibility qualifiers.

5.3 Translation of FINE to DCIL

This section illustrates our translation from FINE to DCIL using
examples. The appendix formalizes the translation and proves that
it preserves types (Theorem 5).
Translation of modules. Figure 9 shows a DCIL program corre-
sponding to a fragment of the FINE program in Figure 1. The type
and data constructor declarations in a FINE module are accumu-
lated as class declarations in a DCIL assembly, with visibility qual-
ifiers used to capture source-level private types. Modules which
are granted the privilege of other modules are placed within the
same assembly, e.g., UserPolicy and LookoutRM, from Section 2,
are compiled to modules in a common assembly.
Translation of type constructors. Type constructors are translated
to declarations of abstract classes T . The type and value parame-
ters of a type constructor are carried over directly. For example, the
prin type is shown in Figure 9 at line 2 as an abstract class with no
parameters. The dependent-type constructor cred::prin→ ? is trans-
lated (line 5) to an abstract class with a prin-typed value parameter.
Translation of data constructors. Data constructors in FINE are
translated to declarations of data classes D. At line 6, we show the
data class corresponding to the Auth constructor from Figure 1. The
AC module in FINE required the Auth constructor to only be usable
by modules with AC-privilege. So, in DCIL, we qualify the Auth
data class using the internal visibility qualifier. Data classes always
extend abstract classes that correspond to the result type of the
source-level data constructor. The field declarations of a data class
are always in one-to-one correspondence with its value parameters,
e.g., the prin p field of the Auth class. We use this correspondence
to encode all value parameters in fields and do not require changing
CIL. Note that user-provided assumptions are translated just as
ordinary data constructors, e.g., Ax1 at line 10 of Figure 9.
Translation of function types. Kennedy and Syme (2004) show
how to translate (non-dependent) function types to a CIL-like lan-
guage through the use of a polymorphic abstract class. We extend
this idea using type-level functions in DCIL to capture dependent
function types. Our translation uses the following declarations:

DepArrow〈α1::?, α2::α1 → ?〉 :: ?{ (α2 x) App(x:α1){} }

10

1 assembly AC {
2 public prin<>:: ? {}
3 public U<s:string>:prin{string s;}
4 public Admin<>:prin{}
5 public cred<p:prin>::? {}
6 internal Auth<p:prin>: cred<p> {prin p;}
7 public CanWrite<p:prin,f:file>::? {}
8 public Ax1<f:file>::CanWrite<Admin,f> {file f;}
9 public fwrite<...>:DepArrow<...>}

10
11 assembly Client {
12 (∗ client:p:prin→ cred p→ file→ unit ∗)
13 public client<>:
14 DepArrow<prin,\p:prin.Arrow<cred<p>,Arrow<file, unit>>>
15 {Arrow<cred<p>, Arrow<file, unit>> App(p:prin) { clientp<p>;}}
16 (∗ (client p): cred p→ file→ unit ∗)
17 public clientp<p:prin>:Arrow<cred<p>, Arrow<file, unit>>
18 {Arrow<file, unit> App(c:cred<p>) { clientc<p,c>; }
19 (∗ (client p c):file→ unit ∗)
20 public clientpc<p:prin, c:cred<p>>:Arrow<file, unit> {
21 unit App(f:file) {
22 p isinst Admin then
23 let pf = ... in (∗ translated proof term ∗)
24 let fwrite = AC.fwrite<...> in
25 fwrite.App(p).App(c).App(f).App(pf).App(‘‘hello’’)
26 else ()}}

Figure 9. Translation of FINE to DCIL

Class DepArrow takes two type parameters: α1 for the argument
type and α2 for a type function—the return type of App is the
result of applying α2 to the argument x. Source-level types such
as p:prin → cred p are translated to instances of DepArrow; in this
case, DepArrow〈prin, \p:prin.cred〈p〉〉. We also include the abstract
classes shown below to represent non-dependent functions, and
functions that take affine arguments or produce affine results—
other combinations of kinds are unnecessary.

Arrow〈α1::?, α2::?〉 :: ?{ (α2) App(x:α1){} }
Arrow AA〈α1::A, α2::A〉 :: ?{ (α2) App(x:α1){} }
DepArrow A〈α1::?, α2::α1 → A〉 :: ?{ (α2 x) App(x:α1){} }

The source-level function client from Figure 1 is a function with
three arguments. Because client is curried, it is translated (lines 13-
26 of Figure 9) as three data class declarations. Each of the client
data classes extends an instantiated DepArrow or Arrow class. The
body of client simply calls the clientp version (by constructing it),
and clientp calls clientpc.
Translation of expressions. The body of clientpc illustrates the
translation of FINE expressions. The use of pattern matching at line
16 of Figure 1 is translated to a type-test at line 22 of Figure 9. At
line 23 of Figure 9 we show a placeholder for the translation pf of
the proof term (from Section 4) of type proof<CanWrite<p,f>>.
At line 24, we obtain a reference to the fwrite value exposed by AC.
As discussed in Section 4.2, after derefinement, the type of fwrite is
normalized to p:prin→ cred p→ f:file→CanWrite p f→ string→ unit,
which in DCIL corresponds to the type

DepArrow<prin,
\p:DepArrow<cred p, \f:DepArrow<file,

Arrow<CanWrite<p, f>, Arrow<string, unit>>>>>

At line 25 of Figure 9, we show the call to fwrite translated as
successive calls to the App method. The proof term pf is passed as
an extra argument, although this is not evident in the source pro-
gram of Figure 1. Since the source language does not provide a
facility to extract a (proof φ)-typed value from an object of type
{x:τ |φ}, we can show that proof-terms in DCIL are computation-
ally irrelevant (although we have yet to prove this formally). If
necessary for efficiency, proof terms could be erased after the tar-
get code has been type checked. Alternatively, proof terms could

be logged at runtime, if an application like evidence-based au-
dit (Vaughan et al. 2008) is to be supported, or, if running in a dis-
tributed setting, proof terms could be communicated between prin-
cipals for proof-carrying authorization (Appel and Felten 1999).

Polymorphic FINE types ∀α::κ.τ are translated to DCIL classes
and type application to applications of polymorphic methods. This
translation follows an encoding proposed by Kennedy and Syme
and adds no further novelty. The appendix includes a formalization
of this translation, as well as a full statement and proof of the
following theorem, the main result of this section.

Theorem 5 (Type-preserving translation). A well-typed FINE pro-
gram is translated to a well-typed DCIL program.

6. Implementation
We have implemented a prototype compiler, currently 13,581 lines
of F# code, extending a front-end for the F# compiler. Our compiler
is able to type check all source programs that appear in this paper
and several other examples besides. The extraction of typeable
proofs from Z3 and the translation to DCIL remains a work in
progress. For the AC example (and others like it), we are able to
extract proofs from Z3, type check them, and translate the result
to DCIL, and type check the generated DCILprogram. Although we
are able to type check the LOOKOUT source program, at the time of
writing, a type-preserving compilation to DCIL was not complete.
Proof extraction. Inspecting Z3 proofs and translating them to
FINE proof terms presented a number of engineering challenges. Z3
often uses opaque rewriting strategies in proofs. We have devised a
translation from several of Z3’s rewriting strategies to our kernel of
proof rules. However, handling all of Z3’s strategies will require
more work. We are considering extending Z3’s proof reporting
facility to provide more information about the rewrites it applies
to help with this task.

6.1 Example programs
In addition LOOKOUT, our type-checked example programs in-
clude a model of Continue (Dougherty et al. 2006), a conference
management server. This model carries over naturally to FINE, us-
ing the same refined state idiom from LOOKOUT. The authors of
Continue point out that almost all interesting bugs in Continue have
been related to access control. FINE provides a way to ensure that
software like Continue is secure by construction. We have also im-
plemented a more elaborate version of AC, a reference monitor that
implements an automaton-based policy for a file system API. This
example is interesting because the state of the policy is partitioned
into multiple pieces, each piece recording the state of a particular
file handle. Our examples also show how to enforce an information
flow policy, more elaborate than the policy we use in Figure 3. Our
policy defines a CanFlow p q proposition and lattice axioms for this
proposition to show when data labeled p is allowed to flow to a sink
labeled q. This policy could easily be integrated with LOOKOUT.

In the remainder of this section we describe our model of Con-
tinue in further detail.

6.1.1 Modeling the Continue conference management server
In this section, we model the enforcement of a fragment of the state-
ful authorization policy used by the Continue conference manage-
ment tool (Krishnamurthi 2003). This policy combines elemenets
of role and attribute-based access control, with the simple authenti-
cation mechanism developed with AC in Section 2.1. Our enforce-
ment model closely follows the model for enforcing stateful poli-
cies developed in Section 2.2.

Figure 10 defines two modules ConfRM, a reference monitor
that mediates access to a database of paper submissions and re-
views, and ConfWeb the main request-processing loop of a web-
server that interacts with the database via ConfRM.

11

1 module ConfRM =
2 open AC
3 type role = Author | Reviewer | Chair
4 type action = Submit | Review | ReadScore
5 type phase = Submission | Reviewing |Meeting
6 type paper = {id:int; title:string; ...}
7 type attr = Role : prin→ role→ attr
8 | Assigned : prin→ paper→ attr
9 | Reviewed : prin→ paper→ attr

10 | Phase : phase→ attr
11 type attrs = list attr
12 type In :: attrs→ attr→∗
13 assume Hd:forall (a:attr), (tl:attrs). In (a::tl) a
14 assume Tl:forall (a:attr), (b:attr), (tl:attrs). In tl a⇒ In (b::tl) a
15
16 type perm = Permit : prin→ action→ paper→ perm
17 type Valid :: attrs→ perm→∗
18
19 abstract type StateIs::attrs→A = Sign : s:attrs→StateIs s
20 type state::A = (s:attrs ∗ StateIs s)
21 let init:state = let a = [Role (U ‘‘Jens’’) Chair; ...] in (a, Sign a)
22
23 assume C1: forall (p:prin), (r:paper), (s:attrs).
24 (StateIs s) && In s (Phase Submission) && In s (Role p Author)⇒
25 Valid s (Permit p Submit r)
26 assume C2: forall (p:prin), (r:paper), (s:state).
27 (StateIs s) && In s (Phase Reviewing) && In s (Assigned p r)⇒
28 Valid s (Permit p Review r)
29 assume C3: forall (p:prin), (r:paper), (s:state).
30 (StateIs s) && In s (Phase Meeting) && In s (Reviewed p r)⇒
31 Valid s (Permit p ReadScore r)
32
33 type st1<r> = (s:{a:attrs | StateIs a⇒ In a r} ∗ StateIs s)
34 type st2<r,r’> = (s:{a:attrs | StateIs a⇒ In a r && In a r’} ∗ StateIs s)
35 type ok<p> = (s:{a:attrs | StateIs a⇒ Valid a p} ∗ StateIs s)
36
37 val submit:p:prin→ r:paper→ ok<Permit p Submit r>→ st
38 let submit p r s = let = write to db p r in s
39
40 val review: p:prin→ r:paper→ q:string→
41 ok<Permit p Review r>→ st1<Reviewed p r>
42 let review p r q s =
43 let = write review to db p r q in
44 let (attrs, tok) = s in
45 let nextstate = (Reviewed p r)::attrs in
46 (nextstate, Sign nextstate)
47
48 val close sub: c:prin→ cred c→
49 st2<Role c Chair, Phase Submission>→
50 st1<Phase Reviewing>
51 val assign: c:prin→ cred c→ r:prin→ q:paper→
52 st2<Role c Chair, Role r Reviewer>→
53 st1<Assigned r q>
54 end
55
56 module ConfWeb
57 val check: l:attrs→ a:attr→{b:bool | b=true⇒ In l a}
58 let rec check l a = match l with
59 | []→ false
60 | hd::tl→ if a=hd then true else check attr tl a
61
62 let rec loop s = match get request() with
63 | Submit paper p paper→
64 let (a, tok) = s in
65 if check a (Phase Submission) && check a (Role p Author) then
66 let s1 = ConfRM.submit author paper (a,tok) in
67 let = resp ‘‘Thanks for your submission!’’ in loop s1
68 else
69 let = resp ‘‘Sorry, submissions are closed.’’ in loop (a, tok)
70 | Submit review reviewer paper review→ ...
71
72 let = loop ConfRM.initial state
73 end

Figure 10. A secure conference management server

The high-level security policy enforced by the reference mon-
itor is represented by the assumptions C1C3 at lines 21-29 of
ConfRM.Each assumption is an inference rule that allows propo-
sitions of the form Permit p a r to be derived in the current state s
of the authorization environment. Intuitively, Permit p a r grants the
principal p the right to perform action a on resource r. For example,
C1 allows p to Submit a paper p, if it can be shown that in the cur-
rent state s, that p is in the role Author, and that the current phase
of the conference is Submission. The assumption C2 is similar in
structure, and allows p to Review a paper r if p has been Assigned r
in the current state, and if the conference is in the Reviewing phase.
C3 is similar, and allows p to view the scores of a paper r only after
p has submitted a review for r.

These policy rules make use of the standard ML-style type
and data constructors that appear on lines 2-10. The type attrs is
a list of attributes that constitute the authorization state and the
proposition In is used to assert that a specific attribute is present
in the authorization state. The data constructors for the In type are
the assumptions Hd and Tl and represent the standard axioms about
list membership.

The policy rules allow permissions that are instances of the perm
type to be derived from the authorization state. We use the Valid s p
type to represent a proposition that a permissiom p is derivable from
the state s, although p is not literally present in the attributes that
constitute s. The constructors of the Valid type are the three policy
rules C1C3.

The final, critical piece of our enforcement strategy is the StateIs
proposition. As attributes are added to or removed from the autho-
rization state, we need a mechanism to revoke propositions that
were true in a prior state that may no longer be true. We employ
the mechanism of affine types to achieve this (Walker 2004)—
values given an affine type may be destructed at most once on all
code paths. We classify types into two basic kinds, ∗, the kind
of normal types, and A, the kind of affine types. By declaring
StateIs :: attrs→A we state that StateIs constructs an affine type
from an argument of type attrs, e.g., StateIs [Phase Submission] is a
well-formed affine type, and any value of this type can be used at
most once. The StateIs type has a single constructor Sign that can
be used to assert that a particular list of attributes is the current state
of the program. Since authorization decisions depend on the current
state, we make StateIs an abstract type, thereby ensuring that only
the ConfRM module, can make assertions about the current state of
the environment. The current state of the program is represented
using the (dependent pair) type state, which is a pair consisting of
a list s of attributes, and a value of type StateIs s which attests that
s is indeed the current state of the program. Note that since state is
a pair that contains an affine component, it is itself affine. Line 20
constructs the initial state of the program by constucting a list a of
attributes and using Sign a to assert that it is the current state of the
reference monitor.

We now turn to lines 36-50 which defines the external interface
exposed by ConfRM to security-sensitive operations. FINE provides
parameterized type abbreviations of the form defined on lines 32-
34 to simplify the syntax. Each of these abbreviations refines the
type of the current state st with a formula that asserts that either a
attribute is present in the state or that some permission is derivable
from it.

At lines 36-37 we define the submit function. Its type states that
in order for a principal p to submit a paper r the caller must be
able to derive the Permit p Submit r permission from the current
program state s. In the body of the function, we call an internal
function (write paper to db, whose definition is omitted) and return
the unchanged state s back to the caller.

The review function on lines 39-45 is a little more interesting.
This time, in order to use this function, the caller must be able to

12

derive the permission Permit p Review r from the current state. In
the body of the function we call another internal function to update
a database, and then on lines 43-45 update the state of the pro-
gram to record that the attribute Review p r, to record that a review
has been submitted by p. A state update involves destructing the
state tuple into its components, adding attributes to (or removing
attributes from) the attribute list a, and then signing the new list
of attributes to assert that it is the most current state of the pro-
gram. The return type of review indicates only that the Reviewed p r
attribute has been added to the current state. A more precise refine-
ment could have been used to record that all other attributes in the
initial state remain unchanged, although that would complicate our
presentation significantly.

Our implementation exposes a number of other functions in
the interface of ConfRM. Here, we simply show the types of two
of these functions. The close sub function provides the conference
Chair to close the submission phase of the conference. The type of
close sub indicates that it changes the phase of the conference from
Submission to Reviewing. The assign function allows the Chair to
assign a paper to a Reviewer, and changes the state to record this
fact. Note the use of the AC module from Section 2.1 to represent
user credentials. Other mechanisms for authentication could just as
easily have been slotted in.

We turn now to the ConfWeb module, a client of ConfRM.
The function check searches through a list l of attributes to see
if it contains an attribute a. The body of check is a standard tail-
recursive scan of a list, however the type of check indicates that it
return true only if the attribute was indeed in the list.

The main event loop of ConfWeb waits for a request (the type
of requests is elided). In the case principal p requests to submit
a paper, we first check that the conference is in the Submission
phase, and that p is registered in the role of an Author. The
type we give to the built-in boolean conjuction operator && is
x:bool→ y:bool→{z:bool | z=true⇒ x=true && y=true}, where the
&& in the formula is logical conjunction. We can use this type, the
type of check, and assumption C1, to refine the type of the current
state (a,tok) in the then-branch to ok<Permit p Submit paper>.

7. Related and future work
Several programming languages and proof assistants use dependent
types, including Agda (Norell 2007), Coq (Bertot and Castéran
2004), and Epigram (McBride and McKinna 2004). All of these
systems can be used to verify full functional correctness of pro-
grams. However, to ensure logical consistency of the type sys-
tem, these languages exclude arbitrary recursion, making them
less applicable for general-purpose programming. Projects like
YNot (Chlipala et al. 2009) and Guru (Stump et al. 2008) aim
to mix effects like non-termination with dependently typed func-
tional programming; YNot also supports programming with state
in an imperative style. Restrictions in both languages ensure that
proofs are pure, ensuring that logical consistency is preserved. All
of these systems include automation and tactic languages, but pro-
grammers must usually construct proofs of correctness along with
their code. In contrast, FINE targets weaker, security properties;
forgoes logical consistency in favor of practical programming by
including recursion; and automatically synthesizes proof terms us-
ing an SMT solver. FINE also provides affine types to allow the
enforcement of state-modifying policies, which could be expressed
in YNot, but not easily in the other languages. To recover logical
consistency, FINE could follow Guru’s operational type theory—an
approach we plan to consider in the future.

Dependent types have also been used for security verification.
Jif (Chong et al. 2006) uses a limited form of dependent typing to
express dynamic information flow policies. Aura (Jia et al. 2008)
is specialized for the enforcement of policies specified in a pol-

icy language based on an intuitionistic modal logic. This makes
Aura less applicable to policies specified in other other logics, e.g.,
the Datalog-based policy language of (Dougherty et al. 2006), and
Aura cannot model stateful policies. Aura provides logical consis-
tency by excluding arbitrary recursion. Proof terms in Aura are
always programmer-provided. As such, Aura is positioned as an
intermediate language, rather than a source-level language. Fa-
ble (Swamy et al. 2008), is another intermediate language for se-
curity verification that uses dependent types. Security policies in
Fable are enforced using a TCB delimited from untrusted code us-
ing a simple, two-principal module system. FINE’s module system
generalizes Fable’s, with support for a lattice of multiple princi-
pals. FINE is also related to λAIR (Swamy and Hicks 2008), a cal-
culus that targets the enforcement of declassification policies. λAIR
is lower-level than FINE, and its heavyweight combination of affine
and dependent types does not lend itself to integration with a solver.

Refinement types in FINE are related to a similar construct
in RCF (Bengtson et al. 2008). Refinement formulas in RCF are
drawn from an unsorted logic, rather than using dependent-type
constructors, as we do. The lack of dependent type constructors
in RCF makes it difficult to derive typeable proof terms, and F7,
the implementation of RCF, uses Z3 as a trusted oracle. Without
dependent type constructors, it appears impossible to enforce infor-
mation flow policies in F7. RCF also lacks support for stateful au-
thorization policies, although recent work shows how stateful poli-
cies can be modeled in F7 using a refined state monad (Borgstroem
et al. 2009). However, the soundness of this encoding relies on a
trusted compilation of the program in a linear, store-passing style.
FINE’s type system also allows the use of refined state monads,
but, additionally, through the use of affine types, FINE can check
that monadic programs never replay stale states.

Other hybrid-typed languages like Sage (Flanagan 2006) also
use trusted external solvers to discharge proofs, but automatically
insert runtime checks when the prover fails to discharge a proof
obligation. Failed runtime checks can cause subtle leaks of infor-
mation, and so automatic insertion of runtime checks is not yet a
feature of FINE, where security is the primary concern. In the fu-
ture, we plan to apply recent work on type coercions (Swamy et al.
2009) to FINE to automatically insert security enforcement code in
a predictable and secure manner.

A key feature that distinguishes our work from all of the afore-
mentioned projects is the type-preserving translation of FINE to
DCIL. This allows us to do translation validation, as well as to
apply our tools to the setting of verification of mobile code, e.g.,
with plugin-based software. DCIL is, to our knowledge, the first
bytecode-level, object-oriented, dependently typed language. In the
future, we plan to carry types to a lower-level assembly language,
further reducing the TCB.

8. Conclusions
This paper has presented FINE, a programming language for en-
forcing rich, stateful authorization and information flow policies.
We showed how to compile FINE to DCIL, a target language for use
with the standards compliant .NET virtual machines. Our compiler
makes it feasible to construct source programs using state-of-the-
art provers, and to distribute low-level code that can be checked for
security by code consumers using a small TCB. We plan to con-
tinue our development efforts, focusing primarily on applying our
tools to the construction of provably secure application software.

13

A. Soundness of FINE

Definition 6 (Well-formed signature). Well-formedness of a signature S is defined inductively as

1. S = S’, T::k =>
S’ is well-formed
and S’ |- k

2. S= S’, D:(p,t) =>
S’ is well-formed
and S’;- |- t :: k
and k in {*, A}
and p in S’
and D constructs a constructed type

(i.e., exists T ti ei, final_typ(t) = T ti ei)

3. S=FOL,p1<p2,...,p<p’ where FOL is the basic signature for first-order logic with equality
specialized to a set of ground types TT={T1 .. Tn} and all the principal names p_i are
distinct.

FOL=
T1::*, ..., Tn::*
Eq_1:T1 -> T1 -> *
...
Eq_n:Tn -> Tn -> *
And::* -> * -> *
Or::* -> * -> *
Not::* -> *
True::*
proof::* -> *
tt:True

Definition 7 (Well-formed environment). An environment Env=S;G;X is well-formed iff S;G bind distinct names
and all of the following are true

1. Env=S;G;X,x => x in dom(G) and
x not in X and
and S;G;X is well-formed

2. Env=S;G,x:(p,t);- => FreeVariables(t) <= dom(G) and
p in S and
S;G;- is well-formed

3. Env=S;G,e1=e2;- => FreeVariables(e1) <= dom(G) and
FreeVariables(e2) <= dom(G) and
and S;G;- is well-formed

4. Env=S;G,’a::k;- => k in {*, A} and
S;G;- is well-formed

5. Env=S;-;- => S is a well-formed signature

Definition 8 (Well-formed memory).
Given a signature S, and a memory M, the environment corresponding to M is written S;G(M), where
G(M) is defined inductively as:

G(.) = .
G(M,(x,v_p)) = G(M),x:(p,t) where S;-;- |- v_p:t

A memory M is well-formed when G(M) exists

Lemma 9 (Canonical forms). Forall S, G, X, p, t, v_p,
(A1) S;G;X well-formed
(A2) S;G;X |-_p v_p : ?(x:t1) -> t2 => exists e, v_p = \x:t.e
(A3) S;G;X |-_p v_p : ?(\/’a::k.e) => exists e, v_p = /\’a::k.e

Proof. By induction on the structure of the typing derivation, appealing to fully-applied data constructors to exclude (Dv1 : t1 → t2)
etc.

14

Theorem 10 (Progress). For all S M e t p,
(A1) S;G(M);dom(M) well-formed and
(A2) S;G(M);dom(M) |-_p e : t
=> exists v_p, e=v_p or exists M’ e’, (M,e) ~p~> (M’,e’)

Proof. Proof: By induction on the structure of (A2).

Case (T-Var-A, T-Var):

x is a p-value.

Case (T-AVal, T-Datacon, T-Abs, T-Univ):

v_p, \x:t.e, /\’a::k.e are all values for p.

Case (T-Fix):

fix f:t.e ~p~> e [fix f:t.e/f] using [E-Fix]

Case (T-App):

a. (e = e1 e2): In this case there exists an evaluation context E such that e=E[e1]. From the
first antecedent of (T-App) we have S;-;- |-_p e1:t and from the induction hyptothesis, exists
e1’, e1 ~p~> e1’. For the conclusion, we use [E-Cong], and produce E[e1’] as the witness for
the right-side of the goal.

b. (e = v_p e2): Similar to sub-case a.

c. (e = v_p v_p’): From the first antecedent of (T-App), we have S;-;- |-_p v_p : ?(x:t1) ->
t2. From Lemma 3 (Canonical forms), we can conclude that exists e’, v_p = \x:t1.e’.

For the conclusion, we apply [E-Beta] producing e’[v_p/x] as the the witness for the right-side
of the goal.

Case (T-TApp):

a. (e= e’ t): Similar to (T-App), sub-case a.

b. (e = v_p t): From the first antecedent of (T-TApp) and Lemma 3 (Canonical forms), we can
conclude that exists e’, v_p = /\’a::k.

For the conclude we apply [E-TBeta] produces e’[t/’a] as the witness on the right-side of the
goal.

Case (T-Bracket):

a. (e=<e’>_q): [E-Bracket] is applicable.

b. (e=<v_q>_q), where p<>q: We enumerate sub-cases on v_q.

i. (v_q=u_q):

<u_q>_q is a p-value, satisfying the left-side of the goal.

ii. (v_q=\x:t.e):

<\x:t.e>_q ~p~> \y:t.<e[<y>_p/x]>_q using E-Extrude satisfying the right side of the goal.

iii. (v_q=/\’a::k.e):

</\’a::k.e>_q ~p~> /\’a::k.<e>_q using E-TExtrude satisfying the right side of the goal.

iv. (v_q=<u_r>_r):

<<u_r>_r>_q ~p~> <u_r>_r using E-Nest, satisying the right-side of the goal.

15

c. (e=<v_p>_p):

<v_p>_p ~p~> v_p using [E-Strip], satisfying the right-side of the goal.

Case (T-Match):

a. (e=match e’ with...): Step using evaluation context rule E-Cong

b. (s=match v_p with ...): The antecedents of rules [E-Match1] and [E-Match2] form a tautology. We
can satisfy the right-side of the goal using one of the two rules.

Cases (T-Sub, T-Drop-A):

The goal follows directly from the induction hypothesis.

(Note: the rules (E-Construct) and (E-Destruct) are unnecessary for progress)

Lemma 11 (Weakening). Lemma (Weakening for typing judgment):

For all S G1 G2 G X1 X2 X e t p,
(A1) S;G1,G2;X1,X2 well-formed
(A2) S;G1,G2;X1,X2 |-_p e : t
(A3) S;G1,G,G2;X1,X,X2 well-formed
=> S;G1,G,G2;X1,X,X2 |-_p e : t

Lemma (Weakening for kinding judgment):

For all S G1 G2 G t k p,
(B1) S;G1,G2;- well-formed
(B2) S;G1,G2 |-_p t :: k
(B3) S;G1,G,G2;- well-formed
=> S;G1,G,G2;- |- t :: k

Proof. By mutual induction on the structure of (A2) and (B2), generalizing on G2.
The interesting cases of (A2)

Case (T-Var), (T-Var-A):

In both cases, we can establish the conclusion by using (T-Var/T-Var-A) in the premise of
(T-Drop-A), to re-establish to drop the additional affine assumptions in X, and note that G1,G,G2
binds x iff G1,G2 binds x.

Case (T-Abs):

For the third premise of (A2), we use the mutual induction hypothesis to show that the kinding
derivation can be weakened to

(A2.1’) S;G1,G,G2 |- t::k

The fifth premise of (A2) in this case is of the form

(A2.3) S;G1,G2,x:t; X1,X2 |-_p e : t’

In this case, we can use the induction hypothesis since we have been careful to generalize on the
extended environment G2, since the induction hypothesis specifically allows weakening by inserting
assumptions in the "middle" of a context. Thus, we can then establish

(A2.3.broken) S;G1,G,G2,x:t; X1,X,X2,X’ |-_p e : t’

However, this derivation is not always of the right shape, since when X1,X2 is empty and X is not
empty, then when constructing

16

S;G1,G,G2;X1,X,X2 |-_p \x:t.e : ?(x:t) -> t’

with (A2.3.broken) in the premise, the qualifier on the introduced type ?(x:t) -> t’ may differ from
the qualifier on tf, the type introduced in (A2).

To remedy this, we establish the conclusion by first showing that S;G1,G,G2;X1,X2 is
well-formed. Next, we use the induction hypothesis to construct

(A2.3’) S;G1,G,G2,x:t; X1,X2,X’ |-_p e : t’

Finally, we use an application of (T-Drop-A) in the context (S;G1,G,G2; X1,X,X2) to discard the
affine assumptions X. In the premises of (T-Drop-A), we use (T-Abs) with (A2.1’) and (A2.3’). The
other premises are unchanged.

Case (T-Fix): Similar to (T-Abs), always using (T-Drop-A) in the conclusion to discard the affine
assumptions in X.

Case (T-Tabs): Similar to (T-Abs).

The interesting cases of (B2)

Case (K-Arrow): Similar to (T-Abs), where generalization of G2 and allowing weakening in the middle
of the context is key.

Case (K-Univ): Similar to (K-Arrow).

Case (K-App): The mutual induction hypothesis allows us to establish a weakening for the typing
derivation in the second premise.

Lemma 12 (Well-kinded typings). Lemma (Well-kinded typings):

For all S G X e t p,
(A1) S;G;X |-_p e : t
=> exists k, S;G |- t :: k and k in {*, A}

Lemma 6.2 (Well-formed kindings):

For all S G t k,
(B1) S;G |- t :: k
=> S |- k

Lemma 6.3 (Well-formed type conversions):

For all S G t t’ k,
(C1) S;G |- t :: k
(C2) S;G |- t <: t’
=> S;G |- t’ :: k

Proof. Straightforward from mutual induction on the structure of (A1) and (B1).
The interesting cases in (A1)

Case (T-Match):

From the last premise, we ensure that the result type t does not contain any pattern-bound
variables.

Case (T-App):

The last premise ensures the result by construction. This ensures that non-values do not escape into
types.

Case (T-Abs):

The first two premises ensure that the ascribed type is well-formed.

17

The cases of (B1) and (C1) are all straightforward.

Lemma 13 (Substitution). Lemma (Substitution for typing judgment):

For all S G1 G2 X X’ X’’ x tx e t v p q tx’ Phi,
(A0) X’=x or X’={}
(A1) S;G1,x:(p,tx),G2;X,X’,X’’ well-formed
(A2) S;G1,x:(p,tx),G2;X,X’,X’’ |-_q e : t
(A3) S;G1;- |-_p v_p : tx
(A4) substitution s=[v_p/x]
(A5) tx={x:tx’ | Phi} => exists v’, S;G1, refinements(G1);- |-_p v’ : Phi[v_p/x]
=> S;G1,s(G2);X,X’’ |-_q s(e) : s(t)

Lemma (Substitution for kinding judgment):

For all S G1 G2 x tx t k v p tx’ Phi,
(B1) S;G1,x:(p,tx),G2;- well-formed
(B2) S;G1,x:(p,tx),G2 |- t :: k
(B3) S;G1;- |-_p v_p : tx
(B4) substitution s=[v_p/x]
(B5) tx={x:tx’ | Phi} => exists v’, S;G1, refinements(G1);- |-_p v’ : Phi[v_p/x]
=> S;G1,s(G2) |- s(t) :: k

Lemma (Substitution for type conversion):

For all S G1 G2 x tx t v p tx’ Phi,
(C1) S;G1,x:(p,tx),G2;- well-formed
(C2) S;G1,x:(p,tx),G2 |- t <: t’
(C3) S;G1;- |-_p v_p : tx
(C4) substitution s=[v_p/x]
(C5) tx={x:tx’ | Phi} => exists v’, S;G1, refinements(G1);- |-_p v’ : Phi[v_p/x]
=> S;G1,s(G2) |- s(t) <: s(t’)

Lemma (Substitution for type equivalence):

For all S G1 G2 x tx t v p tx’ Phi,
(D1) S;G1,x:(p,tx),G2;- well-formed
(D2) S;G1,x:(p,tx),G2 |- t ~ t’
(D3) S;G1;- |-_p v_p : tx
(D4) substitution s=[v_p/x]
(D5) tx={x:tx’ | Phi} => exists v’, S;G1, refinements(G1);- |-_p v’ : Phi[v_p/x]
=> S;G1,s(G2) |- s(t) ~ s(t’)

Proof. By mutual induction on the structure of (A2), (B2), (C2), (D2), generalizing on q, the tail of the environment G2, and the set of affine
assumptions X,X’,X”.
Cases of (A2)

Case (T-Var):

G=G1,x:(p,tx),G2 (A2.1)
G(y) = (q,ty) (A2.2)
S; G |- ty :: * (A2.3)

-- [T-Var]
S; G; - |-_q y : ty

We consider two sub-cases, depending on whether x=y.

Sub-case (x<>y):

In this case, we have s(y)=y. We have two further sub-cases, depending on whether y in dom(G1)
or y in dom(G2).

Sub-sub-case (y in dom(G1)):

From the well-formedness of S;G1,x:(p,tx);- and G1(y)=(q,ty), we can conclude that x not in
FV(ty). Thus, s(ty)=ty, and we have, as required:

18

S;G1,s(G2);- |-_q s(y) : s(ty)

Sub-sub-case (y in dom(G2)):

We have y in dom(G2) and
G2(y)=(q,ty) => s(G2(y))=(q, s(ty)).

The conclusion is immediate.

Sub-case (x=y):

In this case, G(y) = G(x) = (p, tx) = (q, ty), and s(y)=v_p.

For the conclusion, we apply Lemma 5 (weakening). In order to do this, we must first show that

(WF) S;G1,s(G2);X is well-formed

This is easily accomplished by induction on the length of G2, noting that x not in FV(s(G2)),
and x not in X.

Now, using Lemma 5, WF and assumption (A3), we conclude

(Goal.0) S;G1,s(G2);X |-_p v_p : tx

Finally, for the goal, we note that p=q, we use Lemma 6 (Well-kinded typings) on assumption
(A3) to establish that (S;G1;- |- tx :: k) and hence that x not in FV(tx), and finally that
s(tx) = tx to get:

(Goal) S;G1,s(G2);X |-_q v_p : s(tx)

Case (T-Var-A):

Identical to (T-Var)

Case (T-Abs):

G=G1,x:(p,tx),G2 (A2.1)
k in {*, A} (A2.2)
S; G |- t :: k (A2.3)
S; G,y:(q,t); X,X’,X’’,y |-_q e : t’ (A2.4)
X={} => tf = (y:t) -> t’ (A2.5)
X<>{} => tf = !((y:t) -> t’) (A2.6)

-------------------------------------- [T-Abs]
S; G; X,X’,X’’ |-_q \y:t.e : tf

We begin by applying the mutual induction hypothesis for substitution on the kinding judgment to
(A2.3) to establish

(A2.3’) S;G1,s(G2) |- s(t) :: k

Next, we apply the induction hypothesis (havng generalized on the tail of the environment G2, and
X,X’X’’) to obtain

(A2.4’) S; G1,s(G2),y:(q,s(t)); X,X’’,y |-_q s(e) : s(t’)

We can now construct

(A2’) S;G1,s(G2);X,X’’ |-_q s(\y:t.e) : ?(y:s(t)) -> s(t’)

using (T-Abs) with (A2.3’) and (A2.4’) in the premises.

We now consider three sub-cases

19

Sub-case (X’=x and X,X’’={}):

In this case, we have:
s(tf) = !(y:s(t)) -> s(t’)

while
?(y:s(t)) -> s(t’) = (y:s(t)) -> s(t’)

However, s(\y:t.e) is a syntactic q-value. So, to re-establish the appropriate affinity
qualifier, we construct the goal by using (T-AVal) with (A2’) in the premise.

Sub-cases (X’={} or X,X’’<>{}):

In both these cases,

s(tf) = ?(y:s(t)) -> s(t’)

and (A2’) directly satisfies the goal.

Case (T-Univ):

G=G1,x:(p,tx),G2 (A2.1)
k in {*, A} (A2.2)
S; G, ’a::k; X |-_q e : t (A2.3)
X={} => tf = \/’a::k.t (A2.4)
X<>{} => tf = !(\/’a::k.t) (A2.5)

-------------------------------- [T-Univ]
S; G; X |-_q /\’a::k.e : tf

Similar to (T-Abs):

We begin by applying the induction hypothesis (having generalized on the tail of the environment
G2, and X,X’,X’’) to obtain

(A2.3’) S; G1,s(G2),’a::k; X,X’’ |-_q s(e) : s(t)

We can now construct

(A2’) S;G1,s(G2);X,X’’ |-_q s(/\’a::k.e) : ?(\/’a::k.t)

using (T-Univ) with (A2.3’) in the premises.

We now consider three sub-cases

Sub-case (X’=x and X,X’’={}):

In this case, we have:
s(tf) = !(\/’a::k.t)

while
?(\/’a::k.t) = \/’a::k.t

However, s(/\’a::k.e) is a syntactic q-value. So, to re-establish the appropriate affinity
qualifier, we construct the goal by using (T-AVal) with (A2’) in the premise.

Sub-cases (X’={} or X,X’’<>{}):

In both these cases,

s(tf) = ?(\/’a::k.t)

and (A2’) directly satisfies the goal.

20

Case (T-Fix):

G=G1,x:(p,tx),G2 (A2.1)
S; G |- t :: * (A2.2)
S; G, f:(q,t); - |-_q e : t (A2.3)

--------------------------------- [T-Fix]
S; G; - |-_q fix f:t.e : t

Similar to T-Abs.

Case (T-App):

X1,X2 = X,X’,X’’
G=G1,x:(p,tx),G2 (A2.1)
S; G; X1 |-_q e1 : ?(y:t1) -> t2 (A2.2)
S; G; X2 |-_q e2 : t1 (A2.3)
S; G |- t2 [e2/y] :: k (A2.4)

--- [T-App]
S; G; X,X’,X’’ |-_q e1 e2 : t2[e2/y]

Induction hypothesis on (A2.2) and (A2.3) gives us

(A2.2’) S; G1,s(G2); X1 |-_q s(e1) : s(?(y:t1) -> t2)
(A2.3’) S; G; X2 |-_q e2 : t1

Note that on splitting X,X’,X’’ into X1,X2, the assumption x in X’ (if present) goes either in X1
or in X2, or in neither (if it is absent). In each case, we can use the induction hypothesis with
either the left side of premise (A0) or the right side of (A0).

From the induction hypothesis on (A2.4) we get

(A2.4.1) S; G1,s(G2) |- s(t2[e2/y]) :: k

However, for the conclusion, we require

(A2.4’) S; G1,s(G2) |- s(t2)[s(e2)/y] :: k

which requires showing

s(t2[e2/y]) = s(t2)[s(e2)/y])

which following from the observation that x<>y (y is a bound variable and can be alpha renamed
appropriately), and furthermore that y not in FV(range(s)).

For the conclusion, we apply (T-App) with (A2.2’), (A2.3’) and (A2.4’) in the premises.

Case (T-TApp):

S; G; X,X’,X’’ |-_q e : ?(\/’a::k.t’)
S; G |- t :: k

------------------------------------ [T-TApp]
S; G; X,X’ |-_q e t : t’ [t/’a]

Similar to (T-App), except there is no need for any special management of the affine assumptions.

Case (T-Bracket):

G=G1,x:(p,tx),G2 (A2.1)
S; G; X,X’,X’’ |-_r e : t (A2.2)

---------------------------------- [T-Bracket]

21

S; G; X,X’,X’’ |-_q <e>_r : t

Having generalized on the index q on the turnstile of (A2), we can apply the induction hypothesis
to (A2.2) to obtain

(A2.2’) S; G1,s(G2); X,X’’ |-_r s(e) : s(t)

The conclusion follows from an application of (T-Bracket) with (A2.2’) in the premise.

Case (T-Match):

G=G1,x:(p,tx),G2 (A2.1)
X1,X2 = X,X’,X’’ (A2.2)
X3 < x1..xn (A2.3)
S; G; X1 |-_q e : t’ (A2.4)
S; G, xi:(q,ti), xi=vi;X3 |-_q D t1..tn x1..xn : t’ (A2.5)
S; G, xi:(q,ti), xi=vi, e=D t1..tn x1..xn; X2,X3 |-_q e1 : t (A2.6)
S; G; X2 |-_q e2 : t (A2.7)

-- [T-Match]
S;G;X1,X2 |-_q match e with

D t1..tn x1..xn -> e1 : t
else e2

As in (T-App), the affine assumption in X’, if present, either goes to X1 or X2. When using the
induction hypothesis, we satisfy premise (A0) by using either side of the disjunct, depending on
whether x in X1, X2 or neither.

We use the induction hypothesis to establish

(A2.4’) S; G1,s(G2); X1 |-_q s(e) : s(t’)
(A2.5’) S; G1,s(G2),s(xi:(q,ti)),s(xi=vi); X3 |-_q s(D t1..tn x1..xn) : s(t’)
(A2.6’) S; G1,s(G2),s(xi:(q,ti)),s(xi=vi); s(e=D t1..tn x1..xn); X2,X3 |-_q s(e1) : s(t)
(A2.7’) S; G1,s(G2); X2 |-_q s(e2) : s(t)

and use each of these in the premises of (T-Match) for the goal.

Case (T-Sub):

G=G1,x:(p,tx),G2 (A2.1)
S; G; X,X’,X’’ |-_q e : t’ (A2.2)
S; G |- t’ <: t (A2.3)

------------------------------ [T-Sub]
S; G; X,X’,X’’ |-_q e : t

From the induction hypothesis we get

(A2.2’) S; G1,s(G2); X,X’’ |-_q s(e) : s(t’)

From the mutual induction hypothesis with Lemma 7.3 (substition for type conversion), we get

(A2.3’) S;G1,s(G2) |- s(t’) <: s(t)

The conclusion follows from an application of (T-Sub) with (A2.2’) and (A2.3’) in the premises.

Cases (T-Val-A, T-Drop-A, T-Datacon):

Trivial, from the induction hypothesis.

Cases of (B2)

Case (K-Var):

22

Trivial, since G1,G2 binds ’a and kinds have no free variables.

Case (K-Constr):

Trivial, since type constructors are bound in S and S is unchanged.

Case (K-Bang):

Follows from the induction hypothesis.

Case (K-Arrow):

G=G1,x:(p,tx),G2 (B2.1)
k,k’ in {*, A} (B2.2)
S; G |- t1 :: k (B2.3)
S;G,x:t1 |- t2 :: k’ (B2.4)

---------------------------- [K-Arrow]
S; G |- (x:t1) -> t2

From the induction hypothesis, we have

(B2.3’) S;G1,s(G2) |- s(t1) :: k

From the induction hypothesis, having generalized on the tail of the environment G2, we have

(B2.4’) S;G1,s(G2),x:s(t1) |- s(t2) :: k’

For the conclusion, we can use (K-Arrow) with (B2.3’) and (B2.4’) in the premises.

Case (K-Univ):

Similar to (K-Arrow), relies on generalization over G2.

Case (K-App):

Straightforward, from induction hypothesis applied to each premise.

Case (K-Dep):

G=G1,x:(p,tx),G2 (B2.1)
S; G |- t :: t’ -> k (B2.2)
S; G; . |-_q v_q : t’ (B2.3)

---------------------------- [K-Dep]
S; G |- t v_q : k

From the induction hypothesis on (B2.2) we get

(B2.2’) S; G1,s(G2) |- s(t) :: t’ -> k

From Lemma 6.2, (Well-formed kindings), we have that

S |- t’ -> k

from which we can conclude that FreeVars(t’ -> k) = {}, and hence s(t’) = t’.

Next, we apply the mutual induction hypothesis on the typing judgment to (B2.3) to produce

(B2.3.1) S’; G1,s(G2); - |-_q s(v_q) : s(t’)

Or,

23

(B2.3’) S’; G1,s(G2); - |-_q s(v_q) : t’

For the conclusion, we apply (K-Dep) with (B2.2’) and (B2.3’) in the premises.

Case (K-Refine):

Similar to (K-Arrow), since Phi is simply a type.

Cases of (C2)

Case (TC-Equiv):

By the mutual induction hypothesis on Lemma 7.4, substitution for the type-equivalence judgement.

Case (TC-Trans):

By the induction hypothesis on each premise.

Case (TC-A):

By the induction hypothesis on the premise.

Case (TC-Refine-1):

Immediate.

Case (TC-Refine-2):

Immediate.

Case (TC-Refine-3)

G=G1,x:(p,tx),G2 (C2.1)
S; G |- {y:t | Phi’} :: * (C2.2)
S; G |- t <: t’ (C2.3)
G’=refinements(G, y:{y:t | Phi}) (C2.4)
S; G, y:{y:t | Phi},G’;_ |-_q v_q : Phi’ (C2.5)

-- [TC-Refine-3]
S; G |- {y:t | Phi} <: {y:t’ | Phi’}

Our goal is to show that

S; G1,s(G2) |- {y:s{t} | s(Phi)} <: {y:s(t’) | s(Phi’)}

From the mutual induction hypothesis with Lemma 7.2, we have

(C2.2’) S; G1,s(G2) |- {y:s(t) | s(Phi’)} :: *

From the induction hypothesis we have

(C2.3’) S; G1,s(G2) |- s(t) <: s(t’)

From the definition of refinements, we have

refinements(G) = G’,y’:Phi,G’’

We have C2.5

S;G1,x:(p,tx),G2,G’,y’:Phi,G’’; - |- v_q : Phi’

First, we use a single application of the mutual induction hypothesis from Lemma 7.1
(substitution for typing), to construct:

24

(C2.3.1) S;G1,s(G2,G’,y’:Phi’,G’’); - |- s(v_q) : s(Phi)

However, this is not sufficient for the conclusion, since we need

S;G1,s(G2,G’,G’’); - |- v’’ : s(Phi)

To construct this, we first use assumption (C5) to produce a witness v

(C5) S;G1;- |-_q v : s(Phi’)

Next, Lemma 5 (weakening), to construct

(C5’) S;G1,s(G2,G’); - |-_q v : s(Phi’)

Finally, we use the mutual induction hypothesis from Lemma 7.1, to construct,
substitution s’= [v/x’], and

(C2.3.2) S;G1,s(G2,G’),s’(s(G’’)); - |- s’(s(e)) : s’(s(Phi))

From, well-formedness of of type conversions, Lemma 6.3, and C2.2 we have that y’ not in
FV(s(Phi)).

Similarly, from the well-formedness of G and from the definition of refinement(G), we can
conclude that y notin FV(G’’) subseteq FV(s(G’’)).

Thus, we have

(C2.3’) S;G1,s(G2,G’),s(G’’); - |- s’(s(e)) : s(Phi)

Finally, for the conclusion, we apply TC-Refine-3 with (C2.1’), (C2.2’) and (C2.3’) in the
premises.

Cases of (D2)

Case (EE-Id):

Trivial

Case (EE-Refine);

We consider two sub-cases depending on whether the used match assumption appears in G1 or G2.

Sub-case (match assumption in G1):

--- [EE-Refine]
S; G1’,e=e’,x:(p,tx),G2 |- e ~ e’

From the well-formedness of the environment, the x not in FreeVars(e, e’). Thus s(e) = e,
s(e’)=e’ and the goal follows.

(Goal) S;G1’,e=e’, s(G2) |- s(e) ~ s(e)’

Sub-case (match assumption in G2):

--- [EE-Refine]
S; G1,x:(p,tx),e=e’G2 G’ |- e ~ e’

The goal follows immediately.

(Goal) S;G1’,s(e)=s(e’), s(G2) |- s(e) ~ s(e)’

25

Lemma 14 (Type substitution). Lemma (Type substitution for typing judgment):

For all S G1 G2 X e t t1 k ’a p,
(A1) S;G1,’a::k,G2;X well-formed
(A2) S;G1,’a::k,G2;X |-_p e : t
(A3) S;G1 |- t’ :: k
(A4) substitution s=[t1/’a]
=> S;G1,s(G2);X |-_p s(e) : s(t)

Lemma (Type substitution for kinding judgment):

For all S G1 G2 t1 k1 t2 k2 ’a p,
(B1) S;G1,’a::k2,G2;- well-formed
(B2) S;G1,’a::k2,G2 |- t :: k1
(B3) S;G1 |- t2 :: k2
(B4) substitution s=[t2/’a]
=> S;G1,s(G2) |-_p s(t) :: k1

Lemma (Type substitution for type conversion):

For all S G1 G2 t t’ t2 k2 ’a p,
(B1) S;G1,’a::k2,G2;- well-formed
(B2) S;G1,’a::k2,G2 |- t <: t’
(B3) S;G1 |- t2 :: k2
(B4) substitution s=[t2/’a]
=> S;G1,s(G2) |- s(t) <: s(t’)

Lemma (Type substitution for type equivalence):

For all S G1 G2 t t’ t2 k2 ’a p,
(B1) S;G1,’a::k2,G2;- well-formed
(B2) S;G1,’a::k2,G2 |- t ~ t’
(B3) S;G1 |- t2 :: k2
(B4) substitution s=[t2/’a]
=> S;G1,s(G2) |- s(t) ~ s(t’)

Proof. Straightforward mutual induction on the structure of (A2), (B2), (C2), (D2).

Lemma 15 (Strengthening for inaccessible affine assumptions). For all S G G’ X x p t e q t’,
(A1) S;G,x:(p,t),G’; X |-_q e : t’
(A2) x not in X
(A3) S;G;- |- t :: A
=> S;G,G’;X |-_q e : t’

Proof. Observation 1: S;G,G’;X is well-formed, since
-- x not in FV(G), by well-formedness of S;G;-

-- x not in FV(G’), since form (A2), x is affine
And, from well-formedness of kinds,
forall S,G,t,k. S;G |- t :: k => x \notin FV(t)

By induction on the structure of (A1), noting that (T-Var-A) requires x in X.

Corollary 16 (Strengthening for affine assumptions in kinding). For all S G G’ t t’ k,
(A1) S;G,x:(p,t),G’ |- t’ :: k
(A2) S;G |- t :: A
=> S;G,G’;|- t’ :: k

Lemma 17 (Destruction of affine assumption). For all S M p e t M’ x,
(A1) S;G(M);X |-_p e : t
(A2) (M,e) ~p~-> (M’,e’)
(A3) x in dom(M) /\ x notin dom(M’)
=> x in X

Lemma 18 (Construction of affine assumption). For all S M p e t M’ x,
(A1) S;G(M);X |-_p e : t

26

(A2) (M,e) ~p~-> (M’,e’)
(A3) x in dom(M’) /\ x notin dom(M)
=> FV(e’) \subseteq X,x

Proof. Simple induction on the structure of (A2), noting from well-formed memory that values in the store are always closed.

Lemma 19 (Redundant match assumptions). For all S M X p e t v,
(A1) S;G, v=v, G’;X |-_p e : t
=> S;G,G’;X |-_p e : t

Proof. Straightforward by noting that every application of (EE-Natch) can be replaced by (EE-Id).

Lemma 20 (Proofs of refinement formulas). For all S G v t p Phi,
(A1) S;G;- |-_p v : {x:t | Phi}
=> exists v’, S;G;- |-_bot v’ : Phi[v/x]

where S;G;- |- x:{y:t’ | Phi’} => S;G,y:t’;- |- \hat{x} : Phi’

Proof.
By induction on the structure of (A1).

The point to note is that the only way to introduce a refined typpe {x:t | Phi} is with an
application of (T-Refine).

Importantly, from the well-formedness of S, we have that every data constructor application
introduces a non-refined type. Thus an application of (T-App) never produces a refined type.

Theorem 21 (Subject reduction). For all S M M’ X e t p,
(A0) S;G(M);X well-formed
(A1) S;G(M);X |-_p e : t
(A2) (M,e) ~p~> (M’,e’)
=> exists X’. S;G(M’);X’ |-_p e’ : t /\

X’ = X U (dom M’ \ dom M) if dom M’ >= dom M
X’ = X \ (dom M \ dom M’) otherwise

Proof. By induction on the structure of the typing derivation (A1).

Cases (T-Sub, T-Drop-A):

Induction hypothesis.

Case (T-Var):

Impossible, from the definition of well-formed memory, x is of kind A.

Case (T-Var-A):

x steps using (E-Destruct) to v_q and, from the well-formedness of memory M, we have the result.

Case (T-AVal, T-Datacon, T-Abs, T-Univ):

Irreducible.

Case (T-Fix):

unrefined t
S; G |- t :: * (A1.1)
S; G, f:(p,t); - |-_p v_p : t (A1.2)

----------------------------------- [T-Fix]
S; G; - |-_p fix f:t.v_p : t

Inversion of (A2) gives an application of (E-Fix):

27

-- [E-Fix]
fix f:t.v_p ~p~> v_p[(v_p[fix f:t.v_p / f])/f]

From an application of the substitution lemma, Lemma 7, we get

S;G;- |-_p v_p [fix f:t.v_p / f] : s(t)

From, well-kinding of typing (Lemma 6), we have that f not in dom(t). Thus, s(t) = t

A second application of the substitution lemma, Lemma 7, gives

S;G;- |-_p v_p[(v_p[fix f:t.v_p /f])/x] : t

Case (T-App):

S; G; X1 |-_p e1 : ?(x:t1) -> t2 (A1.1)
S; G; X2 |-_p e2 : t1 (A1.2)
S; G |- t2 [e2/x] :: k (A1.3)

------------------------------------ [T-App]
S; G; X1,X2 |-_p e1 e2 : t2[e2/x]

---Subcase: e1 is a non-value, reduction proceeds using (E-Cong) to

(M, e1 e2) ~p~> (M’, e1’ e2)

From the induction hypothesis, we get

S;G(M’);X1’ |-_p e1’ : ?(x:t1) -> t2 (G1.1)

------Sub-subcase: if X1=X then use (T-App) with (G1.1), (A1.2) and (A1.3)

------Sub-Subcase: if X1’ = X1,x, then dom(M’) = X1,x,X2,X

For the conclusion, we use (T-App) with (G1.1) with (A1.2) and weakening on (A1.3).

------Sub-Subcase: if X1’,x = X1, then, noting that x not in X2, we use (T-App) with (G1.1), and
strengthening on inaccessible affine assumptions on (A1.2), and strengthening for affine
assumptions in kinding for (A1.3).

---Subcase: e2 is a non-value, similar.

---Subcase: e1=v1 and e2=v2 are values.

We first use the canonical forms lemma to establish (v1 = \x:t1.e) and inversion of (A2) gives
us an application of (E-Beta).

----------------------------- [E-Beta]
\x:t1.e v2 ~p~> e[v2/x]

From an inversion of (A1.1), we get an application of (T-Abs) with

(A1.1.1) S;G,x:t1;X,x |-_p e : t2

Now, using (A1.1.1) and (A1.2), we apply the substitution lemma, to derive the goal

S;G;X |-_p e[v2/x] : t2[v2/x]

Case (T-TApp):

Similar to (T-App), using the induction hypothesis in the first premise when e is reducible.

And, using canonical forms and the type-substitution lemma when reduction is via E-TBeta.

28

Case (T-Match):

--- (Defn. of pattern matching)
D t1...tn v1...vn ~=~ D t1...tn x1..xn : (x1,v1)...(xn,vn)

If the discriminant steps (M,v_x) ~p~> (M’,v) via (E-Cong), then, the context splitting rules,
and strengthening of affine assumptions allows us to reason similarly to (E-App).

If a step is taken to the false branch via (E-Match), then, the conclusion follows using the
last premise of (A1), with (T-Drop) to introduce unused affine assumptions, if any.

If a step is taken to the true branch via (E-Match), then from the definition of pattern
matching above, and the repeated application of the substitution lemma, we get

S;G, v1=v1, ..., vn=vn, (D t1..tn v1..vn = D t1..tn v1..vn); X |- e1: sigma(t),

where dom(sigma) = x1..xn, the pattern variables.

From repeated use of the redundant match assumptions lemma, we arrive at

S;G; X |- e1: sigma(t)

Finally, from well-kinded typings lemma applied to the last premise, we get that sigma(t) = t,
since FV(t) does not include any of the pattern variables.

Case (T-Bracket):

By inversion on (A2), we have one of several cases.

---Subcase (A2 is E-Br): Straightforward from induction hypothesis.

---Subcase (A2 is E-Strip): Use the premise of A1 for the conclusion.

---Subcase (A2 is E-Nest): Use T-Bracket with the nested premise of (A1) for the conclusion.

---Subcase (A2 is E-Extrude):

From inversion of (A1), we get:

S;G,x:(q,t);X,x |-_q e : t’ (A1.1)

By weakening (A1.1), we get

S;G,y:(p,t),x:(q,t);X,y,x |-_q e : t’ (A1.2)

We have that

S;G,y:(p,t);X,y |-_q <y>_p : t (A1.3)

And <y>_p is a q-value.

So, from the substitution lemma, we get

S;G,y:(p,t);X,y |-_q e [<y>_p/x] : t’ (G1.1)

For the conclusion, we apply (T-Fun) with (G1.1) in the premise.

---Subcase (A2 is E-TExtrude):

We use (T-Tabs), with (T-Bracket) with the nested premise of (A1) for the conclusion.

29

B. Value abstraction for FINE

Theorem 22 (Value abstraction). forall S e t x p q tx v1_p v2_p.
(A0) S;x:(p,tx);x well-formed
(A1) S;x:(p,tx);x |-_q e : t
(A2) q < p and e is a non-value free of <.>_r brackets, where r >= p, except <x>_p
(A3) forall i. S;-;- |-_p vi_p : tx
(A4) e[v1_p/x] ~q~> e1

=> exists e2. e2[v1_p/x] = e1 /\ e[v2_p/x] ~q~> e2[v2_p/x]

Proof. By induction on the structure of (A4). (Note the restriction to the pure fragment)

Case (E-Bracket):

e[v1_p/x] ~r~> e’
--------------------------------------- [E-Bracket]

(<e>_r)[v1_p/x] ~q~> <e’>_r

e is free of <.>_p brackets, so, either

Sub-case 1: (r < p): From the premise, and from the IH, we get

e2[v1_p/x] = e1 and e[v2_p/x] ~r~> e2[v2_p/x]

Sub-case 2: (r=p and e=v1_p): Impossible, since v1_p is a p-value and is irreducible.

Case (E-Beta):

From the definition of substitution, and alpha-converting the left-subterm to ensure that the bound
var is distinct, we get:

--- [E-Beta]
(\y:t.e v_q)[v1_p/x] ~q~> (e[v1_p/x]) [v_q [v1_p/x]/y]

For the conclusion, we construct: e2 = e [v_q/y] and both

(e[v1_p/x]) [v_q [v1_p/x]/y] = e2[v1_p/x]
and

(\y:t.e v_q)[v2_p/x] ~q~> e2[v2_p/x]

are immediate.

Case (E-TBeta):

Similar to the previous case, using the definition of substitution.

Case (E-Fix):

--- [E-Fix]
(fix f:t.v_q)[v1_p/x] ~q~>
(v[v1_p/x])[((v[v1_p/x])[fix f:t.v_q[v1_p/x] / f])/f]

Again, similar to the previous two cases, following from the definition of substitution.

Case (E-Match1):

v_q[v1_p/x] ~=~ D t1...tn x1..xn : theta
-- [E-Match1]

match (v_q)[v1_p/x] with D t1..tn x1..xn -> e1[v1_p/x] else e2[v1_p/x]

30

~p~> theta(e1[v1_p/x])

Sub-case 1: v_q = <x>_p

Impossible, since from the definition of (~=~), <v1_p>_p does not match any pattern

Sub-case 2: v_q = D t1 ... tn v1_q ... vn_q

Case (E-Match2): Similar

Case (E-Extrude):

By the definition of substitution, we have

<\y:t.e>_q [v1_p/x] = <\y:t. e[v1_p/x]>_q

-- [E-Extrude]
<\y:t. e[v1_p/x]>_q’ ~q~> \z:t.<e[v1_p/x][<z>_q/y]>_q’

Pick e2 = \z:t<e [<z>_q/y]>_q’

We have e2[v1_p/x] = \z:t<e [<z>_q/y] [v1_p/x]>_q’, which from z<>x gives the desired result.

Additionally

<\y:t. e[v2_p/x]>_q’ ~q~> e2[v2_p/x]

Case (E-TExtrude): Similar, but simpler since the type variable ’a is not wrapped.

Case (E-Strip):

-------------------------------------- (E-Strip)
<v_q>_q [v1_p/x] ~q~> v_q[v1_p/x]

Sub-case q=p.

From our assumption of p-bracket freedom, we have that v_q must be x. Thus, we have

<x>_p [v1_p/x] ~p~> v1_p

So, we pick e2=x, and the conclusion is immediate.

Sub-case q<>p.

Pick e2 = v_q.

Case (E-Nest): As in the previous case.

31

S; Γ ↪→ S; Γ′ Translation of environments

· ` S ↪→ S′ S′; · ` Γ ↪→ Γ′

S; Γ ↪→ S′; Γ′

S0 ` κ ↪→ κ′ S0, τ ::κ′ ` S ↪→ S′

S0 ` τ ::κ′, S ↪→ τ ::κ′, S′

S0; · ` τ ↪→ τ ′ :: K S0, D:τ ′ ` S ↪→ S′

S0 ` D:(p, τ), S ↪→ D:(p, τ ′), S′

S0, p v q ` S ↪→ S′

S0 ` p v q, S ↪→ p v q, S′

S0, p v q ` S ↪→ S′

S0 ` p v q, S ↪→ p v q, S′

S ` κ ↪→ κ′ S; Γ0, τ ::κ′ ` Γ ↪→ Γ′

S; Γ0 ` τ ::κ′,Γ ↪→ τ ::κ′,Γ′

S; Γ0 ` τ ↪→ τ ′ :: k S; Γ0, x:(p, τ ′) ` Γ ↪→ Γ′

S; Γ0 ` x:(p, τ),Γ ↪→ x:(p, τ ′),Γ′

S; Γ0 ` τ ↪→ (x:τ ′ ∗ φ)k :: K
S; Γ0, x:(p, τ ′), x′:(p, proof φ) ` Γ ↪→ Γ′

S; Γ0 ` x:(p, τ),Γ ↪→ x:(p, τ ′), x′:(p, proof φ),Γ′

∀i.S; Γ0 ` vi
k
↪→ v′i S; Γ0, v

′
1
.
= v′2 ` Γ ↪→ Γ′

S; Γ0 ` v1
.
= v2,Γ ↪→ v′1

.
= v′2,Γ

′

S ` κ ↪→ κ′ Translation of kinds

S ` ? ↪→ ? (XK-S) S ` A ↪→ A (XK-A)
S ` κ ↪→ κ′

S ` k → κ ↪→ k → κ′
(XK-Tc)

S; · ` τ min
↪→ τ ′ :: K S ` κ ↪→ κ′

S ` τ → κ ↪→ τ ′ → κ′
(XK-DTc)

Figure 11. Translation of environments and kinds

C. Derefinement of FINE

Lemma 23 (Determinism of translation).

∀S, κ, κ1, κ2.S ` κ ↪→ κ1 ∧ S ` κ ↪→ κ2 ⇒ κ1 = κ2

∀S,Γ, τ, τ1, τ2, κ1, κ2.S; Γ ` τ ↪→ τ1 :: κ1 ∧ S; Γ ` τ ↪→ τ2 :: κ2 ⇒ κ1 = κ2

∀S,Γ, τ, τ1, τ2,K.well-formed(S;G) ∧ S; Γ ` τ ↪→ τ1 :: K ∧ S; Γ ` τ ↪→ τ2 :: K ⇒ τ1 = τ2

∀S,Γ, X, e, e1, e2, τ,K.well-formed(S;G;X) ∧ S; Γ;X ` e K
↪→ e1 : τ ∧ S; Γ;X ` e K

↪→ e2 : τ ⇒ e1 = e2

Lemma 24 (Derefinement of values).

∀S,Γ, S′,Γ′, X, p, vp, τ, φ.S; Γ;X `p vp : τ ∧ S; Γ ↪→ S′; Γ′ ⇒ ∃τ ′, φ′, v1, e2.S′; Γ′;X `p vp
K
↪→ (x:(v1:τ ′), (e2:φ′))k : (x:τ ′ ∗ φ′)k

Lemma 25 (Substitution lemma for translation).

∀S,Γ1,Γ2, x, p, τ, τ1, κ, φ, τ
′, vp, v

′
p, e.S; Γ1, x : (p, τ),Γ2 ↪→ S′; Γ′1, x : (p, τ ′), ,Γ′2

S; Γ1, x : (p, τ),Γ2 ` τ1 :: κ ∧ S; Γ1; · `p vp : τ ∧
S′; Γ′1; · `p vp

K
↪→ (x:(v′p:τ

′), (e:φ)) : (x:τ ′ ∗ φ) ∧ S′; Γ′1, x : τ ′, y : proofφ,Γ′2 ` τ1 ↪→ τ2 :: K

⇒ S′; Γ′1, (Γ
′
2)[v′p/x] ` τ1[v′p/x]

K
↪→ τ ′1[v′p/x] :: K

Lemma 26 (Equivalence of derefined types).

∀S,Γ, S′,Γ′, τ1, τ2, τ ′1, τ ′2.S; Γ ` τ1 ∼= τ2 ∧ S; Γ ↪→ S′; Γ′ ∧
S′; Γ′ ` τ1

min
↪→ τ ′1 :: K ∧ S′; Γ′ ` τ2

min
↪→ τ ′2 :: K

⇒ S′; Γ′ ` τ ′1 ∼= τ ′2

Proof. A corollary of the determinism lemmas, by induction on the shape of the equivalence judgment.

Lemma 27 (Translation of subtyping).

∀S,Γ, S′,Γ′, τ1, τ2, e, e′, τ ′1, τ ′2.S; Γ ` τ1 <: τ2 ∧ S; Γ ↪→ S′; Γ′ ∧
S′; Γ′ ` τ1 ↪→ τ ′1 :: K ∧ S′; Γ′ ` τ2 ↪→ τ ′2 :: K ∧ S′; Γ′ ` e ↪→ e′ : τ ′1
⇒ ∃e′′.S′; Γ′ ` e ↪→ e′′ : τ ′2

Proof.

32

simple kinds k ::= ? | A kinds κ ::= k | k → κ | τ → κ pseudo kinds K ::= box(k) | κ

S; Γ ` τ ↪→ τ ′ :: K where
(x:t1 ∗ t2)k = Q(k,∀α::k. :(x:t1 → y:proof t2 → α)→ α)

S; Γ ` τ
min
↪→ τ ′ :: K ∧ S; Γ ` τ

min
↪→ τ ′ :: κ ⇒ K = κ

Translation of types

S; Γ ` α ↪→ α :: Γ(α)
(DK-Var)

S; Γ ` T ↪→ T :: S(T)
(DK-TC)

S; Γ ` τ ↪→ τ ′ :: ?

S; Γ `!τ ↪→!τ ′ :: A
(DK-Afn)

S; Γ, α::k ` τ ↪→ τ ′ :: k′

S; Γ ` ∀α::k.τ ↪→ ∀α::k.τ ′ :: ?
(DK-Uni)

S; Γ ` τ1 ↪→ (x:τ ′1 ∗ φ)k :: box(k) S; Γ, x:(p, τ ′1), y:(p, φ) ` τ2
min
↪→ τ ′2 :: K

S; Γ ` x:τ1 → τ2 ↪→ x:τ ′1 → y:φ→ τ ′2 :: ?
(DK-Fun)

S; Γ ` τ1 ↪→ τ ′1 :: k → κ S; Γ ` τ2
min
↪→ τ ′2 :: K K̄ = k

S; Γ ` τ1 τ2 ↪→ τ ′1 τ
′
2 :: κ

(DK-App)
S; Γ ` τ1 ↪→ τ ′1 :: τ → κ S; Γ; · `> vp

K
↪→ v′p : τ

S; Γ ` τ1 vp ↪→ τ ′1 v
′
p :: κ

(DK-Dep)

S; Γ ` τ ↪→ τ ′ :: k S; Γ, x:(p, τ ′) ` φ ↪→ φ′ :: ?

S; Γ ` {x:τ |φ} ↪→ (x:τ ′ ∗ φ′)k :: box(k)
(DK-DeRefine)

S; Γ ` τ ↪→ τ ′ :: k

S; Γ ` τ ↪→ (x:τ ′ ∗ True)k :: box(k)
(DK-Box)

S; Γ;X ` e
K
↪→ e′ : τ where (x:(e:τ), (e′:φ))k = Λα::k.λf :(x:τ → :proof φ→ α).(f e e′) Translation of terms

S(D) = (p, τ)

S; Γ; · `p D
?
↪→ D : τ

(DT-D)
S; Γ ` τ ′ ↪→ τ :: K K̄ = A⇒ x ∈ X

S; Γ, x:(p, τ),Γ′;X `p x
K
↪→ x : τ

(DT-X)
q v p ∈ S S; Γ;X `q e

K
↪→ e′ : τ

S; Γ;X,X′ `p e
K
↪→ e′ : τ

(DT-S)

S; Γ ` τ1 ↪→ (x:τ ′1 ∗ φ)k :: box(k)

S; Γ, x:(p, τ ′1), y:(p, φ);X,x `p e
K
↪→ e′ : τ2

S; Γ;X `p λx:τ1.e
k′
↪→ λx:τ ′1.λy:φ.e′ : Q(X,x:τ ′1 → y:φ→ τ ′2)

(DT-Fun)

S; Γ ` τ ↪→ τ ′ :: ?

S; Γ, f :(p, τ ′); · `p vp
?
↪→ v′p : τ ′

S; Γ; · `p fix f :τ.vp
?
↪→ fix f :τ ′.v′p : τ ′

(DT-Fix)

S; Γ;X `q e
K
↪→ e′ : τ

S; Γ;X `p 〈e〉q ↪→ 〈e′〉q : τ
(DT-Bracket)

S; Γ, α::k;X `p e
K
↪→ e′ : τ ′

S; Γ;X `p Λα::k.e
k′
↪→ Λα::k.e′ : Q(X, ∀α::k.τ ′)

(DT-Uni)

S; Γ;X `p e1
k
↪→ e′1 :?x:τ1 →?y:φ→ τ2

S; Γ;X′ `p e2
box(k)
↪→ e′2 : (x:τ1 ∗ φ)k

S; Γ;X,X′ `p e1 e2
K
↪→ (e′2 τ2) (λx:τ1.λy:φ.e′1 x y) : τ2

(DT-AppE)

S; Γ;X `p e
k
↪→ e′ :?x:τ1 →?y:φ→ τ2

S; Γ;X′ `p v
box(k)
↪→ (x:(v′:τ1), (pf:φ))k : τ ′

S; Γ;X,X′ `p e v
K
↪→ e′ v′ pf : τ2[v′/x]

(DT-AppV)

S; Γ;X `p e
k′
↪→ e′ :?∀α::k.τ ′ S; Γ ` τ1 ↪→ τ ′1 :: K K̄ = k

S; Γ;X `p e τ1
K
↪→ e′ τ ′1 : τ ′[τ ′1/α]

(DT-TApp)

S; Γ;X `p vp
k
↪→ v′p : τ ′ S; Γ ` τi ↪→ τ ′i :: K S; Γ, xi:(p, τ

′
i), xi

.
= vi; ~x `p D ~τ ~x

k
↪→ (D ~τ ~x)′ : τ ′

S; Γ, xi:(p, τ
′
i), xi

.
= vi, v

′
p
.
= (D ~τ ~x)′;X′, ~x `p e1

K
↪→ e′1 : τ S; Γ;X′ `p e2

K
↪→ e′2 : τ

S; Γ;X,X′ `p match vp with D ~τ ~x→ e1 else e2
K
↪→ match v′p with (D ~τ ~x)′ → e′1 else e′2 : τ

(DT-Match)

S; Γ;X `p e
box(k)
↪→ e′ : (x:τ ∗ φ)k

S; Γ;X `p e
k
↪→ (e′ τ) (λx:τ.λy:proof φ.x) : τ

(DT-UnBox)
S; Γ;X `p e

k
↪→ e′ : τ S; Γ; · `⊥ v : proof φ v unique

S; Γ;X `p e
box(k)
↪→ (x:(e′:τ), (v:φ))k : (x:τ ∗ φ)k

(DT-Box)

S; Γ;X `p e
K
↪→ e′ : τ

S; Γ ` τ ∼= τ ′

S; Γ;X `p e
K
↪→ e : τ ′

(DT-Eq)
S; Γ;X `p e

box(k)
↪→ e′ : (x:τ ∗ φ)k S; Γ, x:τ, y:proof φ; · `⊥ v : proof φ′ v unique

S; Γ;X `p e
box(k)
↪→ (e′ (x:τ ∗ φ′)k) (λx:τ.λy:proof φ.(x:(x:τ), (v:φ′))k) : (x:τ ∗ φ′)k

(DT-RefE)

S; Γ;X `p v
box(k)
↪→ (x:(v1:τ), (e2:φ))k : (x:τ ∗ φ)k S; Γ, x:τ, y:proof φ; · `⊥ v′ : proof φ′ v′ unique

S; Γ;X `p e
box(k)
↪→ (x:(v1:τ), (((λx:τ.λy:proof φ.v′) v1 e2):φ′))k : (x:τ ∗ φ′)k

(DT-RefV)

Figure 12. Derefinement of FINE.

33

Theorem 28 (Derefinement correctness).

I. ∀S, S′,Γ,Γ′, X, e, τ, p.
well-formed(S; Γ;X) ∧ (A1)
S; Γ;X `p e : τ ∧ (A2)
S; Γ ↪→ S′; Γ′ ⇒ (A3)
∃e′, τ ′.S′; Γ′;X `p e ↪→ e′ : τ ′ ∧ (G1)
∃K.S′; Γ′ ` τ ↪→ τ ′ :: K ∧ (G2)
S′; Γ′;X ` e′ : τ ′ (G3)

II. ∀S, S′,Γ,Γ′, τ, κ.
well-formed(S; Γ) ∧ (B1)
S; Γ `p τ :: κ ∧ (B2)
S; Γ ↪→ S′; Γ′ ⇒ (B3)
∃τ ′,K′.S′; Γ′ `p τ ↪→ τ ′ :: K ∧ (F1)
S′; Γ′ ` τ ′ :: κ (F2)

Proof. By mutual induction on the structure of (A2) and (B2):

Cases of (B2): The main cases are (DK-Fun) and (DK-Dep). The former relies on weakening of the
kinding judgment in the second premise. The latter relies on the mutual induction hypothesis for
the second premise.

Cases of (A2): The main interesting cases are (T-Fun) and (T-App).

--(T-D), (T-X), (T-XA):

Straightforward from the definition of environment translation and the definitions
of (DT-D) and (DT-X).

--(T-Drop), (T-Bracket): Induction hypothesis.

--(T-Fun):

S;G |- t1 :: k (A1.1)
S;G,x:(p,t1); X,x |- e : t2 (A1.2)

-- (A1)
S;G;X |-_p \x:t1.e : Q(X, x:t1 -> t2)

From the mutual induction hypothesis applied to (A1.1) we get

S’;G’ |- t1 --> t1’ :: K (F1.1)

We consider two subcases:

----Subcase (K=box(k)):

We have t1’ = (x:t1’’ * phi)

From the definition of environment translation, we have that

S;G,x:(p,t1) --> S’;G’,x:(p,t1’’), y:proof phi

So, from the induction hypothesis applied to (A1.2), we get

S’;G’,x:(p,t1’’), y:proof phi; X,x |- e -K-> e’ : t2’ (G1.1)
S’;G’,x:(p,t1’’), y:proof phi |- t2 --> t2’ :: K (G2.1)
S’;G’,x:(p,t1’’), y:proof phi; X,x |- e’ : t2’ (G3.1)

For the goal (G1), we use (DT-Fun) with (F1.1) and (G1.1) in the premises.

For the goal (G2), we have to show that

S’;G’ |- x:{x:t1 | phi} -> t2 --> x:t1’ -> y:proof phi -> t2’ :: k (G2.1)

Which is immediate from the definition of (DK-Fun).

For the goal (G3), we use (T-Fun) twice, with (G3.1) in the premise.

----Subcase (K=k):

34

First, we use (DT-Box) with (F1.1) in the premise to construct

S’;G’ |- t1 --> (x:t1’ * True) (F1.1’)

Next, we use weakening on (A1.2) to construct

S;G,x:(p,t1),y:proof True; X x |- e : t2 (A1.2’)

From the definition of environment translation, we have

S;G,x:(p,t1),y:proof True --> S’;G’,x:(p,t1’), y:proof True

So, from the induction hypothesis applied to (A1.2’), we get

S’;G’,x:(p,t1’), y:proof phi; X,x |- e -K-> e’ : t2’ (G1.1)
S’;G’,x:(p,t1’), y:proof phi |- t2 --> t2’ :: K (G2.1)
S’;G’,x:(p,t1’), y:proof phi; X,x |- e’ : t2’ (G3.1)

The rest of the proof proceeds as in the previous sub-case.

--(T-Uni):

S;G,’a::k;X |-_p e : t (A1.1)
--- (A1)

S;G;X |-_p /\’a::k.e : Q(X, \/’a::k.t)

From the induction hypothesis applied to (A1.1), and (XK-S) and (XK-A), and the definition of
environment translation, we get:

S’;G’,’a::k; X |-_p e -K-> e’ : t’ (G1.1)
S’;G’,’a::k |- t --> t’ :: k (G2.1)
S’;G’,’a::k; X |-_p e’ : t’ (G3.1)

For the goal (G1), we use (DT-Uni) with (G1.1) in the premise.
For the goal (G2), we use (DK-Uni) with (G2.1) in the premise.
For the goal (G3), we use (T-Uni) with (G3.1) in the premise.

--(T-Fix):

S;G |- t :: * (A1.1)
unrefined(t) (A1.2)
S;G,f:(p,t);. |-_p v : t (A1.3)

------------------------------------- (A1)
S;G;. |-_p fix f:t.v : t

From the mutual induction hypothesis applied to (A1.1), and (A1.2) we get

S’;G’ |- t --> t’ :: * (F1.1)
S’;G’ |- t’ :: * (F2.1)

From (F1.1), observing that t’ is not boxed, and the definition of environment translation, and
the induction hypothesis we get

S’;G’,f:(p,t’);. |-_p v -*-> v’ : t’’ (G1.1’)
S’;G’,f:(p,t’) |-_p t -*-> t’’ :: * (G1.2’)
S’;G,f:(p,t’);. |- v’ :: t’’ (G1.3’)

From weakening applied to the translation of types (F1.1), we get

S’;G’,f:(p,t’) |- t --> t’ :: * (F1.1’)

35

Finally, from determinism of the type translation (DK-*) applied to G1.2’ and F1.1’, we get
t’=t’’, and so:

S’;G’,f:(p,t’);. |-_p v -*-> v’ : t’ (G1.1)
S’;G’,f:(p,t’) |-_p t -*-> t’ :: * (G1.2)
S’;G,f:(p,t’);. |- v’ :: t’ (G1.3)

For the goal (G1), we use (Dt-Fix) with (G1.2) and (G1.1) in the premises.
For the goal (G2), we use (F1.1).
For the goal (G3), we use (T-Fix), with (F2.1) and (G1.3).

--(T-App):

S;G;X |-_p e1 : ? x:t1 -> t2 (A1.1)
S;G;X’ |-_p e2 : t1 (A1.2)
S;G |- t2 [e2/x] :: k (A1.3)

----------------------------------- (A1)
S;G;X,X’ |-_p e1 e2 : t2[e2/x]

From the induction hypothesis applied to (A1.1), we get:

S’;G’;X |-_p e1 -k-> e1’ : t’ (G1.1.1)
S’;G’ |- ?x:t1 -> t2 --> t’ :: k (G2.1.1)
S’;G’;X |-_p e1’ : t’ (G3.1.1)

By inversion of (G2.1.1), we get an application of (DK-Fun), with

t’ = ? x:t1’ -> y:proof phi -> t2’ (Eq_t’)

with

S’;G’ |- t1 --> (x:t1’ * proof phi) :: box(k) (Inv1)
S’;G’,x:(p,t1’),y:(p,proof phi) |- t2 --> t2’ :: K (Inv2)

From the induction hypothesis applied to (A1.2), we get:

S’;G’;X |-_p e2 -box(k)-> e2’ : t1’’ (G1.1.2)
S’;G’ |- t1 --> t1’’ :: box(k) (G2.1.2)
S’;G’;X |-_p e2’ : t1’’ (G3.1.2)

From determinism applied to (G2.1.2) and (Inv1), we get

t1’’= (x:t1’ * proof phi). (Eq_t1’’)

For the goal, we consider two separate sub-cases, depending on whether e2 is a value.

----Subcase (e2 is not a value):

In this case, from the definition of (K-Dep), we can conclude that in (A1.3), t2[e2/x] = t2.

For the goal (G1), we apply (DT-AppE), with
(G1.1.1) in the first premise with (Eq_t’),
(G1.1.2) in the second premise with (Eq_t1’’), to derive

S’;G’;X,X’ |-_p e1 e2 -K-> (e2’ t2’) (\x:t1’.\y:proof phi. e1’ x y) : t2’ (G1)

For the goal (G2), we use Inv2, noting that t2[e2/x] = t2.

For the goal (G3), we have to show that

36

S’;G’;X,X’ |-_p (e2’ t2’) (\x:t1’.\y:proof phi. e1’ x y) : t2’

which follows from the definition of (x:t * phi), (G3.1.2), and (G3.1.1).

----Subcase (e2=v2):

From the derefinement of values, we have

S’;G’;X |-_p v2 -box(k)-> (x:(v2’:t1’) * e2’:proof phi) : (x:t1’ * proof phi) (G1.1.2)

For the goal (G1), we apply (DT-AppV), with
(G1.1.1) in the first premise
(G1.1.2) in the second premise, to derive

S’;G’;X,X’ |-_p e1 v2 -K-> (e1’ v2’ pf) : t2’[v2’/x] (G1)

For the goal (G2), we use the subsitution lemma for translation, applied to Inv2.

For the goal (G3), we use (T-App) twice, noting that y not in FV(t2’), and using (G3.1.1) and
(G3.1.2).

--(T-TApp, T-Match):

Both straightforward.

--(T-Sub):

The definitions of (T-Sub) are inlined in the (DT-*) judgment. The conclusion follows from the
lemmas for translation of type equivalence and subtyping.

D. Semantics of DCIL

Static semantics is shown in Figure 13. Dynamic semantics is shown in Figure 14.

E. Soundness of DCIL

Theorem 29 (Subject reduction).
(A1) S; .; G(M); X |-_p e: t
(A2)(M, e) ~p~> (M’, e’)
=> S; .; G(M’); X’ |-_p e’: t /\

X’ = X U (dom M’ \ dom M) if dom M’ >= dom M
X’ = X \ (dom M \ dom M’) otherwise

Proof. By induction on the structure of (A2).
Case (TE-Pure): by Lemma (Pure evaluation)
Other cases can be proved similarly to those in the source language.

Lemma 30 (Pure evaluation).
(A1) S; .; G; X |-_p e: t
(A2) e ~p~> e’
=> S; .; G; X |-_p e’: t

Proof. By induction on the structure of (A1).

Case (TT-X, TT-XA): Irreducible.

Case (TT-Drop): induction hypothesis

Case (TT-Ldfld):
S; .; G; X |-_p v:? T<ts,vs> (B1)
Sp(T<ts, vs>) = fi:ti (B2)

37

--------------------------------[TT-Ldfld]
S; .; G; X |-_p v.fi : ti

By (TE-Fld), v = D<ts’, vs’> and e’ = vi

By (TT-New) X = X1..Xh
Sp(D) = D<’a1::k1..’ag::kg, x1:t1’..xh:th’> : T<ts’’, vs’’>
T<ts’’, vs’’>[ts’/’a1..’ag, vs’/x1..xn] = T<ts,vs>

By (WF-Ddecl), Sp(D<ts’, vs’>) = fi : ti

By (TT-New) S; .; G; X |- vi: ti

Case (TT-Bracket):

S; .; G; X |-_q e1: t (B1)
------------------------[TT-Bracket]
S; .; G; X |-_p <e1>q : t

By (TE-Br), e1 ~q~ e1’ and e’ = <e1’>q

By induction hypothesis on (B1), S; .; G; X |-_q e1’ : t

By [TT-Bracket], S; .; G; X |-_p <e1’>q : t

Case (TT-Let):
S; .; G; X |-_p v: t1 (B1)
S; .; G,x:t1; X,x |-_p e2: t (B2)

------------------------------------[TT-Let]
S; .; G; X |-_p let x = v in e2: t

By (TE-Let) e’ = e2[v/x].

By Lemma (Substitution) and (B1) and (B2), S; .; G; X |-_p e’: t

Case (TT-Eq):
S; .; G; X |-_p e: t1 (B1)
S; .; G |- t1 = t (B2)

------------------------[TT-Eq]
S; .; G; X |-_p e: t

By induction hypothesis on (B1), S; .; G; X |-_p e’: t1

By [TT-Eq], S; .; G; X |-_p e’: t

Case (TT-New): Irreducible.

Case (TT-App):
S; .; G; X1 |-_p v: ?T<ts,vs> (B1)
Sp(T<ts,vs>) = t2 m<’a::k>(x:t1) (B2)
S; .; G |- t0:: k (B3)
S; .; G; X2 |-_p v’: t1[t0/’a] (B4)
--[TT-App]
S; .; G; X1, X2 |-_p v.m<t0>(v’): t2[t0/’a][v’/x]

By (TE-App), v = D<ts’, vs’>, Sp(D<ts’, vs’>) = t2 m<’a::k>(x:t1) {eb}, e’ = eb[t0/’a, v’/x].

By (WF-Method), S; ’a::k; G, x:t1; X1, X2 |-_p eb: t2

By (B3), (B4), and Lemma (Substitution), S; .; G; X1, X2 |-_p e’: t

Case (TT-Isinst-obj):

S; .; G; X1 |-_p D’<ts, vs>: ?tx (B1)
Sp(D) = D<’a1::k1..’am:km, x1’:t1’..xn’:tn’>: t_D (B2)

38

S; .; G, x1:t1’[t1..tm/’a1..’am]..xn:tn’[t1..tm/’a1..’am, x1..x_(n-1)/x1’..x_(n-1)’];
X1, x1..xn |-_p D<t1..tm, x1..xn> : tx (B3)

S; .; G, x1:t1’[t1..tm/’a1..’am]..xn:tn’[t1..tm/’a1..’am, x1..x_(n-1)/x1’..x_(n-1)’];
X2, x1..xn |-_p et: t (B4)

S; .; G; X2 |-_p ef: t (B5)
---[TT-Isinst-x]
S; .; G; X1, X2 |-_p D’<ts, vs> isinst D<t1..tm, x1..xn> then et else ef

There are two cases:
case 1: D’ = D, e’ = et[vs/x1..xn]

By (B1) and (TT-New), X1 = X11, ..., X1n,
forall i=1..n, S; .; G; X1i |-_p vi: ti’[t1..tm/’a1..’am, v1..v_(i-1)/x_(i-1)]

By Lemma (Substitution) and (B4), S; .; G; X2 |- et[vs/xi..xn] : t

By (TT-Drop), S; .; G; X1, X2 |-_p e’: t

case 2: D’ <> D, e’ = ef
By (B5) and (TT-Drop), S; .; G; X1, X2 |-_p e’: t

Theorem 31 (Progress). (A1) S; .; G; dom(M) |-_p e: t,
=> either exists v_p s.t. e = v_p or exists M’, e’ s.t. (M, e) ~p~> (M’, e’)

Proof. By induction on the structure of (A1).

Case TT-X, TT-XA, TT-New: already values

Case TT-Drop: induction hypothesis

Case TT-Ldfld: e = v.fi.

S; .; G; X |-_p v:? T<ts,vs> (B1)
Sp(T<ts, vs>) = fi:ti (B2)
--------------------------------[TT-Ldfld]
S; .; G; X |-_p v.fi : ti

By Lemma (Canonical forms) and (B1), v = D<ts’, vs’>.

By (WF-Ddecl) and (B2), Sp(D<ts’,vs’>) = fi:ti.
Therefore D<ts’, vs’> has a field fi and (TE-fld) applies.

Case TT-Bracket: similar to the cases in Fine.

Case TT-Let: e = let x = e1 in e2.

If e1 is a value, apply (TE-Cong). Otherwise (TE-Let)

Case TT-Eq: induction hypothesis

Case TT-App:
S; .; G; X1 |-_p v: ?T<ts,vs> (B1)
Sp(T<ts,vs>) = t2 m<’a::k>(x:t1) (B2)
S; .; G |- t0:: k (B3)
S; .; G; X2 |-_p v’: t1[t0/’a] (B4)
--[TT-App]
S; .; G; X1, X2 |-_p v.m<t0>(v’): t2[t0/’a][v’/x]

By Lemma (Canonical form) and (B1), v = D<ts’,vs’>

By (WF-Ddecl) and (B2), Sp(D<ts’,vs’>) = t2 m<’a::k>(x:t1). (TE-App) applies.

Case TT-Isinst: apply (TE-Isinst)

39

Lemma 32 (Canonical forms). S; .; G; X |- v: ?T<ts, vs>
=> v = D<ts’, vs’>

Proof. By induction on the expression typing rules.

Lemma 33 (Substitution).
S; ’a::k; G1, G2; X |-_p e:t and S; .; G1 |- t0::k
=> S; .; G1, G2[t0/’a]; X |-_p e[t0/’a]: t[t0/’a]

S; .; G, x:t0; X,x |-_p e:t and S; .; G; . |- v: t0
=> S; .; G; X |-_p e[v/x] : t[v/x]

Proof. By induction on expression typing rules.

F. Value Abstraction of DCIL

Theorem 34 (DCIL value abstraction). (A1) S;.;x:(p, tx); x |-_q e:t
(A2) q and p are not in the same assembly,
and e is a non-value free of r-brackets where r and p are in the same assembly, except for <x>_p
(A3) forall i, S; .; .; . |-_p vi_p : tx
(A4) e[v1_p/x] ~q~> e1
=> exists e2, s.t. e2[v1_p/x] = e1 and e[v2_p/x] ~q~> e2[v2_p/x]

Proof. by induction on expression evaluation rules.

Case (TE-Br), (TE-Strip), (TE-Nest):
similar to those in the source language value abstraction proof.

Case (TE-Fld):
------------------------------------[TE-Fld]
(D<ts, vs>.fi)[v1_p/x] ~q~> v_i[v1_p/x]

pick e2 = vi

Case (TE-App):

Sp(D<ts,vs>) = t m<’a::k>(y:t’) { e }
--[TE-App]
(D<ts,vs>.m<t>(v))[v1_p/x] ~q~> e[v1_p/x][t/’a, v[v1_p/x]/y]

pick e2 = e[t/’a, v/y]

Case (TE-Isinst):

v = D<ts, vs> => e’ = et[vs/xs]
v = D’<ts’, vs>, D’ != D => e’ = ef
---[TE-Isinst]
(v isinst D<ts, xs> the et else ef)[v1_p/x] ~q~> e’[v1_p/x]

pick e2 = e’

Case (TE-Let):

-----------------------------[TE-Let]
(let y = v in e)[v1_p/x] ~q~> e[v1_p/x][v[v1_p/x]/y]

pick e2 = e[v/y]

G. Translation from FINE to DCIL

Translation of types and expressions is shown in Figure 15.

40

H. Proofs of Type-preserving Translation
Suppose S0 collects all class declarations generated by the translation.

Definition 35 (Environment translation). ||.|| = .
	T::k		=		T, k					
	D:(p, t)		=		D, t					
	S, S’		=		S		,		S’	

||.|| = (., .)
||’a::k|| = (’a::||k||, .)
||x:(p, t)|| = (., x:(p, ||t||))
||\epmatch{x}{v}|| = (., x \cnv ||v||)
||G, G’|| = ((G1, G1’), (G2, G2’)) where ||G|| = (G1, G2) and ||G’|| = (G1’, G2’)

If ||G|| = (G1, G2) and ||S; G; F|| |- ||t_f|| ~> t_f’, then
||S; G; (f:t_f, F)|| is defined as (||S||, S0; G1; G2, this:t_f’) and
||S; G; X; (f:t_f, F)|| is defined as (||S||, S0; G1; G2, this:t_f’; X, this)

Lemma 36. Type translation

S; G |- t :: k in Fine,
S; G; F |- ||t|| ~> t’
=> ||S; G; F|| |- t’ :: ||k|| in DCIL

Proof. By induction on translation of types

Lemma 37. Variable translation

S; G; X |-_p x: t in Fine
S; G; F |- ||t|| ~> t’
=> ||S; G; X; F|| |-_p x: t’ in DCIL

Proof. There are two cases:

case 1: X = ., G(x) = (p, t), and S; G |- t :: *

By Lemma (Type translation), ||S; G; F|| |- t’ :: *

By Definition (Environment translation), ||G||(x) = (p, t’)

By TT-X, ||S; G; X; F|| |-_p x:t’ in DCIL

case 2: G(x) = (p, t). Similiar to case 1.

Lemma 38. Type translation commutes with substitution

S; G; F |- ||t|| ~> s
forall i=1..m, S; G; F |- ||ti|| ~> si
forall j = 1..n, S; G; X; F |-_p ||vj|| ~> vj’
S; G; F |- ||t[t1..tm/’a1..’am, v1..vn/x1..xn]|| ~> s’
=> s’ = s[s1..sm/’a1..’am, v1’..vn’/x1..xn]

Proof. By induction on translation of types

Lemma 39 (Value translation). 1. Values in Fine are translated to values in DCIL.
2. S; G; X |-_p v : t in Fine

S; G; X; F |-_p ||v:t|| ~> v’
S; G; F |- ||t|| ~> t’
=> ||S; G; X; F|| |-_p v’ : t’ in DCIL

Proof. By induction on value translation rules.

Lemma 40 (Type-preserving translation). (A1) S; G; X |-_p e: t in Fine
(A2) S; G; X; F |-_p ||e: t|| ~> e’
(A3) S; G; F |- ||t|| ~> t’
=> ||S; G; X; F|| |-_p e’ : t’ in DCIL.

Proof. By induction on A2.

41

Case (Tr-Obj):

forall i = 1..m, S; G; F |- ||t_i|| ~> s_i (B1)
forall j = 1..n, S; G; X; F |-_p ||v_j|| ~> v_j’ (B2)
--[Tr-Obj]
S; G; X; F |-_p ||D t1..tm v1..vn : t|| ~> D<s1..sm, v1’..vn’>

By (A1), T-D, T-TApp, and T-App,
(C1). S(D) = (p, \/’a1::k1..’am:km (x1:t1’)->...->(xn:tn’) -> t_D)
(C2). S; G |- ti :: ki forall i=1..m
(C3). X = X1, ..., Xn
(C4). S; G; Xj |- vj: tj’[t1..tm/’a1..’am, v1..v(j-1)/x1..x(j-1)] forall j=1..n
(C5). t = t_D[t1..tm/’a1..’am, v1..vn/x1..xn]

Let S; ’a1::k1..’am::km, x1:t1’..x_(j-1):t_(j-1)’; . |- ||tj’|| ~> sj’ forall j = 1..n

Let S; ’a1::k1..’am::km, x1:t1’..xn:tn’; . |- ||t_D|| ~> s_D

By Tr-D and (C1), S0(D) = internal D<’a1::||k1||..’am:||km||, x1:s1’..xn:sn’> : s_D {}.

By Lemma (Type translation) and (C2), ||S; G; F|| |- si :: ||ki|| forall i=1..m

Let S; G; F |- ||tj’[t1..tm/’a1..’am, v1..v(j-1)/x1..x(j-1)]|| ~> ssj forall j=1..n

By Lemma (Value translation) and (C4), ||S; G; Xj; F|| |-_p vj’: ssj forall j=1..n

By Lemma (Type translation commutes with substitution),
||S; G; Xj; F|| |-_p vj’: sj’[s1..sm/’a1..’am, v1’..v(j-1)’/x1..x(j-1)] forall j=1..n

By TT-New, ||S; G; X; F|| |-_p D<s1..sm, v1’..vn’>: s_D[s1..sm/’a1..’am, v1’..vn’/x1..xn]

By Lemma (Type translation commutes with substitution) and (C5), ||S; G; X; F|| |-_p D<s1..sm, v1’..vn’>: t’

Case (Tr-X):

-------------------------[Tr-X]
S; G; X |-_p ||x : t|| ~> x

By Lemma (Variable translation), ||S; G; X; F|| |-_p x: t’ in DCIL

Case (Tr-F):

----------------------------------[Tr-F]
S; G; .; (f:t, F) |-_p ||f : t|| ~> this

By (T-x) and (T-XA), G(f) = (p, t)

By Definition (Environment translation), ||S; G; .; (f:t, F)||(this) = t’

By TD-XA, ||S; G; .; (f:t, F)|| |-_p this : t’ in DCIL

Case (Tr-Fun): t = Q(X, x:t1->t2)

S; G, x:(p, t1); X, x; F |-_p ||e:t2|| ~> eb’ (B1)
C is a fresh class name (B2)
S; G; F |- ||t1|| ~> s1 (B3)
S; G, x:(p, t1); F |- ||t2|| ~> s2 (B4)
internal C<tvars(G), vvars(G)> : t’ { s2 App(x:s1){eb’}} (B5)
--[Tr-Fun]
S; G; X; F |-_p ||\x:t1.e: t|| ~> C<tvars(G), vvars(G)>

By Lemmas (Type translation) and (Value translation) and (TT-New)

Case (Tr-Uni): t = Q(X, \/’a::k.t’’)

42

S; G, ’a::k; X; F |-_p ||e:t’’|| ~> eb’ (B1)
C is a fresh class name (B2)
S; G, ’a::k; F |- ||t’’|| ~> s’ (B3)
internal C<tvars(G), vvars(G)> : t’ { s’ TyApp<’a::k>(){eb’}} (B4)
--[Tr-Uni]
S; G; X; F |-_p ||/\’a::k.e : t|| ~> C<tvars(G), vvars(G)>

By Lemmas (Type translation) and (Value translation) and (TT-New)

Case (Tr-Fix):

S; G, f:(p,t); .; (f:t, F) |-_p ||v_p: t|| ~> e’ (B1)
---[Tr-Fix]
S; G; .; F |-_p ||fix f:t.v_p: t|| ~> e’

By induction hypothesis on B1, ||S; G, f:(p,t); .; (f:t, F)|| |-_p e’: t’

e’ has no free occurrence of f by (Tr-F), therefore, ||S; G; .; F|| |-_p e’: t’

Case (Tr-App): t = t2[e2/x], e’ = let x1 = e1’ in let x2 = e2’ in x1.App(x2)

S; G; X; F |-_p ||e1: ?x:t1->t2|| ~> e1’ (B1)
S; G; X’; F |-_p ||e2:t1|| ~> e2’ (B2)
--[Tr-App]
S; G; X, X’; F |-_p ||e1 e2: t|| ~>

let x1 = e1’ in let x2 = e2’ in x1.App(x2)

Let S; G; F |- ||x:t1->t2|| ~> s_f
and S; G; F |- ||t1|| ~> s1
and S; G,x:t1; F |- ||t2|| ~> s2

By (Tr-tdep) s_f = C<s1, \x:s1.s2> where C = DepArrow, DepArrowSA, or DepArrowSS

By induction hypothesis on B1, ||S; G; X; F|| |-_p e1’: ?s_f

By induction hypothesis on B2, ||S; G; X’; F|| |-_p e2’: s1

By (TT-Let) and (TT-App), ||S; G; X, X’; F|| |-_p e’: (\x:s1.s2) x2

(\x:s1.s2) x2 = s2[x2/x] = s2[e2’/x]

By Lemma (Type translation commutes with substitution), ||S; G; X, X’; F|| |-_p e’: t’

Case (Tr-TApp): t = t1[t2/\’a], e’ = let x = e1’ in x.TyApp<s2>()

S; G; X; F |-_p ||e1: ?\/’a::k.t1|| ~> e1’ (B1)
S; G; F |-_p ||t2|| ~> s2’ (B2)
--[Tr-TApp]
S; G; X; F |-_p ||e1 t2: t|| ~ let x = e1’ in x.TyApp<s2>()

Let ||S; G, ’a::k; F || |- ||t1|| = s1’. a-lifting of s1’ = (’a1..’am)(s1..sm, s’).

Then S; G; F |-_p ||\/’a::k.t1|| ~> All_’a1..’am<s1..sm>
and S0(All_’a1..’am) = public All_’a1..’am<’a1..’am>::*{s’ TyApp<’a::k>()}

By (TT-Let) and (TT-App), ||S; G; X; F|| |-_p e’: s1’[s2/’a].

By Lemma (Type translation commutes with substitution), ||S; G; X, X’; F|| |-_p e’: t’

Case (Tr-Match): e’ = let x = ev in x isinst tD then e1’ else e2’

S; G; X1; F |-_p ||vp: tt|| ~> ev (B1)
S(D) = \/ ’a1::k1..’am::km (y1:t1’) -> ... -> (yn:tn’) -> t_D (B2)
S; G,xi:(p, ti’[t1..tm/’a1..’am]); X1, x1..xm |-_p D t1..tm x1..xn : tt (B3)

43

S; G, xi:(p, ti’[t1..tm/’a1..’am]), vp = D t1..tm x1..xn; X2, x1..xm; F (B4)
|-_p ||e1:t|| ~> e1’

S; G; X2; F |-_p ||e2:t|| ~> e2’ (B5)
--[Tr-match]
S; G; X1, X2; F |-_p ||match vp with D t1..tm x1..xn -> e1 else e2: t|| ~>

let x = ev in x isinst tD then e1’ else e2’

Let S; G, ’a1::k1..’am::km, y1:t1’..y_(i-1):t_(i-1)’; F |- ||ti’|| ~> si’ forall i=1..n,
S; G, ’a1::k1..’am::km, y1:t1’..yn:tn’; F |- ||t_D|| ~> s_D,
S; G; F |- ||tt|| ~> ss,
S; G; F |- ||ti|| ~> si forall i=1..m.

By (Tr-D), S0(D) = D<’a1::k1..’am::km, y1:s1’..yn:sn’>:s_D {}

By induction hypothesis on (B1), ||S; G; X1; F|| |-_p ev: ss

By induction hypothesis on (B3),
||S; G,xi:(p, ti’[t1..tm/’a1..’am]); X1, x1..xm|| |-_p D<s1..sm, x1..xn> : ss

By induction hypothesis on (B4),
||S; G, xi:(p, ti’[t1..tm/’a1..’am]), vp = D t1..tm x1..xn; X2, x1..xm; F ||
|-_p e1’: t’

By induction hypothesis on (B5), ||S; G; X2; F|| |-_p e2’: t’

By Definition (Environment translation) and Lemma (Type translation commutes with substitution),
||S; G, xi:(p, ti’[t1..tm/’a1..’am]), vp = D t1..tm x1..xn; X2, x1..xm; F || =
||S; G; X; F||, xi:(p, si’[s1..sm/’a1..’am]), ev=D<s1..sm, x1..xn>]

By (TT-Let) and (TT-Isinst), ||S; G; X1, X2; F|| |-_p e’: t’

References
A. W. Appel and E. W. Felten. Proof-carrying authentication. In CCS. ACM Press, 1999.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for secure implementations. In CSF, 2008.

Y. Bertot and P. Castéran. Coq’Art: Interactive Theorem Proving and Program Development. Springer Verlag, 2004.

J. Borgstroem, A. Gordon, and R. Pucella. Roles, stacks, histories: A triple for hoare. Unpublished manuscript, 2009.

A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effective interactive proofs for higher-order imperative programs. In ICFP, 2009.

S. Chong, A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java + information flow, July 2006. Software release.

L. de Moura and N. Bjorner. Z3: An efficient smt solver. In TACAS, LNCS v. 4963, 2008.

D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and reasoning about dynamic access-control policies. In LNCS, 2006.

ECMA. Standard ecma-335: Common language infrastructure (cli), 2006.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and change-impact analysis of access-control policies. In ICSE, 2005.

C. Flanagan. Hybrid type checking. In POPL, 2006.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. In PLDI. 1993.

D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type abstraction. ACM TOPLAS, 22(6):1037–1080, 2000. ISSN 0164-0925.

L. Jia, J. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and S. Zdancewic. Aura: A programming language for authorization and audit. In ICFP, 2008.

A. Kennedy and D. Syme. Transposing f to c#: Expressivity of polymorphism in an object-oriented language. Concurrency and Computation: Practice and
Experience, 16(7), 2004.

S. Krishnamurthi. The continue server. In Practical aspects of declarative languages, volume 2562 of Lecture Notes in Computer Science. Springer, 2003.
ISBN 3-540-00389-4.

C. McBride and J. McKinna. The view from the left. JFP, 14(1), 2004.

R. Milner. LCF: A way of doing proofs with a machine. In MFCS, 1979.

U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis, Chalmers Institute of Technology, 2007.

V. Simonet. FlowCaml in a nutshell. In G. Hutton, editor, APPSEM-II, pages 152–165, Mar. 2003.

A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified programming in guru. In PLPV, 2008.

N. Swamy and M. Hicks. Verified enforcement of stateful information release policies. In PLAS, 2008.

N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for enforcing user-defined security policies. In S&P, 2008.

N. Swamy, M. Hicks, and G. Bierman. A theory of typed coercions and its applications. In ICFP, 2009.

44

J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. In CSF, 2008.
D. Walker. Advanced Topics in Types and Programming Languages, chapter Substructural Type Systems. MIT Press, 2004.
D. Walker, K. Crary, and G. Morrisett. Typed memory management via static capabilities. ACM TOPLAS, 22(4), 2000.
H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In POPL, 2003.

45

Σ; ∆; Γ ` κ Well-formedness of kinds

Σ; ∆; Γ ` ? (TWF-*)
Σ; ∆; Γ ` A

(TWF-A)
Σ; ∆; Γ ` τ :: ? Σ; ∆; Γ ` κ

Σ; ∆; Γ ` τ → κ
(TWF-Dep)

Σ; ∆; Γ ` τ :: κ Kinding of types

α :: κ ∈ ∆
Σ; ∆; Γ ` α :: κ

(TK-Var)
Σ; ∆; Γ ` τ :: ?

Σ; ∆; Γ `!τ :: A
(TK-Affine)

Σ; ∆; Γ ` τ1 :: ?
Σ; ∆; Γ, x:τ1 ` τ2 :: κ

Σ; ∆; Γ ` \x:τ1.τ2 :: τ1 → κ
(TK-Fun)

Σ; ∆; Γ ` τ :: τ1 → κ
Σ; ∆; Γ; · ` v : τ1
Σ; ∆; Γ ` τ v :: κ

(TK-App)

Σ(T) = T 〈~α::~κ, ~x::~τ ′〉::κ′ Σ; ∆; Γ ` τi :: κi
Σ; ∆; Γ; · ` vj : τ ′j [~τ/~α][v1 . . . vj−1/x1 . . . xj−1]

Σ; ∆; Γ ` T 〈~τ,~v〉 :: κ′
(TK-T)

Σ; ∆; Γ;X `p e : τ Expression typing

Γ(x) = (p, τ) Σ; ∆; Γ ` τ :: ?

Σ; ∆; Γ; · `p x : τ
(TT-X)

Γ(x) = (p, τ)

Σ; ∆; Γ;x `p x : τ
(TT-XA)

Σ; ∆; Γ;X `p e : τ

Σ; ∆; Γ;X,X ′ `p e : τ
(TT-Drop)

Σ; ∆; Γ;X `p v :?T 〈~τ,~v〉 Σp(T 〈~τ,~v〉) = fi : τi

Σ; ∆; Γ;X `p v.fi : τi
(TT-Ldfld)

Σ; ∆; Γ;X `q e : τ

Σ; ∆; Γ;X `p 〈e〉q : τ
(TT-Bracket)

Σ; ∆; Γ;X1 ` e1 : τ1 Σ; ∆; Γ, x : τ1;X2, x ` e2 : τ2 x not free in τ2
Σ; ∆; Γ;X1, X2 `p let x = e1 in e2 : τ2

(TT-Let)
Σ; ∆; Γ;X `p e : τ1 Σ; ∆; Γ ` τ1 ∼= τ2

Σ; ∆; Γ;X `p e : τ2
(TT-Eq)

Σp(D) = ψ D〈~α::~κ, ~x:~τ ′〉 : T 〈 ~τ ′′, ~v′〉 ∀i.Σ; ∆; Γ ` τi :: κi ∀j.Σ; ∆; Γ, Xj `p vj : τ ′j [~τ/~α][v1 . . . vj−1/x1 . . . xj−1]

Σ; ∆; Γ;X1 . . . Xm `p D〈τ1 . . . τn, v1 . . . vm〉 : T 〈 ~τ ′′, ~v′〉[~τ/~α][~v/~x]
(TT-New)

Σ; ∆; Γ;X `p v :?T 〈~τ3, ~v3〉 Σp(T 〈~τ3, ~v3〉) = τ2 m〈α::κ〉(x:τ1) Σ; ∆; Γ ` τ :: κ Σ; ∆; Γ;X ′ `p v′ : τ1[τ/α]

Σ; ∆; Γ;X,X ′ `p v.m〈τ〉(v′) : τ2[τ/α][v′/x]
(TT-App)

Σ; ∆; Γ;X1 `p x :?τ Σp(D) = ψ D〈~α::~κ, ~x′:~τ ′〉 : T 〈 ~τ ′′, ~v′〉 Σ; ∆; Γ, ~x:~τ ′[~τ/~α, x1..xi−1/x
′
1..x
′
i−1]; ~x `p D〈~τ, ~x〉 : τ

∆; Γ, ~x : ~τ ′[~τ/~α, x1..xi−1/x
′
1..x
′
i−1], x ∼= D〈~τ ; ~x〉;X2, ~x `p et : τ ′ Σ; ∆; Γ;X2 `p ef : τ ′

Σ; ∆; Γ;X1, X2 `p x isinst D〈~τ, ~x〉 then et else ef : τ ′
(TT-Isinst-x)

Σ; ∆; Γ;X1 `p D′ < ts, vs >: τ Σp(D) = ψ D〈~α::~κ, ~x′:~τ ′〉 : T 〈 ~τ ′′, ~v′〉 Σ; ∆; Γ;X2 `p ef : τ ′

Σ; ∆; Γ, ~x:~τ ′[~τ/~α, x1..xi−1/x
′
1..x
′
i−1]; ~x `p D〈~τ, ~x〉 : τ ∆; Γ, ~x : ~τ ′[~τ/~α, x1..xi−1/x

′
1..x
′
i−1];X2, ~x `p et : τ ′

Σ; ∆; Γ;X1, X2 `p D′ < ts, vs > isinst D〈~τ, ~x〉 then et else ef : τ ′
(TT-Isinst-obj)

Σ; ∆; Γ ` t ∼= t′ Σ; ∆; Γ ` v ∼= v′ Type and value equivalence

Σ; ∆; Γ ` τ ∼= τ
(TE-Id)

Σ; ∆; Γ ` \x:τ.τ ′ v ∼= τ ′[v/x]
(TE-Beta)

Σ; ∆; Γ ` τ ∼= τ ′ Σ; ∆; Γ ` v ∼= v′

Σ; ∆; Γ ` τ v ∼= τ ′ v′
TE-Dep

Σ; ∆; Γ ` v ∼= v
(EE-Id)

v ∼= v′ ∈ Γ or v′ ∼= v ∈ Γ

Σ; ∆; Γ ` v ∼= v′
(EE-Match)

∀i, j Σ; ∆; Γ ` τi ∼= τ ′i Σ; ∆; Γ ` vj ∼= v′j

Σ; ∆; Γ ` D〈τ1 . . . τn, v1 . . . vm〉 ∼= D〈τ ′1 . . . τ ′n, v′1 . . . v′m〉
(EE-Obj)

Σ; ∆; Γ;X `p τ m〈α::κ〉(x:τ){e} Well-formedness of methods

Σ; ∆; Γ ` κ Σ; ∆, α :: κ; Γ ` τ : ? or A
Σ; ∆, α :: κ; Γ, x : τ ;X,x `p e : τ

Σ; ∆; Γ;X `p τ m〈α::κ〉(x:τ){e}
(WF-Method)

Σ ` ψ D〈~α::~κ, ~x:~τ〉:T 〈~τ,~v〉{−→fdcl,−−→mdcl} Well-formedness of data class declarations

Σ; ~x :: ~κ; ~x : ~τ ` T 〈~τ,~v〉 −→fdcl ⊆ fdecls(T 〈~τ,~v〉) −−→mdcl ⊆ mdecls(T 〈~τ,~v〉)
∀fi : ti ∈ −→fdcl,Σ; ~x :: ~κ; ~x : ~τ ; ~x `p τi ∀mdcl ∈ −−→mdcl,Σ; ~x :: ~κ; ~x : ~τ ; ~x `p mdcl

Σ `p ψ D〈~α::~κ, ~x:~τ〉:T 〈~τ,~v〉{−→fdcl,−−→mdcl}
(WF-Ddecl)

Figure 13. Static semantics of DCIL (complete)

46

p-Evaluation context Ep ::= • | let x = Ep in e2 Store M ::= (x, vp),M | ·

〈vp〉p
p
 vp (TE-Strip) 〈〈vq〉q〉r

p
 〈vq〉q (TE-Nest)

e
q
 e′

〈e〉q
p
 〈e′〉q

(TE-Br)
Σ; ·; ·; · ` vp : τ Σ; ·; · ` τ :: A M ′ = M, (x, vq) x fresh

M, vp
p
 M ′, x

(TE-Construct)

M = M ′, (x, vq)

M,x
p
 M ′, vq

(TE-Destruct)
M, e

p
 M ′, e′

M,Ep[e]
p
 M ′, Ep[e

′]
(TE-Cong)

e
p
 e′

M,Ep[e]
p
 M,Ep[e

′]
(TE-Pure)

D〈~τ,~v〉.fi
p
 vi

(TE-Fld)
Σp(D〈~τ,~v〉) = τ m〈α::κ〉(x:τ ′){e}

D〈~τ,~v〉.m〈τ〉(v)
p
 e[τ/α, v/x]

(TE-App)

v = D〈~τ,~v〉 ⇒ e = et[~v/~x] v = D′〈~τ ′, ~v〉, D 6= D′ ⇒ e = ef

v isinst D〈~τ, ~x〉 then et else ef
p
 e

(TE-Isinst)
let x = v in e

p
 e[v/x]

(TE-Let)

Figure 14. Dynamic semantics of DCIL

47

‖κ‖ = κ′ Translation of kinds

‖ ? ‖ = ? ‖A‖ = A

S; Γ;F ` ‖T‖ cdcl S; Γ;F ` ‖T, κ, tvs‖ cdcl Translation of type constructors

S; Γ;F ` ‖T‖ ‖T, S(T), []‖
(Tr-Tyc)

κ = ? or A α fresh S; Γ;F ` ‖T, κ′, (tvs, α :: ‖κ‖)‖ cdcl

S; Γ;F ` ‖T, κ→ κ′, tvs‖ cdcl

x fresh S; Γ; ·;F ` ‖τ‖ s S; Γ;F ` ‖T, κ, (tvs, x : s)‖ cdcl
S; Γ;F ` ‖T, τ → κ, tvs‖ cdcl

κ = ? or A
S; Γ;F ` ‖T, κ, tvs‖ public T 〈tvs〉 :: κ{}

S; Γ;F ` ‖D‖ ddcl S; Γ;F ` ‖D, (p, τ), tvs‖ ddcl Translation of data constructors

S; Γ;F ` ‖D‖ ‖D,S(D), []‖
(Tr-D)

S; Γ;F ` ‖D, (p, τ), (tvs, α :: ‖κ‖)‖ ddcl
S; Γ;F ` ‖D, (p, ∀α::κ.τ), tvs‖ ddcl

S; Γ;F ` ‖τ‖ s S; Γ;F ` ‖D, (p, τ ′), (tvs, x : s)‖ ddcl

S; Γ;F ` ‖D, (p, x:τ → τ ′), tvs‖ ddcl

τ = T ~τ ~x S; Γ;F ` ‖τ‖ s
ψ = public if p = ⊥ and internal otherwise
S; Γ;F ` ‖D, (p, τ), tvs‖ ψ D〈tvs〉 : s{}

S; Γ;F ` ‖τ‖ τ ′ Translation of types

S; Γ;F ` ‖α‖ α
(Tr-tvar)

S; Γ;F ` ‖τ‖ τ ′

S; Γ;F ` ‖!τ‖ =!τ ′
(Tr-afn)

C = DepArrow if S; Γ ` τ : ? and S; Γ ` τ ′ : ?
C = DepArrowSA if S; Γ ` τ : ? and S; Γ ` τ ′ : A
C = DepArrowAA if S; Γ ` τ : A and S; Γ ` τ ′ : A
S; Γ;F ` ‖τ‖ s S; Γ, x : τ ;F ` ‖τ ′‖ s′

S; Γ;F ` ‖x:τ → τ ′‖ C〈s, \x:s.s′〉
(Tr-tdep)

S; Γ;F ` ‖τ‖ s α− lifting of s = ~α(~τ, τ ′)
public All~α〈~α〉 :: ?{τ ′ TyApp〈α :: ‖κ‖〉(){}}

S; Γ;F ` ‖∀α::κ.τ‖ All~α〈~τ〉
(Tr-tforall)

∀i = 1..m, S; Γ;F ` ‖τi‖ τ ′i
∀j = 1..n, S; Γ; ·;F ` ‖vj‖ v′j

S; Γ;F ` ‖T ~τ ~v‖ T 〈~τ ′, ~v′〉
(Tr-tapp)

S; Γ;X;F `p ‖e : τ‖ e′ Translation of expressions

∀i = 1..m, S; Γ;F ` ‖τi‖ si
∀j = 1..n, S; Γ;X;F `p ‖vj‖ v′j

S; Γ;X;F `p ‖D ~τ ~v : τ‖ D〈 ~‖s‖, ~‖v′‖〉
(Tr-Obj)

S; Γ;X;F `p ‖x : τ‖ x
(Tr-X)

S; Γ; ·; (f : τf , F) `p ‖f : τf‖ this
(Tr-F)

S; Γ, x:(p, τ1);X,x;F `p ‖e : τ2‖ e′ C is a fresh class name S; Γ;F ` ‖τ1‖ s1 S; Γ, x:(p, τ1);X,x;F ` ‖τ2‖ s2
internal C〈tvars(Γ), vvars(Γ)〉 : ‖Q(X,x:τ1 → τ2)‖{s2 App(x : s1){e′}}
S; Γ;X;F `p ‖λx:τ1.e : Q(X,x:τ1 → τ2)‖ C〈tvars(Γ), vvars(Γ)〉

(Tr-Fun)

S; Γ, α::κ;X;F `p ‖e : τ ′‖ e′ C is a fresh class name S; Γ, α :: κ;F ` ‖τ ′‖ s′

internal C〈tvars(Γ), vvars(Γ)〉 : ‖Q(X, ∀α::κ.τ ′)‖{s′ TyApp〈α :: ‖κ‖〉(){e′}}
S; Γ;X;F `p ‖Λα::κ.e : Q(X, ∀α::κ.τ ′)‖ C〈tvars(Γ), vvars(Γ)〉

(Tr-Uni)

S; Γ;X;F `p ‖e1 :?x:τ1 → τ2‖ e′1 S; Γ;X ′;F `p ‖e2 : τ1‖ e′2

S; Γ;X,X ′;F `p ‖e1 e2 : τ2[e2/x]‖ let x1 = e′1 in let x2 = e′2 in x1.App(x2)
(Tr-App)

S; Γ, f :(p, τ); ·; (f : τ, F) `p ‖vp : τ‖ e′

S; Γ; ·;F `p ‖fix f :τ.vp : τ‖ e′
(Tr-Fix)

S; Γ;X;F `p ‖e :?∀α::κ.τ‖ e′ S; Γ;F ` ‖τ ′‖ s′

S; Γ;X;F `p ‖e τ ′ : τ [τ ′/α]‖ let x = e′ in x.TyApp〈s′〉()
(Tr-TApp)

S; Γ;X;F `p ‖vp : τ ′‖ e′ S(D) = ∀~α : ~κ, (y1 : τ ′1)→ . . .→ (yn : τ ′n)→ τD S; Γ, xi:(p, τ
′
i [~τ/~α]); ~x `p D ~τ ~x : τ ′

S; Γ, xi:(p, τ
′
i [~τ/~α]), vp

.
= D ~τ ~x;X ′, ~x;F `p ‖e1 : τ‖ e′1 S; Γ;X ′;F `p ‖e2 : τ‖ e′2

S; Γ;X,X ′;F `p ‖match vp with D ~τ ~x→ e1 else e2 : τ‖ let x = e′ in x isinst ‖D ~τ ~x‖ then e′1 else e′2
(Tr-Match)

Class declarations used in the translation

public DepArrow〈α1 : ?, α2 : α1 → ?〉 :: ?{(α2 x) App(x : α1){}}

public DepArrowSA〈α1 : ?, α2 : α1 → A〉 :: ?{(α2 x) App(x : α1){}}

public DepArrowAA〈α1 : A, α2 : α1 → A〉 :: ?{(α2 x) App(x : α1){}}

Figure 15. Translation from FINE to DCIL

48

