
Three Tactic Theorem Proving

Don Syme

Microsoft Research Limited, St. George House, 1 Guildhall Street, Cambridge, CB2
3NH, UK

Abstract. We describe the key features of the proof description lan-
guage of Declare, an experimental theorem prover for higher order
logic. We take a somewhat radical approach to proof description: proofs
are not described with tactics but by using just three expressive outlin-
ing constructs. The language is \declarative" because each step speci�es
its logical consequences, i.e. the constants and formulae that are intro-
duced, independently of the justi�cation of that step. Logical constants
and facts are lexically scoped in a style reminiscent of structured pro-
gramming. The style is also heavily \inferential", because Declare relies
on an automated prover to eliminate much of the detail normally made
explicit in tactic proofs. Declare has been partly inspired by Mizar,
but provides better automation. The proof language has been designed
to take advantage of this, allowing proof steps to be both large and con-
trolled. We assess the costs and bene�ts of this approach, and describe its
impact on three areas of theorem prover design: speci�cation, automated
reasoning and interaction.

1 Declarative Theorem Proving

Interactive theorem provers combine aspects of formal speci�cation, manual
proof description and automated reasoning, and they allow us to develop ma-
chine checked formalizations for problems that do not completely succumb to
fully automated techniques. In this paper we take the position that the role of
proof description in such a system is relatively simple: it must allow the user to
describe how complex problems decompose to simpler ones, which can, we hope,
be solved automatically.

This article examines a particular kind of declarative proof, which is one tech-
nique for describing problem decompositions. The proof description language we
present is that of Declare, an experimental theorem prover for higher or-
der logic. The language provides the functionality described above via three
simple constructs which embody �rst-order decomposition, second-order proof
techniques and automated reasoning. The actual implementation of Declare
provides additional facilities such as a speci�cation language, an automated rea-
soning engine, a module system, an interactive development environment (IDE),
and other proof language constructs that translate to those described here. We
describe these where relevant, but focus on the essence of the outlining con-
structs.



In this section we describe our view of what constitutes a declarative proof
language and look at the pros and cons of a declarative approach. We also make
a distinction between \declarative" and \inferential" aspects of proof descrip-
tion, both of which are present in the language we describe. In Section 2 we
describe the three constructs used in Declare, and present a longer example of
proof decomposition, and Section 3 discusses the language used to specify hints.
Section 4 compares our proof style with tactic proof, and summarizes related
issues such as automated reasoning and the IDE.

Space does not permit extensive case studies to be presented here. However,
Declare has been applied to a formalization of the semantics of a subset of the
Java language and a proof of type soundness for this subset [Sym99]. The purpose
of Declare is to explore mechanisms of speci�cation, proof and interaction that
may eventually be incorporated into other theorem proving systems, and thus
complement them.

1.1 Background

This work was inspired by similar languages developed by the Mizar group
[Rud92] and Harrison [Har96]. Mizar is a system for formalizing general math-
ematics, designed and used by mathematicians, and a phenomenal amount of
the mathematical corpus has been formalized in this system. The foundation is
set theory, which pervades the system, and proofs are expressed using detailed
outlines, leaving the machine to �ll in the gaps. Once the concrete syntax is
stripped away, steps in Mizar proofs are mostly applications of simple deduc-
tion rules, e.g. generalization, instantiation, and propositional introduction and
elimination.1 Essentially our work has been to transfer a key Mizar idea (proof
outlining) to the setting of higher order logic theorem proving, use extensive au-
tomation to increase the size of proof steps, generalize the notion of an outlining
construct in a natural way, re�ne the system based on some large case studies
and explore the related issues of speci�cation, automation, interaction. This has
led to the three outlining constructs described in this paper.

Some of the other systems that have most in
uenced our work are HOL

[GM93], Isabelle [Pau94], PVS [COR+95], and Nqthm [KM96]. Many of the
speci�cation and automation techniques we utilize in Declare are derived from
ideas found in the above systems. However, we do not use the proof description
techniques from these systems (e.g. the HOL tactic language, or PVS strategies).

1.2 Declarative and Inferential Proof Description

For our purposes, we consider a construct to be declarative if it states explicitly
\what" e�ect is achieved by the construct. Di�erent declarations may specify
di�erent properties of a construct, e.g. type, mode and behavioral speci�cations
in a programming language. A related question is whether the construct describes

1 Mizar is a poorly documented system, so our observations are based on some sample
Mizar scripts and the execution of the Mizar program.



\how" that e�ect is achieved: we will use inferential to describe systems that
allow the omission of such details and infer them instead. Many systems are both
declarative and inferential, and together they represent an ideal, where a problem
statement is given in high level terms and a machine is used to infer a solution.
\Inferential" is inevitably a relative notion: one system is more inferential than
another if the user need specify fewer operational details. The term procedural is
often used to describe systems that are not highly inferential, and thus typically
not declarative either, i.e. systems where signi�cant detail is needed to express
solutions, and a declarative problem statement is not given.2

How do \declarative" and \inferential" apply to proof description? For our
purposes a declarative style of proof description is one that makes the logical
results of a proof step explicit:

A proof description style is declarative if the results established by a
reasoning step are evident without interpreting the justi�cation given
for those results.

Surprisingly, most existing styles of proof description are plainly not declarative.
For example, typical HOL tactic proofs are certainly not declarative, although
automation may allow them to be highly inferential. Consider the following ex-
tract from the proof of a lemma taken from Norrish's HOL formalization of the
semantics of C [Nor98]:

val wf_type_offset = prove
``8smap sn. well_formed_type smap (Struct sn) !

8fld t. lookup_field_info (smap sn) fld t !

9n. offset smap sn fld n``,
SIMP_TAC (hol_ss ++ impnorm_set) [offset,

definition "choltype" "lookup_field_info",
definition "choltype" "struct_info"] THEN

REPEAT STRIP_TAC THEN
IMP_RES_TAC (theorem "choltype" "well_formed_structs") THEN
FULL_SIMP_TAC hol_ss [well_formed_type_THM] THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
...

Even given all the appropriate de�nitions, we would challenge an experienced
HOL user to accurately predict the shape of the sequent late in the proof.

In an ideal world we would also like a fully inferential system, i.e. we simply
state a property and the machine proves it automatically. For complex properties
this is impossible, so we try to decrease the amount of information required to
specify a proof. One very helpful way of estimating the amount of information
contained in a proof is by looking at the dependencies inherent in it:

One proof description style is more inferential than another if it reduces
the number of dependencies inherent in the justi�cations for proof steps.

To give a simple concrete example, proofs in interactive theorem provers (e.g.
HOL, PVS and Isabelle) are typically sensitive to the order in which subgoals

2 Declarative and inferential ideas are, of course, very common in computing, e.g.
Prolog and LATEX are examples of languages that aspire to be both declarative and
inferential.



are produced by an induction utility. That is, if the N-induction utility suddenly
produced the step case before the base case, then most proofs would break. There
are many similar examples from existing theorem proving system, enough that
proofs in these systems can be extremely fragile, or reliant on a lot of hidden,
assumed detail. A major aim of proof description and applied automated rea-
soning must be to eliminate such dependencies where possible. Other examples
of such dependencies include: reliance on the orderings of cases, variables, facts,
goals and subgoals; reliance upon one of a number of logically equivalent forms
of terms (e.g. n > 1 versus n � 2); and reliance on the under-speci�ed behavior
of proof procedures, such as how names are chosen.

2 Three Constructs for Proof Outlining

Proofs in Declare are expressed as outlines, in a language that approximates
written mathematics. The constructs themselves are not radical, but our asser-
tion is that most proof outlines can be written in these constructs and their
syntactic variants alone. In other words, we assert that for many purposes these
constructs are both logically and pragmatically adequate. Perhaps the most sur-
prising thing is that large proof developments can indeed be performed in De-

clare even though proofs are described in a relatively restricted language.
In this section we shall describe the three primary constructs of the Declare

proof language. These are:

{ First order decomposition and enrichment;
{ Proof by automation;
{ Application of second order proof principles.

2.1 Reduced Syntax

A simpli�ed syntax of the proof language is shown below, to demonstrate how
small it is at its core. We have omitted aspects that are not relevant for the pur-
poses of this article, including speci�cation constructs for introducing new types
and constants with various properties. These include simple de�nitions, mutu-
ally recursive function de�nitions, mutually recursive �xed point speci�cations
and algebraic datatypes. Several syntactic variations of the proof constructs are
translated to the given syntax, as discussed in later sections. Declare naturally
performs name resolution and type inference, the latter occurring \in context",
taking into account all declarations that are visible where a term occurs. De-
clare also performs some syntactic reduction and comparison of terms during
proof analysis, as described in Section 2.6. We have left some constructs of the
language uninterpreted, in particular the language of justi�cations, which is dis-
cussed later in this article. Declarations also include \pragma" speci�cations
that help indicate what various theorems mean and how they may be used by
the automated reasoning engine. Finally, the terms and types are those of higher
order logic as in the HOL system, extended with pattern matching as described
in [Sym99].



Article = Decl*

Decl = thm Label "term" proof Proof end

| ... (other speci�cation language constructs)
Proof = qed Justi�cation

| cases Justi�cation Case* end

| schema Label over Label

varying Local*

Case*

Justi�cation = by Hint*

Case = case [Label ] Enrichment* : Proof

Enrichment = [locals Local*] Fact*
Local = ident [: type]
Fact = "term" [Label ]
Label = <ident>

We consider a semantics describing proof checking for this language in Ap-
pendix A.

2.2 An Example

We will use a Declare proof of the following proposition to illustrate the �rst
two constructs of the proof language: \Assume n 2 N is even, and that whenever
m is odd, n=m is even, ignoring any remainder. Then the remainder of n=m is
always even." We assume that our automated reasoner is powerful enough to do
some arithmetic normalization for us, e.g. collecting linear terms and distributing
\mod" over + (this is done by rewriting against Declare's standard library of
theorems and its built-in arithmetic procedures). We also assume the existence
of the following theorems about even, odd and modulo arithmetic.

<even> |- even(n) = 9k. n=2*k
<odd> |- odd(n) = 9k. n=2*k+1
<even_or_odd> |- even(n) _ odd(n)
<div_rem_exists> |- m > 0 ! (9d r. n=d*m+r ^ r<m)

A Declare proof of this property is shown below. The constructs used and
their meanings are explained in the following sections.

thm <mythm>

if "m > 0"

"odd(m) ! even(n/m)" <m>

"even(n)" <n>

then "even(n mod m)" <goal>;

proof

consider d, r st

"n = d*m + r"
"r < m" by <div_rem_exists>;

have "d = n/m"

"r = n mod m";



consider n0 st

"n = 2*n0" by <even>,<n>;

cases by <even_or_odd> ["m"]

case "even(m)" :

consider m' st "m=2*m0" by <even>;

have "r = 2*(n0-d*m0)";

qed by <even>,<goal>;

case "odd(m)" :

consider d' st "r = 2*(n0-d0*m)" by <m>,<even>;

qed by <even>,<goal>;

end;

end;

2.3 Problem Introduction

A Declare proof begins with the statement of a problem, introduced using
some variant of the thm declaration. The example from the previous section
uses the one shown in Table 1. This variant allows us to begin our proof in a
conveniently decomposed form, i.e. without outer universal quanti�ers and with
facts and goals already named.

External Form Internal Form
thm label if facts then goals

proof
main-proof

end

(simpli�ed problem introduction)

thm label "8vars: (
V

facts) ! (
W

goals)"
proof

cases by <goal>
case locals vs

facts
goals�1 :

main-proof
end

end

where vars = free symbols in facts,goals
and goals�1 = goals with each term negated

Table 1. Syntactic variation for Decl with the equivalent primitive form.

2.4 Construct 1: First Order Decomposition and Enrichment

Enrichment is the process of adding facts, goals and local constants to an en-
vironment in a logically sound fashion. Most steps in vernacular proofs are en-
richment steps, e.g. \consider d and r such that n = d � m + r and r < m."
The example above illustrates how this translates into Declare's syntax. An
enrichment step has a corresponding proof obligation that constants exist with
the given properties. The obligation for this step is "9d r. n=d*m+r ^ r < m".

This kind of enrichment is forward reasoning . When goals are treated as
negated facts, backward reasoning also corresponds to enrichment. For example
if our goal is 8x:(9b:x = 4b)! even(x) then the vernacular \given b and x such



External Form Internal Form
consider vars st facts justi�cation;
main-proof

(inline introduction)

cases justi�cation

case locals vars
facts :

main-proof
end

have facts justi�cation;
main-proof

(inline assertion)

cases justi�cation
case facts :

main-proof
end

let id = "term";
main-proof

(inline de�nition)

cases
case locals id

"id = term" :
main-proof

end;
sts goal justi�cation;
main-proof

(inline backward reasoning)

cases justi�cation
case goal�1 : main-proof

end;

where goal�1 = goal with the term negated

Table 2. Syntactic variations for Proof with equivalent primitive forms.

that x = 4b then by the de�nition of even it su�ces to show 9c:2 � c = x" is
an enrichment step (this example is not taken from the larger example above).
Based on an existing goal, we add two new local constants b and x, a new goal
9c:2 � c = x and a new fact x = 4b. In Declare we can use +/- to indicate new
facts/goals respectively (goals are treated as negated facts), and we have:

consider b,x such that

+ "x = 4*b"

- "9c. 2*c = x"

by <goal>; // obligation "9b x. x=4*b ^ 69c. 2*c=x"

Decomposition is the process of splitting a proof into several cases. We com-
bine decomposition and enrichment via the cases construct, and an example
can be seen in Section 2.2. For each decomposition/enrichment there is a proof
obligation that corresponds to the \default" case of the split, where we may
assume each other case does not apply. Syntactically, the locals declaration for
each enrichment can be omitted, as new symbols are assumed to be new local
constants. The construct is very general, and some highly useful variants are
translated to it as shown in Table 2, including assertion, abbreviation, and the
linear forms of enrichment seen above. These forms assume the automated prover
can, as a minimum, decide the trivial forms of �rst order equational problems
that arise as proof obligations in the translations. For example, 9v:v = t is the
proof obligation for the let construct, where v is not free in t.

General speci�cation constructs could also be admitted within enrichments,
e.g. to de�ne local constants by �xed points. Declare does not implement these
within proofs.

2.5 Construct 2: Appeals to Automation

At the tips of a problem decomposition we �nd appeals to automated reasoning
to \�ll in the gaps" of an argument, denoted by qed in the proof language. A set



of \hints" (also called a justi�cation) is provided to the engine. We shall discuss
the justi�cation language of hints in the Section 3. The automated reasoning
engine is treated as an oracle, though of course the intention is that it is sound
with respect to the axioms of higher order logic.

2.6 Construct 3: Second Order Schema Application

In principle, decomposition/enriching and automated proof with justi�cations
are su�cient to describe any proof in higher order logic, assuming a modicum
of power from the automated engine (e.g. that it implements the 8 primitive
rules of higher order logic described by Gordon and Melham [GM93], and can
decide propositional logic). However, we have found it useful to add one further
construct for inductive arguments. The general form we have adopted is second-
order schema application, which can encompass structural, rule and well-founded
induction and other techniques.

Why is this construct needed? We consider a typical proposition proved by
inducting over the structure of a particular set. Assume typ list ` exp hastype

typ is an inductive relation de�ned by the four rules over a term structure as
shown in Appendix B. Our example theorem states that substitution of well-
typed values preserves types (we omit the de�nition of substitution):

thm <subst_safe>

if "[] ` v hastype xty" <v_hastype>

"len(E) = n" <n>

"(E@[xty]) ` e hastype ty" <typing>

then "E ` (subst n e v) hastype ty";

The induction predicate that we desire is:

P = �E e ty. 8n. len E = n ! E ` (subst n e v) hastype ty

One of our aims is to provide a mechanism to specify the induction predicate in
a natural way. Note it is essential that n be universally quanti�ed, because it is
necessary to instantiate it with di�erent values in di�erent cases of the induction.
Likewise E , e and ty also \vary". Furthermore, because v and xty do not vary,
it is better to leave <v hastype> out of the induction predicate to avoid extra
antecedents to the induction hypothesis.

It is possible to use decomposition along with an explicit instantiation to
express an inductive decomposition.

thm <subst_safe>

if "[] ` v hastype xty" <v_hastype>

then "8E e ty.

(E @ [xty]) ` e hastype ty ^
len E = n !

E ` (subst n e v) hastype ty" <goal>

proof

let "ihyp E e ty =

8n. len E = n ! E ` (subst n e v) hastype ty";



cases by <hastype.induct> ["ihyp"], <goal>

case + "ihyp ([dty]@(E@[xty])) bod rty" <ihyp>

- "ihyp E (Lam dty bod) (FUN dty rty)" :

...

case + "e = App f a"

+ "ihyp (E@[xty]) f (FUN dty ty)" <ihyp1>

+ "ihyp (E@[xty]) a dty" <ihyp2> :

+ "len E = n"

- "E ` (subst n e v) hastype ty" :

...

end;

end;

The induction theorem has been explicitly instantiated, a mechanism available
in the language of justi�cations discussed in Section 3. Two trivial cases of the
proof have been subsumed in the decomposition itself (see Section 2.8 | the
cases in question correspond to the rules Int and Var in Appendix B). For the
other two cases we have listed the available induction hypotheses explicitly, at
two di�erent depths of expansion | in the second case we have revealed more
of the structure of the goal.

This approach is sometimes acceptable. Its advantages include 
exibility,
because simple cases may be omitted altogether; control, because we name the
facts and constants introduced on each branch of the induction; and explicitness,
which can be helpful for readability and the tool environment. Its disadvantages
are an unnatural formulation of the original problem; the unnecessary repetition
of induction hypotheses; a relatively complex proof obligation; and poor feedback
because it is non-trivial to provide good feedback if the user makes a mistake
when recording the hypotheses.

We now show how the proof appears using the schema construct of the De-
clare proof language.

thm <subst_safe>

if "[] ` v hastype xty"

"len(E) = n"

"(E@[xty]) ` e hastype ty" <typing>

then "E ` (subst n e v) hastype ty";

proof

schema <hastype.induct> over <typing> varying n,E,ty,e

case <Int>: ...

case <Var>: ...

case <Lam>

"e = Lam dty bod"

"ty = FUN dty rty"

"ihyp ([dty]@(E@[xty])) bod rty" <ihyp> :

...

case <App>

"e = App f a"

"ihyp (E@[xty]) f (FUN dty ty)" <f_ihyp>

"ihyp (E@[xty]) a dty" <a_ihyp> :



...

end;

end;

Actually, a little simpler is the induct variant of the schema construct, which
chooses a default induction principle based on the predicate used to de�ne the
inductive set. The �rst line of the proof could have been written:

induct over <typing> varying n,E,ty,e

Thus Declare provides one very general construct for decomposing problems
along syntactic lines based on a second-order proof principle, along with some
simple variants. The induction predicate is determined automatically by indi-
cating those local constants V that \vary" during the induction. E�ectively we
tell Declare to reformulate the problem so some local \constants" become
universally quanti�ed, and then apply the induction principle. The induction
hypothesis is thus the conjunction of all the axioms in the current logical con-
text that contain a member of V . This gives a declarative speci�cation of the
induction predicate without contorting the initial speci�cation of the problem.

The schema must be a fact in the logical environment of the form:

(8�v1: ihyps1 ! P �v1) ^ : : : ^ (8�vn: ihypsn ! P �vn)! (8�v: R[�v]! P �v)

Equational constraints are encoded in the induction hypotheses, and the fact
denoted using over must be an instance R[�t] of R[�v] for some �t. If N is an
inductive subset of a type for Z, then the schema would be:

(8i. i=0 ! P i) ^ (8i. (9k. i=k+1 ^ P k) ! P i) ! (8i. i2N ! P i)

The induct form where the schema is implicit from a term or fact is most
common, however the general mechanism above allows the user to prove and
use new induction principles for constructs that were not explicitly de�ned in-
ductively, and allows several proof principles to be declared for the same logical
construct.

Each antecedent of the inductive schema generates one new branch of the
proof, so no subsumption is possible. For each case:

{ If no facts are given, then the actual hypotheses (i.e. those speci�ed in the
schema) are left implicit: they become \automatic" unlabelled facts used by
the automated prover.

{ If facts are given, they are interpreted as \purported hypotheses" and syn-
tactically checked to ensure they correspond to the actual hypotheses (see
[Sym99] for details).

The semantics of the construct are described in full in Appendix A.

2.7 Issues Relating to Second Order Schema Application

Writing out the induction predicate is time-consuming and error-prone. The
macro ihyp can be used to stand for the induction predicate | the user does
not have to de�ne this predicate explicitly.



It is often necessary to strengthen a goal or weaken some assumptions before
using induction. This can often be done simply by stating the original goal in
this way, but in a nested proof we typically prove that the stronger goal is su�-
cient (this is usually trivial), and before we perform an induction we purge the
environment of the now irrelevant original goal, to avoid unnecessary conditions
being included in the induction predicate. This means adding a \discarding"
construct to the proof language. Discarding facts breaks the monotonicity proof
language, so to minimize its use we have chosen to make it part of the induction
construct. Our case studies suggest it is only required when signi�cant reasoning
is performed before the induction step of a proof, which is rare.

A �nal twist on the whole proof language that comes when describing mu-
tually recursive inductive proofs is described in [Sym99]. Essentially we need to
modify the language to accommodate multiple (conjoined) goals, if the style of
the proof language is to be preserved.

2.8 A Longer Example of Decomposition/Enrichment

We now look at a longer example of the use of enrichment/decomposition, to
demonstrate the 
exibility of this construct. The example is similar to several
that arose in our case studies, but has been modi�ed to demonstrate several
points. Assume:

{ The inductive relation c; c0 is de�ned by many rules (say 40).
{ c takes a particular form (A(a ; b); s) at the current point in our proof.
{ Only 8 of the rules apply when c is of this form, and of these, 5 represent
\exceptional transitions" c; (E(val ); s). The last 3 possible transitions are
given by:

(a; s); (v; s0) _ (b; s); (v; s0)

(A(a; b); s); (v; s0) (A(a; b); s); (a; s) (A(a; b); s); (b; s)

We are trying to prove that the predicate cfg ok is an invariant of ;:

type exp = A of exp * exp | E of string

thm <cfg_ok> "cfg_ok (t,s) $ match t with

A(x,y) -> term_ok(s,x) ^ state_ok(s)

| E(str) -> state_ok(s)";

thm <cfg_ok-invariant>

if "c ; c'" <trans>

"c = (A(a,b),s)"

"cfg_ok c"

then "cfg_ok c'";

Note the proof will be trivial in the case of the exceptional transitions, since the
state is unchanged. So, how do we formulate the case analysis? Do we have to
write all 40 cases? Or even all 8 which apply syntactically? No - we need specify
only the interesting cases, and let the automated reasoner deduce that the other
cases are trivial:



cases by <;.cases> [<trans>], <cfg_ok>, <goal>

case "c' = (v, s')"

"t = a _ t = b"

"(t,s) ---> c'" :

rest of proof ;

case "c' = (t, s)"

"t = a _ t = b" :

rest of proof ;

end;

The hints given to the automated reasoner are explained further in Section 3.
The key point is that the structure of the decomposition does not have to match
the structure inherent in the theorems used to justify it (i.e. the structure of the
rules). There must, of course, be a logical match that can be discovered by the
automated engine, but the user is given a substantial amount of 
exibility in
how the cases are arranged. He/she can:

{ Subsume trivial cases. 37 of the 40 cases inherent in the de�nition of ; can
be subsumed in justi�cation of the split.

{ Maintain disjunctive cases. Many interactive splitting tools would have gen-
erated two cases for the �rst rule shown above, by automatically splitting
the disjunct. However, the proof may be basically identical for these cases,
up to the choice of t.

{ Subsume similar cases. Structurally similar cases may be subsumed into one
branch of the proof by using disjuncts, as in the second case. This is, in
a sense, a form of factorization. As in arithmetic, helpful factorizations are
hard for the machine to predict, but relatively easy to check.

The user can use such techniques to split the proof into chunks that are of
approximately equal di�culty, or to dispose of many trivial lines of reasoning,
much as in written mathematics.

3 Justi�cations and Automated Reasoning

Our language separates proof outlining from automated reasoning. We adopt the
principle that these are separate activities and that the proof outline should be
independent of complicated routines such as simpli�cation. The link between
the two is provided by justi�cations. A spectrum of justi�cation languages is
possible. For example, we might have no language at all, which would assume
the automated engine can draw useful logical conclusions e�ciently when given
nothing but the entire logical environment. Alternatively we might have a lan-
guage that spells out deductions in great detail, e.g. the forward inference rules
of an LCF-like theorem prover. It may also be useful to have domain speci�c
constructs, such as variable orderings for model checking.

Declare provides a small set of general justi�cation constructs that were
adequate for our case studies. The constructs allow the user to:



{ Highlight facts from the logical environment that are particularly relevant
to the justi�cation;

{ Specify explicit instantiations and resolutions;
{ Specify explicit case-splits;

These constructs are quite declarative and correspond to constructs found in
vernacular proofs. Facts are highlighted in two ways:

{ By quoting their label
{ By never giving them a label in the �rst place, as unlabelled facts are treated
as if they were highlighted in every subsequent proof step.

The exact interpretation of highlighting is determined by the automated engine,
but the general idea is that highlighted facts must be used by the automated
engine for the purposes of rewriting, decision procedures, �rst order search and
so on.

\Di�cult" proofs often become tractable by automation if a few explicit in-

stantiations of �rst order theorems are given. Furthermore, this is an essential
debugging technique when problems are not immediately solvable: providing
instantiations usually simpli�es the feedback provided by the automated reason-
ing engine. In a declarative proof language the instantiations are usually easy
to write, because terms are parsed in-context and convenient abbreviations are
often available. Formal parameters of the instantiations can be either type di-
rected of explicitly named, and instantiations can be given in any order. For
example, consider the theorem <subst safe> from Section 2.6. When using this
theorem a suitable instantiation directive may be:

qed by <subst_safe> ["[]", "0", "xty"/xty];

We have one named and two type-directed instantiations. After processing the
named instantiation �ve instantiable slots remain: e,v,E ,n and ty. Types give
the instantiations E ! [] and n! 0 and the �nal fact:

` 8e v ty: [] ` v hastype xty ^ len [] = 0 ^ ([]@[xty]) ` e hastype ty
! [] ` (subst 0 e v) hastype ty

Explicit resolution is a mechanism similar in spirit to explicit instantiation. It
combines instantiation and resolution and allows a fact to eliminate an appropri-
ate unifying instance of a literal of opposite polarity in another fact. We might
have:

have "[] ` e2 hastype xty" <e2_types> by ...

qed by <subst_safe> ["0", <e2_types>];

The justi�cation on the last line gives rise to the hint:

` 8e v ty: true ^ len [] = 0 ^ ([]@[xty]) ` e hastype ty
! [] ` (subst 0 e v) hastype ty

Declare checks that there is only one possible resolutions. One problem with
this mechanism is that, as it stands in Declare, uni�cation takes no account



of ground equations available in the logical context, and thus some resolutions
do not succeed where we would expect them to.

Explicit case splits can be provided by instantiating a disjunctive fact, rule
case analysis, or structural case analysis. Rule case analysis accepts a fact indi-
cating membership of an inductive relation, and generates a fact that speci�es
the possible rules that might have been used to derive this fact. Structural case
analysis acts on a term belonging to a free algebra (i.e. any type with an abstract
datatype axiom): we generate a disjunctive fact corresponding to case analysis
on the construction of the term.

4 Assessment

We now look at the properties of the proof language we have described and
compare it with other methods of proof description. The language is essentially
based on decomposing and enriching the logical environment. This means the
environment ismonotonically increasing along any particular branch of the proof
That is, once a fact becomes available, it remains available.3 The user manages
the environment by labelling facts and goals, and by specifying meaningful names
for local constants. This allows coherent reasoning within a complicated logical
context.

Mechanisms for brevity are essential within declarative proofs, since a rel-
atively large number of terms must be quoted. Declare attempts to provide
mechanisms so that the user need never quote a particular term more than once
with a proof. For example one di�culty is when a formula must be quoted in
both a positive and a negative sense (e.g. as both a fact and an antecedent to
a fact): this happens with induction hypotheses, and thus we introduced ihyp

macros. Other mechanisms include local de�nitions; type checking in context;
and stating problems in sequent form.

When using the proof language, the user often declares an enrichment or
decomposition, giving the logical state he/she wants to reach, and only states
\how to get there" in high level terms. The user does not specify the syntactic
manipulations required to get there, except for some hints provided in the justi-
�cation, via mechanisms we have tried to make as declarative as possible. Often
the justi�cation is simply a set of theorem names.

4.1 Comparison

Existing theorem provers with strong automation, such as Boyer-Moore [RJ79],
e�ectively support a kind of declarative/inferential proof at the top level | the
user conjectures a goal and the system tries to prove it. If the system fails, then
the user adds more details to the justi�cation and tries again. Declare extends
this approach to allow declarative decompositions and lemmas in the internals
of a proof, thus giving the bene�ts of scope and locality.

3 There is an exception to this rule: see Section 2.6



One traditional form of proof description uses \tactics" [MRC79]. In princi-
ple tactics simply decompose a problem in a logically sound fashion. In practice
tactic collections embody an interactive style of proof that proceeds by syntac-
tic manipulation of the sequent and existing top level theorems. The user issues
proof commands like \simplify the current goal", \do induction on the �rst uni-
versally quanti�ed variable" or \do a case split on the second disjunctive formula
in the assumptions". A major disadvantage is that the sequent quickly becomes
unwieldy, and the style discourages the use of abbreviations and complex case
decompositions. A potential advantage of tactics is programmability, but in re-
ality user-de�ned tactics are often examples of arcane adhoc programming in the
extreme.

Finally, many declarative systems allow access to a procedural level when
necessary. One might certainly allow this in a declarative theorem proving sys-
tem, e.g. via an LCF-like programmable interface. It would be good to avoid
extending the proof language itself, but one could imagine adding new plug-
in procedures to the automated reasoning engine and justi�cation language via
such techniques.

4.2 Pros and Cons

Some bene�ts of a declarative approach are:

{ Simplicity. Proofs are described using only a small number of simple con-
structs, and the obligations can be generated without knowing the behavior
of a large number of tactics.

{ Readability. The declarative outline allows readers to skip sections they
aren't interested in, but still understand what is achieved in those sections.

{ Re-usability. Declarative content can often be re-used in a similar setting,
e.g. the same proof decomposition structure can, in principle, be used with
many di�erent automated reasoning engines.

{ Tool Support. An explicit characterization of the logical e�ect of a construct
can often be exploited by tools, e.g. for error recovery and the interactive
debugging environment. See [Sym98] for a description of an interactive envi-
ronment for Declare, and a detailed explanation of how a declarative proof
style allows proof navigation, potentially leading to more e�cient proof de-
bugging.

A declarative outline does not, of course, come for free. In particular, new facts
must be stated explicitly. Procedurally, one might describe the syntactic ma-
nipulations (modus-ponens, specialization etc.) that lead to the production of
those facts as theorems, and this may be more succinct in some cases. This is
the primary drawback of declarative proof.

Declare proofs are not only declarative, but also highly inferential, as the
automated prover is left to prove many obligations that arise. The bene�ts of
a highly inferential system are also clear: brevity, readability, re-usability and
robustness. The cost associated with an inferential system is, of course, that the



computer must work out all the details that have been omitted, e.g. the syntactic
manipulations required to justify a step deductively. This is costly both in terms
of machine time and the complexity of the implementation.

Proofs in Declare are relatively independent of a number of factors that
are traditional sources of dependency in tactic proofs. For example, Isabelle,
HOL and PVS proofs frequently contain references to assumption or subgoal
numbers, i.e. indexes into lists of each. The proofs are sensitive to many changes
in problem speci�cation where corresponding Declare proofs will not be. In
Declare such changes will alter the proof obligations generated, but often the
obligations will still be discharged by the same justi�cations.

To summarize, declarative theorem proving is about making the logical e�ect
of proof steps explicit. Inferential theorem proving is about strong automated
reasoning and simple justi�cations. These do not come for free, but in the balance
we aim to achieve bene�ts that can only arise from a declarative/inferential
approach.

References

[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam
Srivas. A tutorial introduction to PVS. In Proceedings of the Workshop on

Industrial-Strength Formal Speci�cation Techniques, Baco Raton, Florida,
1995.

[GM93] M.J.C Gordon and T.F Melham. Introduction to HOL: A Theorem Proving

Environment for Higher Order Logic. Cambridge University Press, 1993.
[Har96] J. Harrison. A Mizar Mode for HOL. In J. Von Wright, J. Grundy, and

J. Harrison, editors, Ninth international Conference on Theorem Proving in

Higher Order Logics TPHOL, volume 1125 of Lecture Notes in Computer

Science, pages 203{220, Turku, Finland, August 1996. Springer Verlag.
[KM96] Matt Kaufmann and J. Strother Moore. ACL2: An industrial strength ver-

sion of Nqthm. COMPASS | Proceedings of the Annual Conference on

Computer Assurance, pages 23{34, 1996. IEEE catalog number 96CH35960.
[MRC79] M.J.C. Gordon, R. Milner, and C.P. Wadsworth. A Mechanized Logic of

Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, New York, 1979.

[Nor98] Michael Norrish. C Formalized in HOL. PhD thesis, University of Cam-
bridge, August 1998.

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer Verlag, 1994.

[RJ79] R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic
Press, 1979.

[Rud92] P. Rudnicki. An overview of the MIZAR project, 1992. Unpub-
lished; available by anonymous FTP from menaik.cs.ualberta.ca as
pub/Mizar/Mizar Over.tar.Z.

[Sym98] Don Syme. Interaction for Declarative Theorem Proving, December 1998.
Available from http://research.microsoft.com/users/dsyme.

[Sym99] Don Syme. Declarative Theorem Proving for Operational Semantics. PhD
thesis, University of Cambridge, Computer Laboratory, January 1999. Avail-
able from http://research.microsoft.com/users/dsyme.



A A Semantics

A logical environment or theory � contains:

{ A signature of type and term constants;
{ A set of axioms, each of which are closed higher order logic terms.

Logical environments must always be wellformed: i.e. all their terms must typecheck
with respect to their signature. Axioms are named (label 7! prop). We can add (�)
a fragment of a logical environment to another environment. These fragments specify
new types, constants and axioms. We assume the existence of a logical environment
�0 containing the theory of all standard propositional and �rst order connectives, and
other axioms of higher order logic.

The judgment Decls ` � indicates that the given declarations establish � as a
conservative extension of a minimal theory of higher order logic. The judgment � `

Decl : �frag is used to elaborate single declarations.

[] ` �0

Decls ` �
� ` Decl : �frag

Decls ;Decl ` � � �frag

prop is a closed term of type bool
� � ("goal" 7! :prop) ` proofX

� ` thm <lab> prop proof : (lab 7! prop)

The label "goal" is used to represent the obligation: in reality problems are speci�ed
with a derived construct in decomposed form, so this label is not used.

The relation � ` proofX indicates that the proof establishes a contradiction from
the information in � , as given by the three rules below. However �rst some de�nitions
are required:

{ Enriching an environment.

� � (locals c1 : : : ci; fact1 <lab1> : : : factj <labj>) =
� � c1 : : : ci � (lab1 7! fact1); : : : ; (labj 7! fact j)

There may be no free variables in fact1 : : : factj besides c1 : : : ci .
{ The obligation for an enrichment to be valid.

oblig(locals c1 : : : ci; fact1 <lab1> : : : fact j <labj>) = 9c1 : : : ci: fact1 ^ : : : ^ fact j

In the r.h.s, each use of a symbol ci becomes a variable bound by the 9 quanti�-
cation.

{ Discarding. � � labels = � without axioms speci�ed by labels
{ Factorizing. �=V = the conjunction of all axioms in � involving any of the locals

speci�ed in V . When the construct is used below, each use of a local in V becomes
a variable bound by the 8 quanti�cation that encompasses the resulting formula.

Decomposition/Enrichment

proof = cases proof 0
case lab1 enrich1 proof 1
: : :
case labn enrichn proof n

end

� � (lab1 7! :oblig(enrich1); : : : ; (labn 7! :oblig(enrichn) ` proof 0X

8i < n: � � enrich i ` proof iX

� ` proofX



Automation

prover(�; hints(� )) returns \yes"

� ` qed by hintsX

Schemas

proof = schema schema-label over fact-label

varying V discarding discards

case lab1 enrich1 : proof 1
: : :
case labn enrichn : proof n

end

� 0 = � � discards

� 0(schema-label) = 8P: (8�v:ihyps1 ! P (�v))
: : :
(8�v:ihypsn ! P (�v))
! (8�v:Q(�v)! P (�v))

� 0(fact-label) = Q(�t)
ipred = \��v:8V:(

V
(�v = �t))! � 0=V 00

static matching determines that
8�v:
V
(�v = �t) ^ ihypsi[ipred=P ]! oblig(enrich i) (8i:1 � i � n))

� 0 � enrich i ` proof iX (81 � i � n)

� ` proofX

The conditions specify that:

{ The proof being considered is a second-order schema application of some form;
{ The given axioms are discarded from the environment (to simplify the induction

predicate);
{ schema-label speci�es a schema in the current logical context of the correct form;
{ fact-label speci�es an instance of the inductive relation speci�ed in the schema for

some terms �t. These terms may involve both locals in V and other constants.;
{ The induction predicate is that part of the logical environment speci�ed by the

variance. If the terms �t involve locals in the variance V then they become bound
variables in this formula.

{ Matching: the generated hypotheses must imply the purported hypotheses.
{ Each sub-proof must check correctly.

B Typing Rules for the Induction Example
<Int>

-----------------------------
"E ` (Int i) hastype INT"

<Var> "i < len(E) ^ ty = el(i)(E)"
--------------------------------

"E ` (Var i) hastype ty"

<Lam> "[dty]@E ` bod hastype rty"
---------------------------------------------
"E ` (Lam dty bod) hastype (FUN dty rty)"

<App> "E ` f hastype (FUN dty rty) ^ E ` a hastype dty"
-------------------------------------------------------

"E ` (f % a) hastype rty";


