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ABSTRACT 

Failures after the release of software products are expensive and 

time-consuming to fix. Each of these failures has different reasons 

pointing into different portions of code. We conduct a 

retrospective analysis on bugs reported after beta release of 

Eclipse versions. Our objective is to investigate what went wrong 

during the development process. We identify six in-process 

metrics that have explanatory effects on beta-release bugs. We 

conduct statistical analyses to check relationships between files 

and metrics. Our results show that files with beta-release bugs 

have different characteristics in terms of in-process metrics. Those 

bugs are specifically concentrated on Eclipse files with little 

activity: few edits by few committers. We suggest that in-process 

metrics should be investigated individually to identify beta-release 

bugs. Companies may benefit from such a retrospective analysis 

to understand characteristics of failures. Corrective actions can be 

taken earlier in the process to avoid similar failures in future 

releases.   

Categories and Subject Descriptors 

 D.2.8 [Software Engineering]: Metrics – process metrics, 

product metrics. G.3 [Mathematics of Computing]: Probability 

and Statistics – nonparametric statistics 

General Terms 

Measurement, Reliability, Experimentation. 

Keywords 

In-process metrics, retrospective analysis, beta-release bugs. 

1. INTRODUCTION 
Software engineering is a complex discipline consisting of three 

aspects: product, process and resource (including people and 

tools). Each aspect should be carefully organized to develop 

reliable and high quality software products. Software testing is 

prioritized as the most critical phase that constitutes majority of 

the development costs [5]. This phase is supported by different 

VV activities as well as intelligent models [8, 10, 14] in order to 

detect as many faults (i.e., defects) as possible prior to the release. 

Nevertheless, the majority of software development projects, such 

as Eclipse, Mozilla, or Debian, are receiving bug reports from the 

customers after their releases. 

Failures after the release of a software product are the most 

expensive and time consuming ones in terms of the effort and cost 

spent for fixing those [5]. Understanding characteristics of these 

failures would help software managers take corrective actions 

during the development and testing process and, hence, improve 

product quality. Previous studies identified various process [10], 

product [8] and organizational [14] metrics as the indicators of 

post-release failures. These studies focused on building predictive 

models to estimate defect-prone components in the system by 

using metrics and defect data from prior releases. A retrospective 

approach, on the other hand, would investigate and explain what 

went wrong during development and/ or testing periods of a 

software product leading to failures at the customer side. 

Practitioners may also benefit from such analysis to take 

corrective actions early on in the process and improve their 

development processes.   

In this study, we investigate the development process of two 

Eclipse releases to understand unique trends/characteristics in 

software modules that have failures after the beta release. These 

failures are often reported by users who get the latest release of 

the software product. They are also collected from stack trace 

messages stored through exceptions that cause the system fail. 

Each failure in the system can point different portions of the 

software code. Different portions of the software can also have 

different characteristics in terms of development and testing 

processes, and these differences may explain these failures. Our 

primary research objective in this study is to find unique 

characteristics of files with beta-release bugs. Using a 

retrospective approach, we aim to explain the main characteristics 

of beta-release bugs in terms of development related process 

metrics.   

In the next section, we describe previous studies on this topic. 

Then, we explain our methodology on data mining and metrics 

extraction (Section 3). After giving the details of our analysis in 

Section 4, we present our results with a discussion on each metric 

in Section 5. Finally, we define the threats to the validity of our 

results (Section 6) and conclude our paper. 
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1.1 Contributions 
We have made three main contributions with this study: 

Categorization of beta-release bugs: We mined Eclipse bug 

database to identify bugs reported after the beta releases of 

Eclipse 2.1 and 3.0. We defined beta-release bugs as those 

reported with active stack traces, i.e. exceptions [4], after the beta 

release in Eclipse. Our analysis on bug database shows that very 

few (3-5%) files are associated with bugs reported after beta-

release, and hence, it is hard to distinguish them from other files.  

Identification of process metrics: After categorizing files 

according to their associated bug types, we observed Eclipse 

version database, which keeps all activities done on the main 

branch to define software factors related to the activities inside the 

development process. As a result, we identified six  in-process 

metrics: Age, number of edits, number of committers, average 

changed lines of code, last edit date and average time between 

edits. Statistical analyses have been conducted for each attribute 

independently. 

Characterization of files with beta-release bugs: Results of our 

experiments on different file categories corroborated the 

motivation of this study: Files with beta-release bugs have 

different characteristics in terms of in-process metrics. Our 

proposed analysis would help practitioners to interpret unique 

characteristics of these failures via in-process metrics. Therefore, 

they would take corrective actions to avoid similar failures in the 

upcoming releases. 

2. RELATED WORK 
There are numerous studies that investigate faults and fault 

distribution on software projects or build predictive models.  

2.1 Understanding Software Faults 
Studies analyzing the faults and software metrics characterizing 

these faults are mostly conducted on different commercial 

software systems. Moller and Paulish presented an empirical 

investigation of software fault distribution [2]. They observed that 

certain modules in a commercial software product have greater 

concentration of faults. Results conclude that modules with faults 

are highly correlated with new and changed LOC, module size 

and programming language.  

Later, Fenton and Ohlsson conducted a quantitative analysis on 

faults and failures in two major releases of a large legacy system 

[3]. Based on their analysis, faults found in pre-release and 

operation phases are concentrated on a very small number of 

modules, but neither of these faults can be explained with size and 

complexity. Ostrand and Weyuker also followed the previous 

work by testing similar hypothesis on an inventory tracking 

system [7]. They found that severity of faults and the stage they 

are found have strong correlations with Pareto principle. In 

contrast to previous study [3], they found that small and younger 

files have higher fault densities.  

In summary, these studies are retrospective in the sense that 

authors aim to understand distributions of fault types by product 

and process metrics on closed software systems. They are similar 

to our research in terms of the approach used for analyses, while 

metrics were often limited to the product aspect (i.e., size, 

complexity) of a software.  

2.2 Predicting Software Faults 
Recently, defect prediction has become very popular in the field 

of software engineering. Different approaches, in terms of the 

algorithm, metrics and type of defects, are used to predict defect-

proneness of software systems. Size and complexity metrics 

extracted from the source code are the most widely used measures 

[8]. Menzies et al. [8] reported that static code attributes are 

significant indicators for pre-release defects. Zimmermann et al. 

[11] extracted and publicized (in Promise repository [15]) code 

metrics from Eclipse releases 2.0, 2.1 and 3.0 to predict pre- and 

post-release defects. 

Nagappan et al. [10] extracted process (changed lines of code, 

number of changes, and developers) and product (cyclomatic 

complexity, code coverage) metrics from Microsoft Server 2003 

and XP for fault prediction. Furthermore, the metrics set is 

enriched with code, churn, dependencies and organizational 

metrics for Windows Vista [14]. Results indicate that 

organizational metrics (number of engineers, ex-engineers, 

organizational code ownership) are the most significant indicators 

of post-release failures. 

These studies enriched the set of software metrics by adding 

process-related data and improved predictive models. They are a 

form of prospective studies in which it is required to make 

estimates of an outcome with fewer potential sources of bias and 

confounding effect, compared to a retrospective study [9]. Despite 

more proneness to experimental biases, a retrospective analysis is 

quite powerful with statistical tests in interpretation of the 

predictive value of software metrics and their explanatory effects 

for faults. Such an analysis requires more complex and rich data 

to make accurate explanations via statistics. Thus, we have used 

an open source project, Eclipse, which is one of the largest and 

richest in terms of development data.   

3. DATASET 
We examined two Eclipse releases, namely 2.1 and 3.0, and their 

development process. In this section, we explain the formal 

release schedule and bug categorization to match bugs with their 

corresponding release and process metrics used in our study. 

3.1 Eclipse Release Schedule 
Eclipse has very formal release plans such that, every year in 

June, its software team announced a major Eclipse release. During 

the development period of each release, they have stable builds in 

every six weeks. Stable builds (milestones) are integration builds 

which are found stable after a few days trial by the architecture 

and test teams. The latest milestone represents the “beta release” 

in a typical software release lifecycle, such that users who would 

like to get latest features and bug fixes are welcome to download 

the latest stable build and report any problems until major release.  

Previously, Schröter et al. mined Eclipse bug and version 

databases to match revisions stored in CVS with bugs in package 

and class level [13]. Later, Zimmermann et al.  published pre- and 

post-release defects for files in the Eclipse releases 2.0, 2.1 and 

3.0 [11]. Our goal is to observe revisions made for files with beta-

release bugs in releases 2.1 and 3.0 during their development 

periods in order to investigate their reasons. We know which files 

are being developed and released in 2.1 and 3.0 based on the data 

in Promise repository [15]. Therefore, we first defined the start 

dates of the development periods for releases 2.1 and 3.0 as well 



as their milestones by looking at Eclipse project plans [12]. We 

could not use Eclipse 2.0 data for our analysis, because its start 

date and milestone periods were not available in [12]. Release 2.1 

has a start date on August 30th, 2002, and release on March 27th, 

2003. In between, it has 4 milestones until the beta release 

(February 7th, 2003). Similarly, 3.0 has a start date on March 28th, 

2003 and beta release on May 21st, 2004 before its release on June 

27th, 2004. Beta-release bugs for each release are started to be 

reported after the latest milestone, prior to which, the revisions 

and bug fixes are done. We observed the revisions for all files in a 

release from its start date until beta-release to make an 

explanatory analysis on bugs reported after beta release. 

3.2 Categorization of Beta-Release Bugs 
Beta-release bugs are different in terms of the content of their bug 

reports and reporters. In this study, we categorized beta-release 

bugs based on reports coming from active stack traces, i.e., 

exceptions. These exception reports are thrown by the system 

when an unexpected situation occurs during when users/ 

developers are actively using the beta version of Eclipse. We used 

the structural information extracted from Eclipse bug reports in 

the work of Bettenburg et al. [4] in order to find “bugs with stack 

traces”.  We classified files for releases 2.1 and 3.0 based on their 

associated bug reports: 

1. Files with bugs reported after beta-release in the form of active 

stack traces  

2. Files with bugs reported prior to beta-release  

3. Files with no bugs 

Table 1 summarizes statistics for categorization of Eclipse files (in 

disjoint sets) in releases 2.1 and 3.0. Based on this categorization, 

we formed three file sets and conducted our analysis on all file 

sets to understand how process metrics specifically change for 

files with beta-release bugs. 

Table 1. File categorization in terms of bug reports 

# Files (%) 2.1 3.0 

with beta-release bugs 

including stack traces 
173 (2%) 193 (2%) 

with bugs reported prior to 

beta-release  
1729 (22%) 2611 (25%) 

with no bugs 5947 (76%) 7727 (73%) 

 

3.3 Metric Extraction and Hypotheses 
We selected six in-process metrics, four of which were directly 

used in previous studies investigating their relationships with fault 

proneness [7, 10, 13, 14], age, number of edits, number of 

committers, average changed lines of code, and the rest of them, 

i.e. last edit date, average time between edits, are recently defined 

based on a previous study on changes during the development 

phase and their time dependencies [6]. For each release (2.1 and 

3.0) in Eclipse, we formed three datasets containing in-process 

metrics for three file sets (1,2,3 above). 

During our experiments, the first set represents files with beta-

release bugs, whereas the second represents files with other bugs. 

Since the sizes of three datasets are different, we transformed 

these datasets into frequencies, i.e., 200 bins were formed, where 

each bin contained the number of files taking a value within a 

specified range, to allow a comparable analysis between the 

distributions of file sets. As the second step, we removed files 

with no activity, in terms of commits and bug assignments, during 

the development periods of 2.1 and 3.0, because they distorted the 

distribution of data due to high peaks at the value of 0. This 

procedure did not introduce a bias into our study due to inactivity 

of these files. Furthermore, we were able to identify distributions 

and peaks more easily.  

In the third step, we observed the distributions of in-process 

metrics and we had seen that some of the distributions had very 

long tails due to outliers in data. To avoid long tails in the 

distributions, we re-defined the number of bins for all file sets by 

defining a cut-off value that removed top 5% of data in files with 

user bugs. This approach helped us to interpret the distributions 

better. Finally, we formed hypotheses for six in-process metrics to 

test their explanatory effect on different file sets using statistical 

analyses. 

Age: We selected files created before beta release and calculated 

the age in terms of days since their creation date until the beta 

release. Our aim was to observe whether young files are more 

fault-prone than old files, as in the work of Ostrand and Weyuker 

[7]. Thus, we formed the following hypothesis:  

H1: As the age of a file increases, then it is likely to have fewer 

bugs after beta release assigned to the file.  

Number of Edits: We counted the number of edits done on files 

during the development periods of 2.1 and 3.0 prior to their beta 

releases. For instance, we observed the development activity 

between  August 30th, 2002 and the final beta release date, 

February 7th,  2003 to count the number of edits on files in release 

2.1. This metric was previously used in other defect prediction 

studies [10, 13] and found to be significant indicators of software 

defects. Therefore, our hypothesis was: 

H2: As the number of edits increases on a file, it is expected that 

the file will have more bugs after beta release.  

Last Edit Date: This metric count the days between the dates 

when a file is last checked into CVS and the beta release. We 

believe that if a file is edited recently, then there is a possibility 

that it may not be tested enough before the beta release. We 

computed the time (in days) since the latest edition for all files in 

releases 2.1 and 3.0. Our hypothesis was that: 

H3:As a file is edited recently (closer to release date), then it is 

more likely to have bugs after beta release.  

Number of Committers: A previous study done on binaries of 

Windows Vista showed that organizational metrics such as the 

number of developers (i.e., committers) are statistically significant 

indicators of post-release defects with the best prediction 

accuracy, compared to churn and code metrics [14]. Therefore, we 

counted the number of unique committers who edited files during 

the development periods of 2.1 and 3.0. As a similar trend with 

the number of edits, we formed our hypothesis as follows: 

H4: The more developers make changes on a file, the more bugs 

after beta release will be reported on this file.  

Average Changed Lines of Code: The number of edits is an 

important indicator of development activity, and the extent of 

these edits provide valuable information about how much change, 

i.e., added/deleted/modified lines of code, has been done on files. 



We used this metric to measure the average amount of changes on 

files. The complexity of these changes would provide more 

information, but it could not be measured through CVS (without 

source codes). Therefore, we computed the changed LOC for all 

files during the development periods of 2.1 and 3.0 until the beta 

releases. Our hypothesis was: 

H5: The more lines of code (LOC) is edited on a file, the more 

bugs after the beta release will be reported on this file. 

Average Time between Edits: This metric aims to measure the 

independence between consecutive edits on the main branch, or 

conversely, dependencies between changes. If the time between 

several edits on a file is less than 2 days, then it is more likely that 

these edits may be  interdependent due to a bug fix or feature 

development. As the time between edits on a file increases, there 

may be several independent tasks (developments due to different 

projects, requests, functionalities) completed on that file. Thus, 

we formed our hypothesis as follows: 

H6: As the time between edits on a file increases (seldom 

revisions), the probability of this file having bugs after the beta 

release will increase. 

4. STATISTICAL ANALYSES 
Our main research objective is to find unique trends in files with 

beta-release bugs in terms of in-process metrics. To test our 

hypotheses we conducted three analyses each of which serves for 

a different purpose in this study:   

Non-parametric Correlations between Files: We applied 

Spearman’s rank correlation statistics on pairs of file sets (for 

each metric) in order to identify whether there is a 

interdependence between files with beta-release bugs, files with 

other bugs and files with no bugs. Spearman’s rank correlation 

coefficient indicates a high correlation (close to 1) between two 

file sets, if the distributions of these files with respect to a 

software metric are not completely independent from each other. 

High correlation between files with beta-release bugs and other 

files indicates a statistically significant lack of independence 

between them, which would make it more difficult to distinguish 

files with beta-release bugs from other files. We cannot absolutely 

conclude these facts using only one significant test, because 

Spearman test is also insensitive to some kind of independences.  

Mann-Whitney U-Test: This test checks whether two populations 

tend to be distributed differently with respect to a factor such that 

their medians are different from each other (one is shifted left or 

right) [1]. It is more sensitive to dependencies between two 

populations compared to Spearman’s test. If Mann-Whitney test 

rejects its null hypothesis: “two file sets come from distributions 

with equal medians” with 95% confidence,  this indicates that the 

distribution of files with beta-release bugs and the other file set 

with respect to a software metric (e.g. age) tend to concentrate on 

different medians although their distributions are highly correlated 

(according to Spearman’s rank coefficient). These differences in 

terms of medians may help us distinguish files with beta-release 

bugs with respect to a specific metric.  

Non-parametric Correlations between Attributes: In contrast to 

the analyses on metrics individually, pairs of metrics may be more 

explanatory to analyze files with beta-release bugs. In this test, we 

applied Spearman test on all possible attribute pairs to understand 

the dependencies between attributes. If the rank coefficient 

between two software metrics is higher than 0.70, this indicates 

that this metric pair should be observed to get a broader 

understanding on files with beta-release bugs. Thus, in the last 

analysis, we plotted scatter diagrams between metric pairs, who 

are strongly correlated, with respect to files with beta-release 

bugs, files with other bugs and files with no bugs, respectively.  

5. RESULTS 
Interpretations of the statistical tests are summarized for six in-

process metrics. We named files with beta-release bugs reported 

in stack traces as BS, files with bugs reported prior to beta-release 

as BNS, and files with no bugs as NB.  

5.1 Age 
Spearman’s rank correlation test for  BS, BNS and NB are 

computed for Eclipse releases 2.1 and 3.0 (Table 2). The bold and 

gray-shaded cells in Table 2 indicate that selected pairs (BNS and 

NB) are significantly correlated in terms of age metric. We can 

also see that BS follow different trend from others (BNS and NB), 

i.e., mutual independence. However, BNS and NB are strongly 

correlated, i.e., it is very likely that there is an interdependence 

(positive or negative relation) between two file sets. We also 

plotted their distributions in Figure 1. Figure 1 shows that 14% of 

files with no bugs (NB) are around 4 months old in release 2.1. 

However, files with beta-release bugs (BS) tend to concentrate 

around 300 days, which means they are older than files with no 

bugs (NB). In release 3.0, it is hard to see whether all file sets 

share the same distribution, since they are concentrated on 

different time periods. However, the highest percentage of files 

with beta-release bugs (12%) is around 2 years old. This shows 

that our first hypothesis (H1) may not hold: As the file gets older, 

it more likely contains bugs after beta release.  

To make a stronger claim, we applied Mann-Whitney U-tests 

between BS, BNS and NB. Results indicate files with beta-release 

bugs (BS) have different medians with 95% confidence (p-value < 

0.05). That is; we can distinguish files with beta-release bugs (BS) 

from other files using age metric by looking at different medians 

they are concentrated on. 

Table 2. Spearman Correlations: “Age” 

Release 2.1  Release 3.0 

 BS BNS NB    BS BNS NB 

BS 1.00 0.54 0.49   BS 1.00 0.56 0.55 

BNS  1.00 0.84   BNS  1.00 0.88 

 

Table 3. Spearman Correlations: “Number of Edits” 

Release 2.1  Release 3.0 

  BS BNS NB     BS BNS NB 

BS 1.00 0.89 0.73   BS 1.00 0.73 0.66 

BNS  1.00 0.86   BNS  1.00 0.90 

 
Table 4. Spearman correlations: “last edit date” 

Release 2.1  Release 3.0 

  BS BNS NB   BS BNS NB 

BS 1.00 0.72 0.64  BS 1.00 0.71 0.64 

BNS  1.00 0.91  BNS  1.00 0.92 

 



 

  

Figure 1. “Age” distributions in files with beta-release bugs (*-), files with other bugs (o-), and files with no bugs (.-): (a) release 2.1 

(b) release 3.0. X axis shows the age in days, whereas Y axis shows the percentage of files. 

 

 
Figure 2. Distributions for “Number of edits” 

 

Figure 3. Distributions for “Last edit date” 

5.2 Number of Edits 
We applied the same procedure that we used for the age metric 

between BS, BNS, NB. Table 3 summarizes the Spearman 

correlation coefficients, where gray-shaded and bold cells indicate 

that there is a strong correlation between a pair with 95% 

significance. From Table 3, it is seen that files with beta-release 

bugs, have very strong relations with other files. This indicates 

that they follow a very similar trend and it is hard to distinguish 

BS in terms of distributions.  

We also plotted the distribution of number of edits for BS, BNS, 

NB only for release 3.0 due to space limitations. From Figure 2, it 

is clear that files with other bugs (BNS) and no bugs (NB) follow 

smooth exponential distributions, where most of the files has less 

than 10 edits. However, distribution of files with beta-release bugs 

(BS) has heavier tails: Files in BS are edited more than other files.  

We validated this finding with Mann Whitney U-tests for pairs of 

BS-BNS, BS-NB. The test rejects the null hypothesis “files with 

beta-release bugs and the other file set come from distributions 

with equal medians” with 99% confidence (p-value < 0.01). 

Therefore, files with beta-release bugs (BS) have similar 

distributions with other files (all follow exponential trends), but 

they have median shifts indicating that there are relatively more 

edits on them. As a result, our second hypothesis (H2) holds: The 

more edits are done on a file, it is more likely that the file will 

contain bugs after beta release. So number of edits is also a 

significant indicator for beta-release bugs in Eclipse releases 2.1 

and 3.0. 

5.3 Last Edit Date 
For this metric, Spearman correlation coefficients (ρ) and 

distribution plots for BS against the other files (BNS, NB 

respectively) are shown. Correlations (gray-shaded and bold cells) 

in Table 4 show that files with beta-release bugs are strongly 

correlated with files with other bugs in terms of last edit date (0.7 

< ρ< 0.9). We also plotted the trends for the files with beta-release 

bugs (BS) and the other file sets (BNS, NB) on release 2.1. Figure 

3 shows that around 35% of NB are edited 95 days ago (nearly 3 

months), whereas 11% of BS, i.e., the highest proportion of files, 

are edited a day ago (very recently compared to BNS, NB).  

To support the existence of median shifts and distinguish BS from 

others, Mann Whitney U-tests were conducted. The test rejects the 

null hypothesis for BS-BNS, BS-NB pairs with 98% confidence 

(p-value < 0.02) indicating that files with beta-release bugs and 

other files may come from similar distributions, but they have 



different medians (BS are edited more recently). Therefore, our 

third hypothesis (H3) also holds: Files with beta-release bugs are 

edited closer to the release date. So last edit date is also a 

significant indicator for beta-release bugs in Eclipse. 

5.4 Number of Committers 
To observe whether the number of committers working on files 

has a unique characteristic for files with beta-release bugs, we 

plotted the trends and computed Spearman correlation 

coefficients. Based on Table 5, gray-shaded and bold cells 

indicate strong correlations between BS-BNS and BS-NB for 

release 2.1. This indicates that files with beta-release bugs may 

come from similar distributions with other files or they are 

interdependent to each other. To explain this strong correlation, 

we plot distributions of BS, BNS and NB for releases 2.1 and 3.0. 

Since both releases show very similar trends, we present release 

3.0 in Figure 4.  

Figure 4 presents a typical scenario valid for various software 

projects such that the greatest portion of files are edited by only 1 

or 2 committers. For instance, in release 3.0 (Figure 4), 65% of 

files with no bugs are edited by only one committer, whereas this 

percentage decreases in files with beta-release and other bugs. 

This argument, in fact, supports our forth hypothesis (H4): As the 

number of committers working on files increases, then it is very 

likely that files will contain bugs after the beta release. We can 

clearly see the median shifts for files with beta-release bugs. To 

support our claim, Mann-Whitney U-tests between BS and other 

file sets also rejected the null hypothesis with 95% confidence, 

meaning that BS has different medians from other file sets. Thus, 

number of committers is also a significant indicator for beta-

release bugs. 

5.5 Average Changed LOC 
We again computed Spearman correlation coefficients between 

three file sets for this metric. Table 6 shows that all files are 

strongly correlated with each other in terms of their distributions. 

The distributions for release 3.0 in Figure 5 validate this fact (all 

files follow almost exponential distributions). However, Figure 5 

also shows that more than 20 LOC were changed in 30% of files 

with beta-release bugs, in contrast to 45% of files with no bugs, 

which had less than 20 LOC being changed. Therefore, as in the 

case of number of edits, files with beta-release bugs have heavier 

tails (more changes in terms of LOC) than other file sets. We also 

conducted Mann-Whitney U-tests and found that distributions of 

files with beta-release bugs have shifted medians with 95% 

confidence . Based on Figure 5 and significance tests, we can 

support our hypothesis (H5): Files with beta-release bugs are 

edited (in terms of LOC) more than other files. Therefore, average 

changed LOC is also a significant indicator for files with beta-

release bugs. 

5.6 Average Time between Edits 
The final metric is average time between edits. We applied the 

same procedures and found the correlations depicted in Table 7. 

From the table, it can be seen that all file sets except BNS-NB in 

release 3.0 have mutually independent from each other. They 

should follow very different distributions with no relations 

between one another. We plotted the trends to understand the 

actual reasons for these low correlations. Figure 6 shows the 

distributions for release 3.0 in terms of average time between 

edits metric. As seen in the figure, files with beta-release bugs 

follow a completely different trend from other file sets, which are 

somewhat similar to an exponential trend. Around 6% of files 

with beta-release bugs (as the highest concentration) are edited, 

on the average, every 260 days, i.e., 8.5 months. This is the 

opposite for files with other and no bugs, such that more than 

20% files with no bugs are edited on the average every 46 days. 

Therefore, we can support our sixth hypothesis (H6): If files are 

seldom edited (in every 8 months), then it is more likely that 

developers will introduce beta-release bugs into the code. If they 

are frequently edited (every month), developers may produce 

more reliable code. 

We also conducted Mann-Whitney U-tests and found that files 

with beta-release bugs (BS) have different medians from other 

files with 95% significance. Therefore, average time between 

edits is also a significant indicator of beta-release bugs. As a 

result, by investigating the attributes individually,  

 We can conclude that all six metrics have explanatory effects 

on beta-release bugs: bugs reported after beta-release with 

stack traces.  

 Although in most cases, all files are likely to share the same 
distribution in terms of in-process metrics, files with beta-
release bugs have median shifts, which make them easy to 
distinguish from other files. 

Table 5. Spearman Correlations: “Number of committers” 

Release 2.1   Release 3.0 

  BS BNS NB     BS BNS NB 

BS 1.00 0.96 0.96   BS 1.00 0.40 0.27 

BNS  1.00 0.94   BNS  1.00 0.96 

 

Table 6. Spearman Correlations: “Average changed LOC” 

Release 2.1   Release 3.0 

  BS BNS NB     BS BNS NB 

BS 1.00 0.87 0.90   BS 1.00 0.89 0.90 

BNS  1.00 0.99   BNS  1.00 0.98 

 

Table 7. Spearman Correlations: “Time between edits” 

Release 2.1   Release 3.0 

  BS BNS NB     BS BNS NB 

BS 1.00 0.14 0.04   BS 1.00 0.00 -0.02 

BNS  1.00 0.48   BNS  1.00 0.63 

 

 

Figure 4. Distributions for “Number of committers” 



 

Table 8. Spearman correlation coefficients (rho) between process metrics for files with bugs including stack traces. 

Release 2.1  Release 3.0 

 age edits lastedit people chgLOC timeedits   age edits lastedit people chgLOC timeedits 

age 1.00 0.08 0.11 0.12 0.13 0.19  age 1.00 0.40 0.00 0.40 0.09 0.67 

edits  1.00 -0.14 0.78 0.69 0.78  edits  1.00 -0.38 0.78 0.43 0.62 

lastedit   1.00 0.08 -0.01 -0.09  lastedit   1.00 -0.26 -0.16 -0.12 

people    1.00 0.52 0.70  people    1.00 0.31 0.57 

chgLOC     1.00 0.46  chgLOC     1.00 0.23 
Edits: number of edits. People: number of committers. ChgLOC: average changed LOC. Timeedits: average time between edits. Bold cells indicate strong 

correlations (ρ> 0.75) with p-value less than 0.05. 

 

Figure 5. Distributions for “Average changed LOC” 

 

Figure 6. Distributions for “Average time between edits” 

 

  

Figure 7. Scatter diagram for edits-committers in 2.1. 

 

Figure 8. Scatter diagram for edits-timeedits in 2.1. 

 

5.7 Correlation Between Process Metrics 
We found that the six in-process metrics can be used as significant 

indicators of beta-release bugs independently. However, some of 

them may actually be related to each other, e.g.as the number of 

people editing files increases, then the number of edits would also 

increase. To observe these relations among in-process metrics 

with respect to files with beta-release bugs, files with other bugs 

and files with no bugs, we computed Spearman correlation 

coefficients on all metric pairs.  

Table 8 summarizes the results on BS for releases 2.1 and 3.0. 

Gray-shaded and bold cells indicate significant strong correlations 

(ρ > 0.75) between metrics, such as number of edits (edits) and 

number of committers (people) (for releases 2.1 and 3.0) and, 

number of edits (edits) and average time between edits (timeedits) 

(for release 2.1). 

To distinguish files with beta-release bugs from others using these 

metric pairs, we observed scatter diagrams (Figure 7 for edits-

people and Figure 8 for edits-timeedits) for release 2.1.  The plots 

are identically the same for release 3.0 except there are more 

activities in release 3.0. From Figure 7, we can see that although 

medians of three file sets are different from each other in terms of 

edits and people, files with beta-release bugs are concentrated on 

a smaller region, with less edits and fewer people, which is a 

subset of the region covered by files with other bugs, i.e., more 

edits, more people. Furthermore, files with no bugs have also less 

edits by few people. Therefore, if we built a rule-based system 

using the most correlated metric pairs, then we would identify 

only the files with other bugs by putting a lower threshold as (30, 



5) for (edits, people). Based on Figure 7, files edited more than 30 

times and by more than 5 people are more likely to contain other 

bugs. However, files edited less than 30 times and by less than 5 

people may either contain beta-release bugs or contain no bugs. 

Figure 8 also shows a similar pattern: Files with beta-release bugs 

have less than 30 edits and edits within every 100 days. This 

pattern suggests that, in Eclipse, majority of beta-release bugs are 

mapped with files with little activity, rather  than files with more 

activities; possibly the testing efforts in Eclipse focus primarily on 

files with more activity, which could explain why the beta-release 

bugs have been missed. 

To summarize, although we were able to identify that in-process 

metrics follow unique trends for files with beta-release bugs, it is 

less likely to detect certain type of bugs with a single prediction 

model due to large overlaps in small regions of distributions. 

Thus, practitioners should use such simple and powerful statistical 

analyses to explain characteristics of certain defect categories 

separately. Using this information, the development process can 

be improved and certain actions can proactively be taken to avoid 

post-release failures. 

6. THREATS TO VALIDITY 
We overcame threats due to bug categorization by filtering bugs 

based on information reported in stack traces rather than using 

start and end dates of beta release. We also made assumptions 

during metric extraction and data filtering, such as removing long 

tails from the distributions, and removing files with no activity. It 

is unavoidable to eliminate all kind of biases in retrospective 

studies, since the goal is to mine a very rich and complex data, 

and apply statistics to represent the situation as good as possible. 

We removed files which are outliers and cause the long tails in 

distribution, since they did not represent the majority of the 

population. Finally, we put high attention to selection of 

significance tests, each overcomes threats that may occur due to 

the previous ones, e.g. Spearman test is insensitive to certain 

dependencies which can be handled by Mann Whitney U-test. 

Drawing general conclusions from retrospective analyses, is a real 

challenge, since every project depends on several variables. 

However, our analysis was conducted on one of the largest open 

source projects, and therefore, it can be easily replicated, refuted 

or improved. 

7. CONCLUSION 
Our analyses shows that:  

1. When files with beta-release bugs can be observed 
independently from other files, it is seen that they have different 
characteristics in terms of process-related factors. 
2.  All files show a similar trend (in terms of their distributions) 
such that most of the files are edited less than 20 times and by less 
than 3 committers. 
3.  However, files with beta-release bugs are different in terms of 
how their population is shifted to less activity. They are edited not 
very frequently and less than 20 times, compared to files with 
other bugs (more than 20 edits by more than 3 committers). 
4.  Prediction models detecting all types of post-release defects 
may not successfully predict certain type of defects due to their 
unique in-process characteristics. Thus, we should concentrate on 
such defects to understand unique characteristics of these failures 
associated with these defects.  

5. Retrospective analysis can help practitioners understand 
developments processes and change certain principles to avoid 
similar failures in future releases.  
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