
An Explanatory Analysis on Eclipse Beta-Release Bugs

Through In-Process Metrics
Ayse Tosun Misirli

Department of Computer Engineering
Bogazici University

34342, Istanbul, Turkey
+90 212 359 7227

ayse.tosun@boun.edu.tr

Brendan Murphy
1
, Thomas

Zimmermann
2

Microsoft Research
1
Cambridge, UK,

2
Redmond, USA

bmurphy@microsoft.com,
tzimmer@microsoft.com

Ayse Basar Bener
Ted Rogers School of Information

Technology Management
Ryerson University

Toronto, CA

ayse.bener@ryerson.ca

ABSTRACT

Failures after the release of software products are expensive and

time-consuming to fix. Each of these failures has different reasons

pointing into different portions of code. We conduct a

retrospective analysis on bugs reported after beta release of

Eclipse versions. Our objective is to investigate what went wrong

during the development process. We identify six in-process

metrics that have explanatory effects on beta-release bugs. We

conduct statistical analyses to check relationships between files

and metrics. Our results show that files with beta-release bugs

have different characteristics in terms of in-process metrics. Those

bugs are specifically concentrated on Eclipse files with little

activity: few edits by few committers. We suggest that in-process

metrics should be investigated individually to identify beta-release

bugs. Companies may benefit from such a retrospective analysis

to understand characteristics of failures. Corrective actions can be

taken earlier in the process to avoid similar failures in future

releases.

Categories and Subject Descriptors

 D.2.8 [Software Engineering]: Metrics – process metrics,

product metrics. G.3 [Mathematics of Computing]: Probability

and Statistics – nonparametric statistics

General Terms

Measurement, Reliability, Experimentation.

Keywords

In-process metrics, retrospective analysis, beta-release bugs.

1. INTRODUCTION
Software engineering is a complex discipline consisting of three

aspects: product, process and resource (including people and

tools). Each aspect should be carefully organized to develop

reliable and high quality software products. Software testing is

prioritized as the most critical phase that constitutes majority of

the development costs [5]. This phase is supported by different

VV activities as well as intelligent models [8, 10, 14] in order to

detect as many faults (i.e., defects) as possible prior to the release.

Nevertheless, the majority of software development projects, such

as Eclipse, Mozilla, or Debian, are receiving bug reports from the

customers after their releases.

Failures after the release of a software product are the most

expensive and time consuming ones in terms of the effort and cost

spent for fixing those [5]. Understanding characteristics of these

failures would help software managers take corrective actions

during the development and testing process and, hence, improve

product quality. Previous studies identified various process [10],

product [8] and organizational [14] metrics as the indicators of

post-release failures. These studies focused on building predictive

models to estimate defect-prone components in the system by

using metrics and defect data from prior releases. A retrospective

approach, on the other hand, would investigate and explain what

went wrong during development and/ or testing periods of a

software product leading to failures at the customer side.

Practitioners may also benefit from such analysis to take

corrective actions early on in the process and improve their

development processes.

In this study, we investigate the development process of two

Eclipse releases to understand unique trends/characteristics in

software modules that have failures after the beta release. These

failures are often reported by users who get the latest release of

the software product. They are also collected from stack trace

messages stored through exceptions that cause the system fail.

Each failure in the system can point different portions of the

software code. Different portions of the software can also have

different characteristics in terms of development and testing

processes, and these differences may explain these failures. Our

primary research objective in this study is to find unique

characteristics of files with beta-release bugs. Using a

retrospective approach, we aim to explain the main characteristics

of beta-release bugs in terms of development related process

metrics.

In the next section, we describe previous studies on this topic.

Then, we explain our methodology on data mining and metrics

extraction (Section 3). After giving the details of our analysis in

Section 4, we present our results with a discussion on each metric

in Section 5. Finally, we define the threats to the validity of our

results (Section 6) and conclude our paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

1.1 Contributions
We have made three main contributions with this study:

Categorization of beta-release bugs: We mined Eclipse bug

database to identify bugs reported after the beta releases of

Eclipse 2.1 and 3.0. We defined beta-release bugs as those

reported with active stack traces, i.e. exceptions [4], after the beta

release in Eclipse. Our analysis on bug database shows that very

few (3-5%) files are associated with bugs reported after beta-

release, and hence, it is hard to distinguish them from other files.

Identification of process metrics: After categorizing files

according to their associated bug types, we observed Eclipse

version database, which keeps all activities done on the main

branch to define software factors related to the activities inside the

development process. As a result, we identified six in-process

metrics: Age, number of edits, number of committers, average

changed lines of code, last edit date and average time between

edits. Statistical analyses have been conducted for each attribute

independently.

Characterization of files with beta-release bugs: Results of our

experiments on different file categories corroborated the

motivation of this study: Files with beta-release bugs have

different characteristics in terms of in-process metrics. Our

proposed analysis would help practitioners to interpret unique

characteristics of these failures via in-process metrics. Therefore,

they would take corrective actions to avoid similar failures in the

upcoming releases.

2. RELATED WORK
There are numerous studies that investigate faults and fault

distribution on software projects or build predictive models.

2.1 Understanding Software Faults
Studies analyzing the faults and software metrics characterizing

these faults are mostly conducted on different commercial

software systems. Moller and Paulish presented an empirical

investigation of software fault distribution [2]. They observed that

certain modules in a commercial software product have greater

concentration of faults. Results conclude that modules with faults

are highly correlated with new and changed LOC, module size

and programming language.

Later, Fenton and Ohlsson conducted a quantitative analysis on

faults and failures in two major releases of a large legacy system

[3]. Based on their analysis, faults found in pre-release and

operation phases are concentrated on a very small number of

modules, but neither of these faults can be explained with size and

complexity. Ostrand and Weyuker also followed the previous

work by testing similar hypothesis on an inventory tracking

system [7]. They found that severity of faults and the stage they

are found have strong correlations with Pareto principle. In

contrast to previous study [3], they found that small and younger

files have higher fault densities.

In summary, these studies are retrospective in the sense that

authors aim to understand distributions of fault types by product

and process metrics on closed software systems. They are similar

to our research in terms of the approach used for analyses, while

metrics were often limited to the product aspect (i.e., size,

complexity) of a software.

2.2 Predicting Software Faults
Recently, defect prediction has become very popular in the field

of software engineering. Different approaches, in terms of the

algorithm, metrics and type of defects, are used to predict defect-

proneness of software systems. Size and complexity metrics

extracted from the source code are the most widely used measures

[8]. Menzies et al. [8] reported that static code attributes are

significant indicators for pre-release defects. Zimmermann et al.

[11] extracted and publicized (in Promise repository [15]) code

metrics from Eclipse releases 2.0, 2.1 and 3.0 to predict pre- and

post-release defects.

Nagappan et al. [10] extracted process (changed lines of code,

number of changes, and developers) and product (cyclomatic

complexity, code coverage) metrics from Microsoft Server 2003

and XP for fault prediction. Furthermore, the metrics set is

enriched with code, churn, dependencies and organizational

metrics for Windows Vista [14]. Results indicate that

organizational metrics (number of engineers, ex-engineers,

organizational code ownership) are the most significant indicators

of post-release failures.

These studies enriched the set of software metrics by adding

process-related data and improved predictive models. They are a

form of prospective studies in which it is required to make

estimates of an outcome with fewer potential sources of bias and

confounding effect, compared to a retrospective study [9]. Despite

more proneness to experimental biases, a retrospective analysis is

quite powerful with statistical tests in interpretation of the

predictive value of software metrics and their explanatory effects

for faults. Such an analysis requires more complex and rich data

to make accurate explanations via statistics. Thus, we have used

an open source project, Eclipse, which is one of the largest and

richest in terms of development data.

3. DATASET
We examined two Eclipse releases, namely 2.1 and 3.0, and their

development process. In this section, we explain the formal

release schedule and bug categorization to match bugs with their

corresponding release and process metrics used in our study.

3.1 Eclipse Release Schedule
Eclipse has very formal release plans such that, every year in

June, its software team announced a major Eclipse release. During

the development period of each release, they have stable builds in

every six weeks. Stable builds (milestones) are integration builds

which are found stable after a few days trial by the architecture

and test teams. The latest milestone represents the “beta release”

in a typical software release lifecycle, such that users who would

like to get latest features and bug fixes are welcome to download

the latest stable build and report any problems until major release.

Previously, Schröter et al. mined Eclipse bug and version

databases to match revisions stored in CVS with bugs in package

and class level [13]. Later, Zimmermann et al. published pre- and

post-release defects for files in the Eclipse releases 2.0, 2.1 and

3.0 [11]. Our goal is to observe revisions made for files with beta-

release bugs in releases 2.1 and 3.0 during their development

periods in order to investigate their reasons. We know which files

are being developed and released in 2.1 and 3.0 based on the data

in Promise repository [15]. Therefore, we first defined the start

dates of the development periods for releases 2.1 and 3.0 as well

as their milestones by looking at Eclipse project plans [12]. We

could not use Eclipse 2.0 data for our analysis, because its start

date and milestone periods were not available in [12]. Release 2.1

has a start date on August 30th, 2002, and release on March 27th,

2003. In between, it has 4 milestones until the beta release

(February 7th, 2003). Similarly, 3.0 has a start date on March 28th,

2003 and beta release on May 21st, 2004 before its release on June

27th, 2004. Beta-release bugs for each release are started to be

reported after the latest milestone, prior to which, the revisions

and bug fixes are done. We observed the revisions for all files in a

release from its start date until beta-release to make an

explanatory analysis on bugs reported after beta release.

3.2 Categorization of Beta-Release Bugs
Beta-release bugs are different in terms of the content of their bug

reports and reporters. In this study, we categorized beta-release

bugs based on reports coming from active stack traces, i.e.,

exceptions. These exception reports are thrown by the system

when an unexpected situation occurs during when users/

developers are actively using the beta version of Eclipse. We used

the structural information extracted from Eclipse bug reports in

the work of Bettenburg et al. [4] in order to find “bugs with stack

traces”. We classified files for releases 2.1 and 3.0 based on their

associated bug reports:

1. Files with bugs reported after beta-release in the form of active

stack traces

2. Files with bugs reported prior to beta-release

3. Files with no bugs

Table 1 summarizes statistics for categorization of Eclipse files (in

disjoint sets) in releases 2.1 and 3.0. Based on this categorization,

we formed three file sets and conducted our analysis on all file

sets to understand how process metrics specifically change for

files with beta-release bugs.

Table 1. File categorization in terms of bug reports

Files (%) 2.1 3.0

with beta-release bugs

including stack traces
173 (2%) 193 (2%)

with bugs reported prior to

beta-release
1729 (22%) 2611 (25%)

with no bugs 5947 (76%) 7727 (73%)

3.3 Metric Extraction and Hypotheses
We selected six in-process metrics, four of which were directly

used in previous studies investigating their relationships with fault

proneness [7, 10, 13, 14], age, number of edits, number of

committers, average changed lines of code, and the rest of them,

i.e. last edit date, average time between edits, are recently defined

based on a previous study on changes during the development

phase and their time dependencies [6]. For each release (2.1 and

3.0) in Eclipse, we formed three datasets containing in-process

metrics for three file sets (1,2,3 above).

During our experiments, the first set represents files with beta-

release bugs, whereas the second represents files with other bugs.

Since the sizes of three datasets are different, we transformed

these datasets into frequencies, i.e., 200 bins were formed, where

each bin contained the number of files taking a value within a

specified range, to allow a comparable analysis between the

distributions of file sets. As the second step, we removed files

with no activity, in terms of commits and bug assignments, during

the development periods of 2.1 and 3.0, because they distorted the

distribution of data due to high peaks at the value of 0. This

procedure did not introduce a bias into our study due to inactivity

of these files. Furthermore, we were able to identify distributions

and peaks more easily.

In the third step, we observed the distributions of in-process

metrics and we had seen that some of the distributions had very

long tails due to outliers in data. To avoid long tails in the

distributions, we re-defined the number of bins for all file sets by

defining a cut-off value that removed top 5% of data in files with

user bugs. This approach helped us to interpret the distributions

better. Finally, we formed hypotheses for six in-process metrics to

test their explanatory effect on different file sets using statistical

analyses.

Age: We selected files created before beta release and calculated

the age in terms of days since their creation date until the beta

release. Our aim was to observe whether young files are more

fault-prone than old files, as in the work of Ostrand and Weyuker

[7]. Thus, we formed the following hypothesis:

H1: As the age of a file increases, then it is likely to have fewer

bugs after beta release assigned to the file.

Number of Edits: We counted the number of edits done on files

during the development periods of 2.1 and 3.0 prior to their beta

releases. For instance, we observed the development activity

between August 30th, 2002 and the final beta release date,

February 7th, 2003 to count the number of edits on files in release

2.1. This metric was previously used in other defect prediction

studies [10, 13] and found to be significant indicators of software

defects. Therefore, our hypothesis was:

H2: As the number of edits increases on a file, it is expected that

the file will have more bugs after beta release.

Last Edit Date: This metric count the days between the dates

when a file is last checked into CVS and the beta release. We

believe that if a file is edited recently, then there is a possibility

that it may not be tested enough before the beta release. We

computed the time (in days) since the latest edition for all files in

releases 2.1 and 3.0. Our hypothesis was that:

H3:As a file is edited recently (closer to release date), then it is

more likely to have bugs after beta release.

Number of Committers: A previous study done on binaries of

Windows Vista showed that organizational metrics such as the

number of developers (i.e., committers) are statistically significant

indicators of post-release defects with the best prediction

accuracy, compared to churn and code metrics [14]. Therefore, we

counted the number of unique committers who edited files during

the development periods of 2.1 and 3.0. As a similar trend with

the number of edits, we formed our hypothesis as follows:

H4: The more developers make changes on a file, the more bugs

after beta release will be reported on this file.

Average Changed Lines of Code: The number of edits is an

important indicator of development activity, and the extent of

these edits provide valuable information about how much change,

i.e., added/deleted/modified lines of code, has been done on files.

We used this metric to measure the average amount of changes on

files. The complexity of these changes would provide more

information, but it could not be measured through CVS (without

source codes). Therefore, we computed the changed LOC for all

files during the development periods of 2.1 and 3.0 until the beta

releases. Our hypothesis was:

H5: The more lines of code (LOC) is edited on a file, the more

bugs after the beta release will be reported on this file.

Average Time between Edits: This metric aims to measure the

independence between consecutive edits on the main branch, or

conversely, dependencies between changes. If the time between

several edits on a file is less than 2 days, then it is more likely that

these edits may be interdependent due to a bug fix or feature

development. As the time between edits on a file increases, there

may be several independent tasks (developments due to different

projects, requests, functionalities) completed on that file. Thus,

we formed our hypothesis as follows:

H6: As the time between edits on a file increases (seldom

revisions), the probability of this file having bugs after the beta

release will increase.

4. STATISTICAL ANALYSES
Our main research objective is to find unique trends in files with

beta-release bugs in terms of in-process metrics. To test our

hypotheses we conducted three analyses each of which serves for

a different purpose in this study:

Non-parametric Correlations between Files: We applied

Spearman’s rank correlation statistics on pairs of file sets (for

each metric) in order to identify whether there is a

interdependence between files with beta-release bugs, files with

other bugs and files with no bugs. Spearman’s rank correlation

coefficient indicates a high correlation (close to 1) between two

file sets, if the distributions of these files with respect to a

software metric are not completely independent from each other.

High correlation between files with beta-release bugs and other

files indicates a statistically significant lack of independence

between them, which would make it more difficult to distinguish

files with beta-release bugs from other files. We cannot absolutely

conclude these facts using only one significant test, because

Spearman test is also insensitive to some kind of independences.

Mann-Whitney U-Test: This test checks whether two populations

tend to be distributed differently with respect to a factor such that

their medians are different from each other (one is shifted left or

right) [1]. It is more sensitive to dependencies between two

populations compared to Spearman’s test. If Mann-Whitney test

rejects its null hypothesis: “two file sets come from distributions

with equal medians” with 95% confidence, this indicates that the

distribution of files with beta-release bugs and the other file set

with respect to a software metric (e.g. age) tend to concentrate on

different medians although their distributions are highly correlated

(according to Spearman’s rank coefficient). These differences in

terms of medians may help us distinguish files with beta-release

bugs with respect to a specific metric.

Non-parametric Correlations between Attributes: In contrast to

the analyses on metrics individually, pairs of metrics may be more

explanatory to analyze files with beta-release bugs. In this test, we

applied Spearman test on all possible attribute pairs to understand

the dependencies between attributes. If the rank coefficient

between two software metrics is higher than 0.70, this indicates

that this metric pair should be observed to get a broader

understanding on files with beta-release bugs. Thus, in the last

analysis, we plotted scatter diagrams between metric pairs, who

are strongly correlated, with respect to files with beta-release

bugs, files with other bugs and files with no bugs, respectively.

5. RESULTS
Interpretations of the statistical tests are summarized for six in-

process metrics. We named files with beta-release bugs reported

in stack traces as BS, files with bugs reported prior to beta-release

as BNS, and files with no bugs as NB.

5.1 Age
Spearman’s rank correlation test for BS, BNS and NB are

computed for Eclipse releases 2.1 and 3.0 (Table 2). The bold and

gray-shaded cells in Table 2 indicate that selected pairs (BNS and

NB) are significantly correlated in terms of age metric. We can

also see that BS follow different trend from others (BNS and NB),

i.e., mutual independence. However, BNS and NB are strongly

correlated, i.e., it is very likely that there is an interdependence

(positive or negative relation) between two file sets. We also

plotted their distributions in Figure 1. Figure 1 shows that 14% of

files with no bugs (NB) are around 4 months old in release 2.1.

However, files with beta-release bugs (BS) tend to concentrate

around 300 days, which means they are older than files with no

bugs (NB). In release 3.0, it is hard to see whether all file sets

share the same distribution, since they are concentrated on

different time periods. However, the highest percentage of files

with beta-release bugs (12%) is around 2 years old. This shows

that our first hypothesis (H1) may not hold: As the file gets older,

it more likely contains bugs after beta release.

To make a stronger claim, we applied Mann-Whitney U-tests

between BS, BNS and NB. Results indicate files with beta-release

bugs (BS) have different medians with 95% confidence (p-value <

0.05). That is; we can distinguish files with beta-release bugs (BS)

from other files using age metric by looking at different medians

they are concentrated on.

Table 2. Spearman Correlations: “Age”

Release 2.1 Release 3.0

 BS BNS NB BS BNS NB

BS 1.00 0.54 0.49 BS 1.00 0.56 0.55

BNS 1.00 0.84 BNS 1.00 0.88

Table 3. Spearman Correlations: “Number of Edits”

Release 2.1 Release 3.0

 BS BNS NB BS BNS NB

BS 1.00 0.89 0.73 BS 1.00 0.73 0.66

BNS 1.00 0.86 BNS 1.00 0.90

Table 4. Spearman correlations: “last edit date”

Release 2.1 Release 3.0

 BS BNS NB BS BNS NB

BS 1.00 0.72 0.64 BS 1.00 0.71 0.64

BNS 1.00 0.91 BNS 1.00 0.92

Figure 1. “Age” distributions in files with beta-release bugs (*-), files with other bugs (o-), and files with no bugs (.-): (a) release 2.1

(b) release 3.0. X axis shows the age in days, whereas Y axis shows the percentage of files.

Figure 2. Distributions for “Number of edits”

Figure 3. Distributions for “Last edit date”

5.2 Number of Edits
We applied the same procedure that we used for the age metric

between BS, BNS, NB. Table 3 summarizes the Spearman

correlation coefficients, where gray-shaded and bold cells indicate

that there is a strong correlation between a pair with 95%

significance. From Table 3, it is seen that files with beta-release

bugs, have very strong relations with other files. This indicates

that they follow a very similar trend and it is hard to distinguish

BS in terms of distributions.

We also plotted the distribution of number of edits for BS, BNS,

NB only for release 3.0 due to space limitations. From Figure 2, it

is clear that files with other bugs (BNS) and no bugs (NB) follow

smooth exponential distributions, where most of the files has less

than 10 edits. However, distribution of files with beta-release bugs

(BS) has heavier tails: Files in BS are edited more than other files.

We validated this finding with Mann Whitney U-tests for pairs of

BS-BNS, BS-NB. The test rejects the null hypothesis “files with

beta-release bugs and the other file set come from distributions

with equal medians” with 99% confidence (p-value < 0.01).

Therefore, files with beta-release bugs (BS) have similar

distributions with other files (all follow exponential trends), but

they have median shifts indicating that there are relatively more

edits on them. As a result, our second hypothesis (H2) holds: The

more edits are done on a file, it is more likely that the file will

contain bugs after beta release. So number of edits is also a

significant indicator for beta-release bugs in Eclipse releases 2.1

and 3.0.

5.3 Last Edit Date
For this metric, Spearman correlation coefficients (ρ) and

distribution plots for BS against the other files (BNS, NB

respectively) are shown. Correlations (gray-shaded and bold cells)

in Table 4 show that files with beta-release bugs are strongly

correlated with files with other bugs in terms of last edit date (0.7

< ρ< 0.9). We also plotted the trends for the files with beta-release

bugs (BS) and the other file sets (BNS, NB) on release 2.1. Figure

3 shows that around 35% of NB are edited 95 days ago (nearly 3

months), whereas 11% of BS, i.e., the highest proportion of files,

are edited a day ago (very recently compared to BNS, NB).

To support the existence of median shifts and distinguish BS from

others, Mann Whitney U-tests were conducted. The test rejects the

null hypothesis for BS-BNS, BS-NB pairs with 98% confidence

(p-value < 0.02) indicating that files with beta-release bugs and

other files may come from similar distributions, but they have

different medians (BS are edited more recently). Therefore, our

third hypothesis (H3) also holds: Files with beta-release bugs are

edited closer to the release date. So last edit date is also a

significant indicator for beta-release bugs in Eclipse.

5.4 Number of Committers
To observe whether the number of committers working on files

has a unique characteristic for files with beta-release bugs, we

plotted the trends and computed Spearman correlation

coefficients. Based on Table 5, gray-shaded and bold cells

indicate strong correlations between BS-BNS and BS-NB for

release 2.1. This indicates that files with beta-release bugs may

come from similar distributions with other files or they are

interdependent to each other. To explain this strong correlation,

we plot distributions of BS, BNS and NB for releases 2.1 and 3.0.

Since both releases show very similar trends, we present release

3.0 in Figure 4.

Figure 4 presents a typical scenario valid for various software

projects such that the greatest portion of files are edited by only 1

or 2 committers. For instance, in release 3.0 (Figure 4), 65% of

files with no bugs are edited by only one committer, whereas this

percentage decreases in files with beta-release and other bugs.

This argument, in fact, supports our forth hypothesis (H4): As the

number of committers working on files increases, then it is very

likely that files will contain bugs after the beta release. We can

clearly see the median shifts for files with beta-release bugs. To

support our claim, Mann-Whitney U-tests between BS and other

file sets also rejected the null hypothesis with 95% confidence,

meaning that BS has different medians from other file sets. Thus,

number of committers is also a significant indicator for beta-

release bugs.

5.5 Average Changed LOC
We again computed Spearman correlation coefficients between

three file sets for this metric. Table 6 shows that all files are

strongly correlated with each other in terms of their distributions.

The distributions for release 3.0 in Figure 5 validate this fact (all

files follow almost exponential distributions). However, Figure 5

also shows that more than 20 LOC were changed in 30% of files

with beta-release bugs, in contrast to 45% of files with no bugs,

which had less than 20 LOC being changed. Therefore, as in the

case of number of edits, files with beta-release bugs have heavier

tails (more changes in terms of LOC) than other file sets. We also

conducted Mann-Whitney U-tests and found that distributions of

files with beta-release bugs have shifted medians with 95%

confidence . Based on Figure 5 and significance tests, we can

support our hypothesis (H5): Files with beta-release bugs are

edited (in terms of LOC) more than other files. Therefore, average

changed LOC is also a significant indicator for files with beta-

release bugs.

5.6 Average Time between Edits
The final metric is average time between edits. We applied the

same procedures and found the correlations depicted in Table 7.

From the table, it can be seen that all file sets except BNS-NB in

release 3.0 have mutually independent from each other. They

should follow very different distributions with no relations

between one another. We plotted the trends to understand the

actual reasons for these low correlations. Figure 6 shows the

distributions for release 3.0 in terms of average time between

edits metric. As seen in the figure, files with beta-release bugs

follow a completely different trend from other file sets, which are

somewhat similar to an exponential trend. Around 6% of files

with beta-release bugs (as the highest concentration) are edited,

on the average, every 260 days, i.e., 8.5 months. This is the

opposite for files with other and no bugs, such that more than

20% files with no bugs are edited on the average every 46 days.

Therefore, we can support our sixth hypothesis (H6): If files are

seldom edited (in every 8 months), then it is more likely that

developers will introduce beta-release bugs into the code. If they

are frequently edited (every month), developers may produce

more reliable code.

We also conducted Mann-Whitney U-tests and found that files

with beta-release bugs (BS) have different medians from other

files with 95% significance. Therefore, average time between

edits is also a significant indicator of beta-release bugs. As a

result, by investigating the attributes individually,

 We can conclude that all six metrics have explanatory effects

on beta-release bugs: bugs reported after beta-release with

stack traces.

 Although in most cases, all files are likely to share the same
distribution in terms of in-process metrics, files with beta-
release bugs have median shifts, which make them easy to
distinguish from other files.

Table 5. Spearman Correlations: “Number of committers”

Release 2.1 Release 3.0

 BS BNS NB BS BNS NB

BS 1.00 0.96 0.96 BS 1.00 0.40 0.27

BNS 1.00 0.94 BNS 1.00 0.96

Table 6. Spearman Correlations: “Average changed LOC”

Release 2.1 Release 3.0

 BS BNS NB BS BNS NB

BS 1.00 0.87 0.90 BS 1.00 0.89 0.90

BNS 1.00 0.99 BNS 1.00 0.98

Table 7. Spearman Correlations: “Time between edits”

Release 2.1 Release 3.0

 BS BNS NB BS BNS NB

BS 1.00 0.14 0.04 BS 1.00 0.00 -0.02

BNS 1.00 0.48 BNS 1.00 0.63

Figure 4. Distributions for “Number of committers”

Table 8. Spearman correlation coefficients (rho) between process metrics for files with bugs including stack traces.

Release 2.1 Release 3.0

 age edits lastedit people chgLOC timeedits age edits lastedit people chgLOC timeedits

age 1.00 0.08 0.11 0.12 0.13 0.19 age 1.00 0.40 0.00 0.40 0.09 0.67

edits 1.00 -0.14 0.78 0.69 0.78 edits 1.00 -0.38 0.78 0.43 0.62

lastedit 1.00 0.08 -0.01 -0.09 lastedit 1.00 -0.26 -0.16 -0.12

people 1.00 0.52 0.70 people 1.00 0.31 0.57

chgLOC 1.00 0.46 chgLOC 1.00 0.23
Edits: number of edits. People: number of committers. ChgLOC: average changed LOC. Timeedits: average time between edits. Bold cells indicate strong

correlations (ρ> 0.75) with p-value less than 0.05.

Figure 5. Distributions for “Average changed LOC”

Figure 6. Distributions for “Average time between edits”

Figure 7. Scatter diagram for edits-committers in 2.1.

Figure 8. Scatter diagram for edits-timeedits in 2.1.

5.7 Correlation Between Process Metrics
We found that the six in-process metrics can be used as significant

indicators of beta-release bugs independently. However, some of

them may actually be related to each other, e.g.as the number of

people editing files increases, then the number of edits would also

increase. To observe these relations among in-process metrics

with respect to files with beta-release bugs, files with other bugs

and files with no bugs, we computed Spearman correlation

coefficients on all metric pairs.

Table 8 summarizes the results on BS for releases 2.1 and 3.0.

Gray-shaded and bold cells indicate significant strong correlations

(ρ > 0.75) between metrics, such as number of edits (edits) and

number of committers (people) (for releases 2.1 and 3.0) and,

number of edits (edits) and average time between edits (timeedits)

(for release 2.1).

To distinguish files with beta-release bugs from others using these

metric pairs, we observed scatter diagrams (Figure 7 for edits-

people and Figure 8 for edits-timeedits) for release 2.1. The plots

are identically the same for release 3.0 except there are more

activities in release 3.0. From Figure 7, we can see that although

medians of three file sets are different from each other in terms of

edits and people, files with beta-release bugs are concentrated on

a smaller region, with less edits and fewer people, which is a

subset of the region covered by files with other bugs, i.e., more

edits, more people. Furthermore, files with no bugs have also less

edits by few people. Therefore, if we built a rule-based system

using the most correlated metric pairs, then we would identify

only the files with other bugs by putting a lower threshold as (30,

5) for (edits, people). Based on Figure 7, files edited more than 30

times and by more than 5 people are more likely to contain other

bugs. However, files edited less than 30 times and by less than 5

people may either contain beta-release bugs or contain no bugs.

Figure 8 also shows a similar pattern: Files with beta-release bugs

have less than 30 edits and edits within every 100 days. This

pattern suggests that, in Eclipse, majority of beta-release bugs are

mapped with files with little activity, rather than files with more

activities; possibly the testing efforts in Eclipse focus primarily on

files with more activity, which could explain why the beta-release

bugs have been missed.

To summarize, although we were able to identify that in-process

metrics follow unique trends for files with beta-release bugs, it is

less likely to detect certain type of bugs with a single prediction

model due to large overlaps in small regions of distributions.

Thus, practitioners should use such simple and powerful statistical

analyses to explain characteristics of certain defect categories

separately. Using this information, the development process can

be improved and certain actions can proactively be taken to avoid

post-release failures.

6. THREATS TO VALIDITY
We overcame threats due to bug categorization by filtering bugs

based on information reported in stack traces rather than using

start and end dates of beta release. We also made assumptions

during metric extraction and data filtering, such as removing long

tails from the distributions, and removing files with no activity. It

is unavoidable to eliminate all kind of biases in retrospective

studies, since the goal is to mine a very rich and complex data,

and apply statistics to represent the situation as good as possible.

We removed files which are outliers and cause the long tails in

distribution, since they did not represent the majority of the

population. Finally, we put high attention to selection of

significance tests, each overcomes threats that may occur due to

the previous ones, e.g. Spearman test is insensitive to certain

dependencies which can be handled by Mann Whitney U-test.

Drawing general conclusions from retrospective analyses, is a real

challenge, since every project depends on several variables.

However, our analysis was conducted on one of the largest open

source projects, and therefore, it can be easily replicated, refuted

or improved.

7. CONCLUSION
Our analyses shows that:

1. When files with beta-release bugs can be observed
independently from other files, it is seen that they have different
characteristics in terms of process-related factors.
2. All files show a similar trend (in terms of their distributions)
such that most of the files are edited less than 20 times and by less
than 3 committers.
3. However, files with beta-release bugs are different in terms of
how their population is shifted to less activity. They are edited not
very frequently and less than 20 times, compared to files with
other bugs (more than 20 edits by more than 3 committers).
4. Prediction models detecting all types of post-release defects
may not successfully predict certain type of defects due to their
unique in-process characteristics. Thus, we should concentrate on
such defects to understand unique characteristics of these failures
associated with these defects.

5. Retrospective analysis can help practitioners understand
developments processes and change certain principles to avoid
similar failures in future releases.

8. ACKNOWLEDGMENTS
Many thanks to Nicolas Bettenburg for sharing his data on stack

traces in Eclipse bug reports.

9. REFERENCES
[1] Wilcoxon, F. 1945. Individual comparisons by ranking

methods. Biometrics Bulletin, (1): 80-83.

[2] Moller, K.H., Paulish, D. 1993. An empirical investigation of

software fault distribution, In Proceedings of the first software

metrics symposium, IEEE CS Press, 82-90.

[3] Fenton, N., Ohlsson, N. 1999. Quantitative Analysis of Faults

and Failures in a Complex Software System, IEEE Transactions

on Software Engineering, (26): 797-814.

[4] Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S. 2008.

Extracting structural information from bug reports, In Proceedings

of the Fifth International working conference on Mining Software

Repositories, 27-30.

[5] Brooks, A. 1995. The Mythical Man-Month: Essays on

Software Engineering. Addison-Wesley.

[6] Alam, O., Adams, B., Hassan A. 2009. A Study of the Time

Dependence of Code Changes, In Proceedings of the 16th

working conference on Reverse Engineering.

[7] Ostrand T., Weyuker, E. 2002. The distribution of faults in a

large industrial software system, In Proceedings of the ACM

SIGSOFT International Symposium on Software Testing and

Analysis, 55-64.

[8] Menzies T., Greenwald, J., Frank, A. 2006. Data mining static

code attributes to learn defect predictors, IEEE Transactions on

Software Engineering, (33): 2-13.

[9] StatsDirect Ltd. 2009. Statistical Help Basics,

http://www.statsdirect.com/help/statsdirect.htm.

[10] Nagappan, N., Ball, T., Murphy, B. 2006. Using historical

in-process and product metrics for early estimation of software

failures, In Proceedings of the 17th International Symposium on

Software Reliability Engineering, 62-74.

[11] Zimmermann, T., Premraj, R., Zeller, A. 2007. Predicting

defects for eclipse, In Proceedings of the International Conference

on Software Engineering, 9.

[12] Eclipse project development: Historical information about

past releases, http://www.eclipse.org/eclipse/development/.

[13] Schröter, A., Zimmermann, T., Premraj, R. Zeller, A. 2006.

If Your Bug Database Could Talk, In Proceedings of the 5th

International Symposium on Empirical Software Engineering and

Measurement, 18-20.

[14] Nagappan, N., Murphy, B., Basili, V. 2008. The Influence of

Organizational Structure on Software Quality: An Empirical Case

Study, In Proceedings of the 30th International Conference on

Software Engineering, 521-530.

[15] Boetticher, G., Menzies, T., Ostrand, T. 2007. Promise

Repository of empirical software engineering data,

http://promisedata.org/repository, Department of Computer

Science.

