
Ethernet Topology Discovery without Network Assistance

Richard Black, Austin Donnelly, C´edric Fournet
Microsoft Research, J.J. Thomson Avenue, Cambridge, U.K.

�rjblack,austind,fournet�@microsoft.com

Abstract

This work addresses the problem of Layer 2 topology dis-
covery. Current techniques concentrate on using SNMP to
query information from Ethernet switches. In contrast, we
present a technique that infers the Ethernet (Layer 2) topol-
ogy without assistance from the network elements by inject-
ing suitable probe packets from the end-systems and observ-
ing where they are delivered. We describe the algorithm,
formally characterize its correctness and completeness, and
present our implementation and experimental results. Per-
formance results show that although originally aimed at the
home and small office the techniques scale to much larger
networks.

1. Introduction

Of calls to computer help desks, those directly at-
tributable to local area networking problems are amongst
the hardest to solve, take the longest, and have low cus-
tomer satisfaction. They have direct costs measured in mil-
lions of dollars per month [13]. The cost to the global
economy in terms of worker productivity is much higher.

Frequently the initial step in diagnosis is to examine the
topology of the network to determine which links, devices
or computers are reachable and how that compares with the
expected state.

Many of these calls do not originate in large organisa-
tions with complex intranets, but in small businesses, home
offices, and branch offices where consumer-grade equip-
ment is being used and where support staff are not on hand.
Such equipment does not support SNMP (Simple Network
Management Protocol) and our topology discovery algo-
rithm is the first to work in this setting.

Additionally, many large enterprise networks also con-
tain hardware without SNMP support, typically towards the
edges of the network. Our approach complements and ex-
tends the reach of existing topology discovery techniques in
this enterprise setting.

Our contribution is a new collaborative protocol permit-
ting end-systems to discover the topology of an Ethernet—

Figure 1. Screenshot of an example discov-
ered topology.

including hubs, switches, WiFi Access Points and WiFi
bridges—without support from the network elements, by
injecting probe packets from the end-systems and relying
only on the normal forwarding behavior of the network ele-
ments.

Figure 1 shows an example of what our implementation
can do; in this instance mapping our 33-node lab network.

Our approach requires a small amount of daemon code
on many hosts in the network, to allow topology discovery
packets to be injected at suitable locations. While deploy-
ment of the daemon might seem a stumbling-block to adop-
tion, we are working with product teams to get this func-
tionality into a future release of Windows, together with an
SDK and implementation guide for other platforms [5].

The topology of a network is a graph representing
hosts, network elements, and their interconnections. Al-
though such a graph could be annotated with additional
details such as link bandwidths and loss rates, this paper fo-
cuses purely on the topology.



Topology discovery can be at a variety of levels, rang-
ing from Internet-scale mapping efforts to small-scale home
area networks. The techniques applicable to one effort are
not necessarily transferable to others; this paper describes
Ethernet (Layer 2) topology discovery.

Topology discovery should ideally return the simplest
network compatible with all observations. However, the po-
tential presence of hubs and switches not directly linked to
any hosts significantly complicates our task. Clearly, some
elements cannot be detected by any sequence of packets—
for instance, a switch attached to a single segment is invis-
ible. More surprisingly, perhaps, it is often possible to in-
fer the presence of hubs and switches far from any host in-
volved in the protocol. To clarify these ideas, and gain con-
fidence in our protocol, we formalize the observable seman-
tics of networks and show that, in the absence of wireless el-
ements, our discovery algorithm is correct and complete.

Section 2 covers related work. Section 3 reviews the be-
havior of various network elements and defines our termi-
nology and notations. Section 4 explains the algorithm, and
section 5 describes some limitations, security aspects, and
the extensions to wireless networking. Section 6 consid-
ers the correctness and completeness of the algorithm. Sec-
tion 7 evaluates its implementation, both on real networks
and in simulation. Section 8 presents our conclusions.

2. Related Work

Recently, there has been much research into Internet-
scale mapping or tomography [9, 12, 2]. These tend to be
passive, non-collaborative, IP-layer protocols (although [3]
like us uses active probing). For individual routes in the In-
ternet, tools such as traceroute and pathchar [7] can be used
to discover link characteristics. Mapping at this level in such
a large environment is far removed from our work; it con-
siders topology at the IP level and tends to apply to the wide
area and multiple organisations, whereas our work applies
to the local area (a single Ethernet), and a single organisa-
tion. Of course the techniques could be used and combined
in an overall larger picture.

Closer to our problem is that of mapping enterprise or
datacenter networks. In this area commercial products such
as IBM/Tivoli’s NetView and HP’s OpenView are com-
mon [14, 8], along with the more basic Nomad [4] and
OpenNMS [1]. These mappers work by issuing SNMP
queries for router tables (defined in MIB-2) [11], IEEE
802.1D Bridge MIBs [6], and / or RMON-2 MIBs [15].
These MIBs give information for each port on the IP router
or Ethernet switch, including the hosts or network elements
attached to these ports.

These management interfaces have some variation in
their implementation; Lowekampet al. report needing to
develop work-arounds [10] in their presentation of an effi-

cient technique for stitching together the partial topologies
resulting from SNMP queries into a consistent whole, us-
ing contradictions to quickly narrow down the possible in-
terconnections between switches.

Several problems remain with MIB based approaches:
MIBs only contain information on recently active hosts
(since bridges timeout address table entries after around five
minutes); properly secured network elements need the map-
per to supply an appropriate community string (i.e. pass-
word) before allowing access.

Most significantly however, many devices especially in
the application domain of interest do not support SNMP;
indeed, for anad hocwireless network there is no device!

We believe that our approach, using a careful analysis of
only the fundamental packet forwarding properties of the
network elements themselves, is new and provides an effec-
tive, end-system-based way to map networks.

3. Terminology

We introduce two new terms:islands and gaps in our
discussion of network topology. However, since our ap-
proach relies on observing and analyzing the standard oper-
ational behavior of the network, we begin with a short sum-
mary of the operation of network elements before we define
those terms. Section 6 gives formal definitions, in terms of
simply-connected graphs and subgraphs.

Hosts, Addresses, and Packets. An Ethernet is a graph
with two kinds of nodes:hosts, with a single link, andnet-
work elements, with multiple links. Ethernet requires that all
redundant links have been eliminated (either through STP
(Spanning Tree Protocol), or by wiring rules); the graph is
therefore a tree, with a single path between any two nodes.

Each host is characterized by its distinct MAC address,
thus a computer with multiple network interfaces is treated
as multiple hosts.

Switches and Hubs. To the reader, it might seem clear
whether a particular element is a switch or a hub, but given
the abuse of terminology used in much marketing literature,
we feel a hard definition is needed.

Switches are devices that can dynamically learn which
addresses are on each port, and filter packets destined to
those addresses accordingly. Concretely, if a switch receives
a packet with source� on a given port, then it subsequently
delivers packets for destination� to that port only; pack-
ets from that port with destination� are dropped. If no
packet from source� has been seen, then the switch floods a
packet to that destination to all ports. We do not require that
switches implement the IEEE 802.1D STP, since so many
inexpensive switches do not.

Hubs are stateless devices; they always flood received
packets to all ports except the original incoming port.



Network diagrams (such as in figure 2) in use square
boxes to represent network elements, with an ‘X’ for
switches and an ‘H’ for hubs.

Segments. We use the standard meaning ofsegment: a
shared media where hosts overhear each others’ transmis-
sions (e.g. a 10Base2 coax bus or at least one 10BaseT hub).
A segment with at least one host is ashallow segment and
considered to be at the edge of the network; segments with
no hosts are calleddeep segments. For brevity we some-
times identify a segment with a host present on the segment.

We classify segments asintermediate if a packet being
put onto the segment may arrive at more than one switch. It
follows that a shallow segment is intermediate if it contains
at least two switches; a deep intermediate segment requires
at least three switches since it has no hosts.

For instance, figure 2 shows a simple network compris-
ing four hubs and two switches, with eight hosts arranged
in pairs on four segments. The segment containing�����
is an intermediate segment.

Islands and Gaps. An island consists of one or more shal-
low segments of the network, forming a maximal connected
subgraph with no deep segments.

A gap is a portion of a network containing only deep seg-
ments; it therefore connects multiple islands together.

For instance, figure 2 shows a single island; figure 5
shows three islands connected by two gaps (both just a
wire); figures 7 and 8 illustrate more complex gaps, com-
posed of several deep segments.

Access Points. Wireless APs (Access Points) partially fil-
ter packets: they maintain a table of addresses associated
with their wireless port, and transmit a packet on the wire-
less port only if its destination address appears in the as-
sociation table (or if it is broadcast or multicast). An AP
does not forward a packet to an unknown destination from
its wired to its wireless interface. Packets arriving from the
wireless side with a destination address that does not ap-
pear in the association table are bridged to the fixed side of
the AP. We say a host isbehind an AP if it is connected to
the AP’s wireless side.

Note that a consequence of association is that wireless
clients of an AP must send packets with a source address
which has previously associated: this precludes the forging
of source addresses.

Wireless Bridges. Wireless bridges (such as the Linksys
WET11) are also devices with one wired and one wireless
port: they are designed to permit one or more wired com-
puters to associate indirectly to a wireless access point. We
say that the wired computers arebehind the bridge.

Wireless bridges require care during discovery because
hosts can appear to be connected to a fixed network when
actually there is a point-to-point wireless link between them
and other portion(s) of the network.

We consider bridges which operate in one of two modes.
In clone mode, the bridge notes the first source MAC ad-
dress it receives on its fixed side, and associates to the AP
using that address. This only allows a single host behind the
bridge, however it provides true Layer 2 bridging seman-
tics. In proxy mode, the bridge associates with the AP us-
ing the bridge’s own address. It performs proxy-ARP for
the IP addresses on the wired side, building a table of IP
and MAC addresses; when packets arrive on the wireless
side, the bridge rewrites them to have the correct destina-
tion MAC address (rather than its own), and sends them
out on the fixed side. Packets from the fixed side have their
source MAC address rewritten to be the bridge’s own, since
this is the address associated with the AP. This allows mul-
tiple IP hosts to operate behind the bridge, but does not pro-
vide true Layer 2 connectivity.

4. Algorithm

At a very high level the technique is based on two sim-
ple properties: (1) hosts on the same segment can be de-
tected since in promiscuous mode each can see all the traf-
fic of the others, and (2) a packet with a particular source ad-
dress entering a switch on one port will prevent the switch
from sending packets with that destination address to any
other port.

Assumptions. In our implementation we use a distin-
guished host� , themapper, that acts as a central control-
ling entity for the algorithm. We also assume that most hosts
in the network run a daemon that can inject topology pack-
ets and record received packets (using promiscuous mode);
section 5 relaxes our assumption for some hosts.

A preliminary protocol permits us to discover all hosts
running daemons, and establish a control RPC connection
to them. The RPC interface permits� to request the trans-
mission of a packet and query which packets have been ob-
served.

The mapper determines the sequence, addresses, and in-
jection points for packet transmissions, and how such trans-
missions are interleaved with queries. The RPC protocol is
fairly standard so hereinafter we simply assume that the al-
gorithm directly controls all hosts. Throughout the discus-
sion we assume that no packet loss occurs; the real imple-
mentation uses either acknowledgements (where a packet
always arrives somewhere) or repetition (where a test packet
may be validly not delivered anywhere) but we elide these
details for clarity and space; the technique used at each
stage is obvious from the discussion below.

For our notation we let���� � � � ���� � � � range over
host MAC addresses. In addition, we sometimes rely on ad-
dresses	�
 not attributed to any host on the network but
instead allocated from a private range assigned for our tech-
nique.



We use the notation� � 
 � � to mean that host�
sends an Ethernet packet with source address
 and desti-
nation address�. Note that in standard Ethernet� is at lib-
erty to fake the source address, indeed we exploit this in
our algorithm; because such addresses are from a private
range always different from real addresses, normal traffic is
not disturbed. Topology discovery packets also use a dis-
tinct Ethernet Type field to further prevent interference.

In description we may distinguishtraining and probe
packets: training packets cause a switch to learn a partic-
ular source address, whereas probe packets test whether a
switch has learnt a trained address. Of course on the wire
there is no difference between them.

Outline. Mapping proceeds by execution and analysis of
a number of phases. We initially explain the wired algo-
rithm, and subsequently explain the extensions for wireless
elements and uncooperative hosts in section 5. We also en-
sure that all switches know the real addresses of all hosts at
the beginning of the mapping, using ordinary broadcasts.

The first phase discovers the shallow segments of the net-
work by the use of promiscuous mode. Shallow interme-
diate segments can also be deduced from the promiscuous
mode information obtained.

The second phase discovers switches attached to at least
one shallow segment, plus the shallow segments they are at-
tached to, and fully determines all islands (defined in sec-
tion 3 above). In the usual case there are no shallow interme-
diate segments, hence each island consists of a single switch
that attaches shallow segments.

The third phase discovers the segment or switch at the
edge of each island where it connects to its adjoining gaps.
Finally, the fourth phase discovers the structure of the gaps
that interconnect the islands.

Phase 1: Segment Detection. We select an arbitrary host,
named thecollector, and set all hosts in promiscuous mode.
Each other host sends a probe packet to the collector. The
collector also sends a probe packet using a special segment-
local destination address	 (described below) so that any
hosts sharing its segment may see it. For each host, thesees
set consists of the source addresses for all received probe
packets, plus the host’s own address.

From these sets, we determine shallow segments and
their interconnection, as follows. Two hosts belong to the
same segment if they have the same sees set. Further, we
sort shallow segments into a tree, thesegment tree, by plac-
ing a segment above another when hosts in the parent seg-
ment see the probes sent from the child segment. Hence, the
collector’s segment is at the root of the tree, and branches
appear when multiple segments are attached towards the
collector.

Consider the network in figure 2, consisting of eight
hosts �� � � � � � connected to several hubs joined by
switches, all of which have engaged promiscuous mode.

A B
C D

flow of
packets

segment
A, B

segment
C, D

Segment Tree:

E FG J

segment
E, F

segment
G, J

H

H

H

H

Figure 2. Segment detection.

Let � be the collector. The leaves� and 
 only see
���
�; similarly, � and � only see��� ��. Further in,
� and� see������� 
�, while � and� see all eight
hosts (since� is the collector). Hosts are in the same seg-
ment if they have identical sees sets, so in our case the shal-
low segments are�����, �����, ���
�, and��� ��.

For the subsequent phases, we select one host to repre-
sent each shallow segment; this host is called thesegment
leader. Other hosts play no further part. In our example we
select�,�, � and�.

Phase 2: Switches. In this phase, we detect any switch
shared between multiple shallow segments by observ-
ing when a switch trained by (the leader of) one segment
changes behavior when observed by (the leader of) an-
other segment.

We first establish a technique to teach an address toex-
actly the switches of a given segment—a host cannot do so
by sending a packet to its own address, since such pack-
ets are internally looped-back.

The IEEE defines in the 802.1D standard a range of ad-
dresses which must not be propagated by switches; the first
of these is used by the STP. We cannot use one of these ad-
dresses however, since consumer switches flood these pack-
ets precisely in order to appear transparent to STP.

Instead the host (say�) sends a packet� � 	 � �
where	 is a fresh address and� is the address of some
other host.1 Whilst knowledge of	 may leak to many
switches in the network, at least the switches on�’s seg-
ment are trained that	 is on�’s segment. Host� can now
send to destination	, with the guarantee that no switches
will forward the packet. Note that	 is specific to�; each
host will need to set up its own fresh address	.

Having established the ability to send packets to a single
segment we can explain a simple example of training to de-
tect switches and discriminate between the two networks in
figure 3 by sending three packets. First,� � 
 � 	. Sec-
ond,� � 
 � 	. Third� � � � 
 . If the second packet
reaches the same switch as the first packet (figure 3(a)), then

1 It is more efficient to use another host on�’s segment, but any other
host or even broadcast will do.



A B A B

(a) (b)

Figure 3. Training to separate two switches.

the third packet will be forwarded by the switch to host�.
If � and� are attached to different switches (figure 3(b)),
the third packet will not reach host�.

We expand the description of our general technique in
two stages for clarity. First, suppose that there are no in-
termediate segments in the network. We pick one fresh ad-
dress,
 , which will be repeatedly trained. Each segment
leader�� sends a training packet�� � 
 � 	. If there are
multiple segment leaders connected to a single switch then

 will be repeatedly trained so that for each switch the last
segment leader to send the training packet will be the owner
of address
 on its switch. Note that each switch will have
a different view as to the location of the host
 .

We then cause each segment leader to send a probe
packet�� � �� � 
 , and observe which segment lead-
ers receive the probes. Any switch with a segment leader
attached has one segment leader which was the last to train
the switch with the address
 ; that leader will receive probe
packets sent by other attached segment leaders. We say that
this hostgathers the probes from the other segment leaders
on the same switch; the gathered segments and the gather-
ing segment are attached to the same switch. Any segments
remaining unaccounted for (neither gathered nor a gatherer)
are each connected to a separate switch by themselves (they
train their local switch and probe it, but the switch correctly
drops the probe packet so it is never received).

Now relax the restriction and consider intermediate seg-
ments. As shown by� ’s segment in figure 2, a segment can
be attached to several switches; a training packet sent by the
leader of an intermediate segment trains multiple switches.

If the leader of an intermediate segment was the last host
to train more than one switch then it would be a point of
confluence for the probe messages, and could erroneously
gather the segments of multiple switches and believe them
to be attached to the same switch. As an example, consider
figure 2 and suppose that� was the collector. If� was also
to train last, it would gather from�, � and� and the two
switches of the network would be indistinguishable.

We solve this by having the segment leaders train in pre-
order when performing a depth-first walk of the segment
tree (starting from the collector). This means that probes
sent to
 now propagate away from the collector towards
the leaves of the tree, guaranteeing that there is no point of
confluence.

A B
C D

E FG J

H

H

H

H

Figure 4. Probe flow after training A;C;E;G.

For the running example of figure 2 the segment lead-
ers would train in the order:�������. The probes would
therefore flow as shown in figure 4, yielding the following
gathers sets:� and� both gather nothing,� gathers���,
and� gathers�����. The switch connectivity is known.

There is one further detail: the existence of intermedi-
ate segments can mean that probe packets to
 can traverse
more than one switch across the network. If host� were
to train before host� in figure 2, the probe from� would
travel the whole way to�. Such probes are easily handled
because they come from a host which is neither a peer not a
direct parent of the gatherer in the segment tree.

At this point in the algorithm we have linked shallow
segments to their switches, and if intermediate shallow seg-
ments are present then they chain together the multiple
switches they connect, forming islands in which the com-
plete topology is known. Switches not attached to inter-
mediate shallow segments form trivial one-switch islands
comprised of the switch together with its (non-intermediate)
shallow segments. What remains to be investigated are the
deep segments and the switches interconnecting the islands.

Phase 3: Island Edges. From the segment tree, we can
easily detect parent- and child-segments on different is-
lands, hence the existence of a gap to analyze, but we first
need to know whether the paths to each of these children
attach to the parent through distinct switches, or whether
these paths share points of attachment to the parent. In brief,
we need to identify the switches at the edge of each island.

Figure 5 shows a topology with three islands and two
gaps. Host� is collector, at the root of the segment tree.
The figure also shows the segment tree resulting from run-
ning the first phase of the algorithm.

The segment of interest is the segment of host� which
has four direct children�,�,� and
 in the segment tree,
representing the three islands. We chose this network be-
cause it shows both an island (number 1) connected via a
switch discovered in Phase 2, and an island connected via
an additional switch.

Our algorithm analyzes each cross-island parent-child
connectivity in turn. There are two possible cases to con-
sider: (1) if the parent segment has no switches below it in
the segment tree, then we create a new one representing the
switch through which the child’s island attaches to the par-
ent’s island. We know this switch must exist because if it



A

G
F

M
B

C D
E

island 1

island 0

switch S switch T

H

H
island 2

segment
M

segment
A

segment
B

segment
C

segment
D

segment
E

segment
F

segment
G

Figure 5. Example network with three islands, and the resulting segment tree after Phase 2.

did not then we would have discovered a single, larger, is-
land rather than the two we actually discovered. Alterna-
tively, (2) the parent segment has one or more switches be-
low it in the segment tree. We thus need to discover which
one of these switches connects the child’s island to the par-
ent’s island. We test each candidate switch as follows: we
send a probe packet from the child segment to a host be-
low the switch under test; if the probe packet isnot seen
on the parent segment then the child segment must be be-
low the switch under test, and so the child’s island attaches
to the parent’s island via this switch. If the child’s island is
not connected via any of the candidate switches then we in-
fer the existence of a new switch, just as in case (1) above.

In the example, a packet sent from host� in island 1 to
host� in island 0 is not visible at host�, therefore we know
that� ’s segment (hence island 1) is connected via the same
switch as host�. In contrast, a packet sent from host
 in
island 2 to host� is visible at host� allowing us to in-
fer the existence of switch�.

To complete the discovery of cross-island connectivity,
we determine the switch at the child segment on the edge of
the island; fortunately this is deterministic and easy. If the
child segment has a parent switch, then it is the edge of the
island (all the other segments on that switch are also chil-
dren of the same parent and can be removed from consid-
eration). If the child segment has no parent switch, then we
infer the existence of an additional switch.

In the example, hosts� and� share a parent switch, so
that switch is at the edge of island 1; host
 has no such
parent switch, so we can infer the existence of switch� at
the edge of island 2. (Recall that switches� and� must be
distinct because� and
 are in different islands; if they had
been a single switch,
 would have gathered� in Phase 2.)

At the end of this phase, we have discovered all hosts and
switches attached to shallow segments; further, for each re-
maining gap, we have identified the islands connected by
that gap, and the corresponding switches at the edge of the
gap. For each gap, we now select one host per island to train
and probe the gap via its edge switch. We call these hosts
switch leaders.

Phase 4: Discovering Gaps. In order to explore any re-
maining gap, we first set up a simple test, then describe a
recursive discovery algorithm.

Path Crossing Test. Our test combines both training and
probing with a fresh address, say
 ; it involves four switch
leaders, say� � � and�, at the edge of the gap.

The purpose of the test is to determine how the path from
� to� intersects the path from� to�. It is especially use-
ful for exploring deep segments because the intersection be-
tween the two paths need not be close to any of the hosts in-
volved in the test. It goes sequentially, as follows:

1. � sends a training packet to� (� � 
 � �).
2. � sends a training packet to� (� � 
 � �).
3. � sends a probe packet to
 (� � � � 
) and both
� and� report whether they receive the probe or not.

The test and its results are depicted in figure 6. We now in-
terpret each of the three possible results, and also define no-
tations used in this phase.

Only � observes the probe: Since� does not observe
the probe, some switch on the path from� to � has been
trained by the packet� � 
 � �. That is, there is a switch
that is both on the path from� to � and on a segment on
the path from� to�. We say that the two paths cross at that
switch, and write����� � �.

Only � observes the probe: Since� does not observe
the probe, conversely, we know that the switches on the seg-
ments on the path from� to� (seeing the probe message)
and the switches on the segments on the path from� to�
(trained to forward
 to� ) are disjoint. Moreover, since�
and� still have to be connected, this connection necessar-
ily goes through one of the former switches and one of the
latter switches, and the deep segments between these two
switches separate the network with�, � on one side and
� , � on the other side. We say that the two paths are dis-
joint, and write����� � �.

Both � and � observe the probe: This third result re-
veals the presence of a deep hub that duplicates the probe
packet sent to
 . Precisely, there is a switch on a segment
of the path from� to� that is also on a segment of the path



A B

P

Q

X    B

2 X    Q

3 B    X
?

1

H

A B

P Q

A B

P Q

HA B

P Q

Figure 6. The test ����� and its results.

from� to�, but that is not directly on that second path. We
say that the two paths are hubbed, and write����� � H.

The test can be used with� � �, with packet two be-
coming� � 
 � 	, yielding three possible results with
similar interpretations. (����� is not defined, but for uni-
formity it is convenient to extend our definition and let
����� � �.)

Our “path-crossing” test has useful equational proper-
ties, which can be used to reduce the number of tests actu-
ally performed during gap discovery. For instance, we have
����� � ����� � ����� , and����� � � if
and only if����� � �. Besides, series of tests�����
can often be combined to reuse the same training- or probe-
packets.

Recursive Gap Discovery. Recall that at the end of the third
phase we have detected some number of gaps in the net-
work, each of which bordered by switches, each switch hav-
ing a host (the switch leader) on an attached segment. Start-
ing from these switches, we recursively use the path cross-
ing test to split each gap into smaller gaps until we are left
with wires. (This section explains how to split gaps, but the
precise tracking of the sub-gaps is deferred till section 6.)

As a first step, we check whether any switch on the edge
of the gap has more than one deep segment attached to it, as
this allows us to break the gap at such a switch. This is done
by choosing each switch leader in turn to be the host� ,
and testing����� for all remaining hosts as� and�s.
Whenever there exist some� and� with ����� � H

or ����� � �, one can split the current gap into sev-
eral gaps with fewer border switches: one of these gaps has
switches for (at least)� and� but not for�, another has
switches for� and� but not for�. We iterate this pro-
cess until all such gaps are split.

E

island 1

D

island 0

F

island 2

gap

E F

D

Figure 7. A network with a three-switch gap.

As a simple example, consider the three-switch network
shown in figure 7, and the problem of determining how
those switches are connected. By the end of Phase 3, we
know they are in three separate islands, and all border the
same gap. Suppose we select� as� ; without loss of gener-
ality � is� and
 is�. The result of�
��� is�, so�
does not split the gap; by symmetry the same holds if we se-
lect 
 as� . However, when we pick� as� we find that
�
��� is �, splitting the gap into two gaps each of two
switches. Such gaps are trivially represented by a wire, and
hence the switches are connected in the order�-�-
 .

In the next step, we observe that in the case of a gap
whose segment closest to some host� is an intermediate
segment, then a packet on a path from� to a switch leader
behind one of the switches on such a segment is sufficient
to train a switch connecting some other part of the gap at-
tached to the same segment. We can thus apply����� re-
cursively, with the path�� touching the edge of the gap un-
der evaluation as long as there is some segment on the edge
of the gap which is an intermediate segment.

As an example, refer to figure 5, assume hosts� and

are inactive, and consider the gap bordered by�,� ,�,�.
Packets� � 
 � � suffice to train switch� , so we can
proceed as if
 were active, and recursively fill the gap bor-
dered by�, � , and (virtually)
 . Symmetrically, packets
� � 
 � � suffice to train switch�, as if� were present.

Finally we may reach a stage where every edge of some
gap is represented by a switch with a single wire leaving
that switch into the gap attached to a single other switch.
At this point we must apply the general form of�����.
We chose� and� such that�� crosses the gap and then
we group the remaining switch leaders into classes and sub-
classes based on the evaluation of�����. Once this is
done we can order the classes along the line�� by sorting
with �����. This gives us the number of switches along
the line��which have points of attachment, the number of
points of attachment to each such switch, and the classes of
switch leaders attached to each switch. (See section 6 and
figure 9 for example networks.)

We proceed to analyse the gap by recursion; choosing a
new� inside each such class and repeatedly dividing the re-
maining switch leaders into classes and subclasses, and or-
dering the classes. Depending on the topology this may be
quite expensive, but since at least one switch leader (the one



H

Figure 8. Two indistinguishable 3-stars.

chosen as�) is removed from the switch leaders under con-
sideration, it will eventually terminate with the topology of
the network (under observational equivalence).

5. Discussion

Limitations. There are certain configurations of network-
ing equipment which we cannot detect. The most obvious is
a dead branch such as a hub or switch with no hosts, hang-
ing as a leaf from the network. These have no operational
effect, and so are undetectable in our setting.

Some live equipment is also undetectable. A segment
(apparently) connecting only two devices may be either a
piece of wire or an arbitrary number of linked hubs; simi-
larly, any collection of hubs on the same segment are indis-
tinguishable from a single, larger, hub. Likewise, a switch
connecting exactly two deep segments forwards any packet
it receives on one port to the other port; it has no effect on
packet flow, and is indistinguishable from a wire.

Finally, deep hub stars are indistinguishable from a sin-
gle switch connecting the arms of the star; again none of
the equipment has hosts directly connected. Figure 8 shows
two indistinguishable 3-stars, although clearly this gener-
alises to an�-star for� � �.

In all cases, we apply Occam’s Razor and infer the sim-
plest network which satisfies the observable properties.

A limitation of another sort comes from switches run-
ning with 802.1x port-based access control enabled. Such
switches prevent hosts connected to them from sending
packets with unauthenticated source address. This stops us
from training their switches, and thus we cannot determine
which hosts attach to them. However, such switches are
high-end products and also implement a remote manage-
ment interface, allowing their topology to be discovered
through more traditional schemes.

Wireless. So far we have described wired hosts on a wired
network; we now explain how wireless hosts and segments
fit into the technique.

First, recall from section 4 that we begin by finding all
the hosts in the network supporting the daemon. At this
original stage, hosts attached to a wireless NIC report the
BSSID of the AP that they are associated with.

While in theory there is nothing preventing a wireless
host from enabling promiscuous mode, in practice this re-
quires firmware support on the device and driver support
in the OS. In our experience, enabling promiscuous mode
on a wireless NIC does not work reliably, so we do not de-
pend on this behavior. Instead we use BSSID equality to de-
tect wireless hosts on the same segment.

At the original stage hosts also supply their real MAC ad-
dress in the body of the packet. This allows us to detect if a
wireless bridge has rewritten the source address in the Eth-
ernet header. We group hosts with equal changed addresses
(which is the address of the bridge attaching them to the net-
work) and use recursion to map the portion of the network
on the wired side of the bridge.2

We locate APs and bridges in Phase 2 by electing a leader
for the AP or bridge. The leaders send a probe packet to ad-
dress
 , and we note where it is gathered, just like any other
host. The difference is that hosts behind an AP cannot take
part in training switches, so their probes may be gathered
some distance from their actual location.3

Uncooperative hosts. While it is desirable to have all
hosts run the daemon code, mapping is possible without
having the cooperation of all hosts—although obviously the
accuracy of the topology may be affected. Any host not
running a daemon but having an IP stack (e.g. a network
printer) can be located in the network in a similar way to the
locating of APs and bridges: the mapper can send a third-
party ARP request for the address
 to the host’s IP ad-
dress. A third-party ARP request is one whose ARP-layer
source address is not the sender’s. In our case the mapper
sets the ARP source address to be
 , which makes the IP
host send an ARP response to
 , so it can be gathered in the
normal fashion. The mapper could collect the list of IP ad-
dresses to be probed passively, by continuously monitoring
traffic on the network—the list need not be manually con-
figured.

Security Aspects. The daemons send and receive pack-
ets on behalf of the mapper. To mitigate security concerns,
daemons only send and record topology traffic packets, and
send packets only from either our reserved topology address
range or their real address. This prevents any impact on the
routing of normal packets. In addition, the daemons enforce
a rate limit on transmission to prevent their being used in
an amplification attack. As in any collaborative scheme, the
correctness depends on the correct behavior of the contrib-
utors.

2 It may be that the mapper is behind a wireless bridge; this is detected
by the mapper’s address changing. Whilst this adds a little complexity
to the implementation it doesn’t much affect the algorithm; each wired
region is mapped independently.

3 This rarely causes any ambiguity since wireless segments cannot be
intermediate segments.



6. Correctness and Completeness

In this section, we give a formal account of our algo-
rithm. Throughout, we assume there is no wireless element
or uncooperative host. Due to space constraints, we only
give a sketch of the proofs.

Basic Definitions and Tests. We first recall our defini-
tions, in terms of graphs. A network is a simply-connected,
finite graph whose nodes are switches, hubs, and distinct
hosts�, �, . . . ,� , �, . . . ,� , . . . .Hosts have a single link.
We write�� for the unordered pair of hosts� and�.

An �-segment is a maximal, simply-connected sub-
graph of linked hubs attached to� (distinct, otherwise-
disconnected) hosts and switches. The segment is shallow
if it is attached to at least one host, deep otherwise. For in-
stance, a�-segment is typically just a link, but may also be
two links attached by a hub.

An island is a maximal simply-connected subgraph con-
sisting of shallow segments; An�-gap is a simply-
connected union of deep segments that connect� (distinct)
border switches.

Next, we provide lemmas that formally relate the results
of tests performed on networks to their actual topology. All
tests assume that all switches are initially trained for all host
addresses; this can be enforced by sending� � � � � for
all hosts� and�.

Lemma 1 (Seeing Packets) Let ��� be the set of hosts
on segments that connect � to �. This set is observable.

The set��� contains at least� and�. For� �� �,
we have� � ��� if and only if host� observes packets
� � � � � (or equivalently� � � � �). For� � �,
we observe� � ��� using local training, as detailed in
section 4.

For a fixed host� , the collector, we write� �� � when
� � ��� . The relation�� is a preorder with smallest ele-
ment� . When convenient, we also use the associated equiv-
alence� �� � (when� �� � and� �� �), strict preorder
� �� � (when� �� � and� ��� �), and covering rela-
tion � 	� � (when� �� � and� �� � �� � implies
� �� � or � �� �). By definition, all these relations are
also observable.

Lemma 2 (Path Crossing) For all hosts ���� ��� with
� �� �, let ����� � ����� H� be such that


 ����� � � when there exist two switches separat-
ing �, � on one side from � , � on the other side.


 ����� � � when there is a switch on a segment of
the path from � to � that is on the path from � to �.


 ����� � H when there is a switch on a segment of
the path from � to � that is also on a segment of the
path from � to � but not directly on that path.

The result of ����� is observable.

Network Equivalence. We letobservational equivalence,
written �, relate two networks when they have the same
hosts and, starting from a state where all switches are clear,
for any series of packets sent from these hosts, all hosts ob-
serve the same packets.

This equivalence captures our intuition of indistinguisha-
bility of networks, from the viewpoint of its hosts. However,
it does not provide an effective decision procedure. To this
end, we now give a characterization of� in terms of the lo-
cal network topology. In essence, our theorem bounds what
can ever be observed without network assistance. This en-
ables us to confirm that our discovery algorithm iscomplete:
under our hypotheses, its precision cannot be improved.

Theorem 1 (Completeness) Observational equivalence is
also the finest equivalence preserved by:

R1. Substitution between �-segments.

R2. Addition and deletion of dead branches: for any net-
work N, we have N�H � N and N�� � N.

R3. Addition and deletion of redundant switches with two
links: for any networks �N, �N

�

, we have �N������N
�

�
�N����N

�

.

R4. Addition and deletion of deep hub stars: for any net-
works �N�� � � � � �N�, we have H������N� �������� �
�����N� �

�������.

(where��N andH�N stands for networksN�� � � � � N� attached
to � andH, respectively.) Informally, the rules R1–R4 list
parts of the network topology that are not observable: at-
tached hubs (R1), ends of the network with no hosts (R2);
switches attaching two deep segments (R3); and hubs sym-
metrically attaching deep�-segments, as depicted in fig-
ure 8 (R4). The theorem states that this list is actually com-
plete.

Thenormal form of a network is obtained by repeatedly
applying these rules from left to right, and replacing any�-
segment by a single hub attaching� wires (or just a wire for
� � �). Since each application deletes elements, we obtain
the smallest network in its equivalence class.

An abstractdiscovery algorithm performs a finite series
of tests for each given network and returns its normal form.

Proof sketch Let�� be the finest equivalence preserved
by rules R1–R4. To prove thatN �� N� implies N � N�,
it suffices to check that each of the equivalence cases in
the theorem is an observational equivalence. These differ-
ent networks can’t be separated by any series of packets be-
cause:

R1. Hubs on a segment don’t filter messages.

R2. No message ever arrives from a dead branch.

R3. As an invariant, the state of the two left- and right-
switches are the same on both sides of the equivalence;



if the left switch routes to the right, or the right switch
routes to the left, then so does the middle switch.

R4. As an invariant, the outer switches have the same state
on both sides of the equivalence, and the states of each
inner switch is obtained from the state of the central
switch by routing outward the addresses routed to-
wards that branch by the central switch and routing in-
ward the addresses routed towards any other branch by
the central switch.

Conversely, to prove thatN � N � implies N �� N� , we
rely on the existence of a correct abstract algorithm (The-
orem 2): since the algorithm yields the��-normal form of
the network, and since it only depends on the result of ob-
servable tests,�-equivalent networks yield identical normal
forms. �

An Abstract Algorithm. We now specify our algorithm,
omitting the details, data structures, and optimizations of
our implementation. Our discovery strategy relies on fewer
tests than those we implemented. In the discussion, we im-
plicitly refer to the normal form of the network, thereby ex-
cluding occurrences of the right-hand-sides of rules R1–R4.

Determine the islands and their contents (Phases 1 and 2).
Choose a host� and observe��, then

1. Find all shallow segments, as the equivalence classes
of ��. Retain a single host on each shallow segment.

2. Find all switches attaching shallow segments. We dis-
tinguish two cases for these switches: (I) the switch at-
taches� � � segments����� � � � � �� with � 	� ��

for � � � � � � �, or (B) the switch attaches� segments
��� � � � � �� and also connects to� on some other island
(through deep segments), with� 	� �� for � � � � � � �.
Phase 2 proceeds as follows:

a) Every� sends� � 
 � 	, in increasing order: if
� �� �, then� sends its message before�. As a re-
sult, every shallow switch is trained and, in both cases
(I) and (B), the switch is trained towards the�� that
sent�� � 
 � 	 last.

b) Every� sends� � � � 
 , in any order. The result
of the test consists of sets�� containing the source�
for each packet observed at�.

We find a switch attaching shallow segments for each
non-empty set�� : either there exists� 	� � for
some� � �� , and we have a (I)-switch attaching
����� � �� � �� 
 � �� ��, or we have a (B)-switch
attaching��� � �� .

Determine the switches attaching islands to gaps (Phase 3).
We write� 	� � when� 	� � and� and� belong
to different islands:� and�’s islands are then connected
by a gap via switches attached to� and�, respectively.

Hence, the relation	� yields the branches of a tree of is-
lands rooted at� . If � 	� � and� 	� �

� for two distinct
� and�� on the same island, then� and� � are attached to
a previously-found (B) switch connecting�’s island. Oth-
erwise,� is attached to a newly-found switch connecting
�’s island.

On�’s island, we may need additional tests to find the
switch attaching� and connecting each island with a�
such that� 	� �. For each� with � 	� � with a
previously-found switch attached to� and connecting�, if
� �� ��� then� is also connected to that switch. Other-
wise, we have found a new switch (and will consider� � �
for any remaining island connected to�).

To every such identified switch attached to� corre-
sponds a�-gap, with� � � additional switches, one for
each island with�s such that� 	� �.

Determine every remaining �-gap, by induction on �
(Phase 4). The input is a set� of � unordered pairs�� �

representing distinct switches that can be trained towards�
by sending� � 
 � �� without affecting the rest of the
gap. To begin with,� contains a pair�� for each border
switch, for some host� linked to the switch.

In preparation for the inductive cases, we define an aux-
iliary operation on sets of switches: toadd a switch repre-
sented by�� � to some set� �, written� � � ��� ��, first de-
tect whether the switch�� � is already represented by any
��� � ��, using the test�� ����� � �, then merge these
two switches and their connections, otherwise add a distinct
switch��� to ��.

When� � �, do nothing. When� � �, attach the two
switches by a wire. When� � �:

1. Select�� �� ��� � � and partition� � ��� �� ���� as
follows: ��� and��� are in the same subclass when
������� � �; ��� and��� are in the same class
when������� � ��� H�.

Each class corresponds to a network attached to a
switch on a segment from�� � to ���. When a class
contains several subclasses, each subclass corresponds
to one or several networks attached to a distinct switch,
with the class switch and all the subclass switches at-
tached by a hub.

We distinguish two kind of inductive cases, for
�� � � ��� and�� � �� ���. In both cases, a set� �

collects the switches bordering the remaining gap af-
ter analysing all classes and subclasses; at the state of the
analysis,� � contains�� � and��� (when��� �� �� �).
After analysing all classes, if� � is smaller than�, re-
cursively fill � �.

Each class� is analyzed as follows:

a) If � has several subclasses��� � � � � �� � �, then
for each subclass��, select��� � � � ��, fill
�� � ����, and keep the resulting switch.



A B

P Q

H

H

A B

P Q

H

H

A B

P Q

Figure 9. Examples of 4-gaps with deep switches and hubs.

If �� � � ���, attach these� kept switches to
�� � by a hub (and do not add anything to� �).

If �� � �� ���, select��� � �� and��� � ��,
attach the switch��� and the� resulting switches
by a hub, and add�� � to ��.

b) If � is a single subclass, fill�� �����. In the filled
sub-gap, if the switch��� is represented by some
��� with �� � and��� in �, add��� to ��. Oth-
erwise, since we cannot have three switches in a line,
the switch behind��� is represented by some���

with �� � and��� in �. Add��� to ��.

We do not progress in only two situations:

i. �� � � ��� and� � � � ��� �� is a subclass.

ii. �� � �� ���, � � �����, and��� �� ���.

2. Finally, when there is no progress for any choice of
�� �� ��� � �, attach the remaining switches in� us-
ing an extra switch with� links. �

As an example of inductive cases in the algorithm, con-
sider the three�-gaps of figure 9, with border switches
�, �, � , and�. All border switches are linked to an
inner switch, so any splitting with a single switch (say
� ) yields a single subclass containing all other switches
(���������). To make progress, we consider splits using
two distinct switches.

In the leftmost gap,����� � H, and the split accord-
ing to��� yields a class with two subclasses,����� ����.
For each subclass, we fill a�-gap,������ and������,
find inner switches hubbed to a third switch represented by
��, and finally fill� � � �������� in a similar way. We
obtain the exact topology of the network.

In the central gap,����� � � and we have a sin-
gle subclass�������. We fill the sub-gaps����� ���
and�������� and, since these hub-stars are observed as
switch-stars, obtain the topology of the (equivalent) right-
most network.

Theorem 2 (Correctness) The discovery algorithm finds
the normal form of any network.

Proof sketch In this final case, by 1(b)i we have
����� � � � for all distinct���, ���, �� � � �, so all
switches are connected by a single wire to some other in-
ner switch in the gap. If� � 	, rules (R3) and (R4) ensure
that we have a single, central inner switch. If� � 	, as-
sume some of these inner switches are not the same, that is,
there exist��� and��� connected by three or more seg-
ments of the form�������� � � �������. If there ex-
ists �� � linked to ���’s inner switch and��� linked
anywhere else on that path, then����� �� � contradict-
ing 1(b)ii. By rule (R3) and symmetry, all inner switches are
thus distinct and attached to a hub. By rule (R4), they cannot
all be connected to a single central hub, so there exist dis-
tinct���� �� � on some hub and�� �� ��� on some other
hub linked by (at least) one switch, with����� �� � con-
tradicting 1(b)ii. �

7. Experimental Evaluation

In addition to developing and formalizing the algorithm
itself, we also created an implementation, consisting of
about 4,000 lines of code for the mapper and about 500 for
the daemon, which we used to validate our model against a
real network. A screenshot of our code run on our lab test
network was presented in figure 1.

As well as deploying on our internal networks, we also
purchased one of every home networking switch on offer at
our local store. Some of these experiments informed more
practical considerations: our implementation begins with a
special packet sequence to detect switches based on the
Conexant CX84200; this chip sometimes reflects packets
out the port they went in on which is disastrous to the nor-
mal operation of a network, and too confusing for our algo-
rithm to deal with.4 Another surprise was that while inex-
pensive home networking switches learn new Ethernet ad-
dresses immediately, enterprise-class switches can take up
to 150 ms. Our implementation therefore delays between

4 The Linksys BEFW11S4 has a similar problem, but we have yet to
find a way to detect it.



sending a training packet and the probe packets which test
the training.

In our implementation we created an abstraction above
the raw Ethernet socket interface, which permits us to run
unmodified mapper and daemons on a simulated network.
This allows testing of our implementation on many differ-
ent topologies to exercise the various code paths.

Experimental results. We instrumented the simulator to
record the number of packets injected into the network (in-
cluding the RPC traffic from the mapper to the daemons).
We also put together real network topologies to measure
elapsed times.

The table below shows the costs for a small selection
of networks, expressed both as a number of packets (taken
from the simulator results), and the (average) elapsed time
when run on a real network.

Topology pkts secs
(switch A) 6 1.10
(switch A B) 32 2.14
(switch A (switch B)) 38 2.13
(switch A (AP B (bridge C))) 37 3.30
(switch A B (switch C D)) 69 2.61
(switch A B (hub C D (switch E F))) 87 2.64
Three-switch problem (figure 7) 92 3.38
Figure 5 149 4.46

The time is always greater than one second because this is
the length of the host discovery period; time after this initial
second is spent probing the network topology and is domi-
nated by the many delays of 150 ms in case there are enter-
prise switches present.

Although the 150 ms delays are the dominant factor in
the cost of the algorithm we can give complexity informa-
tion for the phases. The first phase is linear in the number of
hosts. The second phase is linear in the number of switches.
The third phase is������ where� is the number of islands
and� is the largest number of gaps attached to any one is-
land. The fourth phase is more difficult to analyse, but our
experience is that the numbers involved are tiny even in very
large corporate networks.

8. Conclusions

We showed how the hosts on the edges of an Ethernet
can cooperate to discover the topology of the network con-
necting them. Not only can the technique map portions of
the network near hosts, but the path crossing test permits the
discovery of network components far from any host.

We do not require any intelligence in the network el-
ements being discovered, and so our work complements
previous approaches to topology discovery which rely on
querying switch and router MIBs via SNMP or other man-
agement protocols. Because we infer topology from the be-

havior of the network, a minor limitation is that elements
which do not influence the behavior are not discoverable by
our technique.

Formally, we specified our algorithm for a wired net-
work, and showed that it always detects the simplest net-
work that is observationally equivalent to the actual net-
work. Experimentally, we presented performance data from
simulations, as well as timings from a real implementation
deployed over 33 machines in our lab.

References

[1] Tarus Balog. OpenNMS. SNMP walker and network
manager, 2004, Available online at
http://www.opennms.org/.

[2] Yigal Bejerano and Rajeev Rastogi. Robust Monitoring of
Link Delays and Faults in IP Networks. InProceedings of
INFOCOM 2003, April 2003.

[3] Bill Cheswick, Hal Burch, and Steve Branigan. Mapping
and Visualizing the Internet. InProceedings of Usenix
2000, June 2000. Productized by Lumeta corporation.

[4] Paul Coates. Nomad: Network mapping and monitoring.
SNMP walker software from Newcastle University, 2002,
Available online athttp://netmon.ncl.ac.uk/.

[5] Microsoft Corporation. Network Diagnostics. InWindows
Hardware Engineering Conference (WinHEC), May 2004.
Session TW04010, Available online athttp://www.
winhec2004.com/content/breakouts.aspx.

[6] E. Decker, P. Langille, A. Rijsinghani, and K. McCloghrie.
Definitions of managed objects for bridges. RFC 1493,
IETF, July 1993.

[7] Allen B. Downey. Using pathchar to estimate Internet link
characteristics. InProceedings of ACM SIGCOMM 1999,
September 1999.

[8] HP. Web page athttp://www.openview.hp.com/
products/nnm/index.asp, February 2003.

[9] Bradley Huffaker, Daniel Plummer, David Moore, and
K Claffy. Topology discovery by active probing.
Whitepaper published by CAIDA, 2002.

[10] Bruce Lowekamp, David R. O’Hallaron, and Thomas R.
Gross. Topology Discovery for Large Ethernet Networks.
In Proceedings of ACM SIGCOMM 2001, August 2001.

[11] K. McCloghrie and M. T. Rose. Management information
base for network management of TCP/IP-based internets:
MIB-II. RFC 1213, IETF, March 1991.

[12] Venkata N. Padmanabhan, Lili Qiu, and Helen J. Wang.
Server-based inference of internet link lossiness. In
Proceedings of IEEE INFOCOM 2003, San Francisco,
April 2003.

[13] Microsoft Product Support Services. Top ten customer pain
points. Internal Summary and estimations, 2003.

[14] Tivoli. Web page athttp://www.ibm.com/
software/tivoli/products/netview/, February
2003.

[15] S. Waldbusser. Remote network monitoring management
information base version 2 using SMIv2. RFC 2021, IETF,
January 1997.


