Fast: a Transducer-Based Language for Tree Manipulation

LORIS D'ANTONI, University of Pennsylvania
MARGUS VEANES, Microsoft Research
BENJAMIN LIVSHITS, Microsoft Research
DAVID MOLNAR, Microsoft Research

Tree automata and transducers are used in a wide range of applications in software engineering. While these
formalisms are of immense practical use, they can only model finite alphabets. To overcome this problem
we augment tree automata and transducers with symbolic alphabets represented as parametric theories.
Admitting infinite alphabets makes these models more general and succinct than their classic counterparts.
Despite this, we show how the main operations, such as composition and language equivalence, remain
computable given a decision procedure for the alphabet theory. We introduce a high-level language called
FAsT that acts as a front-end for the above formalisms.

Categories and Subject Descriptors: F.1.1 [Theory of Computation]: Models of Computation, Automata
General Terms: Algorithms, Languages, Verification
Additional Key Words and Phrases: Symbolic Tree Transducers, FAST

ACM Reference Format:
ACM Trans. Program. Lang. Syst. V, N, Article (October 2015), 33 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

This paper introduces FAST, a new language for analyzing and modeling programs that ma-
nipulate trees over potentially infinite domains. FAST builds on top of satisfiability modulo
theory solvers, tree automata, and tree transducers. Tree automata are used in variety of ap-
plications in software engineering, from analysis of XML programs [Hosoya and Pierce 2003]
to language type-checking [Seidl 1994b]. Tree transducers extend tree automata to model
functions over trees, and appear in fields such as natural language processing [Maletti et al.
2009; Purtee and Schubert 2012; May and Knight 2008] and XML transformations [Maneth
et al. 2005]. While these formalisms are of immense practical use, they suffer from a major
drawback: in the most common forms they can only handle finite alphabets. Moreover, in
practice existing models do not scale well even for finite but large alphabets.

In order to overcome this limitation, symbolic tree automata (STAs) and symbolic tree
transducers (STTs) extend these classic objects by allowing transitions to be labeled with
formulas in a specified theory. While the concept is straightforward, traditional algorithms
for constructing composition, deciding equivalence, and other properties of finite automata
and transducers do not immediately generalize. A notable example appears in [D’Antoni
and Veanes 2013a] where it is shown that while in the classic case allowing finite automata
transitions to read subsequent inputs does not add expressiveness, in the symbolic case this

Authors Addresses: L. D’Antoni, University of Pennsylvania 3330 Walnut St. Philadelphia, PA, 19104
lorisdan@seas.upenn.edu. M. Veanes, B. Livshits, and D. Molnar, Microsoft Research One Microsoft Way
Redmond, WA, margus@microsoft.com, livshits@microsoft.com, dmolnar@microsoft.com.

Loris D’Antoni did this work as part of an internship at Microsoft Research, and he is supported by NSF
Expeditions in Computing award CCF 1138996.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2015 ACM. 0164-0925/2015/10-ART $15.00

DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

2 Loris D'Antoni et al.

Composition | Equivalence | Pre-image

Augmented reality v v
HTML sanitization v v
Deforestation v

Program analysis v v v
CSS analysis v v v

Fig. 1. Representative applications of FAST discussed in Section 5. For each application we show which
analyses of FAST are needed.

extension makes most problems, such as checking equivalence, undecidable. Symbolic tree
automata still enjoy the closure and decidability properties of classic tree automata [Veanes
and Bjgrner 2012] under the assumption that the alphabet theory forms a Boolean algebra
(i.e. closed under Boolean operations) and it is decidable. In particular STAs can be mini-
mized and are closed under complement, and intersection, and it is therefore decidable to
check whether two STAs are equivalent.

Taking a step further, tree transducers model transformations from trees to trees. A
symbolic tree transducer (STT) traverses the input tree in a top-down fashion, processes
one node at a time, and produces an output tree. This simple model can capture several
scenarios, however in most useful cases it is not closed under sequential composition [Fiilop
and Vogler 2014]. In the case of finite alphabets this problem is solved by augmenting
the transducer’s rules with regular look-ahead [Engelfriet 1977], that is the capability of
checking whether the subtrees of each processed node belong to some regular tree languages.
We extend STTs in a similar way, and introduce symbolic tree transducers with reqular look-
ahead (STTRs). The main theoretical result of this paper is a new composition algorithm
for STTRs together with a proof of its correctness. Similarly to the classic case, we show
that two STTRs A and B can be composed into a single STTR A o B if either A is single-
valued (for every input produces at most one output), or B is linear (traverses each node
in the tree at most once). Remarkably, the algorithm works modulo any decidable alphabet
theory that is an effective Boolean algebra.

We introduce the language FAST as a frontend for STAs and STTRs. FAST (Functional
Abstraction of Symbolic Transducers) is a functional language that integrates symbolic
automata and transducers with Z3 [De Moura and Bjgrner 2008], a state-of-the-art solver
able to support complex theories that range from data-types to non-linear real arithmetic.
We use FAST to model several real world scenarios and analysis problems: we demonstrate
applications to HTML sanitization, interference checking of augmented reality applications
submitted to an app store, deforestation in functional language compilation, and analysis of
functional programs over trees. We also sketch how FAST can capture simple CSS analysis
tasks. All such problems require the use of symbolic alphabets. Figure 1 summarizes our
applications and the analyses enabling each one. In Section 7 we further contrast FAST with
previous DSLs for tree manipulation.

Contributions summary:

(1) a theory of symbolic tree transducers with regular look-ahead (STTR), that non-trivially
extends the classic theory of tree transducers (§3);

(2) a new algorithm for composing STTRs together with a proof of correctness (§4);

(3

)
) FAsST, a domain-specific language for tree manipulations founded on the theory of STTRs
(4) five concrete applications of FAST showing how composition of STTR can be beneficial

(§3); and
in practical settings (§5).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 3

2. MOTIVATING EXAMPLE

We use a simple scenario to illustrate the main features of the language FAST and the anal-
ysis enabled by the use of symbolic transducers. Here, we choose to model a basic HTML
sanitizer. An HTML sanitizer is a program that traverses an input HT'ML document and re-
moves or modifies nodes, attributes and values that can cause malicious code to be executed
on a server. Every HTML sanitizer works in a different way, but the general structure is as
follows: 1) the input HTML is parsed into a DOM (Document Object Model) tree, 2) the
DOM is modified by a sequence of sanitization functions fi,..., f,, and 3) the modified
DOM tree is transformed back into an HTML document!. In the following paragraphs we
use FAST to describe some of the functions used during step 2. Each function f; takes as
input a DOM tree received from the browser’s parser and transforms it into an updated
DOM tree. As an example, the FAST program sani (Figure 2, line 30) traverses the input
DOM and outputs a copy where all subtrees in which the root is labeled with the string
"script" have been removed, and all the characters "’" and """ have been escaped with
a n\u'

The following informally describes each component of Figure 2. Line 2 defines the data-
type HtmlE of our trees.? Each node of type HtmlE contains an attribute tag of type string
and is built using one of the constructors nil, val, attr, or node. Each constructor has a
number of children associated with it (2 for attr) and all such children are HtmlE nodes.
We use the type HtmlE to model DOM trees. Since DOM trees are unranked (each node
can have an arbitrary number of children), we will first encode them as ranked trees.

We adopt a slight variation of the classic binary encoding of unranked trees (Figure 3).
We first informally describe the encoding and then show how it can be formalized in FAST.
Each HTML node n is encoded as an HtmlE element node(x,x2,x3) with three children
Z1,x9,x3 where: 1) x1 encodes the list of attributes of n, 2) x5 encodes the first child of n in
the DOM, 3) z3 encodes the next sibling of n, and 4) tag contains the node type of n (div,
etc.). Each HTML attribute a with value s is encoded as an HtmlE element attr(zq,z2)
with two children x1, zo where: 1) 21 encodes the value s (nil if s is the empty string), 2)
encodes the list of attributes following a (nil if a is the last attribute), and 3) tag contains
the name of a (id, etc.). Each non-empty string w = s1...s, is encoded as an HtmlE
element val(x1) where tag contains the string “s;”, and x; encodes the suffix s ... s,. Each
element nil has tag "", and can be seen as a termination operator for lists, strings, and
trees. This encoding can be expressed in FAST (lines 4-12). For example, nodeT'ree (lines 4-
6) is the language of correct HTML encodings (nodes): 1) the tree node(x1, x2, x3) is in the
language nodeT'ree if x1 is in the language attrTree, zo is in the language nodeTree, and
x3 is in the language nodeT'ree; 2) the tree nil is in nodeTree if its tag contains the empty
string. The other language definitions are similar.

We now describe the sanitization functions. The transformation remScript (lines 14-18)
takes an input tree ¢ of type HtmlE and produces an output tree of type HtmlE: 1)
if t = node(x1,x2,x3) and its tag is different from "script", remScript outputs a copy
of ¢t in which x5 and 3 are replaced by the results of invoking remScript on zo and x3
respectively; 2) if t = node(x1,x2,x3) and its tag is equal to "script", remScript outputs
a copy of xs, 3) if t = nil, remScript outputs a copy t. The transformation esc (lines 19-24)
of type HtmlE->HtmlE escapes the characters > and ", and it outputs a copy of the input
tree in which each node val with tag "’" or """ is pre-pended a node val with tag "\".
The transformations remScript and esc are then composed into a single transformation
rem_esc (line 26). This is done using transducer composition. The square bracket syntax
is used to represent the assignments to the attribute tag. One might notice that rem_esc

1Some sanitizers process the input HTML as a string, often causing the output not to be standards com-
pliant.
2Section 6 discusses why classic tree transducers do not scale in this case.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

4 Loris D'Antoni et al.

// Datatype definition for HTML encoding
type HtmlE[tag : String]{nil(0),val(1), attr(2), node(3)}
// Language of well-formed HTML trees
lang nodeTree: HtmlE {
node(xy1,x2,x3) given (attrTree x1) (nodeTree xs) (nodeTree x3)
| nil() where (tag="") }
lang attrTree: HtmlE {
attr(xzy, xo) given (valTree x1) (attrTree o)
| nil() where (tag="") }
10 lang valTree: HtmlE {
11 val(z1) where (tag # "") given (valTree x1)
12 | nil() where (tag="") }
13 // Sanitization functions
14 trans remScript: HtmlE->HtmlE {

© 00 N O Uk W N

15 node(x1,x2,x3) where (tag # "script") to
16 (node [tag] x1 (remScript x2) (remScript x3))
17 | node(x1,x2,x3) where (tag = "script") to x3

18 | nil() to (nil [tag]) }
19 trans esc: HtmlE->HtmlE {

20 node(x1,x2,x3) to (node [tag] (esc x1) (esc x2) (esc x3))
21 | attr(xz1,x2) to (attr [tag] (esc x1) (esc x2))
22 | wal(xy) where (tag ="’"Vtag =""") to (val ["\"](val [tag] (esc x1)))
23 | wal(z,) where (tag # "’" Atag # """) to (val [tag] (esc 1))
|

24 nil() to (nil [tag]) }

25 // Compose remScript and esc, restrict to well-formed trees
26 def rem_esc: HtmlE->HtmlE := (compose remScript esc)

27 def sani: HtmlE->HtmlE := (restrict rem_esc nodeT'ree)

28 // Language of bad outputs that contain a "script" node

29 lang badOutput: HtmlE {

30 node(x1,x2,x3) where (tag = "script")
31 | node(xy,x2,x3) given (badOutput x2)
32 | node(x1,x2,x3) given (badOutput x3) }

33 // Check that no input produces a bad output
34 def bad_inputs: HtmlE := (pre-image sani badOutput)
35 assert-true (is-empty bad_inputs)

Fig. 2. Implementation and analysis of an HTML sanitizer in FAST.

also accepts input trees that are not in the language nodeTree and do not correspond to
correct encodings. Therefore, we compute the transformation sani (line 27), which is same
as rem_esc, but restricted to only accept inputs in the language nodeT'ree.

We can now use FAST to analyze the program sani. First, we define the language
bad_output (lines 29-32), which accepts all the trees containing at least one node with
tag "script".? Next, using pre-image computation, we compute the language bad_inputs
(line 34) of inputs that produce a bad output. Finally, if bad_inputs is the empty language,
sani never produces bad outputs. When running this program in FAST this checking (line 35)
fails, and FAST provides the following counterexample:

node ["script"] nil nil (node ["script"] nil nil nil)

3This definition illustrates the nondeterministic semantics of FAST: a tree t belongs to bad_output if at least
one of the three rules applies.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 5

/ div \ br
! / N\ \
id script br e € € LS €
/ N\ - NG N !
e € text € 3 € € € \
7‘7 / \ ”
a €
\ \ \
€ € €

Fig. 3. (Left) HtmlE encoding of the HTML tree <div id=’e"’><script>a</script></div>
. div,
script, and br are built using the constructor node. Nodes with tag id, and text, are built using attr.
Single character nodes are built using val, and €’s using nil. The strings appearing in the figure are the tags
of each node. Sanitizing this tree with the function sani of Figure 2 yields the HtmlE tree corresponding
to <div id=’e\" ’></div>
.

(Right) HtmlE encoding of the HTML tree resulting from applying the transformation sani to the tree on
the left of the figure.

where we omit the attribute for the nil nodes. This is due to a bug in line 17, where the
rule does not recursively invoke the transformation remScript on x3. After fixing this bug
the assertion becomes valid. In this example, we showed how in FAST simple sanitization
functions can be first coded independently and then composed without worrying about
efficiency. Finally, the resulting transformation can be analyzed using transducer based
techniques.

3. SYMBOLIC TREE TRANSDUCERS AND FAST

The concrete syntax of FAST is shown in Figure 4. FAST is designed for describing trees,
tree languages and functions from trees to trees. These are supported using symbolic tree
automata (STAs), and symbolic tree transducers with regular look-ahead (STTRSs). This
section covers these objects and how they describe the semantics of FAST.

3.1. Background

All definitions are parametric with respect to a given background theory, called a label theory,
over a fixed background structure with a recursively enumerable universe of elements. Such
a theory is allowed to support arbitrary operations (such as addition, etc.), however all
the results in the following only require it to be 1) closed under Boolean operations and
equality, and 2) decidable (quantifier free formulas with free variables can be checked for
satisfiability).

We use A-expressions for defining anonymous functions called A-terms without having to
name them explicitly. In general, we use standard first-order logic and follow the notational
conventions that are consistent with [Veanes et al. 2012]. We write f(v) for the functional
application of the A-term f to the term v. We write o for a type and the universe of elements
of type o is denoted by o. A o-predicate is a A-term Az.p(x) where x has type o, and ¢ is
a formula for which the free variables F'V(y) are contained in {z}. Given a o-predicate o,
[#] denotes the set of all a € o such that ¢(a) holds. The set of o-predicates is denoted by
U(0). Given a type o (such as int), we extend the universe with o-labeled finite trees as an
algebraic datatype 7 where 3 is a finite set of tree constructors f with rank §(f) > 0; f

has type o x (T2)i) — T2.4 We call TS a tree type. Let X(k) = {f € ¥ | 1(f) = k}. We
require that 3(0) is non-empty so that T is non-empty. We write f[a](@) for f(a,u) and
abbreviate f[a]() by fla].

4When (f) = 0 then f has type ¢ — TZ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

6 Loris D'Antoni et al.

Indentifiers ID : (a..z|A..Z|_)(a..z|A..Z|_| .|0..9)*

Basic types o : String | Int | Real | Bool ...

Built-in operators op:<|>|=|+]and]|or]|...
Constructors c:1D Natural numbers k£ : N
Tree types 7:1D Language states p : ID
Transformation states ¢ : ID Attribute fields z :ID
Subtree variables y: 1D

Main definitions :

Fast == type 7 [(z:0)*] {(c(k))"} |treet : 7 := TR
| lang p : 7 { Lrule® } | trans ¢ : 7 -> 7 { Trule* }
| def p: 7 :=L|defq:7->7:=T
| assert-true A | assert-false A
Lrule := c¢(y1,...,yn) (where Aexp)? (given ((py))")?
Trule ::= Lrule to Tout

Tout := y | Cqy) | (cl Aexp™] Tout*)
Aexp ::= ID | Const | (op Aexp™)

Operations over languages, transductions, and trees :
L ::= (intersect L L) | (union L L) | (complement L) |
(difference L L) | (1) | (domain T)
| (pre-image T L) |p
T ::= (compose T T) | (restrict T L) | (restrict-out T L) | ¢
TR == t| (cl Aexp™] TR") | (apply T TR) | (get-witness L)
A = L==L| (is~empty L) | (is~empty T) | TR € T
| (type-check L T L)

Fig. 4. Concrete syntax of FAST. Nonterminals and meta-symbols are in italic. Constant expressions for
strings and numbers use C# syntax [Hejlsberg et al. 2003]. Additional well-formedness conditions (such as
well-typed terms) are assumed to hold.

Ezxample 3.1. The FAST program in Figure 2, declares HtmlE = Tsmng over ¥ =

{nil,val, attr,node}, where f(nil) = 0, f(val) = 1, f(attr) = 2, and h(node) = 3. For
example attr["a"](nil["b"], nil["c"]) is in To "8,

We write € for a tuple (sequence) of length & > 0 and denote the i’th element of € by e;
for 1 < i < k. We also write (e;)¥_; for &. The empty tuple is () and (e;)}_; = e1. We
use the following operations over k-tuples of sets. If X and Y are k-tuples of sets then
XY & (X;UY)E | If X is a k-tuple of sets, j € {1,...,k} and Y is a set then (X &; V)
is the k-tuple (ifi=j then X;UY else X;)5_,.

3.2. Alternating Symbolic Tree Automata

We introduce and develop the basic theory of alternating symbolic tree automata, which
adds a form of alternation to the basic definition originally presented in [Veanes and Bjgrner
2012]. We decide to use alternating STAs instead of their non-alternating counterpart be-
cause they are succinct and arise naturally when composing tree transducers.

Definition 1. An Alternating Symbolic Tree Automaton (Alternating STA) A is a tuple
(Q,7Z2,9), where @ is a finite set of states, T is a tree type, and & C UkZO(Q x (k) x

U(o) x (29)%) is a finite set of rules (q, f, p, £), where q is the source state, f the symbol, ¢
the guard, and /¢ the look-ahead.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 7

Next, we define the semantics of an STA A = (Q,7Z,0).

Definition 2. For every state ¢ € @ the language of A at g, is the set

u(sf)
LY 2 {fla)(D) € T | (¢, 1.0, 0)€8, acle], N\ N\ ticliy}
=1 pel;
Each look-ahead set ¢; is treated as a comjunction of conditions. If ¢; is empty then there
are no restrictions on the ¢’th subtree ¢;. We extend the definition to all q C @:

La o nqeq LY, if g # 0;
A =) otherwise.

def

For g € Q, §(q) = {r € § | the source state of r is ¢}. In FAST d(q) is

lang ¢ : 7 {c(y) where o(Z) given £(3) | ...}
The semantics of a FAST language is given by the induced STA.

Example 3.2. Consider the following FAST program.
type BT[i : Int]{L(0), N(2)}
lang p: BT { L() where (i > 0) | N(z,y) given (p z) (p v)
lang o: BT { L() where (odd i) | N(z,y) given (o z) (0 y)
lang ¢: BT { N(z,y) given (py) (0 y) }

Int

An equivalent STA A over Tz7** has states {o,p, ¢} and rules

{ (p, L, Azz > 0,0), (p, N, Az.true, ({p}, {p})),
(o,L, Az.odd(x), (), (0, N, Az.true, ({0}, {0})),

(q,N, Az.true, (0, {p,0})) }.

Since the first subtree in the definition of ¢ is unconstrained, the corresponding component
in the last rule is empty. The definition for ¢ has no case for L, so there is no rule.

In the following we say STA for alternating STA.5

Definition 3. A is normalized if for all (p, f,,¢) € §, and all i, 1 < i < (f), ¢; is a
singleton set.

For example, the STA in Example 3.2 is not normalized because of the rule with source q.
Normalization is a practically useful operation of STAs that is used on several occasions.

Normalization. Let A = (Q, Ty,) be an STA. We compute merged rules (g, f, ¢, p) over
merged states q € 29 where p € (29)2). For f € ¥ let 6/ = Upco 67 (p) where:

87 (@) = {(0, £,0,(0):9)))
8’ (puq) = {riMs|red(p),sed(q)}

s ({p}) = {Up}, £.{e}.0) | (0, f.0.p) € 6}

where merge operation X\ over merged rules is defined as follows:

def

(p. f,e,0) M (q, f,7h,q) = (pUgq, f,eUy,puq)

5When compared to the model in [Comon et al. 2007], the STAs defined above are “almost” alternating,
in the sense that they can only allow disjunctions of conjunctions, rather than arbitrary positive Boolean
combinations. Concretely, the look-ahead of a rule r corresponds to a conjunction of states, while several
rules from the same source state provide a disjunction of cases.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:8 Loris D'Antoni et al.

Definition 4. The normalized form of A is the STA
NA) = (2272 o, £. N (a D)) | F € 2. (p. f.0.9) € 6})

The original rules of the normalized form are precisely the ones for which the states are
singleton sets in 29.% As expected, normalization preserves the language semantics of STAs.

THEOREM 3.3. Forallq C Q, LG = Lj‘{/(A).

PROOF. The case when q =) is clear because the state) in A/(A) has the same semantics
as LY. Assume q # 0. We show (1) for all t € TZ:

te Ly <t €Ly, (1)

The proof is by induction over the height of ¢. As the base case assume ¢ = f[a] where
8(f) = 0. Then

fla] e LY & Vqeq(fla]eLy)
& VgeaBe((q, [, () €d,ae[g]))
< Vgea@e(({a} £, e} () € ' ({a}). a € [¢]))

“E" Jo((a, £, () € 8/ (q),a € [\ el)
< fla] € LX/(A)

We prove the induction case next. For ease of presentation assume f is binary and q =
{q1,q2}- As the induction case consider ¢ = fla](t1,t2).

2
teLd o NAtelf
i=1
2 i i
<~ /\ El(plapllapé : (qi,f7 5017 (pllapZZ)) € 51470‘ € [[Soz]]vtl € LilatQ S Li2
i=1
2 i i
& A3 Pl (a £ {0} (01 ph) € 87 a € [¢'], 1 € LY 1o € LY
i=1
1 2 1 2
“ET 3t pr,ps, % pE Pt € LY NGty € L NI
(a. f, {¢" ¢°} (1 UpT, Py UD3)) € 67 a € [p' A g7,
ad 3¢7p17p2 : tl S Lil7t2 S L527 (q7 fa907 ({p1}7{p2})) € 5N(A)aa € [[410]]
<I:H> 3¢7p17p2 it € Li}(A)atQ € Li?(A)a (q7 f7§07 ({pl}? {pQ})) € 5./\/(14)7& € [[SOH

q
& teLy ,

The theorem follows by the induction principle. O

Checking whether LY # () can be done by first normalizing A, then removing unsatisfiable
guards using the decision procedure of the theory ¥(o), and finally using that emptiness
for classic tree automata is decidable.

6In practice, merged rules are computed lazily starting from the initial state. Merged rules with unsatisfiable
guards ¢ are eliminated eagerly. New concrete states are created for all the reachable merged states. Finally,
the normalized STA is cleaned by eliminating states that accept no trees, e.g., by using elimination of useless
symbols from a context-free grammar [Hopcroft and Ullman 1979, p. 88-89].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 9

PROPOSITION 3.4. The non-emptiness problem of STAs is decidable if the label theory
1s decidable.

While normalization is always possible, an STA may be exponentially more succinct than
the equivalent normalized STA. This is true already for the classic case, i.e., when o = {()}.

PROPOSITION 3.5. The non-emptiness problem of alternating STAs without attributes
1s EXPTIME-complete.

Proor. For inclusion in EXPTIME, consider an STA A = (Q, Tx,0) and g € Q). Here o =
{()}, i.e. there are no attributes. Construct an alternating tree automaton A = (@, 3, {¢}, A)
over ¥ with state set @, initial state ¢, and mapping A such that for (¢, f) € @ x X,

a(f)

N AV AW A

(a, f, ¢, 2) € 6(q) =1 pel;

Then L(A) is non-empty iff LY is non-empty. For inclusion in EXPTIME use [Comon et al.
2007, Theorem 7.5.1].

For ExpTIME-hardness a converse reduction is not as simple because alternating tree
automata allow general (positive) Boolean combinations of @ x ¥ in the mapping A.
Instead, let 4; = (Q;,Tx,0;) be classic top-down tree automata with initial states
gi € Q; for 1 < i < n [Comon et al. 2007]. Consider all these automata as STAs
without attributes and with pairwise disjoint @;. In particular, all A; are normalized.
Expand ¥ to ¥ = X U {f} where f is a fresh symbol of rank 1. Let A be the STA
{q} U U; Qi, T, U, 0 U {(q, f, Az.true, ({gi}1<i<n))}) where ¢ is a new state. It follows
from the definitions that L% # 0 iff), L?&i = (). ExpTiME-hardness follows now from
the intersection non-emptiness problem of tree automata [Frithwirth et al. 1991] (already
restricted to the top-down-deterministic case [Seidl 1994b]). O

3.3. Symbolic Tree Transducers with Regular Look-ahead

Symbolic tree transducers (STTs) augment STAs with outputs. Symbolic tree transducers
with regular look-ahead further augment STTs by allowing rules to be guarded by symbolic
tree automata. Intuitively, a rule is applied to a node if and only if its children are accepted
by some symbolic tree automata. We first define terms that are used below as output
components of transformation rules. We assume that we have a given tree type 73 for
both the input trees as well as the output trees. In the case that the input tree type and
the output tree type are intended to be different, we assume that 77 is a combined tree
type that covers both. The guards and the look-aheads can be used to restrict the types as
needed.

The set of extended tree terms is the set of tree terms of type 72 (State} where State ¢ ¥

is a new fixed symbol of rank 1. A term State[g](¢) is always used with a concrete value ¢
and State[q] is also written as ¢. The idea is that, in g the value ¢ is always viewed as a
state.

Definition 5. Given a tree type 7y, a finite set () of states, and & > 0, the set
A(TZ,Q, k) is defined as the least set S of A-terms called k-rank tree transformers that
satisfies the following conditions, let i be a k-tuple of variables of type 7 (State} and let z

be a variable of type o,

— forallge @, and all i, 1 <i <k, AN(z,9).q(y;) € S;
— for all f € Y, all eioc—o and, all ...t € S,

Az,). fle(@)](ti(z,9), ..., typ)(z, 7)) € S.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:10 Loris D'Antoni et al.

Fig. 5. A depiction of a linear rule of rank 3.

Definition 6. A Symbolic Tree Transducer with Regular look-ahead (STTR) T is a tuple
(Q,q°, TS, A), where @ is a finite set of states, ¢° € Q is the initial state, TS is the tree
type, A C Upso(Q x T(k) x (o) x (29)% x A(TZ, Q. k)) is a finite set of rules (q, f,p,l,t),
where ¢ is the output.” A rule is linear if its output is Az, §).u where each y; occurs at most
once in u. T is linear when all rules of T' are linear.

A rule (¢, f,,0,t) is also denoted by g L2 4 The open view of a rule ¢ ELLNN

~ 2z _ S . . s
q(flz)(9)) RAQEN t(x,y). The open view is technically more convenient and more intuitive

for term rewriting. The look-ahead, when omitted, is () by default. Figure 5 illustrates an
open view of a linear rule over the tree type TZI’l“ over ¥y = {f,g,h}, where §(f) = 2,
1(g) = 3, and 3(h) = 0.

Let T be an STTR (Q, ¢°, 77, A). The following construction is used to extract an STA from
T that accepts all the input trees for which T is defined. Let ¢ be a k-rank tree transformer.
For 1 < i <k let St(i,t) denote the set of all states ¢ such that ¢(y;) occurs in ¢.

Definition 7. The domain automaton of T, d(T'), is the STA (Q, 7Y, {(q, f, ¢, ({; U
. Frel
St(i, 1)i9)) | ¢ 25 t € A}).

7=

The rules of the domain automaton also take into account the states that occur in the
outputs in addition to the look-ahead states. For example, the rule in Figure 5 yields the
domain automaton rule (g, g, Az.xz < 4, ({p}, {q}, {p})).

We recall that given a lambda term u = A(z, §).v, the term u(a, §) is the function appli-
cation of u to (a, §), where a and 3 substitute x and 7 respectively. In the following let T

be the STTR, and for £ C Q, let L, = L

Definition 8. For all ¢ € Qr, the transduction of T at g is the function T7% from Tg
to 27% such that, for all t = f[a](5) € Tg,

T3(t) = r(d(t)) o

‘UT (a(t))d:er{U’T(u(a7 5)) | (q7 f7 ®, Za U)EAT7 CLG[[SDII, /\ SieL%}

1) =
Ur(t) ={fla)(®)| /\ v; € Ir(si)}

def

0
The transduction of T is T = T% . The definitions are lifted to sets using union.

"For k = 0 we assume that (29)* = {()}, i.e., a rule for ¢ € £(0) has the form (g, ¢, ¢, (), \z.t(x)) where
t(z) is a tree term.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 11

We omit T from T?% and |y when T is clear from the context.

Ezxample 3.6. Recall the transformation remScript in Figure 2. These are the corre-
sponding rules. We use ¢ for the state of remScript, and ¢ for a state that outputs the
identity transformation. The “safe” case is

r#"script"

q(node[z](y1,y2,ys)) nodelx](((y1), 4(y2), 4(y3))

the “unsafe” case is g(nodelz|(y1,y2,¥3)) z="script"

q(nil[z]() — nillz]().

(y3), and the “harmless” case is

In FAST, a transformation T? is defined by the statement

trans q :7 -> 7 {f(§) where ¢(x) given £(y) to t(x,7) | ...}

a rule with source state g and input f[z](¥)

where () denotes the look-ahead ({r | (r y;) € Z(g)})f(:fl). The semantics of a FAST
transformations is given by the induced STTR.

Ezxample 3.7. The following STTR describes the function i that negates a node value
when the value in its left child is odd, leaves it unchanged otherwise, and is then invoked
recursively on the children.

type BT [z : Int]{L(0), N(2)}
lang oddRoot: BT {
N (t1,t2) where (odd x)
| L() where (odd x)

def evenRoot: BT := (complement oddRoot)
trans h: BT->BT {
N(t1,t2) given (oddRoot t1) to (N [—z] (h t1) (h t2))
| N(t1,t2) given (evenRoot t1) to (N [z] (h t1) (h t2))
| L() to (L ()

The following property of STTRs will be used in Section 4.
Definition 9. T is single-valued if V(t € TE,q € Qr) : |T4H(t)| < 1.

Determinism, as defined next, implies single-valuedness and determinism is easy to decide.
Intuitively, determinism means that there are no two distinct transformation rules that are
enabled for the same node of any input tree. Although single-valuedness can be decided in
the classic case [Esik 1980], decidability of single-valuedness of STTRs is an open problem.

Definition 10. T is deterministic when, for all ¢ € Q, f € X, and all rules ¢ M t

and ¢ I i Ar, if [o] N [] # 0 and, for all i € {1,...,5(f)}, L% N L™ # (), then
t=u.

3.4. The Role of Regular Look-ahead

In this section we briefly describe what motivated our choice of considering STTRs in place
of STTs. The main drawback of STTs is that they are not closed under composition, even
for very restricted classes. As shown in the next example, when STTs are allowed to delete
subtrees, the domain is not preserved by the composition.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

12 Loris D'Antoni et al.

Example 3.8. Consider the following FAST program

type BBT [b: Bool[{L(0),N(2)}
trans s;: BBT -> BBT {
L() where b to (L[b])
| N(z,y) where b to (N [b] (s1 z) (s1 %))

trans so: BBT -> BBT {
L() to (L [true])
| N(z,y) to (L [true])

Given an input ¢, s; outputs the same tree t iff all the nodes in t have attribute true.
Given an input t, sy always outputs L[true]. Both transductions are definable using STTs
since they do not use look-ahead. Now consider the composed transduction s = s; o Sg
that outputs L[true] iff all the nodes in ¢ have attribute true. This function cannot be
computed by an STT: when reading a node N[b](z,y), if the STT does not produce any
output, it can only continue reading one of the two subtrees. This means that the STT
cannot check whether the other subtree contains any node with attribute false. However,
s can be computed using an STTR that checks that both z and y contain only nodes with
attribute true.

Example 3.7 shows that STTRs are sometimes more convenient to use than STTs. Al-
though the transformation h can be expressed using a nondeterministic STT that guesses if
the attribute of the left child is odd or even, using a deterministic STTR is a more natural
solution.

3.5. Operations on Automata and Transducers

FAST allows to define new languages and new transformations in terms of previously defined
ones. FAST also supports an assertion language for checking simple program properties such
as assert-true (is-empty a).

— Operations that compute new languages:
intersect A; Ay, complement A, etc.. operations over STAs [Veanes and Bjgrner
2015];
domain T. computes the domain of the STTR T using the operation from Definition 7;
pre-image T' A. computes an STA accepting all the inputs for which T produces an
output belonging to A.
— Operations that compute new transformations:
restrict T A. constructs a new STTR that behaves like T, but is only defined on the
inputs that belong to A;
restrict-out T' A. constructs a new STTR that behaves like T', but is only defined on
the inputs for which T" produces an output that belongs to A;
compose T1 Ts. constructs a new STTR that computes the functional composition 77 o
T of T1 and T3 (algorithm described in Section 4).
— Assertions:
a€ A, Ay = As, is-empty A. decision procedures for STAs. In the order, membership,
language equivalence, and emptiness (Proposition 3.4 and [Veanes and Bjgrner
2015]);
type-check A1 T A,. true iff for every input in Ay, T only produces outputs in As.

Finally, we show how the transducer operations we described are special applications of
STTR composition.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation :13

PROPOSITION 3.9. The following operations can be expressed as

restrict T A = compose I, T
restrict-out T' A = compose T I,
pre-image T' A = domain (restrict-out T A)
type-check A1 T Ay = is-empty (intersect A, (pre-image T (complement As)))

where I is the identity STTR and 14 is the identity STTR that is defined only on the set
of trees accepted by A.

4. COMPOSITION OF STTRS

Closure under composition is a fundamental property for transducers. Composition is needed
as a building block for many operations, such as pre-image computation and output restric-
tion. Unfortunately, as shown in Example 3.8 and in [Fiilop and Vogler 2014], STTs are not
closed under composition. Particularly, when tree rules may delete and/or duplicate input
subtrees, the composition of two STT transductions might not be expressible as an STT
transduction. This is already known for classic tree transducers and can be avoided either by
considering restricted fragments, or by instead adding regular look-ahead [Engelfriet 1975;
Baker 1979; Engelfriet 1980]. In this paper we consider the latter option. Intuitively, regular
look-ahead acts as an additional child-guard that is carried over in the composition so that
even when a subtree is deleted, the child-guard remains in the composed transducer and is
not “forgotten”. While deletion can be handled by STTRs, duplication is a much more dif-
ficult feature to support. When duplication is combined with nondeterminism, as shown in
the next example, it is still not possible to compose STTRs. In practice this case is unusual,
and it can only appear when programs produce more than one output for a given input.

Ezample 4.1. Let f be the function that, given a tree of type BT (see Example 3.2)
transforms it by nondeterministically replacing some leaves with the value 5.

trans f: BT->BT {
L() to (L [i])
| L() to (L [5])
| N (z,y) to (N [i] (f z) (f y))

Let g be the function that given any tree ¢ always outputs N[0](¢,t).

trans g: BT->BT {

L() to (N [0] (L [d]) (L [i]))
| N(z,y) to (N [0] (N [i] y) (N [i] z y))

The composed function g(f(L[1])) produces the trees N[0](L[1], L[1]) and NI[0](L[5], L[5]),
where the two leaves contain the same value since they are “synchronized” on the same run.
The function f o g cannot be expressed by an STTR.

4.1. Composition Algorithm

Algorithms for composing transducers with regular look-ahead have been studied exten-
sively [Fiilop and Vagvolgyi 1989]. However, as shown in [Fiilop and Vogler 2014], extend-
ing classic transducers results to the symbolic setting is a far from trivial task. The key
property that makes symbolic transducers semantically different and much more challeng-
ing than classic tree transducers, apart from the complexity of the label theory itself, is the
output computation. In symbolic transducers the output attributes depend symbolically on
the input attribute. Effectively, this breaks the application of some well-established classic
techniques that no longer carry over to the symbolic setting. For example, while for classic

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

14 Loris D'Antoni et al.

tree transducers the output language is always regular, this is not the case for symbolic
transducer. Such anomaly is caused by the fact that the input attribute can appear more
than once in the output of a rule.

Let S and T be two STTRs with disjoint sets of states Qg and Q1 respectively. We want
to construct a composed STTR SoT such that, T, = TgoT,. The composition T goT,
is defined as (T goTy)(x) = J T, (y), following the convention in [Fiilop and Vogler

1998].

For p € Qs and g € Qr, assume that ‘.’ is an injective pairing function that constructs a
new pair state p.q ¢ Qg UQr. In a nutshell, we use a least fixed point construction starting
with the initial state qg.q%. Given a reached (unexplored) pair state p.q and symbol f € 3,
the rules from p.q and f are constructed by considering all possible constrained rewrite
reductions of the form

(true, (0)1L), GB(f[2) @) —> (= T0) — (0.61)

where t is irreducible. There are finitely many such reductions. Each such reduction is done

. . .l
modulo attribute and look-ahead constraints and returns a rule p.q ELLNS

yETS(m)

Ezample 4.2. Suppose p(flz]|(y1,y2)) ﬁ;—O) P(y2). Assume also that ¢ € Qr and that p.q

has been reached. Then

(true, 0, q(B(f[z)(y1,92)))) — (@>0,0,4(p(y2)))

where g(p(y2)) is irreducible. The resulting rule (in open form) is p:q(f[z](y1,y2)) 220,
P-q(y2)-

The rewriting steps are done modulo attribute constraints. To this end, a k-configuration
is a triple (v, L,u) where v is a formula with FV(vy) C {z}, L is a k-tuple of sets of pair
states p.qg where p € Qg and g € Qr, and u is an extended tree term. We use configurations
to describe reductions of T'. Formally, given two STTRs S = (Qs,q%, T¥,As) and T =
(Qr,q%, TS, Ar), the composition of S and T is defined as follows

SoT = (QS U {p~q | p€Ws,q€ QT}vqg"qg“’ S8

AS U U Compose(p, q, f))
PEQs,9€QT,fED
For p € Qg, g € Qr and f € X, the procedure for creating all composed rules from p.q and
symbol f is as follows.

def

Compose(p, q, f) =
(1) choose (p, f, ,¢,u) from Ag

(2) choose (1, P,t) from Reduce(yp, ((Z))S(:fl),fj(u))
(3) return (p.q, f,, (¥ P,t)

The procedure Reduce uses a procedure Look(y, L, q,t) that, given an attribute formula
» with FV(p) C {z}, a composed look-ahead L of rank k, a state ¢ € @7, and an extended
tree term ¢ including states from @g, returns all possible extended contexts and look-
aheads (i.e. those containing pair states). Assume, without loss of generality, that d(T) is

normalized. We define a function sin, such that sin({e}) = e for any singleton set {e}, and
undefined otherwise. This function extracts the only element in a singleton set. Notice that
since we operate over normalized transducers, sin is always defined.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation :15

Look(p, L, q,t) &

(1) if t = p(y;) where p € Qg then return (¢, L W; {p.q})
(2) if t = g[ug](u) where g € ¥ then
(a) choose (q,9,1,{) from 041y where IsSat(¢ A (ug))
(b) Lo := L, go := ¢ Nb(uo)
(c) for (i=1;i < f(g);i++)
choose (p;, L;) from Look(y;_1, L;—1, sin(¢;),u;)
(d) return (y(g), Ly(y))

The function Look(yp, L, ¢, t) returns a finite (possibly empty) set of pairs because there
are only finitely many choices in 2(a), and in 2(c) the term w; is strictly smaller than ¢.
Moreover, the satisfiability check in 2(a) ensures that 4 is satisfiable. The combined
conditions allow cross-level dependencies between attributes, which are not expressible by
classic tree transducers.

Ezample 4.3. Consider the instance Look(x>0,0,q,t) for ¢ = glz+1](g[z—2](p1(y2)))
where g € ¥(1). Suppose there is a rule (g, g, Az.odd(x),{q}) € dq¢ry that requires that all
attributes of g are odd and assume that there is no other rule for g from g. The term ¢ itself
may arise as an output of a rule p(f[x](y1,y2)) = glz+1](g[z—2](p1(y2))) of S. Clearly, this
outrules ¢ as a valid input of T" at g because of the cross-level dependency between attributes
due to z, implying that both attributes cannot be odd at the same time. Let us examine
how this is handled by the Look procedure.

In Look(z>0,0,q,t) line 2(c) we have the recursive call Look(z>0 A
odd(z+1),0,q,9[x—2](p1(y2))). Inside the recursive call we have the failing satisfia-
bility check of IsSat(x>0A odd(z+1) A odd(z—2)) in line 2(a). So that there exists no choice
for which 2(d) is reached in the original call so the set of return values of Look(z>0, 0, q, 1)
is empty.

In the following we pretend, without loss of generality, that for each rule 7 = (g, f, ¢, /,t)
there is a state ¢, that uniquely identifies the rule (g, f, ¥, ¢, t); ¢r is used to refer to the
guard and the look-ahead of 7 chosen in line 2(a) in the call to Look in 2(b) below, ¢, is
not used elsewhere.

Reduce(y, L,v) =
(1) if v =q(p(y;)) where q € Qr and p € Qg then
return (v, L, p-q(y;))
(2) if v = q(g[uo](@)) where q € Qr and g € ¥ then
(a) choose T = (q,9,-,-,t) from Ar
(b) choose (v1, L1) from Look(v, L, ¢, g[uo](@))
(c) choose x from Reduce(yy, Ly, t(ug,@)) return x
(3) if v = g[to](t) where g € ¥ then
a) Y0:=7, Lo:=1L
(b) for (i=1;i < §(g);i++)
choose (v;, L;,u;) from Reduce(v;_1,L;_1,t;)
(C) return (Vh(g)v Lh(g)v g[to] (a))

There is a close relationship between Reduce and Definition 8. We include the case
T%.(p(t)) = T1(T(t)) forpe Qg andt e TT, (2)
that allows states of S to occur in the input trees to T4 in a non-nested manner. Intuitively
this means that rewrite steps of T' are carried out first while rewrite steps of S are being
postponed (called by name). In order to justify the extension (2) we need the following
Lemma.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

16 Loris D'Antoni et al.

LEMMA 4.4. For allt € A(T3,Qs,k), ac o, andu; € TZ:

(1) Th(Us(t(an) C Thi@ W), and N
(2) T3 (Vs(t(a, 1)) = TH(t(a,u)) when S is single-valued or T is linear.

PrOOF. We prove statements 1 and 2 by induction over ¢. The base case is t =
Az, 7).p(y;) for some p € Qg and some 7, 1 < i < k. We have
T7 (b5 (p(us))) = T7(Tg(ws)) = T7(p(us))
where the last equality holds by using equation (2). The induction case is as follows. Let
t = Xz, 7). flto(x)](t:(x, g])g(:fl)). Suppose f(f) = 1, the proof of the general case is analogous.
T (s (flto(2)](t1(a,1))))
Def | _
=" TH[lto(@)](v) | v € Us(ti(a, 1))}
Def T} m Z
= {w(to(a), (w)ili) | (3w, £,q) to(a) € [¢]
fel

q = Maz,y)-w(z, (¢i(y))il1) € Ar

(Av)v € Js(ti(a, 1)), /\ wi € T (v)}
{w(to(a), (w)ix1)) | 3@, 4,q) to(a) € [¢]

g L25 N, y)-w(a, (@(y)) € Ar

—
INx*

A v € T (Us (11 (a,0))

€ {wlto@), @) | G, 00) ofa) € []
g T25 M, y)w(e, @W)m,) € Ar
/\ w; € T (t1(a, 1))}
Def_Tq -

=" TL(flto(a)](t:1(a, 1))

a)
The step () becomes ‘=" when either |{}s(¢1(a,d))| < 1 or when m < 1. The first case holds
if S is single-valued. The second case holds if T is linear in which case also the induction
step becomes ‘=". Both statements of the lemma follow by using the induction principle. O

Ezample 4.5. The example shows a case when
T7(Is(t(a, 1)) # T7(t(a, 1))

,T ,T ,T ~ ~
Suppose p =+ A, p = A, and ¢ L Ay, f[2](@(y), 3())- Let £ = f[0], ¢ = c[0], g = g[0].
Then

q(g(p(c))) 7 £(q(p(c)),q(p(c)))
o {£(a(a),q(a)),£(@(L), q(A))}V
{£(q(a),q(A)), £(q(A), q(a))}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 17

but
q(g(p(c))) 5 {alg(a)),q(g(r))}
{f

(q(a),q(a)), £(q(A),q(A))}

where, for example, £(q(A),q(A)) is not possible.

x|

The assumptions on S and 7' given in Lemma 4.4 are the same as in the classic set-
ting, however the proof of Lemma 4.4 does not directly follow from classic results because
the concrete alphabet ¥ x o can be infinite. Theorem 4.6 generalizes to symbolic alpha-
bets the composition result proven in Theorem 2.11 of [Engelfriet 1977]. Theorem 4.6 uses
Lemma 4.4. It implies that, in general, Tq , is an overapproximation of T¢oT, and that
Ty, captures TgoT, precisely when either S behaves as a partial function or when 7" does
not duplicate its tree arguments.

THEOREM 4.6. For allp € Qs, ¢ € Qr and t € TS, TEL.(t) D TAH(TE(L)), and if S is
single-valued or if T is linear then T5 4. (t) C TH(TE()).

PRrROOF. We start by introducing auxiliary definitions and by proving additional proper-
ties that help us to formalize our arguments precisely. For p € Qg and g € Q7, given that
LP9 is the language accepted at the pair state p.q, we have the following relationship that
is used below

L7 = {t | T(TE(t)) # 0}
— {t] 3u(u e TZ(H) ATHw) # 0)}
= {t|Ju(u e TE(t) Nu e L)}
= {t|T5(t) NLE # 0}
The symbolic (or procedural) semantics of Look(y, P, q,t) is the set of all pairs returned in

line 1 and line 2(d) after some nondeterministic choices made in line 2(a) and the elements
of recursive calls made in line 2(c). For a set P of pair states, and for a k tuple P,

LP def m P4
p.qEP
) k
L” < {a|)\ u; e L"}
i=1
The concrete semantics of Look(¢p, P.q, t) is defined as follows. We assume that ¢ implicitly
stands for A\(x, y).t(x,y) and ¢ stands for A\x.p(x).
[Look(p, P,q,t)] &
{(a,w)|a € [¢],a € LT Is(t(a,w)) N LL # 0}

3)
The concrete semantics of a single pair (¢, P) is

[(¢, P)] = {(a,@) | a € [¢],a € L}

We now prove (4). It is the link between the symbolic and the concrete semantics of Look
and Definition 2.

U{[x]|Look(y, P, q,t) returns x}=[Look(y, P, q,t)] (4)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:18 Loris D’Antoni et al.
We prove (4) by induction over ¢. The base case is when t = p(y;) for some p € Qg and y;
for some ¢ € {1,...,k}:

U{Ix]|Look(y, P, q,p(y:)) returns x}

(I

(a,2) | a € [p],ue LP,Tg(ui) NLL # 0}
(a,0) | a € [¢],a € LT, $s(p(u;)) N LL # 0}
Look(p, P, q, p(u;))]

The induction case is when ¢ = f[to](f). Assume §(f) = 2. TH is that (4) holds for ¢; and
to. Assume, without loss of generality, that d(T") is normalized. We have for all a € o and

—

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation :19
ue (T2,
(a,7) € | {[x] | Look(¢, P, q, f[to](f)) returns x}

(Def Look)
=

(exists ¥, q1,q2) (¢, [, ¥, {a1},{a2})) € da(r),
IsSat(p A (1))

(exists ¢, P, ", P")

Look(p A (to), P,qi,t1) returns (¢, P'),
Look(y¢', P, qa,t5) returns (", P"),

(0,) € [(¢", P")]

(exists 1, q1,q2) (¢, £, {1}, {q2})) € dacr),
IsSat(o A (to)),

(exists ¢, P')

Look(p A (to), P,q1,t1) returns (¢, P'),
(a,) € [Look(y, P, qa,t2)]

EUD (exists v, q1,0) (0, 0, (@}, {2})) € da(T);
ISSG,t(gD A QZJ(to)),
(exists ¢’, P')
Look(p A (to), P,q1,t1) returns (¢, P'),
a€ ¢, el Is(ta(a,w) NLE £ 0

(exists 1, q1,q2) (¢, f,9, ({a1}, {a2})) € dacry,
IsSat (o A (to)),)

(a,@) € [Look(p A(to), P,q1,t1)],
Us(te(a,uw)) NLE #£0

FEUN (exdists v a1, 42) (4, 5.0, (a1}, {42})) € bacr,
IsSat(p N ip(to)),

a € [e] N[(to)], u € LT,

Us(ti(a,w)) NLE # 0, s(t2(a,u)) NLE # 0
a€[p],uelLl,
Us(flto(a)](t1(a, @), t2(a, @) NLE # 0

& aelg),ael? Js(t(a,u) NLL £

CUD) (4, 7) € [Look(p, P, q,1)]

Equation (4) follows by the induction principle. Observe that, so far, no assumptions on S
or T were needed.

A triple (p, P,t) of valid arguments of Reduce denotes the function 04, p.+) such that,
for all a € o and u; € 77,

(g)

(g)

(Dgt 2)

\ def { l@L’T(t(a, 1)), if (a,7) € [(¢, P)]; (5)

Oy, p1(a,8) = otherwise.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:20 Loris D'Antoni et al.

Next, we prove (6) under the assumption that S is single-valued or T is linear. For all a € o,
u; € T and v € TS,

(3a)v € 94(a, 1), Reduce(y, P, t) returns o 6
& vED,py(at). (6)

The proof is by induction over ¢ wrt the following term order: u < t if either w is a proper
subterm of ¢ or if the largest State-subterm has strictly smaller height in u than in ¢.

The base case is t = q(p(y;)) where ¢ € Qr, p € Qg, and (6) follows because
Reduce(yp, P, q(p(y:))) returns (p, P, p-q(y;)) and Ay.p-q(y) denotes, by definition, the com-
position Ay.q(p(y)).

We use the extended case (7) of Definition 8 that allows states of S to occur in t. This
extension is justified by Lemma 4.4. For ¢ € Q:

Ur(q(flal(%)) =

Utlr(u(a ®) | (g, f. . L, u)eAT, ac[],
8(f) (7)

N\ Us(t:) NLE # 0}
=1

Observe that when t; does not contain any states of S then |g(t;) = {t;} and thus the

condition {g(t;) N L?ﬁ # () simplifies to the condition t; € L? used in the original version
of Definition 8.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 21

There are two induction cases. The first induction case is ¢t = g(f[to](¢)) where ¢ € Qr
and f € X. Let t' = f[to]({). Foralla€ o, u; € TZ and v € 77,
(3a) v € 8,(a,1), Reduce(p, P, §(t')) returns o

Def ReductaT ” ,.Y7£) T=q M} u e AT

(3, R) Look(y, P, q.,t') returns (i, R)
(38) Reduce(v, R, u(to,t)) returns 3
v E 35(a a)

(HT,U,’)/,K)T—(]&)UEAT

(3, R) Look(y, P, q,,t') returns (i, R)
v € By, Routto,) (2)

FaL) (ElT,u,'y,Z) T=yq f’L) u € Ar
(El?/}, R) LOOk((p? Pa qr,t) returns (77[}a R)

v € Yr(u(to(a), (2, 1)), (2,8) € [(v, R)]

Py Ar,u,v,0) T =q Lu € Ar

(a,1) € [Look(y, P, q,,t)]
v € lr(u(to(a),t(a,a)))
Pl 3r,u,v,0) T=q L u € Ar
acfy], ue L”, Js('(a,u)) "L #0
Ve UT(U(to(a)»t_(a» ﬁ)))
ST ac|y], ue L”
Il

(Fu,v,0) g == u € Ar
to() € [
/\us) NLE #0

v € |r(u(to(a),t(a,v)))
U ae ¢, ue LY, v e lr(t(a,u)

52 v € By py(an)

The second induction case is t = f[to](f). Assume f(f) = 2. Generalization to arbitrary
ranks is straightforward by repeating IH steps below f(f) times. For all a € o, u; € 7 and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:22 Loris D'Antoni et al.

veTs,
(3a) v € 8, (a,1), Reduce(ip, P, f[to](t1,t2)) returns o
PEEMNE Y, Py, " P vg)
Reduce(yp, P,t;) returns (¢, P/, vq)
Reduce(y’, P, ty) returns (¢, P" v)
V€ B, P, fltg] (vr 02)) (5 B)

BT (3¢ PLw, g P ws)
Reduce(y, P,t,) returns (¢', P, wy)
Reduce(y’, P, ty) returns (¢, P", w,)
v € §r(flto(a)](wi(a, u), wa(a, 0))),
ae[e’], ae L

PaT 3¢, P wy, ", P ws)

Reduce(p, P,t,) returns (¢', P’ wy)
Reduce(y’, P, t;) returns (¢, P", w,)
(Fvi,va)v = flto(a)](vi, v2)
v1 € Jr(wi(a,a)), va € Ir(wa(a,))
ae[e’], ae L
3¢, P'un)
Reduce(yp, P, t;) returns (@', P/, wy)
(Fvi,v2)v = flto(a)](vi, v2)
v1 € Jr(wi(a,a))
Vo € 8@/713/7,52)(8., a)
P&® (3¢, P w)

Reduce(yp, P, t;) returns (¢, P’
(Fvi,v2)v = flto(a)](vi, v2)
v1 € Jr(wi(a,))
ac[¢], aeL?, vy € Ir(ta(a,u))
(Fvi,v2)v = flto(a)](vi, v2)
vy € 8(%13,t1)(a, a)
vy € |r(ta(a,))
(Fvi,v2)v = flto(a)](vi, v2)
ac gl ae Ll vi € lr(ti(a,n))
vo € |r(ta(a,a))
ac[g],uel?

v € br(flto(a)](t1(a, 1), t2(a, 1))

SV E B (g B flto)(t1,12)

awl)

Def Jp
=4

Equation (6) follows by the induction principle.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation :23

Finally, we prove TE % = TEoT]. Let p € Qg, ¢ € Qr and fla](),w € T be fixed.
w € Tg(f[al(w))

BT P 0, 4t) (0. fe.01) € As
(3 a)Reduce(yp, 0, §(t)) returns a

w € By(a,n), 1€ Lf
"L 3, 0t) (p, [0, 0,t) € Ag
WwE 8(%@@“))(21, 1),a € Lg
PEY (3 lt) (i, f, ¢.0t) € As
ac[g], el welr(t(an)), aeclf
<:>T (Hgﬁ,g_,t) (p7f7§03l77t) S AS
acy], ue Lg7 wE T%(t(a,ﬁ))
g @l b fp i) e As
a€[¢], e Lf, we Ti(Us(t(a,n)))
w e TY(Us(p(flal(@))))
w € TH(TE(f[al(n)))

Def I g
-

D
Def Tg

Step (%) uses Lemma 4.4.2. It holds only when S is single-valued or T is linear. Otherwise,
only ‘=" holds. O

5. EVALUATION

FAST can be used in multiple different applications. We first consider HTML input sanitiza-
tion for security. Then we show how augmented reality (AR) applications can be checked for
conflicts. Next, we show how FAST can perform deforestation and verification for functional
programs. Finally, we sketch how CSS analysis can be captured in FAST.

5.1. HTML Sanitization

A central concern for secure web application is untrusted user inputs. These lead to cross-
site scripting (XSS) attacks, which, in its simplest form, is echoing untrusted input verbatim
back to the browser. Consider bulletin boards that want to allow partial markup such as
 and <i> tags or HTML email messages, where the email provider wants rich email
content with formatting and images but wants to prevent active content such as JavaScript
from propagating through. In these cases, a technique called sanitization is used to allow
rich markup, while removing active (executable) content. However, proper sanitization is far
from trivial: unfortunately, for both of these scenarios above, there have been high-profile
vulnerabilities stemming from careless sanitization of specially crafted HTML input leading
to the creation of the infamous Samy worm for MySpace (http://namb.la/popular/) and
the Yamanner worm for the Yahoo Mail system. In fact, MySpace has repeatedly failed
to properly sanitize their HTML inputs, leading to the Month of MySpace Bugs initiative
(http://momby.livejournal.com/586.html).

This has lead the emergence of a range of libraries attempting to do HTML sanitization,
including PHP Input Filter, HTML_Safe, kses, htmLawed, Safe HTML Checker, HTML
Purifier. Among these, the last one, HTML Purifier (http://htmlpurifier.org) is believed
to be most robust, so we choose it as a comparison point for our experiments. Note that

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

24 Loris D'Antoni et al.

2,000
~i-Composition -@-Input restrictions —4—0Output restrictions
1,800 -
1,600 -
1,400 -
(2]
=
1,200 &
-
°
1,000 +Q
9
Q
800 g
[]
o
| S
600 g
S
7]
400 L2
£
S
200 &

[1-2)

I
S

[0-1)

[4-8)

[8-16)
[16-32)
[32-64)
[64-128)
[128-256)
[256-512)
[512-1,024)

time intervals in milliseconds

[1,024-2,048)
[2,048-4,096)
[4,096-8,192)
[8,192-16,384)

[16,384-32,768)
[32,768-65,536)

Fig. 6. Augmented reality: running times for operations on transducers. The z-axis represent time intervals
in ms. The y-axis shows how many cases run in a time belonging to an interval. For example about 1,600
compositions were completed between 8 and 16 ms.

HTML Purifier is a tree-based rewriter written in PHP, which uses the HTMLTidy library
to parse the input.

We show how FAST is expressive enough to model HTML sanitizers, and we argue that
writing such programs is easier with FAST than with current tools. Our version of an HTML
sanitizer written in FAST and automatically translated by the FAST compiler into C# is
partially described in Section 2. Although we can’t argue for the correctness of our imple-
mentation (except for the basic analysis shown in Section 2), sanitizers are much simpler to
write in FAST thanks to composition. In all the libraries mentioned above HT'ML sanitiza-
tion is implemented as a monolithic function in order to achieve reasonable performance. In
the case of FAST each sanitization routine can be written as a single function and all such
routines can be then composed preserving the property of traversing the input HT'ML only
once.

Evaluation: To compare different sanitization strategies in terms of performance, we
chose 10 web sites and picked an HTML page from each content, ranging from 20 KB
(Bing) to 409 KB in size (Facebook). For speed, the FAST-based sanitizer is comparable to
HTML Purify. In terms of maintainability, FAST wins on two counts. First, unlike sanitizers
written in PHP, FAST programs can be analyzed statically. Second, our sanitizer is only 200
lines of FAST code instead of 10000 lines of PHP. While these are different languages, we
argue that our approach is more maintainable because FAST captures the high level seman-
tics of HTML sanitization, as well as being fewer lines of code to understand. We manually
spot-checked the outputs to determine that both produce reasonable sanitizations.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation :25

5.2. Conflicting Augmented Reality Applications

In augmented reality the view of the physical world is enriched with computer-generated
information. For example, applications on the Layar AR platform provide up-to-date in-
formation such as data about crime incidents near the user’s location, information about
historical places and landmarks, real estate, and other points of interest.

We call a tagger an AR application that labels elements of a given set with a piece of
information based on the properties of such elements. As an example, consider a tagger
that assigns to every city a set of tags representing the monuments in such city. A large
class of shipping mobile phone AR applications are taggers, including Layar, Nokia City
Lens, Nokia Job Lens, and Junaio. We assume that the physical world is represented as a
list of elements, and each element is associated with a list of tags (i.e. a tree). Users should
be warned if not prevented from installing applications that conflict with others they have
already installed. We say that two taggers conflict if they both tag the same node of some
input tree. In order to detect conflicts we perform the following four-step check for each
pair of taggers (p1,p2):
composition. we compute p, composition of p; and po;
input restriction. we compute p’, a restriction of p that is only defined on trees where each

node contains no tags;
output restriction. we compute p”’, a restriction of p’ that only outputs trees in which some

node contains two tags;
check. we check if p” is the empty transducer: if it is not the case, p; and ps conflict on
every input accepted by p”.

Evaluation: Figure 6 shows the timing results for conflict analysis. To collect this data,
we randomly generated 100 taggers in FAST and checked whether they conflicted with each
other. Each element in the input of a tagger contained a name of type string, two attributes
of type real, and an attribute of type int. In our encoding the left-child of each element
was the list of tags, while the right child was the next element. Each tagger we generated
conforms to the following properties: 1) it is non-empty; 2) it tags on average 3 nodes; and 3)
it tags each node at most once.

The sizes of our taggers varied from 1 to 95 states. The language we used for the input
restriction has 3 states, the one for the output 5 states. We analyzed 4,950 possible conflicts
and 222 will be actual conflicts (i.e. FAST provided an example tree on which the two
taggers tagged the same node). The three plots show the time distribution for the steps
of a) composition, b) input restriction, and c) output restriction respectively.

All the compositions are computed in less than 250 ms, and the average time is 15 ms.
All the input restrictions are computed in less than 150 ms. The average time is 3.5 ms. All
the output restrictions are computed in less than 33,000 ms. The average time is 175 ms.
The output restriction takes longer to compute in some cases, due to the following two
factors: 1) the input sizes are always bigger: the size of the composed transducers after the
input restriction (p’ in the list before) vary from 5 to 300 states and 10 to 4,000 rules. This
causes the restricted output to have up to 5,000 states and 100,000 rules; and 2) since the
conditions in the example are randomly generated, some of them may be complex causing
the SMT solver to slow down the computation. The 33,000 ms example contains non-linear
(cubic) constraints over reals. The average time of 193 ms per pairwise conflict check is
quite acceptable: indeed, adding a new app to a store already containing 10,000 apps will
incur an average checking overhead of about 35 minutes.

5.3. Deforestation

Next we explore the idea of deforestation. First introduced by Wadler in 1988 [Wadler
1988], deforestation aims at eliminating intermediate computation trees when evaluating
functional programs. For example, to compute the sum of the squares of the integers be-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:26 Loris D'Antoni et al.

5,000 == mmm oo oo
—&— Fast --@--No Fast 4'(i§6f.
8,000 === === mm e e e e e - SRCEEEE
(%) 4
-] PR
c -,
o PR
3,000 +-@----m-m - mm o e
4 Lo’
2,000 = - g
_®71,313
1,000 ______________________________;;”: ___________________________________
T
0 Z — T —{} T T ﬂ
0 100 200 300 400 500

Composed Functions

Fig. 7. Deforestation advantage for a list of 4,096 integers.

tween 1 and n, the following small program might be used: sum (map square (upto 1 n)).
Intermediate lists created as a result of evaluation are a source of inefficiency. However, it has
been observed that transducer composition can be used to eliminate intermediate results.
This can be done as long as individual functions are representable as transducers. Unfortu-
nately [Wadler 1988] only considers transformations over finite alphabets. We analysed the
performance gain obtained by deforestation in FAST.

Evaluation: We considered the function map_caesar from Figure 8 that replaces each value
x of a integer list with (z+5)%26. We composed the function map_caesar with itself several
times to see how the performance changed when using FAST. Let’s call map™ the composition
of map_caesar with itself n times. Unlike in [Wadler 1988], we do not represent numbers
using their unary encoding. We run the experiments on lists containing randomly generated
elements and we consider up to 512 composed functions. Figure 7 shows the running time
of FAST with and without deforestation for a list of 4,096 integers used as the input. The
running time of the version that uses transducer composition is almost unchanged, even
for 512 compositions while the running time of the naively composed functions degrades
linearly in the number of composed functions. This is due to the fact that the composed
version results into a single function that processes the input list in a single left-to-right
pass, while the naive composition causes the input list to be read multiple times.

5.4. Analysis of Functional Programs

FAST can also be used to perform static analysis of simple functional programs over lists
and trees. Consider again the functions from Figure 8. As we described in the previous ex-
periment the function map_caesar replaces each value x of a integer list with (z+5) mod 26.
The function filter_ev removes all the odd elements from a list.

One might wonder what happens when such functions are composed. Consider the case
in which we execute the map followed by the filter, followed by the map, and again by the
filter. This transformation is equivalent to deleting all the elements in the list! This property
can be statically checked in FAST. We first compute comp2 as the composition described
above. As show in Figure 8, the language of non-empty lists can be expressed using the
construct not_emp_list. Finally, we can use the output restriction to restrict comp2 to only
output non-empty lists and show that such function is empty. In this example the whole
analysis can be done in less than 10 ms.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 27

type IList[i : Int]{nil(0), cons(1)}
trans map_caesar: I List->IList {
nil() to (nil]0])
| cons(y) to (cons [(z + 5)%26] (map_caesar y))

trans filter_ev:IList->1List {
nil() to (nil]0])
| cons(y) where (i%2 = 0) to (cons [i] (filter_ev y))
| cons(y) where —(i%2 = 0) to (filter_ev y)

lang not_emp_list : 1List{ cons(zx) }

def comp:IList -> I List := (compose map_caesar filter_ev)
def comp2:1List -> I List := (compose comp comp)

def restr:IList => I List := (restrict-out comp2 not_emp_list)
assert-true (is-empty restr)

Fig. 8. Analysis of functional programs in FAST. The final assertion shows that comp2 never outputs a
non-empty list. Example available at http://rise4fun.com/Fast/Jv.

5.5. CSS Analysis

Cascading style-sheets (CSS) is a language that allows to stylize and format HTML doc-
uments. A CSS program is a sequence of CSS rules, where each rule contains a selec-
tor and an assignment. The selector decides which nodes are affected by the rule and
the assignment is responsible for updating the selected nodes. The following is a typical
CSS rule: div p { word-spacing:30px; }. In this case div p is the selector while word-
spacing:30px is the assignment. This rule sets the attribute word-spacing to 30px for
every p node inside a div node. We call C(H) be the updated HTML resulting from ap-
plying a CSS program C to an HTML document H. In [Geneves et al. 2012] CSS programs
are analyzed using tree logic. For example one can check whether given a CSS program C,
there doesn’t exists an HTML document H such that C(H) contains a node n for which
the attributes color and background-color both have value black. This property ensures
that black text is never written on a black background, causing the text not to be readable.
Ideally one would want to check that color and background-color never have the same
value, but, since tree logic explicitly models the alphabet, the corresponding formula would
be too large. By modelling CSS programs as symbolic tree transducers we can overcome this
limitation. This analysis relies on the alphabet being symbolic, and we plan on extending
FAsT with primitives for simplifying CSS modelling.

6. A COMPARISON WITH CLASSIC TREE TRANSDUCERS

As we mentioned in the previous section, the HTML sanitization and CSS analysis problems
could, in principle, be expressed using existing classic models and do not require symbolic
alphabets. In both of these domains the alphabet is finite, and, for example, the sanitizer
in Fig. 2 can be represented by classic finite state transducers with regular lookahead. In
the next paragraphs we show the benefit of the symbolic representation of the alphabet and
argue that the use of classic transducers does not scale in this case.

The HTML sanitization example illustrates some core differences between the symbolic
and the classic case. In some respect, the situation is analogous to going from SAT to
SMT solving [de Moura and Bjgrner 2011], where many of the core propositional techniques
remain similar but where a theory specific component adds additional succinctness and
expressiveness. Consider our encoding of HTML documents presented in Fig. 3. In our
representation each string value is modelled as a list of characters, and this means that each
possible character should belong to the input alphabet. The input alphabet 3 therefore needs

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:28 Loris D'Antoni et al.

to include the UTF16 representation of Unicode characters, because UTF16 is used as the
standard runtime representation of characters and is the basic building block of strings.
Thus, ¥ has at least 2'6 elements, e.g., as unary function symbols f,. for the characters c. If
we want to support full Unicode, e.g., including emoticons [The Unicode Consortium], we
need to add additional rules that ensure that consecutive characters ... (f.(f4(...))) where
c and d are surrogates are indeed valid as surrogate pairs. This adds yet another layer of
complexity and there are 220 valid surrogate pairs. In contrast, at the level of strings, that
are defined as lists of 16-bit bit-vectors, such checks are straightforward (given a solver that
supports lists and bit-vector arithmetic, e.g., Z3 [De Moura and Bjgrner 2008]), and involve
fairly simple arithmetic operations.

We need to add lookahead automata to all the rules so that the tag subtree does not
include other symbols besides the character symbols. Such an automaton needs 2'¢ transi-
tions. The where-condition tag = "script" can be represented by a lookahead automaton,
say A, with six transitions. The constraint tag # "script" can be represented by the com-
plement A°¢ of A. Observe that complementation of classic automata over large alphabets
is expensive: while A needs six rules, one per character in the string "script", A° needs
6+ (216 — 1) rules. The other string constraints are handled similarly. Besides the additional
lookahead tests, transformation rules remain the same, where tag is treated as the first
subtree. Observe that, a further blowup would occur if we wanted to apply transformations
(other than the identity mapping, such as HtmlEncoding) to tag, in which case we would
need explicit rules for all of the 2'¢ symbols.

The bottom line is that tags are independent of the rest of the tree structure and the two
should, if possible, not be mixed. Similar arguments already hold for symbolic finite (word)
transducers as a special case of symbolic tree transducers, where a symbolic representation
may avoid an exponential blow-up compared to an equivalent classic transducer, as demon-
strated by the symbolic word transducer implementing UTF8 encoding in [D’Antoni and
Veanes 2013b]. The same argument holds for the domain of CSS analysis.

7. RELATED WORK

Tree transducers. Tree transducers have been long studied, surveys and books are avail-
able on the topic [Fiilop and Vogler 1998; Comon et al. 2007; Raoult 1992]. The first models
were top-down and bottom-up tree transducers [Engelfriet 1975; Baker 1979], later extended
to top-down transducers with regular look-ahead in order to achieve closure under compo-
sition [Engelfriet 1977; Fiilop and Végvolgyi 1989; Engelfriet 1980]. Extended top-down
tree transducers [Maletti et al. 2009] (XTOP) were introduced in the context of program
inversion and allow rules to read more than one node at a time, as long as such nodes are
adjacent. When adding look-ahead such a model is equivalent to top-down tree transducers
with regular look-ahead. More complex models, such as macro tree transducers [Engelfriet
and Vogler 1985], and streaming tree transducers [Alur and D’Antoni 2012] have been in-
troduced to improve the expressiveness at the cost of higher complexity. Due to this reason
we don’t consider extending them in this paper.

Symbolic transducers. Symbolic finite transducers (SFTs) over lists, together with a
front-end language BEK, were originally introduced in [Hooimeijer et al. 2011] with a focus
on security analysis of string sanitizers. The main SFT algorithms, in particular an algo-
rithm for deciding equivalence of SF'Ts modulo a decidable background theory, are studied
in [Veanes et al. 2012]. Variants of SFTs in which multiple input symbols can be read by
a single transition are studied in [D’Antoni and Veanes 2013a] and in [Botin¢an and Babié
2013]. Symbolic tree transducers are originally introduced in [Veanes and Bjgrner 2012],
where it is wrongly claimed that STTs are closed under composition by referring to a gener-
alization of a proof of the classic case in [Fiilép and Vogler 1998] which is only stated for total
deterministic finite tree transducers. In [Fiilop and Vogler 2014] this error is discovered and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 29

other properties of STTs are investigated. The main result of [Veanes and Bjgrner 2012] is
an algorithm for checking equivalence of single-valued linear STTs. For classic transducers,
equivalence has been shown to be decidable for deterministic or finite-valued tree trans-
ducers [Seidl 1994a], streaming tree transducers [Alur and D’Antoni 2012], and MSO tree
transformations [Engelfriet and Maneth 2006]. We are currently investigating the problem
of checking equivalence of single-valued STTRs.

DSL for tree manipulation. Domain specific languages for tree transformation have
been studied in several different contexts. VATA [Lengal et al. 2012] is a tree automata
library for analyzing tree languages over large alphabets. In VATA transitions are repre-
sented symbolically using BDDs, however the library does not support transducers and it is
limited to nondeterministic automata over finite (although large) alphabets. TTT [Purtee
and Schubert 2012] and Tiburon [May and Knight 2008], are transducers based languages
used in natural language processing. TTT allows complex forms of pattern matching, but
does not enable any form of analysis. Tiburon supports probabilistic transitions and several
weighted tree transducers algorithms. Although they support weighted transitions, both the
languages are limited to finite input and output alphabets. ASF+SDF [van den Brand et al.
2002] is a term-rewriting language for manipulating parsing trees. ASF4+SDF is simple and
efficient, but does not support any analysis. In the context of XML processing numerous
languages have been proposed for querying (XPath, XQuery [Walmsley 2007]), stream pro-
cessing (STX [Becker 2003]), and manipulating (XSLT, XDuce [Hosoya and Pierce 2003])
XML trees. While being very expressive, these languages support very limited forms of
analysis. Emptiness has been shown decidable for restricted fragments of XPath [Bojanczyk
et al. 2006]. XDuce [Hosoya and Pierce 2003] allows to define basic XML transformations,
and supports a tree automata based type-checking that is limited to finite alphabets. We
plan to extend FAST to better handle XML processing and to identify a fragment of XPath
expressible in FAST. However, to the best of our knowledge, FAST is the first language for
tree manipulations that supports infinite input and output alphabets while preserving decid-
able analysis. Table 9 summarizes the relations between FAST and the other domain-specific
languages for tree transformations.

Applications. The connection between tree transducers and deforestation was first inves-
tigated in [Wadler 1988], and then further investigated in [Kithnemann 1999]. In this setting
deforestation is done via Macro Tree Transducers (MTT) [Engelfriet and Vogler 1985]. While
being more expressive than Top Down Transducers with regular look-ahead, MTTs only sup-
port finite alphabets and their composition algorithm has very high complexity. We are not
aware of an actual implementation of the techniques in [Kithnemann 1999]. Many models of
tree transducers have been introduced to analyze and execute XML transformations. Most
notably, K-pebble transducers [Milo et al. 2000] enjoy decidable type-checking and can cap-
ture fairly complex XSLT and XML transformations. Macro forest transducer [Perst and
Seidl 2004] extend MTT to operate over unranked trees and therefore naturally capture
XML transformations. Recently this model has been used to efficiently execute XQuery
transformations [Hakuta et al. 2014]. The models we just discussed only operate over finite
alphabets. Many models of automata and transducers have been applied to verifying func-
tional programs. The equivalence problems has been shown to be decidable for some frag-
ments of ML using Class Memory Automata [Cotton-Barratt et al. 2015]. This model allows
values over infinite alphabets to be compared using equality, but does not support pred-
icates arbitrary label theories. This restriction is common in the so-called data languages
and makes other models operating in this setting orthogonal to symbolic automata and
transducers. Higher-Order Multi-Parameter Tree Transducers (HMTT) [Kobayashi et al.
2010] are used for type-checking higher-order functional programs. HMTTSs enable sound
but incomplete analysis of programs which takes multiple trees as input, but only support

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:30 Loris D'Antoni et al.

Language o Analysis Domain

Fast oo composition; typechecking, pre-image, Tree-manipulating
language equivalence, determinization, programs
complement, intersection

VATA ff union, intersection, language inclusion = Tree-automata

Tiburon ff composition; type-checking; training; NLP
weights; language equivalence, deter-
minization, complement, intersection

TTT ff - NLP
ASF+SDF 0o - Parsing
XPath oo emptiness for a fragment XML query (only
selection)
XDuce oo type-checking for navigational part (fi- XML query
nite alphabet)
XQuery, XSLT, oo - XML transforma-
STX tions

Fig. 9. Summary of main domain specific languages for tree-manipulating programs and their properties;
o indicates whether the language supports finite (ff) or infinite (co) alphabets.

finite alphabets. Extending our theory to multiple input trees and higher-order functions is
an open research direction.

Open problems. Several complexity related questions for STAs and STTRs are open and
depend on the complexity of the label theory, but some lower bounds can be established
using known results for finite tree automata and transducers. For example, an STA may be
exponentially more succinct than the equivalent normalized STA because one can directly
express the intersection non-emptiness problem of a set of normalized STAs as the empti-
ness of a single un-normalized STA. In the classic case, the non-emptiness problem of tree
automata is P-co, while the intersection non-emptiness problem is ExpTIME-cO [Comon
et al. 2007, Thm 1.7.5]. Recently, new techniques based on antichains have been proposed to
check universality and inclusion for nondeterministic tree automata [Bouajjani et al. 2008].
Whether such techniques translate to our setting is an open research direction. Concrete
open problems are decidability of: single-valuedness of STTRs, equivalence of single-valued
STTRs, and finite-valuedness of STTRs. Classically these problems are decidable, but some
proofs are mathematically quite challenging [Seidl 1994a]. Novel algorithms for minimiz-
ing and learning symbolic automata over lists have been recently proposed in [D’Antoni
and Veanes 2014] and [Botin¢an and Babié¢ 2013]. Extending such results to STAs are also
unexplored topics.

8. CONCLUSIONS

We introduce FAST, a new domain-specific language for tree manipulation based on sym-
bolic tree automata and symbolic tree transducers. To allow FAST to perform useful program
analysis, we design a novel algorithm for composing symbolic tree transducers with regular
look-ahead and we prove its correctness. FAST strikes a delicate balance between precise
analysis and expressiveness, and we show how multiple applications benefit from this anal-
ysis. A running version of FAST can be accessed at http://rise4fun.com/Fast/.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation 31

Acknowledgements. We thank the anonymous reviewers for their valuable feedback that
helped us improving the quality of our paper. Loris D’Antoni did this work as part of an
internship at Microsoft Research, and he is supported by NSF Expeditions in Computing
award CCF 1138996.

REFERENCES

Rajeev Alur and Loris D’Antoni. 2012. Streaming Tree Transducers. In Awutomata, Languages,
and Programming, Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer
(Eds.). Lecture Notes in Computer Science, Vol. 7392. Springer Berlin Heidelberg, 42-53.
DOI:http://dx.doi.org/10.1007/978-3-642-31585-5_8

Brenda S. Baker. 1979. Composition of top-down and bottom-up tree transductions. Inform. and Control
41 (1979), 186-213.

Oliver Becker. 2003. Streaming Transformations for XML-STX. In XMIDX 2008 (LNI), Rainer Eckstein
and Robert Tolksdorf (Eds.), Vol. 24. GI, 83-88.

Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. 2006. T'wo-variable
logic on data trees and XML reasoning. In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS ’06). ACM, New York, NY, USA, 10-19.
DOI:http://dx.doi.org/10.1145/1142351.1142354

Matko Botin¢an and Domagoj Babié¢. 2013. Sigma*: Symbolic Learning of Input-output Specifications.
SIGPLAN Not. 48, 1 (Jan. 2013), 443-456. DOI: http://dx.doi.org/10.1145/2480359.2429123

Ahmed Bouajjani, Peter Habermehl, Lukas Holik, Tayssir Touili, and Tomas Vojnar. 2008. Antichain-
Based Universality and Inclusion Testing over Nondeterministic Finite Tree Automata. In
CIAA’08. Lecture Notes in Computer Science, Vol. 5148. Springer Berlin Heidelberg, 57-67.
DOI:http://dx.doi.org/10.1007/978-3-540-70844-5_7

Hubert Comon, Max Dauchet, Remi Gilleron, Christof Léding, Florent Jacquemard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. 2007. Tree Automata Techniques and Applications. (2007).

Conrad Cotton-Barratt, David Hopkins, Andrzej S. Murawski, and C.-H. Luke Ong. 2015. Fragments of
ML Decidable by Nested Data Class Memory Automata. In Foundations of Software Science and
Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. 249-263. DOI:http://dx.doi.org/10.1007/978-3-662-46678-0_16

Loris D’Antoni and Margus Veanes. 2013a. Equivalence of Extended Symbolic Finite Transducers. In Pro-
ceedings of the 25th International Conference on Computer Aided Verification (CAV’13). Springer-
Verlag, Berlin, Heidelberg, 624-639. DOI:http://dx.doi.org/10.1007/978-3-642-39799-8_41

Loris D’Antoni and Margus Veanes. 2013b. Static Analysis of String Encoders and Decoders. In VMCAI
2013 (LNCS), R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.), Vol. 7737. Springer, 209-228.

Loris D’Antoni and Margus Veanes. 2014. Minimization of symbolic automata. In POPL, Suresh Jagan-
nathan and Peter Sewell (Eds.). ACM, 541-554.

Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337-340. http:
//dl.acm.org/citation.cfm?id=1792734.1792766

Leonardo de Moura and Nikolaj Bjgrner. 2011. Satisfiability Modulo Theories: Introduction & Applications.
Commun. ACM 54, 9 (2011), 69-77.

Joost Engelfriet. 1975. Bottom-up and top-down tree transformations — a comparison. Math. Systems Theory
9 (1975), 198-231.

Joost Engelfriet. 1977. Top-down Tree Transducers with Regular Look-ahead. Math. Systems Theory 10
(1977), 289-303.

Joost Engelfriet. 1980. Some open questions and recent results on tree transducers and tree languages. In
Formal Language Theory. Academic Press, 241-286.

Joost Engelfriet and Sebastian Maneth. 2006. The Equivalence Problem for Deterministic
MSO Tree Transducers is Decidable. Inf. Process. Lett. 100, 5 (Dec. 2006), 206-212.
DOI:http://dx.doi.org/10.1016/].ipl.2006.05.015

Joost Engelfriet and Heiko Vogler. 1985. Macro Tree Transducers. J. Comp. and Syst. Sci. 31 (1985), 71-146.
Z. Esik. 1980. Decidability results concerning tree transducers. Acta Cybernetica 5 (1980), 1-20.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

:32 Loris D'Antoni et al.

Thom W. Frithwirth, Ehud Y. Shapiro, Moshe Y. Vardi, and Eyal Yardeni. 1991. Logic programs as types
for logic programs. In Logic in Computer Science, 1991. LICS ’91., Proceedings of Sizth Annual IEEE
Symposium on. 300-309. DOI: http://dx.doi.org/10.1109/LICS.1991.151654

Zoltan Fiilop and Sandor Végvolgyi. 1989. Variants of Top-Down Tree Transducers With Look-Ahead.
Math. Sys. Th. 21, 3 (1989), 125-145.

Zoltan Fiilop and Heiko Vogler. 2014. Forward and Backward Application of Symbolic Tree Transducers.
Acta Inf. 51, 5 (Aug. 2014), 297-325. DOI:http://dx.doi.org/10.1007/s00236-014-0197-7

Zoltan Fiilop Fiilop and H. Vogler. 1998. Syntaz-Directed Semantics: Formal Models Based on Tree Trans-
ducers. Springer.

Pierre Geneves, Nabil Layaida, and Vincent Quint. 2012. On the analysis of cascading style sheets. In WWW
’12. ACM, New York, NY, USA, 809-818. DOI:http://dx.doi.org/10.1145/2187836.2187946

Shizuya Hakuta, Sebastian Maneth, Keisuke Nakano, and Hideya Iwasaki. 2014. XQuery streaming by Forest
Transducers. In IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL,
USA, March 31 - April 4, 2014. 952-963. DOI:http://dx.doi.org/10.1109/ICDE.2014.6816714

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. 2003. C# Language Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast and
Precise Sanitizer Analysis with BEK. In Proceedings of the 20th USENIX Conference on Security
(SEC’11). USENIX Association, Berkeley, CA, USA, 1-1. http://dl.acm.org/citation.cfm?id=2028067.
2028068

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Longman Publishing Co., Inc.

Haruo Hosoya and Benjamin C. Pierce. 2003. XDuce: A statically typed XML processing language. ACM
Trans. Internet Technol. 3, 2 (May 2003), 117-148. DOI :http://dx.doi.org/10.1145/767193.767195
Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. 2010. Higher-order Multi-parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. SIGPLAN Not. 45, 1 (Jan. 2010), 495-508.

DOI:http://dx.doi.org/10.1145/1707801.1706355

Armin Kithnemann. 1999. Comparison of Deforestation Techniques for Functional Programs and for Tree
Transducers. In Fuji Int. Symp. on Functional and Logic Programming.

Ond Lengal, Ji simédcek, and Tom Vojnar. 2012. VATA: A Library for Efficient Manipulation of Non-
deterministic Tree Automata. In TACAS’12. Lecture Notes in Computer Science, Vol. 7214. Springer
Berlin Heidelberg, 79-94. DOI:http://dx.doi.org/10.1007/978-3-642-28756-5_7

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and Kevin Knight. 2009. The Power of Extended Top-
Down Tree Transducers. SIAM J. Comput. 39 (June 2009), 410-430. Issue 2.

Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl. 2005. XML type check-
ing with macro tree transducers. In PODS’05. ACM, New York, NY, USA, 283-294.
DOI:http://dx.doi.org/10.1145/1065167.1065203

Jonathan May and Kevin Knight. 2008. A Primer on Tree Automata Software for Natural Language Pro-
cessing. (2008). http://www.isi.edu/licensed-sw/tiburon/tiburon-tutorial.pdf

Tova Milo, Dan Suciu, and Victor Vianu. 2000. Typechecking for XML transformers. In Proc. 19th ACM
Symposium on Principles of Database Systems (PODS’2000). ACM, 11-22.

Thomas Perst and Helmut Seidl. 2004. Macro Forest Transducers. Inf. Process. Lett. 89, 3 (Feb. 2004),
141-149. DOI:http://dx.doi.org/10.1016/j.ipl.2003.05.001

Adam Purtee and Lenhart Schubert. 2012. TTT: A Tree Transduction Language for Syntactic and Semantic
Processing. In Proceedings of the Workshop on Application of Tree Automata Techniques in NLP.

Jean-Claude Raoult. 1992. A survey of tree transductions. In Tree Automata and Languages. sn, 311-326.
http://dblp.uni-trier.de/db/books/collections/treeauto1992.html#Raoult92

Helmut Seidl. 1994a. Equivalence of finite-valued tree transducers is decidable. Math. Systems Theory 27
(1994), 285-346.

Helmut Seidl. 1994b. Haskell Overloading is DEXPTIME-Complete. Inf. Process. Lett. 52, 2 (1994), 57-60.

The Unicode Consortium. The Unicode Standard 6.3, Emoticons. The Unicode Consortium.
http://unicode.org/charts/PDF /U1F600.pdf.

Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. 2002. Compiling Language Defi-
nitions: The ASF+SDF Compiler. ACM Trans. Program. Lang. Syst. 24, 4 (July 2002), 334-368.
DOI:http://dx.doi.org/10.1145/567097.567099

Margus Veanes and Nikolaj Bjgrner. 2012. Symbolic Tree Transducers. In Proceedings of the 8th Interna-
tional Conference on Perspectives of System Informatics (PSI’11). Springer-Verlag, Berlin, Heidelberg,
377-393. DOI:http://dx.doi.org/10.1007/978-3-642-29709-0_32

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

Fast: a Transducer-Based Language for Tree Manipulation :33

Margus Veanes and Nikolaj Bjgrner. 2015. Symbolic tree automata. Inform. Process. Lett. 115, 3 (2015),
418 — 424. DOT : http://dx.doi.org/10.1016/j.ipl.2014.11.005

Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjgrner. 2012. Symbolic
Finite State Transducers: Algorithms and Applications. SIGPLAN Not. 47, 1 (Jan. 2012), 137-150.
DOI:http://dx.doi.org/10.1145,/2103621.2103674

Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci. 73, 2
(Jan. 1988), 231-248. DOI: http://dx.doi.org/10.1016/0304-3975(90)90147- A

Priscilla Walmsley. 2007. XQuery. O’Reilly Media, Inc.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article , Publication date: October 2015.

