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Abstract

We present the parallelized implementation of decision forest training as used in
Kinect to train the body parts classification system. We describe the practical
details of dealing with large training sets and deep trees, and describe how to
parallelize over multiple dimensions of the problem.

1 Introduction

Human-computer interaction research has long sought a Natural User Interface (NUI), which would
make computers effectively invisible for their users. Kinect [5] successfully implements a rich NUI
in a consumer device that is designed to complement the Xbox 360 games console, by enabling
users to control the console using only body gestures and voice control.

The Kinect body tracking software API provides the real-time position of the body joints of each
user [7]. In this paper we focus on one stage from the Kinect body tracking vision pipeline: the
stage that recognizes and labels body parts in a scene. This stage uses a decision forest classifier,
which has been described previously [11]; we summarize the essential aspects in Appendix A.

To handle the huge variability of body shapes, clothing, illumination and furnishings in a realistic
setting, the classifier must be trained on a very large data set. Since the input data for the classifier
comes from essentially a continuous space of 3D objects, building the classifier also entails discov-
ering the most useful features to use for classification. Finally, to achieve acceptable precision the
classifier needs to build large decision trees, whose worst-case size is exponential in the tree depth.
Consequently, training an instance of the classifier requires a very large number of calculations. In
order to accelerate the training process, we have developed a parallel training algorithm, which runs
on a cluster of commodity machines.

We have used the DryadLINQ [12] cluster computing platform to implement the training algorithm.
DryadLINQ is a programming environment that transforms declarative queries written in LINQ into
parallel programs that execute on a computer cluster. LINQ (Language-Integrated Query) is a set
of .NET language extensions that can express data-parallel query operators on abstract collections
of strongly-typed objects. LINQ generalizes both the MapReduce [2] programming model (offering
a richer set of computational primitives) and the database relational algebra (offering a richer data
model). DryadLINQ extends LINQ to support large datasets that are distributed across a cluster. The
DryadLINQ compiler generates distributed dataflow graphs which are executed by the Dryad [3]
distributed execution engine. An example DryadLINQ implementation of decision trees can be
found in [4]; however, the implementation discussed in this paper has been tuned specifically for our



problem. A commercial version of the DryadLINQ software has been released in beta form as part
of HPC Pack 2008 R2 [6].

2 Learning from a massive set of images

We started from a complex but well-tuned C# single-machine implementation, which took approx-
imately one day to train one tree to depth 18 from 10,000 images, using an 8-core machine. A
realistic training scenario is several orders of magnitude larger, so we were forced to build a dis-
tributed solution.

Our initial attempt at parallelization used MPI. This code proved brittle and more complex compared
to the final DryadLINQ version. Because we were not using a highly reliable supercomputer and
interconnect, transient failures were common: even a minor incident, such as temporary network
congestion, could bring an MPI computation to its knees, wasting hours or days of compute time.
This problem only worsened as we attempted to increase the cluster size.

DryadLINQ provided several advantages compared with MPI: (1) a high-level parallel programming
language for building distributed computations instead of a simple low-level messaging API, (2)
automatic and efficient serialization of complex data types for transport on the network, (3) resource
virtualization, which allowed the manipulation of datasets much larger than the collective memory
of the available machines, (4) built-in fault-tolerance and checkpointing, and (5) strong integration
with C#, which enabled us to reuse most data structures from the sequential implementation and to
orchestrate the many parallel and sequential phases of the training in a single program.

Many of the techniques we present are not tied to DryadLINQ as an underlying platform; they
could conceivably be implemented on other MapReduce-based runtimes, such as FlumeJava [1] or
Pig [9]. The main advantage of DryadLINQ is the tight native integration with .NET, which makes
it very easy to implement in a single .NET application complicated workflows composed of many
sequential and distributed parts.

2.1 Data representation

The classifier is trained using a large corpus of images that are synthetically generated using a human
avatar model, which is in turn driven by data from a motion capture device. For each synthesized
scene, the input contains a pair of PNG images: the first encodes the depth (distance from the
camera) at each point in the scene, and the second uses pixel colors to encode the ground truth
labeling of body parts (Figure 3). These image-pairs are batched into directories, distributed across
the cluster, and replicated multiple times to tolerate disk failures. The training pipeline starts with
a distributed preprocessing step that combines each image-pair into a single .NET object. During
preprocessing, a set of random transformations are applied to the images: flipping on the vertical
axis, combining multiple images of single-players to obtain a multi-player image, adding clutter to
the background (couches, walls, etc.), and adding noise to emulate realistic depth camera images.
The result of this pre-processing is materialized as a large collection of data units, distributed evenly
on all machines in the cluster.

The training algorithm implementation is generic: it is not specific to our concrete datatypes and
problem, being written using an abstraction for an input item, the data unit. A data unit may represent
any sensible unit of data required to compute the desired features, (e.g. an image, a volume, or an
arbitrary group of data points). Each data point within a data unit is termed an example (in our
case a pixel). During training, each data unit will be processed independently of all other data
units, possibly on different machines in a cluster. A data unit must fit comfortably in memory.
While training classifies individual examples independently, computing the features for an example
requires access to other examples within the same data unit (Figure 4). The structure of the data and
the vast search space of features means that feature responses must be computed on the fly.

The decision tree is represented as a collection! containing a single monolithic C# object. The most
important part of the tree is the current frontier, which is represented as a sparse set of node indices.
The tree is broadcast to all tasks that process data units during a computation round. Although in

' All DryadLINQ computations must operate on collections.



theory decision trees can be sparse, in practice our trees are dense enough to imply a complexity
exponential in the tree depth.

Note that, although each example is associated with a unique node in the tree frontier, our imple-
mentation does not materialize this association at any time. Instead each example is re-associated
with the corresponding frontier node by traversing the partial tree from the root for each new frontier
computation. Although this work is redundant, it accounts for less than 1% of the running time, and
obviates the need to write this information to disk between rounds.

2.2 Parallel training algorithm

Our training algorithm generates a decision tree breadth first, by iteratively splitting nodes on the
tree frontier according to the best feature for each node. There are several orthogonal ways to
parallelize our training algorithm, by decomposing the problem along different dimensions [10]: (1)
partition the data space—i.e. individual data units, (2) partition the search space—i.e. the nodes of
the decision tree, and (3) partition the feature space.

Our implementation parallelizes on all three of these dimensions. The computation proceeds in
rounds, where round ¢ processes all nodes at depth ¢ in the decision tree and generates a new fron-
tier at depth ¢ 4+ 1. The features and data units are read-only. Each round has four phases, which
comprise a large number of parallel tasks. In phase 1 the data is scanned to compute normalization
constants. In phase 2 each task operates on one data unit, one partition of the feature space and the
entire tree (from the previous round). This phase processes each example, builds a four-dimensional
histogram, indexed by (Node, Feature, Class, {left, right}). In phase 3 each task operates on one
(Node, Feature) partition of the histogram, and computes the best feature in that partition for split-
ting each node in that partition (each task is responsible for a subset of the nodes and features).
Finally, phase 4 aggregates the information produced by phase two and produces a new tree frontier
by selecting the best overall feature for splitting each node, and generating its left and right children.

Figure 1 shows a slightly simplified Dryad execution graph for building one new tree frontier. In
this example the features are divided in 2 parts (one for each large rounded rectangle), the data units
into 3 groups, and the tree nodes into 4 groups®. The feature pruning eliminates all except the best
threshold value for each offset pair §. The core of the execution graph contains two parallel and
independent MapReduce jobs (P2-P3) —one for each partition of the feature space—on the same
input data set, followed by a merge. In a single MapReduce job, the “barrier” between the map
and reduce stages can lead to inefficient cluster utilization. By parallelizing simultaneously on two
dimensions (image data and features), the tasks from the concurrent MapReduce computations can
be interleaved, which leads to almost 100% cluster utilization.

2.3 Problem scale

A set of realistic parameters for building a useful decision forest are: 3 decision trees, 2000 feature
offset values 6 and 50 feature thresholds for fy (which amounts to trying 100,000 different features),
a depth 20 tree (which implies N < 229 tree nodes), 31 body parts and 300,000 images/tree with
300,000 pixels each (sampled down to 2,000 training examples).

Running our algorithm on a 235-machine cluster has an effective parallelism of 140 (defined as the
total computation time in all tasks divided by the wall-clock time for training). Training a single tree
requires more than 100 effective CPU-days, executing more than 100,000 processes, and moving
almost 30 terabytes of data. The training time depends on the amount of memory and the number of
cores available on each machine. Figure 2 shows how the efficiency of our implementation improves
as the number of training images is increased.

The degrees of partitioning are parameters that are changed for each tree depth; typical values are 4 parts
for features and several hundred parts for data units and nodes. Because the cluster resources are virtualized by
Dryad, their size does not have to be tied to the size of the computer cluster.



Features Tree

|

Data units
A

pd

split
features

\

merge tree+features

subset 2

aggregate/data unit | P2

m aggregate/tree node| P3
! ! ! ! prune features
W merge featuresj

P4

optimal feature/node

new frontier

l

new tree

Figure 1: Fragment of a simplified distributed query plan for training one level of the decision tree.
The plan has two identical sub-plans, one for each feature subset. P2-P4 correspond to phases 2-4
from the text description.
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Figure 2: Training Efficiency.

3 Lessons Learned

Our implementation of the training algorithm met or exceeded all expectations in terms of perfor-
mance and reliability. The training algorithm is not especially I/O intensive, but it is CPU-bound.
The multidimensional histograms are sparse, and lazily allocated; a significant amount of time is
spent in memory allocation and garbage-collection. Towards the bottom of the tree the partial his-
togram objects reach sizes on the order of gigabytes each (due to the O(2%™") complexity). At this
point some difficult issues surface:

e The I/O layer of DryadLINQ was originally designed to provide high throughput for large collec-
tions of small objects. Therefore, it buffers objects and writes them asynchronously to disk. In late
tree rounds the buffers fill faster than they can be drained, which leads to thrashing. We modified
DryadLINQ to use an adaptive algorithm for buffering, which is sensitive to object size, and falls
back to synchronous writes for large objects. Subsequently DryadLINQ has been enhanced with an
adaptive buffering algorithm, which manages buffer space dynamically as a function of object sizes,
generalizing our approach.

e DryadLINQ attempts to achieve multi-core parallelism by transparently partitioning work be-
tween threads in a thread pool. Processing several large partial histogram objects on each thread can
artificially make the computation memory-bound. Instead of using the the Dryad LINQ-provided
multi-core implementation, we parallelized our application across cores at the user-level; our im-



plementation allocates progressively smaller batches as objects grow larger. Another very effective
solution is to add more memory to the machines.

e While Dryad provides fault-tolerance for workers, it does not withstand failures in the centralized
job manager, which become more likely for long-running jobs. We found it useful to split the
training algorithm into multiple Dryad jobs, and to checkpoint the partial tree between jobs. This
also allowed us to resume a large job even after discovering and fixing bugs.

We have uncovered some interesting avenues for future research. No distributed filesystem used
for manipulating “big data” provides the right APIs to manipulate the kinds of data we used for
training: many colocated small images and associated metadata. Our multi-dimensional histogram
representations are carefully crafted to balance density and lazy allocation by dynamically changing
the representation of some columns from sparse to dense. It would be interesting to generalize this
approach to implement a generic distributed data structure, which would manage its own distribution
and sparsity dynamically, and adapt to the nature of the stored data. While our adaptive algorithms
for buffering and memory allocation are effective at the level of multiple cores on a machine, our
tools are currently much more primitive at the cluster level. Finally, the original LINQ code for
training decision trees was only on the order of 20 lines of declarative code, but our optimized code
is approximately 5x more verbose. We have already used some of the lessons learned to automate
some optimizations that we had performed manually [8]. An interesting approach for training would
combine both GPU and multi-machine implementations.
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A Body Parts Classifier

The Kinect body parts classifier is a randomized decision forest, built using fully-supervised train-
ing [11]. The classifier is presented with an image in depth space (in which each pixel indicates
distance from the camera), and produces—for each pixel—a distribution over 31 body parts (Fig-
ure 3). The classifier uses only one type of feature, described below. Building the classifier entails
searching a large randomly-generated space of possible features. To alleviate overfitting, the classi-
fier uses a set of three decision trees, each trained on a random subset of pixels and input images.
The decision forest is produced by training three independent decision trees in sequence; this paper
only discusses the training of a single tree.
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Figure 3: Training data: a pair of depth map and labeled body parts.

The features used are simple depth comparisons. At a given pixel x, the features compute

folyx) = d; <X+$>—dz (x+ ﬁ) (1)

where d;(x) is the depth at pixel x in image I, and parameters § = (u; v) describe offsets u and v.
The normalization of the offsets by ﬁ(x) ensures the features are depth invariant: at a given point

on the body, a fixed world space offset will result whether the pixel is close or far from the camera.
The features are thus 3D translation invariant (modulo perspective effects). Figure 4 illustrates two
features at different pixel locations x. Feature fy, looks upwards, and the formula will give a large
positive response for pixels x near the top of the body, but a value close to zero for pixels x lower
down the body. Feature fp, may help find thin vertical structures such as the arm.

Figure 4: Depth image features. The yellow crosses indicates the pixel x being classified. The
red circles indicate the offset pixels. In (a), the two example features give a large depth difference
response. In (b), the same two features at new image locations give a much smaller response.



