
4

Predicate Abstraction with Indexed
Predicates

SHUVENDU K. LAHIRI and RANDAL E. BRYANT

Carnegie Mellon University

Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems

using a combination of a decision procedure for a subset of first-order logic and symbolic methods

originally developed for finite-state model checking. We consider models containing first-order state

variables, where the system state includes mutable functions and predicates. Such a model can

describe systems containing arbitrarily large memories, buffers, and arrays of identical processes.

We describe a form of predicate abstraction that constructs a formula over a set of universally

quantified variables to describe invariant properties of the first-order state variables. We provide

a formal justification of the soundness of our approach and describe how it has been used to verify

several hardware and software designs, including a directory-based cache coherence protocol.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and

Verifying and Reasoning about Programs—Invariants

General Terms: Verification

Additional Key Words and Phrases: Formal verification, invariant synthesis, infinite-state verifi-

cation, abstract interpretation, cache-coherence protocols, predicate abstraction

ACM Reference Format:
Lahiri, S. K. and Bryant, R. E. 2007. Predicate abstraction with indexed predicates. ACM Trans.

Comput. Logic, 9, 1, Article 4 (November 2007), 29 pages. DOI = 10.1145/1297658.1297662

http://doi.acm.org/10.1145/1297658.1297662

1. INTRODUCTION

Graf and Saı̈di [1997] introduced predicate abstraction as a means of
automatically determining invariant properties of infinite-state systems. With
this approach, the user provides a set of k Boolean formulas describing possible

A shorter version of this article [Lahiri and Bryant 2004a] appeared in Proceedings of the Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI).
The research was supported in part by Semiconductor Research Corporation, contract RID

1029.001.

Authors’ addresses: S. K. Lahiri, R. E. Bryant, Carnegie Mellon University, 5000 Forbes Ave.,

Pittsburgh, PA 15213.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1529-3785/2007/11-ART4 $5.00 DOI 10.1145/1297658.1297662 http://doi.acm.org/

10.1145/1297658.1297662

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:2 • S. K. Lahiri and R. E. Bryant

properties of the system state. These predicates are used to generate a finite
state abstraction (containing at most 2k states) of the system. By performing a
reachability analysis of this finite-state model, a predicate abstraction tool can
generate the strongest possible invariant for the system expressible in terms of
this set of predicates. Prior implementations of predicate abstraction [Graf and
Saı̈di 1997; Saı̈di and Shankar 1999; Das et al. 1999; Das and Dill 2001; Ball
et al. 2001; Flanagan and Qadeer 2002; Chaki et al. 2003] required making a
large number of calls to a theorem prover or first-order decision procedure, and
hence could only be applied to cases where the number of predicates was small.
More recently, we have shown that both BDD and SAT-based Boolean methods
can be applied to perform the analysis efficiently [Lahiri et al. 2003].

In most formulations of predicate abstraction, the predicates contain no free
variables, and hence they evaluate to true or false for each system state. The
abstraction function α has a simple form, mapping each concrete system state
to a single abstract state based on the effect of evaluating the k predicates.
The task of predicate abstraction is to construct a formula ψ∗ consisting of
some Boolean combination of the predicates such that ψ∗(s) holds for every
reachable system state s.

To verify systems containing unbounded resources, such as buffers and mem-
ories of arbitrary size and systems with arbitrary numbers of identical, concur-
rent processes, the system model must support first-order state variables, in
which the state variables are themselves functions or predicates [Ip and Dill
1996; Bryant et al. 2002b]. For example, a memory can be represented as a
function mapping an address to the data stored at an address, while a buffer
can be represented as a function mapping an integer index to the value stored
at the specified buffer position. The state elements of a set of identical processes
can be modeled as functions mapping an integer process identifier to the value
of the state element for the specified process. In many systems, this capability
is restricted to arrays that can be altered only by writing to a single location
[Burch and Dill 1994; McMillan 1998]. Our verifier allows a more general form
of mutable function, where the updating operation is expressed using lambda
notation.

In verifying systems with first-order state variables, we require quantified
predicates to describe global properties of state variables, such as “At most one
process is in its critical section,” as expressed by the formula ∀i, j : crit(i) ∧
crit(j) ⇒ i = j . Conventional predicate abstraction restricts the scope of a
quantifier to within an individual predicate. System invariants often involve
complex formulas with widely scoped quantifiers. The scoping restriction (the
fact that the universal quantifier does not distribute over disjunctions) implies
that these invariants cannot be divided into small, simple predicates. This puts
a heavy burden on the user to supply predicates that encode intricate sets
of properties about the system. Recent work attempts to discover quantified
predicates automatically [Das and Dill 2002], but this is a formidable task.

In this paper we present an extension of predicate abstraction in which the
predicates include free variables from a set of index variables X (and hence the
name indexed predicates). The predicate abstraction engine constructs a for-
mula ψ∗ consisting of a Boolean combination of these predicates, such that the

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:3

formula ∀Xψ∗(s) holds for every reachable system state s. With this method, the
predicates can be very simple, with the predicate abstraction tool constructing
complex, quantified invariant formulas. For example, the property that at most
one process can be in its critical section could be derived by supplying predi-
cates crit(i), crit(j), and i = j, where i and j are the index symbols. Encoding
these predicates in the abstract system with Boolean variables ci, cj, and eij,
respectively, we can verify this property by using predicate abstraction to prove
that ci ∧ cj ⇒ eij holds for every reachable state of the abstract system.

Flanagan and Qadeer [2002] use a method similar to ours, and we briefly
described our method in an earlier paper [Lahiri et al. 2003]. Our contribution
is to describe the method more carefully, explore its properties, and provide a
formal argument for its soundness. The key idea of our approach is to formulate
the abstraction function α to map a concrete system state s to the set of all
possible valuations of the predicates, considering the set of possible values
for the index variables X . The resulting abstract system is unusual; it is not
characterized by a state transition relation and hence cannot be viewed as a
state transition system. Nonetheless, it provides an abstraction interpretation
of the concrete system [Cousot and Cousot 1977] and hence can be used to find
invariant system properties.

Assuming a decision procedure that can determine the satisfiability of a
formula with universal quantifiers, we prove the following completeness result:
Predicate abstraction can prove any property that can be proved by induction
on the state sequence using an induction hypothesis expressed as a universally
quantified formula over the given set of predicates. For many modeling logics,
this decision problem is undecidable. By using quantifier instantiation, we can
implement a sound, but incomplete, verifier. As an extension, we show that
it is easy to incorporate axioms into the system, properties that must hold
universally for every system state. Axioms can be viewed simply as indexed
predicates that must evaluate to true on every step.

The ideas have been implemented in UCLID [Bryant et al. 2002b], a platform
for modeling and verifying infinite-state systems. Although we demonstrate
the ideas in the context of this tool and the logic (CLU) it supports, the ideas
developed here are not strongly tied to this logic. We conclude by describing our
use of predicate abstraction to verify several hardware and software systems,
including a directory-based cache coherence protocol devised by Steven German
[German]. We believe we are the first to verify the protocol for a system with
an unbounded number of clients, each communicating via unbounded FIFO
channels.

1.1 Related Work

Verifying systems with unbounded resources is in general undecidable. For in-
stance, the problem of verifying if a system of N (N can be arbitrarily large)
concurrent processes satisfies a property is undecidable [Apt and Kozen 1986].
Despite its complexity, the problem of verifying systems with arbitrarily large
resources (e.g., parameterized systems with N processes, out-of-order proces-
sors with arbitrarily large reorder buffers, software programs with arbitrary

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:4 • S. K. Lahiri and R. E. Bryant

large arrays) is of significant practical interest. Hence, in recent years, there
has been a lot of interest in developing techniques based on model checking and
deductive approaches for verifying such systems.

McMillan [1998] uses “compositional model checking” with various built-in
abstractions to reduce an infinite-state system to a finite-state system, which
can be model checked using Boolean methods. The abstraction mechanisms
include temporal case splitting, datatype reduction [Clarke et al. 1992], and
symmetry reduction. Temporal case splitting uses heuristics to slice the program
space to only consider the resources necessary for proving a property. Datatype
reduction uses abstract interpretation [Cousot and Cousot 1977] to abstract
unbounded data and operations over them to operations over finite domains. For
such finite domains, datatype reduction is subsumed by predicate abstraction.
Symmetry is exploited to reduce the number of indices to consider for verifying
unbounded arrays or network of processes. The method can prove both safety
and liveness properties. Since the abstraction mechanisms are built into the
system, they can often be coarse and may not suffice for proving a system.
Besides, the user is often required to provide auxiliary lemmas or to decompose
the proof to be discharged by symbolic model checkers. For instance, the proof
of safety of the Bakery protocol [McMillan et al. 2000] or the proof of an out-
of-order processor model [McMillan 1998] required nontrivial lemmas in the
compositional model checking framework.

Regular model checking [Kesten et al. 1997; Bouajjani et al. 2000] uses
regular languages to represent parameterized systems and computes the clo-
sure for the regular relations to construct the reachable state space. In gen-
eral, the method is not guaranteed to be complete and requires various ac-
celeration techniques (sometimes guided by the user) to ensure termination.
Moreover, approaches based on regular language are not suited for repre-
senting data in the system. Several examples that we consider in this work
cannot be modeled in this framework; the out-of-order processor which con-
tains data operations or the Peterson’s mutual exclusion are few such exam-
ples. Even though the Bakery algorithm can be verified in this framework,
it requires considerable user ingenuity to encode the protocol in a regular
language.

Several researchers have investigated restrictions on the system description
to make the parameterized verification problem decidable. Notable among them
is the early work by German and Sistla [1992] for verifying single-indexed prop-
erties for synchronously communicating systems. For restricted systems, finite
“cut-off” based approaches [Emerson and Namjoshi 1995; Emerson and Kahlon
2000, 2003] reduce the problem to verifying networks of some fixed finite size.
These bounds have been established for verifying restricted classes of ring net-
works and cache coherence protocols. Emerson and Kahlon [2003] have verified
the version of German’s cache coherence protocol with single entry channels by
manually reducing it to a snoopy protocol, for which finite cut-off exists. How-
ever, the reduction is manually performed and exploits details of operation of
the protocol, and thus requires user ingenuity. It can’t be easily extended to ver-
ify other unbounded systems including the Bakery algorithm or the out-of-order
processors.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:5

The method of “invisible invariants” [Pnueli et al. 2001; Arons et al. 2001]
uses heuristics for constructing universally quantified invariants for param-
eterized systems automatically. The method computes the set of reachable
states for finite (and small) instances of the parameters and then generalizes
them to parameterized systems to construct a potential inductive invariant.
They provide an algorithm for checking the verification conditions for a re-
stricted class of systems called the stratified systems, which include German’s
protocol with single entry channels and Lamport’s Bakery protocol [Lamport
1974]. However, the method simply becomes a heuristic for generating can-
didate invariants for nonstratified systems, which includes Peterson’s mutual
exclusion algorithm [Peterson 1981] and the Ad-hoc On-demand Distance Vec-
tor (AODV) [Perkins et al. 2002] network protocol. The class of bounded-data
systems (where each variable is finite but parameterized) considered by this
approach cannot model the out-of-order processor model [Lahiri et al. 2002]
that we can verify using our method.

Predicate abstraction with locally quantified predicates [Das and Dill 2002;
Baukus et al. 2002] requires complex quantified predicates to construct the
inductive assertions, as mentioned in the introduction. These predicates are
often as complex as invariants themselves. In fact, some of the invariants are
used as predicates in Baukus et al. [2002] to derive inductive invariants. Their
method verified (both safety and liveness) a version of the cache coherence
protocol with single entry channels, with complex manually provided predi-
cates. They use the the logic of WSIS (weak second-order logic with one suc-
cessor) [Buchi 1960; Thomas 1990], which does not allow function symbols and
thus cannot model the out-of-order processor model. The automatic predicate
discovery methods for quantified predicates [Das and Dill 2002] have not been
demonstrated on most examples (except the AODV model) we consider in this
paper.

Flanagan and Qadeer [2002] use indexed predicates to synthesize loop in-
variants for sequential software programs that involve unbounded arrays. They
also provide heuristics to extract some of the predicates from the program
text automatically. The heuristics are specific to loops in sequential software
and not suited for verifying more general unbounded systems that we han-
dle in this paper. In this work, we explore formal properties of this formula-
tion and apply it for verifying distributed systems. In a recent work [Lahiri
and Bryant 2004b], we provide a weakest precondition transformer [Dijkstra
1975] based heuristic for discovering most of the predicates for many of the
systems that we consider in this paper. We have proved some complete-
ness results for the predicate discovery scheme in the first author’s thesis
[Lahiri 2004].

2. NOTATION

Rather than using the common indexed vector notation to represent collections
of values (e.g., �v .= 〈v1, v2, . . . vn〉), we use a named set notation. That is, for a set
of symbols A, we let v indicate a list consisting of a value vx for each x ∈ A. In
other words, for the set of symbols A, v maps each x ∈ A to a value vx.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:6 • S. K. Lahiri and R. E. Bryant

Fig. 1. CLU Expression Syntax. Expressions can denote computations of Boolean values, integers,

or functions yielding Boolean values or integers.

For a set of symbols A, let σA denote an interpretation of these symbols,
assigning to each symbol x ∈ A a value σA(x) of the appropriate type (Boolean,
integer, function, or predicate). Let �A denote the set of all interpretations σA
over the symbol set A.

For interpretations σA and σB over disjoint symbol sets A and B, let σA · σB
denote an interpretation assigning either σA(x) or σB(x) to each symbol x ∈ A∪B,
according to whether x ∈ A or x ∈ B.

Figure 1 displays the syntax of the Logic of Counter arithmetic with Lambda
expressions and Uninterpreted functions (CLU), a fragment of first-order logic
extended with equality, inequality, and counters. An expression in CLU can eval-
uate to truth values (bool-expr), integers (int-expr), functions (function-expr) or
predicates (predicate-expr). Notice that we only allow restricted arithmetic on
terms, namely that of addition or subtraction by constants. Notice that we re-
strict the parameters to a lambda expression to be integers, and not function
or predicate expressions. There is no way in our logic to express any form of
iteration or recursion.

For symbol set A, let E(A) denote the set of all CLU expressions over A.
For any expression φ ∈ E(A) and interpretation σA ∈ �A, let the valuation of φ

with respect to σA, denoted 〈φ〉σA be the (Boolean, integer, function, or predicate)
value obtained by evaluating φ when each symbol x ∈ A is replaced by its
interpretation σA(x). Appendix 12.1.2 provides details of the syntax and the
semantics of CLU for interested readers.

Let v be a named set over symbols A, consisting of expressions over symbol
set B. That is, vx ∈ E(B) for each x ∈ A. Given an interpretation σB of the
symbols in B, evaluating the expressions in v defines an interpretation of the
symbols in A, which we denote 〈v〉σB . That is, 〈v〉σB is an interpretation σA such
that σA(x) = 〈vx〉σB for each x ∈ A.

A substitution π for a set of symbols A is a named set of expressions over
some set of symbols B (with no restriction on the relation between A and B.)
That is, for each x ∈ A, there is an expression πx ∈ E(B). We assume that
the expression πx has the same type as the symbol x ∈ A. For an expression
ψ ∈ E(A ∪ C), we let ψ [π/A] denote the expression ψ ′ ∈ E(B ∪ C) resulting
when we replace each occurrence of each symbol x ∈ A with the expression πx.
These replacements are all performed simultaneously.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:7

PROPOSITION 2.1. Let ψ be an expression in E(A ∪ C) and π be a substitution
having πx ∈ E(B) for each x ∈ A. For interpretations σB and σC , if we let σA be
the interpretation defined as σA = 〈π〉σB , then 〈ψ〉σA·σC = 〈ψ [π/A]〉σB ·σC .

This proposition captures a fundamental relation between syntactic substi-
tution and expression evaluation, sometimes referred to as referential trans-
parency. We can interchangeably use a subexpression πx or the result of eval-
uating this subexpression σA(x) in evaluating a formula containing this subex-
pression.

3. SYSTEM MODEL

We model the system as having a number of state elements, where each state
element may be a Boolean or integer value, or a function or predicate. We
use symbolic names to represent the different state elements giving the set of
state symbols V. We introduce a set of initial state symbols J and a set of input
symbols I representing, respectively, initial values and inputs that can be set to
arbitrary values on each step of operation. Among the state variables, there can
be immutable values expressing the behavior of functional units, such as ALUs,
and system parameters such as the total number of processes or the maximum
size of a buffer. Since these values are expressed symbolically, one run of the
verifier can prove the correctness of the system for arbitrary functionalities,
process counts, and buffer capacities.

The overall system operation is characterized by an initial-state expression
set q0 and a next-state expression set δ. The initial state consists of an expres-
sion for each state element, with the initial value of state element x given by
expression q0

x ∈ E(J). The transition behavior also consists of an expression
for each state element, with the behavior for state element x given by expres-
sion δx ∈ E(V ∪ I). In this expression, the state element symbols represent the
current system state and the input symbols represent the current values of the
inputs. The expression gives the new value for that state element.

We will use a very simple system as a running example throughout this
presentation. The only state element is a function F, that is, V = {F}. An input
symbol i determines which element of F is updated. Initially, F is the identify
function:

q0
F = λ u.u.

On each step, the value of the function for argument i is updated to be F(i+ 1).
That is,

δF = λ u.ITE(u = i, F(i + 1), F(u))

where the if-then-else operation ITE selects its second argument when the first
one evaluates to true and the third otherwise. For the above example, J = {}
and I = {i}.

3.1 Concrete System

A concrete system state assigns an interpretation to every state symbol. The
set of states of the concrete system is given by �V , the set of interpretations

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:8 • S. K. Lahiri and R. E. Bryant

of the state element symbols. For convenience, we denote concrete states using
letters s and t rather than the more formal σV .

From our system model, we can characterize the behavior of the concrete
system in terms of an initial state set Q0

C ⊆ �V and a next-state function
operating on sets NC : P(�V) → P(�V). The initial state set is defined as:

Q0
C

.= {〈q0〉σJ | σJ ∈ �J },
that is, the set of all possible valuations of the initial state expressions. The
next-state function NC is defined for a single state s as:

NC(s)
.= {〈δ〉s·σI | σI ∈ �I

}
,

that is, the set of all valuations of the next-state expressions for concrete
state s and arbitrary input. The function is then extended to sets of states by
defining

NC(SC) =
⋃

s∈SC

NC(s).

We can also characterize the next-state behavior of the concrete system by a
transition relation T where (s, t) ∈ T when t ∈ NC(s).

We define the set of reachable states RC as containing those states s such that
there is some state sequence s0, s1, . . . , sn with s0 ∈ Q0

C, sn = s, and si+1 ∈ NC(si)
for all values of i such that 0 ≤ i < n. We define the depth of a reachable state s to
be the length n of the shortest sequence leading to s. Since our concrete system
has an infinite number of states, there is no finite bound on the maximum depth
over all reachable states.

With our example system, the concrete state set consists of integer functions
f such that f (u + 1) ≥ f (u) ≥ u for all u and f (u) = u for all but finitely many
values of u.

4. PREDICATE ABSTRACTION WITH INDEXED PREDICATES

We use indexed predicates to express constraints on the system state. To define
the abstract state space, we introduce a set of predicate symbols P and a set of
index symbols X . The predicates consist of a named set φ, where for each p ∈ P,
predicate φp is a Boolean formula over the symbols in V ∪ X .

Our predicates define an abstract state space �P , consisting of all interpre-
tations σP of the predicate symbols. For k .= |P|, the state space contains 2k

elements.
As an illustration, suppose for our example system we wish to prove that

state element F will always be a function f satisfying f (u) ≥ 0 for all u ≥ 0.
We introduce an index variable x and predicate symbols P = {p, q}, with φp

.=
F(x) ≥ 0 and φq

.= x ≥ 0.
We can denote a set of abstract states by a Boolean formula ψ ∈ E(P). This

expression defines a set of states 〈ψ〉 .= {σP | 〈ψ〉σP = true}. As an example,
our two predicates φp and φq generate an abstract space consisting of four ele-
ments, which we denote FF, FT, TF, and TT, according to the interpretations

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:9

Table I. Example Abstract State Sets and Their Concretizations

Abstract System Concrete System

Formula State Set System Property State Set

ψ SA = 〈ψ〉 ∀Xψ∗ SC = γ (SA)

p ∧ q {TT} ∀x : f(x) ≥ 0 ∧ x ≥ 0 ∅
p ∧ ¬q {TF} ∀x : f(x) ≥ 0 ∧ x < 0 ∅

¬q {FF, TF} ∀x : x < 0 ∅
p {TF, TT} ∀x : f(x) ≥ 0 { f |∀x : f (x) ≥ 0}

p ∨ ¬q {FF, TF, TT} ∀x : x ≥ 0 ⇒ f(x) ≥ 0 { f |∀x : x ≥ 0 ⇒ f (x) ≥ 0}
Abstract state elements are represented by their interpretations of p and q.

Fig. 2. Abstraction and concretization.

assigned to p and q. There are then 16 possible abstract state sets, some of
which are shown in Table I. In this table, abstract state sets are represented
both by Boolean formulas over p and q, and by enumerations of the state
elements.

We define the abstraction function α to map each concrete state to the set of
abstract states given by the valuations of the predicates for all possible values
of the index variables:

α(s)
.= {〈φ〉s·σX | σX ∈ �X

}
(1)

=
⋃

σX ∈�X

{〈φ〉s·σX

}
. (2)

Note that (2) is simply a restatement of (1) using set union notation.
Since there are multiple interpretations σX , a single concrete state will gener-

ally map to multiple abstract states. Figure 2 illustrates this fact. The abstrac-
tion function α maps a single concrete state s to a set of abstract states—each
abstract state 〈φ〉s·σX resulting from some interpretation σX . This feature is not
found in most uses of predicate abstraction, but it is the key idea for handling
indexed predicates.

Working with our example system, consider the concrete state given by
the function λ u . u, in Figure 3. When we abstract this function relative to
predicates φp and φq, we get two abstract states: TT, when x ≥ 0, and FF,
when x < 0. This abstract state set is then characterized by the formula p ⇔
q.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:10 • S. K. Lahiri and R. E. Bryant

Fig. 3. Abstraction and concretization for the initial state for the example.

We then extend the abstraction function to apply to sets of concrete states in
the usual way:

α(SC)
.=

⋃
s∈SC

α(s). (3)

=
⋃

σX ∈�X

⋃
s∈SC

{〈φ〉s·σX

}
. (4)

Note that (4) follows by combining (2) with (3), and then reordering the unions.

PROPOSITION 4.1. For any pair of concrete state sets SC and TC:

(1) If SC ⊆ TC, then α(SC) ⊆ α(TC).
(2) α(SC) ∪ α(TC) = α(SC ∪ TC).

These properties follow directly from the way we extended α from a single
concrete state to a set of concrete states.

We define the concretization function γ to require universal quantification
over the index symbols. That is, for a set of abstract states SA ⊆ �P , we let
γ (SA) be the following set of concrete states:

γ (SA)
.= {

s | ∀σX ∈ �X : 〈φ〉s·σX ∈ SA
}

(5)

Consider Figure 2, where a set of abstract states SA has been concretized to
a set of concrete states γ (SA). It shows a concrete state t that is not included
in γ (SA) because one of the states it abstracts to lies outside SA. On the other
hand, the concrete state u is contained in γ (SA) because α(u) ⊆ SA. One can
provide an alternate definition of γ as follows:

γ (SA)
.= {s | α(s) ⊆ SA} (6)

The universal quantifier in the definition of γ has the consequence that the
concretization function does not distribute over set union. In particular, we
cannot view the concretization function as operating on individual abstract

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:11

states, but rather as generating each concrete state from multiple abstract
states.

PROPOSITION 4.2. For any pair of abstract state sets SA and TA:

(1) If SA ⊆ TA, then γ (SA) ⊆ γ (TA).
(2) γ (SA) ∪ γ (TA) ⊆ γ (SA ∪ TA).

The first property follows from (5), while the second follows from the first.
Consider our example system with predicates φp and φq. Table I shows some

example abstract state sets SA and their concretizations γ (SA). As the first
three examples show, some (altogether 6) nonempty abstract state sets have
empty concretizations, because they constrain x to be either always negative or
always nonnegative. On the other hand, there are 9 abstract state sets having
nonempty concretizations. We can see by this that the concretization function
is based on the entire abstract state set and not just on the individual values.
For example, the sets {TF} and {TT} have empty concretizations, but {TF, TT}
concretizes to the set of all nonnegative functions.

THEOREM 4.3. The functions (α, γ) form a Galois connection; that is, for any
sets of concrete states SC and abstract states SA:

α(SC) ⊆ SA ⇔ SC ⊆ γ (SA) (7)

PROOF. (This is one of several logically equivalent formulations of a Galois
connection [Cousot and Cousot 1977].) The proof follows by observing that both
the left and the right-hand sides of (7) hold precisely when for every σX ∈ �X
and every s ∈ SC, we have 〈φ〉s·σX ∈ SA. Let us prove the two directions:

(1) If: Let α(SC) ⊆ SA. By the definition of α in (1), this implies that for every
s ∈ SC and for interpretation σX ∈ �X , 〈φ〉s·σX ∈ SA. By the definition of γ in
(5), γ (SA) contains precisely those concrete states s′ for which 〈φ〉s′ ·σX ∈ SA,
for every interpretation σX ∈ �X . Thus, for every s ∈ SC, s ∈ γ (SA) and
consequently, SC ⊆ γ (SA).

(2) Only if: Let SC ⊆ γ (SA). By (5), for every s ∈ SC, 〈φ〉s·σX ∈ SA, for every
interpretation σX ∈ �X . By the definition of α in (1), α(s) ∈ SA. Further, by
extending α for the entire set SC by (3), we get α(SC) ⊆ SA.

Alternately, the functions (α, γ) form a Galois connection if they satisfy the
following properties for any sets of concrete states SC and abstract states SA:

SC; ⊆ γ (α(SC)). (8)

α(γ (SA)) ⊆ SA. (9)

These properties can be derived from (7). Similarly, (7) can be derived from
(8) and (9). The containment relation in both (8) and (9) can be proper. For
example, the concrete state set consisting of the single function λ u.u abstracts
to the state set p ⇔ q, which in turn concretizes to the set of all functions f
such that f (u) ≥ 0 ⇔ u ≥ 0, for any argument u. This is clearly demonstrated

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:12 • S. K. Lahiri and R. E. Bryant

in Figure 3. On the other hand, consider the set of abstract states represented
by p ∧ q. This set of abstract states has an empty concretization (see Table I),
and thereby satisfies α(γ (SA)) ⊂ SA.

5. ABSTRACT SYSTEM

Predicate abstraction involves performing a reachability analysis over the ab-
stract state space, where on each step we concretize the abstract state set via
γ , apply the concrete next-state function, and then abstract the results via α.
We can view this process as performing reachability analysis on an abstract
system having initial state set Q0

A
.= α(Q0

C) and a next-state function operat-
ing on sets: NA(SA)

.= α(NC(γ (SA))). Note that there is no transition relation
associated with this next-state function, since γ cannot be viewed as operating
on individual abstract states.

It can be seen that NA provides an abstract interpretation [Cousot and Cousot
1977] of the concrete system:

(1) NA is null-preserving: NA(∅) = ∅
(2) NA is monotonic: SA ⊆ TA ⇒ NA(SA) ⊆ NA(TA).

(3) NA simulates NC (with a simulation relation defined by α): α(NC(SC)) ⊆
NA(α(SC)).

THEOREM 5.1. NA provides an abstract interpretation of the concrete tran-
sition system NC.

PROOF. Let us prove the three properties that have been mentioned:

(1) This follows from the definition of NA and the fact that γ (∅) = ∅, NC(∅) = ∅
and α(∅) = ∅.

(2) By the definition of NA, and using the fact that γ , α and NC are monotonic.
NC is monotonic since it distributes over the elements of a set of concrete
states, i.e. NC(SC) = ⋃

s∈SC
NC(s).

(3) From (8), we know that SC ⊆ γ (α(SC)). By the monotonicity of NC, NC(SC) ⊆
NC(γ (α(SC))). Since α is monotonic, we have α(NC(SC)) ⊆ α(NC(γ (α(SC)))).
Now applying the definition of NA, we get the desired result.

6. REACHABILITY ANALYSIS

Given the set of initial abstract states Q0
A, and the abstract transformer NA,

we can define the set of states Ri
A reachable after i steps of the reachability

analysis as:

R0
A = Q0

A (10)

Ri+1
A = Ri

A ∪ NA
(
Ri

A

)
(11)

= Ri
A ∪

⋃
s∈γ (Ri

A)

⋃
t∈NC(s)

α(t). (12)

PROPOSITION 6.1. If s is a reachable state in the concrete system such that
depth(s) ≤ n, then α(s) ⊆ Rn

A.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:13

PROOF. We prove this by induction on n. For n = 0, the only concrete states
having depth 0 are those in Q0

C, and by (10), these states are all included in
R0

A.
For a state t having depth k < n, our induction hypothesis shows that α(t) ⊆

Rn−1
A . Since Rn−1

A ⊆ Rn
A, we therefore have α(t) ⊆ Rn

A.
Otherwise, suppose state t has depth n. Then there must be some state s

having depth n − 1 such that t ∈ NC(s). By the induction hypothesis, we must
have α(s) ⊆ Rn−1

A . By (8), we have s ∈ γ (α(s)), and Proposition 4.2 then implies

that s ∈ γ (Rn−1
A). By (12), we can therefore see that α(t) ⊆ Rn

A.

Since the abstract system is finite, there must be some n such that Rn
A =

Rn+1
A . The set of all reachable abstract states RA is then Rn

A.

PROPOSITION 6.2. The abstract system computes an overapproximation of the
set of reachable concrete states, that is,

α(RC) ⊆ RA. (13)

Thus, even though determining the set of reachable concrete states would re-
quire examining paths of unbounded length, we can compute a conservative
approximation to this set by performing a bounded reachability analysis on the
abstract system.

Remark 6.3. It is worth noting that we cannot use the standard “frontier
set” optimization in our reachability analysis. This optimization, commonly
used in symbolic model checking, considers only the newly reached states in
computing the next set of reachable states. In our context, this would mean
using the computation Ri+1

A = Ri
A ∪ NA(Ri

A − Ri−1
A) rather than that of (12).

This optimization is not valid, due to the fact that γ , and therefore NA, does
not distribute over set union.

As an illustration, let us perform reachability analysis on our example sys-
tem:

(1) In the initial state, state element F is the identity function, which we have
seen abstracts to the set represented by the formula p ⇔ q. This abstract
state set concretizes to the set of functions f satisfying f (u) ≥ 0 ⇔ u ≥ 0.
This is illustrated in Figure 3.

(2) Let h denote the value of F in the next state. If input i is −1, we would
h(−1) = f (0) ≥ 0, but we can still guarantee that h(u) ≥ 0 for u ≥ 0.
This is illustrated in Figure 4. Applying the abstraction function, we get
R1

A characterized by the formula p ∨ ¬q (see Table I).

(3) For the second iteration, the abstract state set characterized by the formula
p ∨ ¬q concretizes to the set of functions f satisfying f (u) ≥ 0 when u ≥
0, and this condition must hold in the next state as well. Applying the
abstraction function to this set, we then get R2

A = R1
A, and hence the process

has converged.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:14 • S. K. Lahiri and R. E. Bryant

Fig. 4. Reachability after 1 iteration for the example.

7. VERIFYING SAFETY PROPERTIES

A Boolean formula ψ ∈ E(P) can be viewed as defining a property of the abstract
state space. Such a property is said to hold for the abstract system when it holds
for every reachable abstract state. That is, 〈ψ〉σP = true for all σP ∈ RA.

For Boolean formula ψ ∈ E(P), define the formula ψ∗ ∈ E(V ∪ X) to be the
result of substituting the predicate expression φp for each predicate symbol
p ∈ P. That is, viewing φ as a substitution, we have ψ∗ .= ψ [φ/P].

PROPOSITION 7.1. For any formula ψ ∈ E(P), any concrete state s, and inter-
pretation σX ∈ �X , if σP = 〈φ〉s·σX , then 〈ψ∗〉s·σX = 〈ψ〉σP .

This is a particular instance of Proposition 2.1.
We can view the formula ψ∗ as defining a property ∀Xψ∗ of the concrete state

space. This property is said to hold for concrete state s, written ∀Xψ∗(s), when
〈ψ∗〉s·σX = true for every σX ∈ �X . The property is said to hold for the concrete
system when ∀Xψ∗(s) holds for every reachable concrete state s ∈ RC.

With our example system, letting formula ψ
.= p ∨ ¬q, and noting that p ∨

¬q ≡ q ⇒ p, we get as a property of state variable F that ∀x : x ≥ 0 ⇒ F(x) ≥ 0.

PROPOSITION 7.2. Property ∀Xψ∗(s) holds for concrete state s if and only if
〈ψ〉σP = true for every σP ∈ α(s).

This property follows from the definition of α (Equation (1)), and Proposition
7.1.

Alternately, a Boolean formula ψ ∈ E(P) can also be viewed as char-
acterizing a set of abstract states 〈ψ〉 .= {σP | 〈ψ〉σP = true}. Similarly, we
can interpret the formula ∀Xψ∗ as characterizing the set of concrete states
〈∀Xψ∗〉 .= {s | 〈∀Xψ∗〉s = true}.

PROPOSITION 7.3. If SC
.= 〈∀Xψ∗〉 and SA

.= 〈ψ〉, then SC = γ (SA).

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:15

PROOF. Expanding the definition of SC, we get

SC = {
s | ∀σX ∈ �X :

〈
ψ∗〉

s·σX
= true

}
(14)

= {
s | ∀σX ∈ �X : 〈ψ〉σP = true where σP

.= 〈φ〉s·σX

}
(15)

= {
s | ∀σX ∈ �X : 〈φ〉s·σX ∈ SA

}
. (16)

Observe that (15) follows from (14) by expanding the definition of ψ∗, and (16)
follows from (15) by using Proposition 7.1.

The purpose of indexed predicate abstraction is to provide a way to verify that
a property ∀Xψ∗(s) holds for the concrete system based on the set of reachable
abstract states.

THEOREM 7.4. For a formula ψ ∈ E(P), if property ψ holds for the abstract
system, then property ∀Xψ∗ holds for the concrete system.

PROOF. Consider an arbitrary concrete state s ∈ RC and an arbitrary inter-
pretation σX ∈ �X . If we let σP = 〈φ〉s·σX , then by the definition of α (Equa-
tion (1)), we must have σP ∈ α(s). By Propositions 4.1 and 6.2, we therefore
have

σP ∈ α(s) ⊆ α(RC) ⊆ RA.

By the premise of the theorem we have 〈ψ〉σP = true, and by Proposition 7.1,
we have 〈ψ∗〉s·σX = 〈ψ〉σP = true. This is precisely the condition required for
the property ∀Xψ∗ to hold for the concrete system.

Thus, the abstract reachability analysis on our example system does indeed
prove the property that any value f of state variable F satisfies ∀x : x ≥ 0 ⇒
f (x) ≥ 0.

Using predicate abstraction, we can possibly get a false negative result, where
we fail to verify a property ∀Xψ∗, even though it holds for the concrete system,
because the given set of predicates does not adequately capture the charac-
teristics of the system that ensure the desired property. Thus, this method of
verifying properties is sound, but possibly incomplete.

For example, any reachable state f of our example system satisfies ∀x :
f (x) < 0 ⇒ f (−x) ≥ −x, but our reachability analysis cannot show this.

We can, however, precisely characterize the class of properties for which this
form of predicate analysis is both sound and complete. A property ∀Xψ∗ is
said to be inductive for the concrete system when it satisfies the following two
properties:

(1) Every initial state s ∈ Q0
C satisfies ∀Xψ∗(s).

(2) For every pair of concrete states (s, t), such that t ∈ NC(s), if ∀Xψ∗(s) holds,
then so does ∀Xψ∗(t).

PROPOSITION 7.5. If ∀Xψ∗ is inductive, then ∀Xψ∗ holds for the concrete sys-
tem.

This proposition follows by induction on the state sequence leading to each
reachable state.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:16 • S. K. Lahiri and R. E. Bryant

Let ρA be a formula that exactly characterizes the set of reachable abstract
states. That is, 〈ρA〉 = RA.

LEMMA 7.6. ∀Xρ∗
A is inductive.

PROOF. By definition, 〈ρA〉σP = true if and only if σP ∈ RA, and so by
Proposition 7.2, ∀Xρ∗

A(s) holds for concrete state s if and only if α(s) ⊆ RA.
We can see that the first requirement is satisfied for any s ∈ Q0

C, since
α(s) ⊆ α(Q0

C) ⊆ RA and therefore ∀Xρ∗
A(s) holds by Proposition 7.2.

Now suppose there is a state t ∈ NC(s) and ∀Xρ∗
A(s) holds. Then we must have

α(s) ⊆ Ri
A for some i ≥ 0. From (8), we have s ∈ γ (α(s)) ⊆ γ (Ri

A), and therefore,

by (12), α(t) ⊆ Ri+1
A ⊆ RA. Thus, the second requirement is satisfied.

LEMMA 7.7. If ∀Xψ∗ is inductive, then ψ holds for the abstract system.

PROOF. We will prove by induction on i that 〈ψ〉σP = true for every σP ∈ Ri
A.

From the definition of RA, it then follows that 〈ψ〉σP = true for every σP ∈ RA,
and therefore ψ holds for the abstract system.

For the case of i = 0, (10) indicates that R0
A = α(Q0

C). Thus, by the definition
of α (Equation (1)) for every σP ∈ R0

A, there must be a state s and an inter-
pretation σX ∈ �X such that σP = 〈φ〉s·σX . By the first property of an inductive
predicate and by Proposition 7.1, we have 〈ψ〉σP = 〈ψ∗〉s·σX = true.

Now suppose that 〈ψ〉σP = true for all σP ∈ Ri
A. Consider an element τP ∈

Ri+1
A . If τP ∈ Ri

A, then our induction hypothesis shows that 〈ψ〉τP = true.
Otherwise, by (12), and the definitions of α (Equation (1)), the transition relation
NC, and γ (Equation (5)), there must be concrete states s and t satisfying:

(1) τP ∈ α(t). That is, τP = 〈φ〉t·τX for some τX ∈ �X .

(2) t ∈ NC(s).

(3) s ∈ γ (Ri
A). That is, for all σX ∈ �X , if σP

.= 〈φ〉s·σX , then σP ∈ Ri
A.

By Proposition 7.1 we have 〈ψ∗〉s·σX = 〈ψ〉σP = true, and therefore ∀Xψ∗(s)
holds. By the second property of an inductive predicate, ∀Xψ∗(t) must also hold.
Applying Proposition 7.1 once again, we therefore have 〈ψ〉τP = 〈ψ∗〉t·τX = true.
This completes our induction.

This lemma simply shows that if we present our predicate abstraction engine
with a fully formed induction hypothesis, then it will be able to perform the
induction proof. But it has important consequences.

For a formula ψ ∈ E(P) and a predicate set φ, the property ∀Xψ∗ is said to
have an induction proof over φ when there is some formula χ ∈ E(P), such that
χ ⇒ ψ and ∀Xχ∗ is inductive. That is, there is some way to strengthen ψ into
a formula χ that can be used to prove the property by induction.

THEOREM 7.8. A formula ψ ∈ E(P) is a property of the abstract system if
and only if the concrete property ∀Xψ∗ has an induction proof over the predicate
set φ.

PROOF. Suppose there is a formula χ such that ∀Xχ∗ is inductive. Then by
Lemma 7.7, we know that χ holds in the abstract system, and when χ ⇒ ψ , we
can infer that ψ holds in the abstract system.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:17

On the other hand, suppose that ψ holds in the abstract system. Then the
formula ρA (characterizing the set of all reachable abstract states) satisfies
ρA ⇒ ψ and ∀Xρ∗

A is inductive. Hence ∀Xψ∗ has an induction proof over φ.

This theorem precisely characterizes the capability of our formulation of
predicate abstraction—it can prove any property that can be strengthened into
an induction hypothesis using some combination of the predicates. Thus, if we
fail to verify a system using this form of predicate abstraction, we can conclude
that either 1) the system does not satisfy the property, or 2) we did not provide an
adequate set of predicates out of which the predicate abstraction engine could
construct a universally quantified induction hypothesis.

COROLLARY 7.9. The property ∀Xρ∗
A is the strongest inductive invariant for

the concrete system of the form ∀Xχ∗, where χ ∈ E(P). Alternately, for any other
inductive property ∀Xχ∗, where χ ∈ E(P), ∀Xρ∗

A ⇒ ∀Xχ∗.

PROOF. The proof follows easily from Theorem 7.8, the fact that ρA ⇒ χ

whenever χ is a property of the abstract state space, Proposition 7.3 and
Proposition 4.2.

Remark 7.10. To fully automate the process of generating invariants, we
need to further discover the predicates automatically. Other predicate abstrac-
tion tools [Ball et al. 2001; Henzinger et al. 2002; Chaki et al. 2003; Das and
Dill 2002] generate new predicates based on ruling out spurious counterexam-
ple traces from the abstract model. This approach cannot be used directly in our
context, since our abstract system cannot be viewed as a state transition sys-
tem, and so there is no way to characterize a counterexample by a single state
sequence. In this paper, we do not address the issue of discovering the indexed
predicates: we provide a syntactic heuristic based on the weakest precondition
transformer in a separate work [Lahiri and Bryant 2004b].

8. QUANTIfiER INSTANTIATION

For many subsets of first-order logic, there is no complete method for handling
the universal quantifier introduced in function γ (Equation (5)). For exam-
ple, in a logic with uninterpreted functions and equality, determining whether
a universally quantified formula is satisfiable is undecidable [Börger et al.
1997]. Instead, we concretize abstract states by considering some limited sub-
set of the interpretations of the index symbols, each of which is defined by
a substitution for the symbols in X . Our tool automatically generates candi-
date substitutions based on the subexpressions that appear in the predicate
and next-state expressions. Details of the quantifier instantiation heuristic
can be found in an earlier work [Lahiri et al. 2002]. These subexpressions
can contain symbols in V, X , and I. These instantiated versions of the for-
mulas enable the verifier to detect specific cases where the predicates can be
applied.

More precisely, let π be a substitution assigning an expression πx ∈
E(V ∪ X ∪ I) for each x ∈ X . Then φp [π/X] will be a Boolean expression over
symbols V, X , and I that represents some instantiation of predicate φp.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:18 • S. K. Lahiri and R. E. Bryant

For a set of substitutions � and interpretations σX ∈ �X and σI ∈ �I , we
define the concretization function γ� as:

γ�(SA, σX , σI)
.= {

s | ∀π ∈ � : 〈φ [π/X]〉s·σX ·σI ∈ SA
}
. (17)

PROPOSITION 8.1. For any abstract state set SA and interpretations σX ∈ �X
and σI ∈ �I :

(1) γ (SA) ⊆ γ�(SA, σX , σI) for any set of substitutions �.
(2) γ�(SA, σX , σI) ⊆ γ�′ (SA, σX , σI) for any pair of substitution sets � and �′

satisfying � ⊇ �′.
(3) For any abstract state set TA, if SA ⊆ TA, then γ�(SA, σX , σI) ⊆

γ�(TA, σX , σI), for any set of substitutions �.

These properties follow directly from the definitions of γ and γ� and Proposition
2.1.

PROPOSITION 8.2. For any concrete state set SC, set of substitutions �, and
interpretations σX ∈ �X and σI ∈ �I :

SC ⊆ γ�(α(SC), σX , σI). (18)

This property follows directly from Theorem 4.3 and Proposition 8.1. It shows
that for a given interpretation σX and σI , the functions (α, γ�) satisfy one of the
properties of a Galois connection (Equation (8)), but they need not satisfy the
other (Equation (9)). For example, when � = ∅, the quantified condition of (17)
becomes vacuous, and hence γ�(SA, σX , σI) = �V .

We can use γ� as an approximation to γ in defining the behavior of the
abstract system. That is, define N� over sets of abstract states as:

N�(SA) = {〈φ [δ/V]〉s·σX ·σI | σX ∈ �X , σI ∈ �I , s ∈ γ�(SA, σX , σI)
}

(19)

=
⋃

σX ∈�X

⋃
σI∈�I

⋃
s∈γπ (SA,σX ,σI)

{〈φ [δ/V]〉s·σX ·σI

}
. (20)

Observe in this equation that φp [δ/V] is an expression describing the evaluation
of predicate φp in the next state.

It can be seen that N�(SA) ⊇ NA(SA) for any set of abstract states SA. As
long as � is nonempty (required to guarantee that N� is null-preserving), it
can be shown that the system defined by N� is an abstract interpretation of
the concrete system:

(1) N�(∅) = ∅, if � is nonempty.

(2) N� is monotonic: This follows from the definition of N� in (20) and Propo-
sition 8.1.

(3) α(NC(SC)) ⊆ N�(α(SC)): This follows from the fact that α(NC(SC)) ⊆
NA(α(SC)) and NA(SA) ⊆ N�(SA).

We can therefore perform reachability analysis:

R0
� = Q0

A (21)

Ri+1
� = Ri

� ∪ N�

(
Ri

�

)
. (22)

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:19

These iterations will converge to a set R�.

PROPOSITION 8.3.

(1) RA ⊆ R� for any set of substitutions �.
(2) R� ⊆ R�′ for any pair of substitution sets � and �′ satisfying � ⊇ �′.

To see the first property, consider the following way of expressing the equation
for Ri+1

A (12) using the alternative equation for α (4), and rearranging the order
of the union operations:

Ri+1
A = Ri

A ∪
⋃

σX ∈�X

⋃
σI∈�I

⋃
s∈γ (Ri

A)

{〈φ [δ/V]〉s·σX ·σI

}
.

The property then follows by Proposition 8.1, using induction on i. The second
property also follows by Proposition 8.1 using induction on i.

THEOREM 8.4. For a formula ψ ∈ E(P), if 〈ψ〉σP = true for every σP ∈ R�,
then property ∀Xψ∗ holds for the concrete system.

PROOF. Since 〈ψ〉σP = true for every σP ∈ R� and RA ⊆ R� (by Proposition
8.3), 〈ψ〉σP = true for every σP ∈ RA. Hence by Theorem 7.4, the property ∀Xψ∗

holds for the concrete system.

This demonstrates that using quantifier instantiation during reachability
analysis yields a sound verification technique. However, when the tool fails to
verify a property, it could mean, in addition to the two possibilities listed earlier,
that 3) it used an inadequate set of instantiations, or 4) that the property cannot
be proved by any bounded quantifier instantiation.

9. SYMBOLIC FORMULATION OF REACHABILITY ANALYSIS

We are now ready to express the reachability computation symbolically, where
each step involves finding the set of satisfying solutions to a quantified CLU
formula. We will then see how this can be converted into a problem of finding
satisfying solutions to a Boolean formula.

On each step, we generate a Boolean formula ρi
� that characterizes Ri

�.
That is 〈ρi

�〉 = Ri
�. The formulas directly encode the approximate reachability

computations of (21) and (22).
Observe that by composing the predicate expressions with the initial state

expressions, φ[q0/V], we get a set of predicates over the initial state symbols J
indicating the conditions under which the predicates hold in the initial state. We
can therefore start the reachability analysis by finding solutions to the formula

ρ0
�(P)

.= ∃X∃J
∧
p∈P

p ⇔ φP[q0/V]. (23)

PROPOSITION 9.1. 〈ρ0
�〉 = Q0

A.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:20 • S. K. Lahiri and R. E. Bryant

Let us understand the expression ρ0
� by showing why it represents Q0

A. Ex-
panding the definition of Q0

A, we get:

Q0
A =

⋃
σX ∈�X

⋃
s∈Q0

C

{〈φ〉s·σX

}
. (24)

Again, Q0
C = ⋃

σJ ∈�J
{〈q0〉σJ }. Using Proposition 2.1, we can rewrite (24) as:

Q0
A =

⋃
σX ∈�X

⋃
σJ ∈�J

{〈
φ

[
q0/V

]〉
σJ ·σX

}
. (25)

To generate a formula for the next-state computation, we first generate a for-
mula for γπ (Ri

�, σX , σI) by forming a conjunction over each substitution in �,
where we compose the current-state formula with the predicate expressions
and with each substitution π :

∧
π∈� (ρi

� [φ/P]) [π/X].
The formula for the next-state computation combines the alternate definition

of N� (20) and the formula for γ� above:

ρi+1
� (P)

.= ρi
�(P)

∨∃V∃X∃I
(∧

π∈�

(
ρi

� [φ/P]
)

[π/X] ∧
∧
p∈P

p ⇔ φp [δ/V]

)
. (26)

To understand the quantified term in this equation, note that the left-hand
term is the formula for γ�(ρi

�, σX , σI), while the right-hand term expresses the
conditions under which each abstract state variable p will match the value of
the corresponding predicate in the next state.

PROPOSITION 9.2. 〈ρi+1
π 〉 = Ri+1

� .

Let us see how this symbolic formulation would perform reachability anal-
ysis for our example system. Recall that our system has two predicates
φp

.= F(x) ≥ 0 and φq
.= x ≥ 0. In the initial state, F is the function λ u .u,

and therefore φp

[
q0/V

]
simply becomes x ≥ 0. Equation (23) then becomes

∃x [
(p ⇔ x ≥ 0) ∧ (q ⇔ x ≥ 0)

]
, which reduces to p ⇔ q.

Now let us perform the first iteration. For our instantiations we require two
substitutions π and π ′ with πx = x and π ′

x = i+1. For ρ0
�(p, q) = p ⇔ q, the left-

hand term of (26) instantiates to (F(x) ≥ 0 ⇔ x ≥ 0)∧ (F(i+1) ≥ 0 ⇔ i+1 ≥ 0).
Substituting λ u.ITE(u = i, F(i + 1), F(u)) for F in φp gives (x= i ∧ F(i + 1) ≥
0) ∨ (x �=i ∧ F(x) ≥ 0).

The quantified portion of (26) for ρ1
�(p, q) then becomes:

∃ F, x, i :

⎛
⎝F(x) ≥ 0 ⇔ x ≥ 0 ∧ F(i + 1) ≥ 0 ⇔ i + 1 ≥ 0

∧ p ⇔ [(x=i ∧ F(i + 1) ≥ 0) ∨ (x �=i ∧ F(x) ≥ 0)]
∧ q ⇔ x ≥ 0

⎞
⎠ . (27)

The only values of p and q where this formula cannot be satisfied is when p is
false and q is true.

As shown in Lahiri et al. [2003], we can generate the set of solutions to (23)
and (26) by first transforming the formulas into equivalent quantified Boolean

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:21

formulas, and then performing quantifier elimination to remove all Boolean
variables other than those in P. This quantifier elimination is similar to the
relational product operation used in symbolic model checking and can be solved
using either BDD or SAT-based methods.

10. USING A SAT SOLVER TO PERFORM REACHABILITY ANALYSIS

Observe that (26) has a general form χ ′(P) = χ (P) ∨ ∃A θ (A, P), where θ is a
quantifier-free CLU formula, A contains Boolean, integer, function, and predi-
cate symbols, and P contains only Boolean symbols. Several methods (includ-
ing those in [Bryant et al. 2002b; Strichman et al. 2002; Bryant et al. 2002a])
have been developed to transform a quantifierfree CLU formula θ (A, P) into a
Boolean formula θ̃ (Ã, P), where Ã is now a set of Boolean variables, in a way
that preserves satisfiability.

By taking care [Lahiri et al. 2003], this transformation can be performed in
a way that preserves the set of satisfying solutions for the symbols in P. That
is:

{σP |∃σA : 〈θ〉σA·σP = true} = {σP |∃σÃ :
〈
θ̃
〉
σÃ·σP

= true}. (28)

Based on such a transformation, we can generate a Boolean formula for χ ′ by
repeatedly calling a Boolean SAT solver, yielding one solution with each call.
In this presentation, we consider an interpretation σP to represent a Boolean
formula consisting of a conjunction of literals: pwhen σP (p) = true and ¬pwhen
σP (p) = false. Starting with χ ′ = χ , and θ̃ ′ = θ̃ ∧ ¬χ , we perform iterations:

σA, σP ← SATSolve(θ̃ ′)
χ ′ ← χ ′ ∨ σP

θ̃ ′ ← θ̃ ′ ∧ ¬σP

until θ̃ ′ is unsatisfiable.
To illustrate this process, let us solve (27) to perform the first iteration of

reachability analysis on our example system. We can translate the right-hand
term into Boolean form by introducing Boolean variables a, b, c, d, and e en-
coding the predicates F(x) ≥ 0, x ≥ 0, F(i + 1) ≥ 0, i + 1 ≥ 0, and x = i,
respectively.

The portion of (27) within square brackets then becomes

a ⇔ b ∧ c ⇔ d ∧ (p ⇔ [(e ∧ c) ∨ (¬e ∧ a)]) ∧ (q ⇔ b).

To this, let us add the consistency constraint: e∧ b ⇒ d (encoding the property
that x= i ∧ x ≥ 0 ⇒ i + 1 ≥ 0). Although the translation schemes will add a
lot more constraints (e.g., those involving uninterpreted function symbol), the
above constraint is sufficient to preserve the property described in (28). For
simplicity, we will not describe the other constraints that would be added by
the algorithms in Lahiri et al. [2003]. Finally, all the symbols apart from p and
q are existentially quantified out.

It is easy to verify that the equation above with the consistency constraint
is unsatisfiable only for the assignment when p is false and q is true.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:22 • S. K. Lahiri and R. E. Bryant

11. AXIOMS

As a special class of predicates, we may have some that are to hold at all times.
For example, we could have an axiom f(x) > 0 to indicate that function f is
always positive, or f(y, z) = f(z, y) to indicate that f is commutative. Typically,
we want these predicates to be individually quantified, but we can ensure this
by defining each of them over a unique set of index symbols, as we have done
in the above examples.

We can add this feature to our analysis by identifying a subset Q of the
predicate symbols P to be axioms. We then want to restrict the analysis to
states where the axiomatic predicates hold. Let �P

Q denote the set of abstract
states σP where σP (p) = true for every p ∈ Q. Then we can apply this restriction
by redefining α(s) (Equation (1)) for concrete state s to be:

α(s)
.= {〈φ〉s·σX |σX ∈ �X

} ∩ �P
Q (29)

and then using this definition in the extension of α to sets (Equation (3)), the
formulation of the reachability analysis (Equations (10) and (12), and the ap-
proximate reachability analysis (Equations (21) and (22)).

The symbolic formulation of the approximate reachability analysis then be-
comes:

ρ0
�(P) = ∃X∃J

(∧
p∈P−Q

p ⇔ φp

[
q0/V

]
∧

∧
p∈Q

φp

[
q0/V

])

ρi+1
� (P) = ρi

�(P) ∨ ∃V∃X∃I
(∧

π∈�

(
ρi

� [φ/P]
)

[π/X]

∧
∧

p∈P−Q
p ⇔ φp [δ/V] ∧

∧
p∈Q

φp [δ/V]

)
.

12. APPLICATIONS

We have integrated the method described in this paper into UCLID [Bryant
et al. 2002b], a tool for modeling and verifying infinite-state systems. We have
used our predicate abstraction tool to verify safety properties of a variety of
models and protocols. Some of the more interesting ones include:

(1) A microprocessor out-of-order execution unit with an unbounded retire-
ment buffer. Prior verification of this unit required manually generating 13
invariants [Lahiri et al. 2002]. The verification did not require any auxil-
iary invariants from the user and the proof script (which consists of the 24
simple predicates) is more compact than other verification efforts of similar
models based on compositional model checking [McMillan 1998] or theorem
proving methods [Arons and Pnueli 1999; Hosabettu et al. 1999].

(2) A directory-based cache protocol with unbounded channels, devised by
Steven German of IBM [German], as discussed in the following.

(3) Versions of Lamport’s bakery algorithm [Lamport 1974] that allow arbi-
trary number of processes to be active at each step or allow nonatomic
reads and writes.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:23

(4) Selection sort algorithm for sorting an arbitrary large array. We prove the
property that upon termination, the algorithm produces an ordered array.

(5) A model of the Ad-hoc On-demand Distance Vector (AODV) routing proto-
col [Perkins et al. 2002]. This model was obtained from an earlier work [Das
and Dill 2002], where the protocol was verified using quantified predicates.

(6) A crucial invariant (similar to the one proved in Arons et al. [2001]) for
proving the mutual exclusion for the Peterson’s [1981] mutual exclusion
algorithm.

12.1 Directory-Based Cache Coherence Protocol

For the directory-based German’s cache-coherence protocol, an unbounded
number of clients (cache), communicate with a central home process to gain
exclusive or shared access to a memory line. The state of each cache can be
{invalid, shared, exclusive}. The home maintains explicit representations of
two lists of clients: those sharing the cache line (sharer list) and those for
which the home has sent an invalidation request but has not received an ac-
knowledgment (invalidate list)—this prevents sending duplicate invalida-
tion messages.

The client places requests {req shared, req exclusive} on a channel ch 1 and
the home grants {grant shared, grant exclusive} on channel ch 2. The home
also sends invalidation messages invalidate along ch 2. The home grants ex-
clusive access to a client only when there are no clients sharing a line, i.e.
∀i : sharer list(i) = false. The home maintains variables for the current
client (current client) and the current request (current command). It also
maintains a bit exclusive granted to indicate that some client has exclusive
access. The cache lines acknowledge invalidation requests with a invalidate ack
along another channel ch 3. At each step an input cid is generated to denote
the process that is chosen at that step. Details of the protocol operation with
single-entry channels can be found in many previous works including Pnueli
et al. [2001]. We will refer to this version as german-cache.

Since the modeling language of UCLID does not permit explicit quan-
tifiers in the system, we model the check for the absence of any sharers
∀i : sharer list(i) = false alternately. We maintain a Boolean state vari-
able empty hsl, which assumes an arbitrary value at each step of operation. We
then add an axiom to the system: empty hsl ⇔ ∀i : sharer list(i) = false.1

The quantified test ∀i : sharer list(i) = false in the model is replaced by
empty hsl.

In our version of the protocol, each cache communicates to the home pro-
cess through three directed unbounded FIFO channels, namely the channels
ch 1, ch 2, ch 3. Thus, there are an unbounded number of unbounded channels,
three for each client.2 It can be shown that a client can generate an unbounded
number of requests before getting a response from the home. We refer to this
version of the protocol as german-cache-fifo.

1Our current implementation handles only one direction of the axiom, ∀i : empty hsl ⇒
sharer list(i) = false, which is sufficient to ensure the safety property.
2The extension was suggested by Steven German himself.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:24 • S. K. Lahiri and R. E. Bryant

Proving Cache Coherence. We first consider the version german-cache which
has been widely used in many previous works [Pnueli et al. 2001; Emerson and
Kahlon 2003; Baukus et al. 2002] among others and then consider the extended
system german-cache-fifo. In both cases, the cache coherence property to prove
is ∀i, j : cache(i) = exclusive ∧i �= j ⇒ cache(j) = invalid. All the experiments
are performed on an 2.1 GHz Pentium machine running Linux with 1GB of
RAM.

12.1.1 Invariant Generation for german-cache. For this version, we de-
rived two inductive invariants, one which involves a single process index i and
other which involves two process indices i and j .

For single index invariant, we needed to add an auxiliary variable
last granted which tracks the last variable that has been granted exclusive
access [Pnueli et al. 2001]. The inductive invariant that implies the cache co-
herence property was constructed using the following set of predicates:

P = {empty hsl, exclusive granted, current command =
req exclusive, current command = req shared, i = last granted,
invalidate list(i), sharer list(i), cache(i) = exclusive, cache(i) =
invalid, ch 2(i) = grant shared, ch 2(i) = grant exclusive, ch 2(i) =
invalidate, ch 3(i) = invalidate ack}.

These predicates naturally appear in the system description. First, the predi-
cates empty hsl and exclusive granted are Boolean state variables. Next, for
each enumerated state variable x, with range {e1, . . . , em}, we add the pred-
icates x = e1, . . . , x = em−1, leaving the redundant predicate x = em. This
explains current command = req shared and current command = req exclusive.
Next, we consider the values of the function and predicate state variables at a
particular index i. In this example, such state variables are the sharer list,
invalidate list, cache, ch 1, ch 2 and ch 3. We did not need to add any predi-
cate for the ch 1 since the content of this channel does not affect the correctness
condition. Finally, the predicate i = last granted was added for the auxiliary
state variable last granted.

With this set of 13 indexed predicates, the abstract reachability computation
converged after 9 iterations in 14 seconds. Most of the time (about 8 seconds)
was spent in eliminating quantifiers from the formula in (23) and (26) using
the SAT-based quantifier elimination method.

For the dual index invariant, addition of the second index variable j makes
the process computationally more expensive. However, the verification does not
require any auxiliary variable to prove the correctness. The set of predicates
used is:

P = { cache(i) = exclusive, cache(j) = invalid, i = j , ch2(i) =
grant exclusive, ch2(i) = grant shared, ch2(i) = invalidate, ch3(i) =
empty, ch2(j) = grant exclusive, ch2(j) = grant shared, ch2(j) =
invalidate, ch3(j) = empty, invalidate list(i), current command =
req exclusive, current command = req shared, exclusive granted,
sharer list(i) }.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:25

The inductive invariant that implies the cache-coherency was constructed using
these 16 predicates in 41 seconds using 12 steps of abstract reachability. The
portion of time spent on eliminating quantifiers was around 15 seconds.

12.1.2 Invariant Generation for german-cache-fifo. For this version, each
of the channels, namely ch1, ch2 and ch3 are modeled as unbounded FIFO
buffers. Each channel has a head (e.g. ch1 hd), which is the position of the ear-
liest element in the queue and a tail pointer (e.g. ch1 tl), which is the position
of the first free entry for the queue, where the next element is inserted. These
pointers are modeled as function state variables, which maps process i to the
value of the head or tail pointer of a channel for that process. For instance,
ch2 hd(i) denotes the position of the head pointer for the process i. The chan-
nel itself is modeled as a two-dimensional array, where ch2(i, j) denotes the
content of the channel at index j for the process i. We aim to derive an in-
variant over a single process index i and an index j for an arbitrary element
of the channels. Hence we add the auxiliary variable last granted. The set of
predicates required for this model is:

P = { cache(i) = exclusive, cache(i) = invalid, current command =
req shared, current command = req exclusive, exclusive granted,
i = last granted, invalidate list(i), sharer list(i), j = ch2 hd(i),
j = ch3 hd(i), j ≤ ch2 hd(i), j < ch2 tl(i), j ≤ ch3 hd(i), j <

ch3 tl(i), j = ch2 tl(i) − 1, ch1 hd(i) < ch1 tl(i), ch1 hd(i) =
ch1 tl(i), ch2 hd(i) < ch2 tl(i), ch2 hd(i) = ch2 tl(i), ch2(i, j) =
grant exclusive, ch2(i, j) = grant shared, ch2(i, j) = invalidate,
ch3 hd(i) < ch3 tl(i), ch3 hd(i) = ch3 tl(i), ch3 tl(i) = ch3 hd(i) + 1,
ch3(i, j) = invalidate ack }.

Apart from the predicates required for german-cache, we require predicates in-
volving entries in the various channels for a particular cache entry i. Predicates
like ch1 hd(i) < ch1 tl(i) and ch1 hd(i) = ch1 tl(i) are used to determine if the
particular channel is non-empty. To reason about active entries in a FIFO, that
is, those lying between the head (inclusive) and the tail, we need predicates
like j ≤ ch2 hd(i) and j < ch2 tl(i). The content of the channel at a location
j is given by the predicates like ch2(i, j) = grant exclusive and ch3(i, j) = in-
validate ack. Finally, a couple of predicates like ch3 tl(i) = ch3 hd(i) + 1 and
j = ch2 tl(i)−1 are added by looking at failures to prove the cache coherence
property.

Our tool constructs an inductive invariant with these 26 predicates, which
implies the cache coherence property. The abstract reachability took 17 itera-
tions to converge in 1435 seconds. The quantifier elimination process took 1227
seconds.

APPENDIX: SYNTAX AND SEMANTICS OF CLU

A.2 Syntax

Expressions in CLU (Figure 1) describe a means of computing four different
types of values. Boolean expressions (bool-expr) yield true or false. We also

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:26 • S. K. Lahiri and R. E. Bryant

refer to Boolean expressions as formulas. Integer expressions (int-expr), yield
integer values. Predicate expressions (predicate-expr), denote functions from
integers to Boolean values. Function expressions (function-expr), on the other
hand, denote functions from integers to integers.

The simplest truth expressions are the values true and false. Boolean ex-
pressions can also be formed by comparing two term expressions for equality
(referred to as an equation) or for ordering (referred to as an inequality), by
applying a predicate expression to a list of term expressions, and by combining
Boolean expressions using Boolean connectives.

Integer expressions can be integer variables, used only as the formal argu-
ments of lambda expressions. They can also be formed by applying a function
expression (including addition by constants) to a set of integer expressions, or
by applying the ITE (for “if-then-else”) operator. The ITE operator chooses be-
tween two values based on a Boolean control value, i.e., ITE(true, x1, x2) yields
x1, while ITE(false, x1, x2) yields x2.

Function expressions can be either function symbols, representing uninter-
preted functions, or lambda expressions, defining the value of the function as an
integer expression containing references to a set of argument variables. Func-
tion symbols of arity 0 are also called int-symbol, symbolic constants of type
integers. Since these symbols are instantiated without any arguments, we will
omit the parentheses, writing a instead of a().

Similarly, predicate expressions can be either predicate symbols, represent-
ing uninterpreted predicates, or lambda expressions, defining the value of
the predicate as a Boolean expression containing references to a set of ar-
gument variables. Predicate symbols of arity 0 are also called bool-symbol,
symbolic constants of type Booleans. They denote arbitrary Boolean val-
ues. We will also omit the parentheses following the instantiation of such a
predicate.

Notice that we restrict the parameters to a lambda expression to be integers,
and not function or predicate expressions. There is no way in our logic to express
any form of iteration or recursion.

A.3 Semantics

For symbol set A, let σA denote an interpretation of these symbols, assign-
ing to each symbol x ∈ A a value σA(x) of the appropriate type (Boolean,
integer, function, or predicate). Let Z denote the set of integers. Interpreta-
tion σA assigns to each function symbol (in A) of arity k, a function from Zk

to Z, and to each predicate symbol (in A) of arity k a function from Zk to
{true, false}. Let �A denote the set of all interpretations σA over the symbol
set A.

For symbol set A, let E(A) denote the set of all CLU expressions over A.
For any expression φ ∈ E(A) and interpretation σA ∈ �A, let the valuation
of φ with respect to σA, denoted 〈φ〉σA be the (Boolean, integer, function, or
predicate) value obtained by evaluating φ when each symbol x ∈ A is replaced
by its interpretation σA(x). Figure 5 describes the evaluation inductively on the
structure of any expression.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:27

Fig. 5. Semantics of CLU.

ACKNOWLEDGMENTS

We wish to thank Ching-Tsun Chou for his detailed comments on an early
draft of this article. We are also grateful to the reviewers for their insightful
comments.

REFERENCES

APT, K. R. AND KOZEN, D. 1986. Limits for automatic verification of finite-state concurrent systems.

Inform. Proces. Lett. 22, 5, 307–309.

ARONS, T. AND PNUELI, A. 1999. Verifying Tomasulo’s algorithm by Refinement. In Proceedings of
the Conference on VLSI Design Conference (VLSI).

ARONS, T., PNUELI, A., RUAH, S., ZHU, Y., AND ZUCK, L. 2001. Parameterized verification with au-

tomatically computed inductive assertions. In Proceedings of the Conference on Computer-Aided
Verification (CAV), G. Berry, H. Comon, and A. Finkel, Eds. Lecture Notes in Computer Science,

vol. 2102. 221–234.

BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. 2001. Automatic predicate abstraction

of C programs. In Programming Language Design and Implementation (PLDI). Snowbird, Utah.

SIGPLAN Notices, 36, 5.

BAUKUS, K., LAKHNECH, Y., AND STAHL, K. 2002. Parameterized Verification of a Cache Coherence

Protocol: Safety and Liveness. In Proceedings of the International Conference on Verification,
Model Checking, and Abstract Interpretation, (VMCAI), A. Cortesi, Ed. Lecture Notes in Com-

puter Science, vol. 2294. 317–330.

BÖRGER, E., GRÄDEL, E., AND GUREVICH, Y. 1997. The Classical Decision Problem. Springer-Verlag.

BOUAJJANI, A., JONSSON, B., NILSSON, M., AND TOUILI, T. 2000. Regular model checking. In Computer-
Aided Verification (CAV), A. Emerson and P. Sistla, Eds. Lecture Notes in Computer Science, vol.

1855. Springer-Verlag, 403–418.

BRYANT, R. E., LAHIRI, S. K., AND SESHIA, S. A. 2002a. Deciding CLU Logic formulas via Boolean

and Pseudo-Boolean encodings. In Proceedings of the International Workshop on Constraints in
Formal Verification (CFV).

BRYANT, R. E., LAHIRI, S. K., AND SESHIA, S. A. 2002b. Modeling and Verifying Systems using a Logic

of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions. In Proceedings
of the International Conference on Computer-Aided Verification (CAV), E. Brinksma and K. G.

Larsen, Eds. Lecture Notes in Computer Science, vol. 2404. 78–92.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

4:28 • S. K. Lahiri and R. E. Bryant

BUCHI, J. R. 1960. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl.
Math. 6, 66–92.

BURCH, J. R. AND DILL, D. L. 1994. Automated verification of pipelined microprocessor control. In

Proceedings of the International Conference on Computer-Aided Verification (CAV), D. Dill, Ed.

Lecture Notes in Computer Science, vol. 818. 68–80.

CHAKI, S., CLARKE, E. M., GROCE, A., JHA, S., AND VEITH, H. 2003. Modular Verification of Software

Components in C. In Proceedings of the International Conference on Software Engineering (ICSE).
IEEE Computer Society, 385–395.

CLARKE, E. M., GRUMBERG, O., AND LONG, D. E. 1992. Model checking and abstraction. In Process-
ings of the International Conference on ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL),. 342–354.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A Unified Lattice Model for the Static

Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the Sym-
posium on Principles of Programming Languages (POPL). ACM Press.

DAS, S. AND DILL, D. 2001. Successive approximation of abstract transition relations. In IEEE
Symposium on Logic in Computer Science(LICS). IEEE Computer Society.

DAS, S., DILL, D., AND PARK, S. 1999. Experience with predicate abstraction. In Proceedings of the
Conference on Computer-Aided Verification (CAV). Lecture Notes in Computer Science, vol. 1633.

Springer-Verlag.

DAS, S. AND DILL, D. L. 2002. Counter-example based predicate discovery in predicate abstraction.

In Proceedings of the International Conference on Formal Methods in Computer-Aided Design
(FMCAD), M. D. Aagaard and J. W. O’Leary, Eds. Lecture Notes in Computer Science, vol. 2517.

19–32.

DIJKSTRA, E. W. 1975. Guarded commands, nondeterminacy and formal derivation of programs.

Comm. ACM 18, 453–457.

EMERSON, E. A. AND KAHLON, V. 2000. Reducing model checking of the many to the few. In Pro-
ceedings of the International Conference on Automated Deduction, D. A. McAllester, Ed. 1831.

236–254.

EMERSON, E. A. AND KAHLON, V. 2003. Exact and efficient verification of parameterized cache

coherence protocols. In Proceedings of the international Conference on Correct Hardware Design
and Verification Methods (CHARME), D. Geist and E. Tronci, Eds. Lecture Notes in Computer

Science, vol. 2860. 247–262.

EMERSON, E. A. AND NAMJOSHI, K. S. 1995. Reasoning about rings. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 85–94.

FLANAGAN, C. AND QADEER, S. 2002. Predicate abstraction for software verification. In Proceedings
of the Symposium on Principles of Programming Languages (POPL), J. Launchbury and J. C.

Mitchell, Eds. ACM Press, 191–202.

GERMAN, S. Personal communication.

GERMAN, S. M. AND SISTLA, A. P. 1992. Reasoning about systems with many processes. J. ACM 39, 3,

675–735.

GRAF, S. AND SAı̈DI, H. 1997. Construction of abstract state graphs with PVS. In Proceedings of
the international Conference on Computer-Aided Verification (CAV), O. Grumberg, Ed. Lecture

Notes in Computer Science, vol. 1254. Springer-Verlag.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2002. Lazy Abstraction. In Proceedings
of the international Conference on Symposium on Principles of Programming Languages (POPL),
J. Launchbury and J. C. Mitchell, Eds. ACM Press, 58–70.

HOSABETTU, R., GOPALAKRISHNAN, G., AND SRIVAS, M. 1999. Proof of correctness of a processor with

reorder buffer using the completion function approach. In Proceedings of the international Con-
ference on Computer-Aided Verification (CAV). LNCS.

IP, C. N. AND DILL, D. L. 1996. Verifying systems with replicated components in Murϕ. In Pro-
ceedings of the International Conference on Computer-Aided Verification (CAV), R. Alur and T. A.

Henzinger, Eds. Lecture Notes in Computer Science, vol. 1102. Springer-Verlag, 147–158.

KESTEN, Y., MALER, O., MARCUS, M., PNUELI, A., AND SHAHAR, E. 1997. Symbolic model checking

with rich assertional languages. In Proceedings of the International Conference on Computer-
Aided Verification (CAV ’97), O. Grumberg, Ed. Lecture Notes in Computer Science, vol. 1254.

Springer-Verlag, 424–435.

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

Predicate Abstraction with Indexed Predicates • 4:29

LAHIRI, S. K. 2004. Unbounded system verification using decision procedures and predicate ab-
straction. PhD thesis, Carnegie Mellon University.

LAHIRI, S. K. AND BRYANT, R. E. 2004a. Constructing Quantified Invariants via Predicate Abstrac-

tion. In Proceedings of the Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), G. Levi and B. Steffen, Eds. Lecture Notes in Computer Science, vol. 2937. 267–281.

LAHIRI, S. K. AND BRYANT, R. E. 2004b. Indexed Predicate Discovery for Unbounded System Ver-

ification. In Proceedings of the International Conference on Computer Aided Verification (CAV).
To appear.

LAHIRI, S. K., BRYANT, R. E., AND COOK, B. 2003. A symbolic approach to predicate abstraction. In

Proceedings of the International Conference on Computer-Aided Verification (CAV), W. A. Hunt,

Jr. and F. Somenzi, Eds. Lecture Notes in Computer Science, vol. 2725. Springer-Verlag, 141–153.

LAHIRI, S. K., SESHIA, S. A., AND BRYANT, R. E. 2002. Modeling and verification of out-of-order

microprocessors in UCLID. In Proceedings of the International Conference on Formal Methods in
Computer-Aided Design (FMCAD), J. W. O. M. Aagaard, Ed. Lecture Notes in Computer Science,

vol. 2517. Springer-Verlag, 142–159.

LAMPORT, L. 1974. A new solution of Dijkstra’s concurrent programming problem. Comm.
ACM 17, 453–455.

MCMILLAN, K. 1998. Verification of an implementation of Tomasulo’s algorithm by compositional

model checking. In Proceedings of the International Conference on Computer-Aided Verification
(CAV), A. J. Hu and M. Y. Vardi, Eds. Lecture Notes in Computer Science, vol. 1427. 110–121.

MCMILLAN, K., QADEER, S., AND SAXE, J. 2000. Induction in compositional model checking. In

Proceedings of the International Conference on Computer-Aided Verification (CAV), A. Emerson

and P. Sistla, Eds. Lecture Notes in Computer Science, vol. 1855. Springer-Verlag.

PERKINS, C., ROYER, E., AND DAS, S. 2002. Ad hoc on demand distance vector (aodv) routing. In

IETF Draft., http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-10.txt. North-Holland,

Amsterdam.

PETERSON, G. L. 1981. Myths about the mutual exclusion problem. Inform. Proces. Lett. 12, 3,

115–116.

PNUELI, A., RUAH, S., AND ZUCK, L. 2001. Automatic deductive verification with invisible invari-

ants. In Proceedings of the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), T. Margaria and W. Yi, Eds. Lecture Notes in Computer Sci-

ence, Vol. 2031. 82–97.

SAı̈DI, H. AND SHANKAR, N. 1999. Abstract and model check while you prove. In Proceedings of
the International Conference on Computer-Aided Verification, N. Halbwachs and D. Peled, Eds.

Lecture Notes in Computer Science, vol. 1633. Springer-Verlag, 443–454.

STRICHMAN, O., SESHIA, S. A., AND BRYANT, R. E. 2002. Deciding Separation Formulas with SAT. In

Proceedings of the International Conference on Computer-Aided Verification (CAV), E. Brinksma

and K. G. Larsen, Eds. Lecture Notes in Computer Science, vol. 2404. 209–222.

THOMAS, W. 1990. Automata on infinite objects. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics.

Received July 2004; revised March 2006; accepted March 2006

ACM Transactions on Computational Logic, Vol. 9, No. 1, Article 4, Publication date: November 2007.

