
IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 1

Arbitrarily Shaped Motion Prediction for
Depth Video Compression

using Arithmetic Edge Coding
Ismael Daribo Member, IEEE, Dinei Florencio Senior Member, IEEE, Gene Cheung Senior Member, IEEE

Abstract—Depth image compression is important for com-
pact representation of 3D visual data in “texture-plus-depth”
format, where texture and depth maps from one or more
viewpoints are encoded and transmitted. A decoder can then
synthesize a freely chosen virtual view via depth-image-
based rendering (DIBR) using nearby coded texture and
depth maps as reference. Further, depth information can be
used in other image processing applications beyond view
synthesis, such as object identification, segmentation, etc. In
this paper, we leverage on the observation that “neighboring
pixels of similar depth have similar motion” to efficiently
encode depth video. Specifically, we divide a depth block
containing two zones of distinct values (e.g., foreground
and background) into two arbitrarily shaped regions (sub-
blocks) along the dividing boundary before performing sep-
arate motion prediction (MP). While such arbitrarily shaped
sub-block MP can lead to very small prediction residuals
(resulting in few bits required for residual coding), it incurs
an overhead to transmit the dividing boundaries for sub-
block identification at decoder. To minimize this overhead,
we first devise a scheme called arithmetic edge coding (AEC)
to efficiently code boundaries that divide blocks into sub-
blocks. Specifically, we propose to incorporate the boundary
geometrical correlation in an adaptive arithmetic coder in the
form of a statistical model. Then, we propose two optimiza-
tion procedures to further improve the edge coding perfor-
mance of AEC for a given depth image. The first procedure
operates within a code block, and allows lossy compression
of the detected block boundary to lower the cost of AEC,
with an option to augment boundary depth pixel values
matching the new boundary, given the augmented pixels do
not adversely affect synthesized view distortion. The second
procedure operates across code blocks, and systematically
identifies blocks along an object contour that should be
coded using sub-block MP via a rate-distortion optimized
trellis. Experimental results show an average overall bitrate
reduction of up to 33% over classical H.264/AVC.

I. Introduction

The cost of consumer-level cameras has been rapidly
decreasing, and video of a time-varying 3D scene can

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

Ismael Daribo was with National Institute of Informatics, 2-1-2, Hi-
totsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan during this work, and is
now with the European Patent Office (email: daribo.labs@gmail.com).

Dinei Florencio is with Microsoft Research, One Microsoft Way,
Redmond, WA 98052 USA (email: dinei@microsoft.com).

Gene Cheung is with National Institute of Informatics, 2-1-2, Hitot-
subashi, Chiyoda-ku, Tokyo, 101-8430 Japan (email: cheung@nii.ac.jp).

This work is supported by Microsoft Research CORE program.

now be captured simultaneously by an array of multiple
closely spaced cameras in a cost-effective manner [1].
The 3D geometry of the scene can be estimated from
these multiple cameras, or, (also at a rapidly decreasing
cost) acquired directly by depth-sensing cameras [2].
The addition of depth information to the traditional
texture video creates a powerful combination, opening
up a number of new applications. The acquired depth
information may, for example, help in object identifi-
cation, foreground / background segmentation, image
re-lighting, mixed reality, and a number of novel pro-
cessing tasks. If the processing is to be performed at a
distant location from where the signals were acquired,
there is a need for encoding these texture and depth
maps for network transmission. Of particular interest
in many immersive visual communication applications
is a functionality called free viewpoint: the ability for a
user to freely select any arbitrary virtual viewpoint, and
have the system render the corresponding viewpoint
image for observation. Example applications include free
viewpoint TV [3], high-quality video conferencing [4],
etc. In these scenarios, time-lag considerations typically
demand the synthesis to be done at the viewer’s site,
making transmission of texture and depth maps a re-
quirement.

Transmitting both texture and depth maps of one
or more viewpoints from sender to receiver entails a
large network cost, however, and hence compression
of both texture and depth video to reduce data rate is
important. Compression of texture video is well studied
during the past decades, and is the focus of many
past video coding standards like H.264/AVC [5]. Given
the maturity of texture video coding, and the obvious
correlation that exists between texture and depth video
from the same camera viewpoint, it is natural to consider
depth video coding using already coded texture video as
side information (SI) to exploit the inherent correlation
between them for bitrate reduction. This approach was
taken in [6], for example, where edges in texture maps
are detected and subsequently reused as edges in depth
maps for intra-prediction (more details will be discussed
in Section II). In this paper, we take the opposite ap-
proach and consider the compression of depth video
independent from the texture video; texture video can
be subsequently compressed instead using coded depth

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 2

high

gradient

magnitude ?

MB

partitioning

isolated pixels

detection

edge

simpli!cation

arithmetic

edge coder (AEC)

arbitrarily-shaped

motion prediction (ASMP)

H.264/AVC

0010101...

111001101...
motion vectors MV , MV1 2

prediction residualyes

yes

no

goto next coding mode in H.264/AVC

depth MB

depth pixel

augmentation

(optional)

Fig. 1. Workflow of the proposed framework. (”Yes” to the ”high graident magnitude” box means possibly two arrows need to be followed,
if depth pixel segmentation is chosen to be performed.) A depth MB with high discontinuity is motion predicted using two non-overlapping
arbitrarily shaped regions. The dividing boundary is side coded using an adaptive arithmetic coder.

video as SI [7]. The reason is the following key obser-
vation: in general captured video, neighboring pixels of
similar depth tend to belong to the same physical object and
hence have similar motion [8]. In depth video coding, by
definition per-pixel depth information is available. Thus,
if a given code block contains two zones of distinct depth
values (e.g., foreground and background), then one can
divide it into two arbitrarily shaped regions (sub-blocks)
along the dividing boundary, before performing motion
prediction (MP) separately for each of the sub-blocks. As
we will demonstrate in our experiments, this method of
arbitrarily shaped sub-block motion prediction (ASMP) can
lead to very small prediction residuals, and hence very
good depth video compression performance. Further,
The dividing boundary can also be reused for similar
ASMP in the corresponding block in the texture map of
the same viewpoint as well [7]. The overall workflow of
our proposed framework is illustrated in Fig. 1.

While ASMP can lead to very small prediction resid-
uals, it incurs an overhead to—lossily or losslessly—
encode the dividing boundary for sub-block identifica-
tion. To minimize this overhead, we propose an arith-
metic edge coding (AEC) scheme for ASMP in depth
video coding. We first devise an edge prediction scheme
based on linear regression to predict the next edge
direction in a contiguous contour based on past observed
edges. From the predicted edge direction, we assign
probabilities to each possible edge direction using the
von Mises distribution. The computed probabilities are
subsequently inputted to a conditional arithmetic codec
for entropy coding. This is possible with the arithmetic
coder that encourages a clear separation between the
statistical model for representing the data and the coding
of information with respect to that model. To further
optimize the performance of our proposed AEC scheme
in the context of depth video coding, we perform two
optimization procedures, within-block and across-block,
respectively. For within-block optimization, we allow
lossy compression of the detected block boundary to
lower the cost of AEC—i.e., code a simpler dividing

Fig. 2. Example of depth irregularities along boundaries, which make
harder the prediction of the geometrical structure of the boundary.

boundary that can be more easily predicted by our statis-
tical model. Optionally, we can then augment imprecise
depth pixels—boundary pixels along the new boundary
that when converted from background pixels to fore-
ground (or vice versa) will not adversely affect synthe-
sized view distortion—to match the new boundary, in
order to reduce prediction residual energy. Due to the
limitation of depth sensors and depth estimation algo-
rithms, object boundaries commonly contain a certain
amount of localized irregularities as shown in Fig. 2.
How to detect and eliminate those irregularities along
the detected block-dividing boundary is crucial to im-
prove the boundary coding performance. Second, given
contiguous boundaries across blocks along an object’s
contour can be efficiently coded using AEC, we identify
which blocks along an object’s contour should encode
their block-dividing boundaries to optimize overall rate-
distortion (RD) performance, by finding the shortest path
in a trellis.

We implemented our proposal as a new coding mode
called z-mode for coding of 16 × 16 pixel blocks in
H.264/AVC. Experimental results show that our proposal
can reduce overall bitrate by up to 33% compared to

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 3

classical H.264/AVC without the proposed z-mode, with
respect to Bjontegaard metric [9].

The outline of the paper is as follows. We first discuss
related work in Section II. We then discuss the arbitrarily
shaped sub-block MP scheme for depth video in Sec-
tion III. We discuss the basic AEC engine in Section IV,
and how we can optimally apply AEC in a depth video
frame in Section V. Experimental results and conclusions
are presented in Section VI and VII, respectively.

II. RelatedWork

We divide our discussion of related work into three
sections. We first discuss existing work in the literature
for depth map coding. We then discuss previous work in
motion field and lossless edge coding in video compres-
sion. Finally, we juxtapose our new contributions in this
paper to our previous publications on the same topic.

A. Depth Map Coding

Because of the popularity of texture-plus-depth rep-
resentation of 3D visual data [10], there is a growing
interest in the compression of depth maps. A large
portion of this work focuses on exploiting the unique
characteristics of depth maps that are different from
texture maps: sharp edges and smooth interior surfaces,
as illustrated in Fig. 2. [11], [12] proposed to use edge-
adaptive graph Fourier transform (GFT) for transform
coding of rectangular pixel blocks in a depth image, so
that filtering across detected edges is avoided, which
would otherwise result in large high-frequency com-
ponents. [13] proposed to encode the detected edges
losslessly, then use partial differential equations (PDE) to
interpolate the pixels inside the edges, given the interior
surfaces are likely smooth (i.e., low frequency content
only). Computing adaptive transforms and solving PDEs
mean a non-trivial computation burden at the decoder,
however. Further, while these works exploit the spatial
characteristics of depth signals for intra-coding, we focus
instead on the temporal aspect of depth video coding
using our proposed arbitrarily shaped sub-block motion
prediction (ASMP) scheme.

Alternative representations of depth maps have also
been proposed. [14] used platelets—piecewise linear
functions—to code depth images. Assuming that texture
maps are first coded independent of depth maps, [6]
proposed to identify edges in the texture maps that
would also appear in corresponding depth maps of the
same viewpoints. [6] then performed intra-prediction to
estimate a constant depth value for pixels on one side
of a code block divided by a contiguous boundary of
detected edges, using causal neighboring depth blocks
that have already been coded and on the same side
of the boundary. However, because depth maps are
piecewise smooth and not necessarily piecewise linear or
constant, [14] and [6] have fixed non-zero representation
errors at any coding rate. [15] proposed to encode a
low spatial resolution of depth maps at the encoder,

so that at the decoder the decoded depth maps can
be up-sampled and interpolated using weighted mode
filtering (WMF). While WMF performs reasonably well in
recovering high-resolution edge details, it is not a perfect
reconstruction scheme, and thus there are also non-zero
reconstruction errors even at high rate. In contrast, our
proposed AEC can lead to perfect edge reconstruction at
decoder, if coding rate can be afforded.

Assuming depth maps are encoded for the sole pur-
pose of view synthesis at decoder via depth image-
based rendering (DIBR), [16], [17] observed that depth
maps are then merely a means to the end of view
synthesis, and are not directly viewed themselves. Thus,
[16], [17] proposed to use a computation-efficient model
to estimate the resulting synthesized distortion during
rate-distortion (RD) optimized mode selection in depth
video coding, rather than the distortion of the depth
signal itself. [18]–[20] made a similar observation that
errors in different depth pixels have different degrees of
adverse effect in the synthesized view, and proposed to
characterize the synthesized view distortion sensitivity
to errors in a depth map using per-pixel don’t care
region (DCR). Our proposed ASMP—implemented as
an additional z coding mode for the coding of depth
maps—is orthogonal to these works; a mode optimiza-
tion scheme that uses synthesized view quality as criteria
can subsequently be used to select the most suitable
modes for a group of blocks.

Another line of attack for depth map coding is to ex-
ploit the inherent correlation between texture and depth
maps from the same viewpoint during joint compres-
sion. [21] first proposed to reuse motion vectors (MVs)
in texture maps for depth maps as well, lowering overall
bitrate. As a follow-up investigation, [22] proposed to
find a single set of MVs that minimize a weighted sum
of residual prediction energy of both texture and depth
video. [23] proposed to encode detected edges in texture
and depth maps only once, where the detected edges
are used during edge-adaptive wavelet coding of both
texture and depth maps. Our proposal is different in
that we do not rely on the inter-correlation between
texture and depth maps for coding gain. Instead, given
the observation that “neighboring pixels of similar depth
have similar motion”1, we encode depth maps so that a
compact representation of the motion field (one MV for
each divided sub-block of pixels) can be found. If texture
video needs to be encoded as well, the encoded edges
can then be shared for similar ASMP [7]. We note that
some applications require the sender to convey only the
dynamic 3D geometry of the scene to the receiver, in
which case the encoded depth video alone is sufficient
without any texture video compression [24], [25]. Our
proposal clearly can be applicable to these applications
as well.

It is observed [26], [27] that depth maps often are

1The observation that pixels of similar depth have similar motion has
been made previously [8], where unlikely coding modes are eliminated
a priori for faster H.264/AVC encoding.

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 4

corrupted with noise during acquisition, and given cod-
ing noise incurs coding cost but does not improve per-
formance, one should denoise depth maps prior to the
coding process. We believe that as depth sensing tech-
nologies improve, depth acquisition noise will become
less of a problem in the future. Further, preliminary
investigation in [28] has shown that a joint denoising
/ coding approach can lead to better performance than a
separate approach where denoising and coding are per-
formed in individual steps in stages. While the direction
in [28] is promising, for the sake of simplicity, we will
focus only on the depth video compression aspect and
assume in this work that the input depth maps are not
corrupted by severe noise.

B. Motion Field and Lossless Edge Coding

MP in H.264/AVC [5] offers different block sizes (rect-
angular blocks from 16 × 16 down to 4 × 4) as dif-
ferent coding modes during video encoding. However,
to accurately track the motion of an arbitrarily shaped
object inside a code block, many small sub-blocks along
the object boundary are needed, resulting in a large
overhead in coding many MVs for the many small
sub-blocks. Further, searching for the most appropriate
block sizes by evaluating the rate-distortion (RD) costs
of possible coding modes is computationally expensive.
Alternatively, line-based segmentation schemes [29], [30]
divide a code block using an arbitrary line segment
that cuts across the code block. There are two problems
to this approach: i) an object’s boundary is often not
a straight line, resulting in shape-mismatch; and ii) it
is still computationally expensive to search for a RD-
optimal dividing line segment. In our proposal, because
the detected depth edges follow the object’s contour, we
can easily segment a code block along foreground / back-
ground boundary with pixel-level accuracy. Moreover,
the depth edge can be acquired cheaply via simple edge
detection techniques.

Shape coding in images has a long history [31], and
more recently has been studied in the context of MPEG4
for the coding of video object plane (VOP) [32]. Our
study of edge coding is driven by the necessity of
depth video coding, and leverages on the ease of context
model in arithmetic coding. Note that our proposed
AEC scheme, which shows significant compression per-
formance gain compared to existing schemes, can also
be used directly in recent popular image / video cod-
ing schemes based on edge-adaptive wavelets [23] and
graph Fourier transform [11], [12], where edge coding
is paramount in determining the overall compression
performance.

C. Comparison with Our Previous Work

In our first previous work [7] on the same topic, we
assumed that the depth video is first independently
coded and the texture video is coded thereafter us-
ing coded depth video as side information (SI). With

reference depth map current depth map

MV1

MV2

dividing boundary

sub-block 2
16x16 MB

sub-block 1

Fig. 3. Motion compensation of sub-blocks in depth map divided
using detected edges.

this assumption, we can use detected boundary in a
depth code block to divide a corresponding block in
texture map of the same viewpoint into two arbitrarily
shaped sub-blocks for separate MP. In our follow-up
work [33], we considered compression of depth video
independent from texture video, also using the idea of
ASMP. However, because depth video is independently
coded (from texture video), the dividing boundary in
a depth code block needs to be explicitly encoded and
signaled to the decoder for correct decoding. We thus
devised an AEC scheme for this purpose. This paper
is a non-trivial extension of our work in [33]. First,
we reassign isolated depth pixels to appropriate sub-
blocks during macroblock partitioning, which improves
the performance of the subsequent motion prediction
procedure. Second, we extend AEC to include lossy cod-
ing of block boundaries in the proposed framework. Cor-
respondingly, we can optionally identify and augment
imprecise depth pixels (from foreground to background
(or vice versa)) to match the new encoded boundary
with marginal increase in synthesized view distortion.
Finally, we propose a trellis-based optimization to de-
cide which blocks along a detected object contour in a
depth image should be encoded using ASMP in an RD
optimal fashion. Experimental results show that these
optimizations can bring about substantial gain over our
previous work [33].

III. Sub-blockMotion Prediction

To show the effectiveness of our two proposed
techniques—-arbitrarily shaped sub-block motion pre-
diction (ASMP) and arithmetic edge coding (AEC)—
for depth video coding, we implemented them together
into a new additional coding mode called z-mode for
encoding of a 16×16 code block in H.264/AVC [5]. While
smaller blocks can also be considered, using smaller
blocks results in more motion vectors (MV) that require
encoding, leading to a larger overhead. Experimentally
we found 16 × 16 block size to be sufficient. The main
idea behind z-mode is to partition a 16 × 16 code block
(macroblock or MB) into two non-overlapping arbitrar-
ily shaped regions for separate motion estimation and
compensation as illustrated in Fig. 3. This new coding
mode involves the following steps:

1) Partition the current MB into two sub-blocks using
a chosen edge detection scheme.

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 5

2) Compute a predicted motion vector (PMV) for each
sub-block using MVs of neighboring causal blocks
of similar depth in the current frame.

3) For each sub-block, perform motion estimation;
i.e., find the best-matched sub-block in a reference
frame for the current target sub-block.

4) Compute prediction residuals in the current MB
given the two motion-compensated sub-blocks for
residual transform coding in Discrete Cosine Trans-
form (DCT).

We describe step 1 and 2 in details next. Step 3 and 4
are similar to standard MP performed in H.264/AVC, and
we will only highlight the differences when employed in
our proposed z-mode.

A. Macroblock Partitioning

We first define notations for ease of discussion. Con-
sider a depth map Z of a certain viewpoint. A 16 × 16
MB support is denoted by a set of pixel offsets Φ =
{(0, 0), (0, 1), . . .(15, 15)}. Thus, a 16 × 16 MB with top-left
corner at pixel (x, y) in the depth map is ZΦ(x, y). MB
support Φ can be partitioned into two non-overlapping
sub-block supports Φ1 and Φ2, where Φ = Φ1 ∪ Φ2 and
Φ1 ∩ Φ2 = ∅, so that ZΦ(x, y) = ZΦ1

(x, y) ∪ ZΦ2
(x, y). See

Fig. 3 for an illustration.

We first identify potential MB candidates for encoding
in our proposed z-mode. As previously mentioned, our
proposed z-mode works well for the case when a MB
contains exactly two objects, which entails a depth dis-
continuity at the boundary between the two objects in
the MB. Thus, a MB with an average gradient magnitude
larger than a certain threshold is identified as possible
candidate for our proposed z-mode.

The next step of our proposed z-mode is MB partition-
ing. Given depth block ZΦ(x, y), we divide MB support
Φ into two non-overlapping sub-block supports Φ1 and
Φ2 as follows:

Φ1 =
{

(i, j) ∈ Φ | Z(x + i, y + j) < z̄Φ(x, y)
}

Φ2 =
{

(i, j) ∈ Φ | Z(x + i, y + j) ≥ z̄Φ(x, y)
} (1)

where z̄Φ(x, y) is the arithmetic mean of depth values
in depth block ZΦ(x, y), and Z(x, y) is the depth value at
pixel (x, y) in depth map Z. In other words, ZΦ1

(x, y) and
ZΦ2

(x, y) are the sets of depth pixels with values smaller
than, or larger than and equal to, block-wise depth
value mean z̄Φ(x, y), respectively. Assuming MB ZΦ(x, y)
contains only one foreground object (small depth) in
front of a background (large depth), (1) can segment
pixels in MB ZΦ(x, y) into foreground ZΦ1

(x, y) and back-
ground ZΦ2

(x, y). This statistical approach is robust and
of very low complexity. A similar approach was also
taken in [6] to divide a texture block into two sub-
blocks. It is important to note that at the termination of
the MB partitioning procedure, there is no T-junction in
the dividing boundary. This observation has important
implication to AEC to be discussed in Section IV.

isolated pixels

a) block with isolated pixels b) block without isolated pixels

foreground

background

Fig. 4. Example of depth MBs where, in the presence of isolated
pixels, the block partitions do not take into account these pixels to
ensure connected pixel components as sub-blocks.

The above procedure to partition an original pixel
support Φ into two smaller supports, Φ1 and Φ2, works
well in dividing pixels into foreground and background
most of the time. However, there are rare occasions
when pixels in a sub-group Φi do not live in a single
connected region. This happens, for example, if a very
small number of interior pixels in a support Φi were
corrupted by noise during acquisition/estimation, so that
the corrupted pixels were assigned to the sub-group
disconnected to them. See Fig. 4(a) for an illustration.
It is clear that in this case, a single MV for a non-
connected sub-group would unlikely capture well the
motion for all pixels in the sub-group. Note that this
observation applies only to pixels interior to the block.
As shown in Fig. 4(b), there can be regions that are not
connected in the block but connected in the large image.
A single MV in this case can still capture motion well
for pixels in the same sub-group but in non-connected
regions. Thus, we detect these isolated interior group of
pixels and merge them with the surrounding support as
described below. We perform the following procedure
to reconstruct supports Φ1 and Φ2, so that when the
procedure terminates, we are guaranteed to have a single
connected region for pixels in a support Φi, excluding
pixel regions that are at the boundary of the block:

1) Initially partition the block as described by Eq. (1).
2) Identify isolated interior group of pixels as region

with a closed boundary.
3) For each detected isolated interior group pixels, we

reassign their identification (background or fore-
ground) to the one of the surrounding region.

B. Motion Vector Prediction

Bits required to encode the MV vΦs
(x, y) for a sub-

block ZΦs
(x, y), s ∈ {1, 2}, can be reduced if a good

PMV, uΦs
(x, y), can be estimated from MVs vΦ(m, n)’s of

neighboring causal code blocks, (m, n) ∈ N(x, y). Thus,
only the motion vector difference (MVD) between the
PMV uΦs

(x, y) and the sub-block true MV vΦs
(x, y) is

encoded and transmitted. In H.264/AVC [5], PMV is
computed to be the median of the MVs of neighboring
blocks.

1) Depth-based Predicted Motion Vector: The reason me-
dian filter is applied to the neighboring blocks’ MVs is to

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 6

eliminate outliers that have motion uncorrelated to the
motion of the target block, which happens, for example,
when a foreground object has different motion than the
background. When coding depth map, however, we have
available depth values to evaluate the “trustworthiness”
of motion information provided by neighboring blocks.
In other words, assuming neighboring pixels of similar
depth have similar motion, we can discredit a neighbor-
ing block’s MV if it has depth very different from our
target block.

Specifically, we propose to compute the PMV uΦs
(x, y)

for sub-block ZΦs
(x, y) as a weighted sum of MVs,

vΦ(m, n)’s of causal neighboring blocks, (m, n) ∈ N(x, y),
where the weights w’s are proportional to the depth sim-
ilarity between the neighboring block averages z̄Φ(m, n)’s
and the estimated target sub-block average z̃Φs

(x, y)—
estimated using causal pixels just across target sub-block
boundaries. Mathematically, we write:

uΦs
(x, y) =

1

w̄

∑

(m,n)∈N(x,y)

w(z̃Φs
(x, y)−z̄Φ(m, n)) vΦ(m, n) (2)

where w̄ =
∑

(m,n)∈N(x,y) w(z̄Φs
(x, y) − z̄Φ(m, n)) is a scaling

factor so that the sum of weights w’s divided by w̄ is 1.
The real-valued precision of the resulting PMV uΦs

(x, y)
is then rounded to half-pel or quarter-pel precision to be
H.264/AVC compliant.

2) Finding Optimal Weights: To find the optimal
weights w’s, we first assume it follows a Laplacian
distribution with parameter b > 0:

w(x) =
1

2b
e−
|x|
b (3)

The reason we use a Laplacian distribution as opposed
to Gaussian, is because Laplacian has a sharper decrease,
and we prefer to quickly rule out MVs of blocks that are
even moderately different from the target block in the
PMV computation.

We find the optimal parameter b∗ that minimizes the
sum of absolute errors between prediction uΦs

(x, y) and
true MV vΦs

(x, y) for each sub-block ZΦs
(x, y) in a set Θ

of training data:

b∗ = arg min
b>0

∑

ZΦs (x,y)∈Θ

‖uΦs
(x, y)− vΦs

(x, y)‖1 (4)

where ‖.‖1 denotes the l1-norm.
We note that the encoded bitstream can only be

correctly decoded if both encoder and decoder have
the same block partition information. In the following
section, we propose an efficient arithmetic edge coding
scheme encoding the boundary that divides a block into
two sub-blocks.

IV. Arithmetic Edge Coding

In this section, we address the problem of losslessly
encoding the boundary that separates a z-mode MB2

2By z-mode MB, we mean a MB that has been encoded in the
aforementioned z-mode.

(a) depth map (b) 4-connected depth boundary

0: forward

2: turn left

1: turn right

previous
direction

(c) directional code

Fig. 5. Depth map boundary represented by a directional 4-connected
chain code. In this example, the corresponding directional code is: ’0−
0−2−1−1−2−1−2−2−1−2−1−0−1−2−2−0−1−2−1−1−0−1−1−2’.

into two sub-blocks. The overall coding scheme can be
summarized in the following steps for each MB:

1) Given a depth MB with discontinuities (i.e., large
block-wise average gradient magnitude), represent
the two partitions by their common boundary (a
series of between-pixel edges).

2) Map the boundary into a directional 4-connected
chain code, also known as Freeman chain [31].

3) Given a window of consecutive previous edges,
predict the next edge by assigning probabilities to
possible edge directions.

4) Encode each edge in the boundary by inputting
the assigned direction probabilities to a conditional
arithmetic coder. Edges of a series of neighboring
blocks that form a contiguous contour in the frame
can be coded as a single arithmetic codeword for
better coding efficiency (to be discussed in more
details in Section V-C).

We discuss these steps in order next.

A. Differential Chain Code

A MB boundary divides pixels in the MB into two sub-
blocks. Note that the boundary exists in-between pixels,
not on pixels. See Fig. 5(b) for an illustration of a bound-
ary. As shown, the set of edges composing the boundary
is a 4-connected chain code. This boundary representation
is also known as directional chain code (DCC), which
belongs to the family of chain coding schemes pioneered
by Freeman [31]. At each boundary pixel only three
possible directions can be taken: “forward”, “turn right”
and “turn left” with respect to the previous direction,
where the code 0, 1, 2 is assigned to each direction,
respectively (see Fig.5(c)). Let us note that T-junctions
are not possible using the partition boundary detection
scheme discussed in Section III-A.

B. Edge Prediction

Given the definition of DCC, edges et’s can be entropy-
encoded consecutively, where each edge has an alphabet

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 7

e1

e2

e3

e4

(a) edges for 4 × 4
block

predict next direction
from this point predicted direction

0: straight

2: turn left

1: turn right

(b) linear regression

Fig. 6. Detected edges in a 4×4 depth pixel block and linear prediction
using previous edges.

of three symbols representing the three possible edge
directions. There are many options for entropy coding.
One notable example is prediction by partial matching
(PPM) [34], which predicts the next symbol given ob-
servations of the previous ones in the symbol stream.
PPM model is typically designed based on statistics of
previous symbols.

In our case, rather than the repeated patterns of text, a
boundary often follows the contour of a physical object
in the 3D scene, and hence possesses geometrical struc-
tures that can be exploited to more accurately predict
the most likely direction for the next edge. Based on this
observation, we propose a geometrical prediction model
to estimate probabilities of the three possible directions
for the next edge, given observation of a window of
previous edges. The estimated direction probabilities are
subsequently inputted into an adaptive arithmetic coder
for entropy coding.

1) Linear prediction: We predict the direction of the
next edge et+1 by first constructing a line-of-best-fit using
a window of previous edges via linear regression. Specif-
ically, given end points pt−K, . . . , pt of a window of K
previous edges et−K+1, . . . , et, we construct a line l that

minimizes the sum of squared errors
∑k

i=t−K ǫ
2
i
, where ǫi

is the minimum distance between line l and end point
pi. See Fig. 6(b) for an illustration where a line-of-best-fit
is drawn to minimize squared error sum

∑4
i=0 ǫ

2
i

given
window of given edges {e1, e2, e3, e4}.

The constructed line l provides a predicted direction
~v. Given the three possible edge directions {~v0, ~v1, ~v2}

of edge et+1, we can compute angles between ~v and
each possible direction: {α0, α1, α2}. We next derive a
procedure to assign direction probabilities to each of
{~v0, ~v1, ~v2} using computed {α0, α1, α2}.

2) Adaptive statistical model: To derive a procedure
to assign probabilities to edge directions

{

~v0, ~v1, ~v2
}

, we
first consider the following. Intuitively, a closer edge
direction to the predicted one (smaller angle αi) should
be assigned a higher probability than a further edge
direction (larger angle). To accomplish that, we use the
von Mises probability distribution, defined below, to
assign probability to angle α:

p
(

α|µ, κ
)

=
1

2π · I0 (κ)
· eκ cos (α−µ) (5)

10

p
0

(0)

p
0

(1)

p
0

(2)

p
1

(0)

p
1

(1)

p
1

(2)

p
2

(0)

p
2

(1)

p
2

(2)

Fig. 7. Example of arithmetic edge coding, where the first two symbols
to be encoded are 1 and 0.

where I0 (.) is the modified Bessel function of order 0.
The parameters µ and 1/κ are respectively the mean
and variance in the circular normal distribution; we set
µ = 0 in our case. The von Mises distribution is the
natural Gaussian distribution for angular measurements.
We argue this is an appropriate choice because: i) it
maximizes the probability when the edge direction is
the same as predicted direction (αi = 0), and ii) it
decreases symmetrically in left / right directions as the
edge direction deviates from the predicted direction.

The parameter κ can be interpreted as a confidence
measure: κ is larger when the predicted direction is
considered more trustworthy. To quantify the confidence
of a predicted direction, we first define the minimum
angle α̂:

α̂ = min (α0, α1, α2) (6)

α̂ = 0 corresponds to the case when the predicted direc-
tion falls exactly on the grid, while α̂ = π/4 corresponds
to the case when the predicted direction falls in-between
two edge directions.

To assign appropriate value of κ, we made the follow-
ing design choice: define κ as function of α̂,

κ = max
(

κmin, ρ · cos (2α̂)
)

(7)

where the parameter ρ is the maximum amplitude at
angle 0. The intuition behind our design choice is that
the predicted direction is likely more accurate when it
is more aligned with the axes of the grid. When the
predicted direction falls in-between two edge directions,
which of the two edge directions is more likely becomes
ambiguous. In this case, the positive κmin prevents κ
from becoming zero.

C. Adaptive Arithmetic Coding

Having estimated direction probabilities for each edge,
we encode each edge in the MB using adaptive arith-
metic coding. One important feature of arithmetic coding
is that the actual encoding and modeling of the source
can be completed separately [35]. Thus, we can design
our own statistical model that fits our particular appli-
cation and use arithmetic coding in a straight-forward
manner.

In particular, for our application of lossless edge
coding, we compute the direction probabilities

p
(t+1)
0
, p(t+1)

1
, p(t+1)

2
of next edge et+1 given observation of

previous K edges et, . . . , et−K+1, as discussed previously,

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 8

edge

simpli cation

Fig. 8. Edge simplification by singularities detection. (left) Original
depth boundary where localized irregularities can be seen at the pixel
level. (right) Edges have been coarsely approximated by removing
irregularities at 1-pixel-distance.

and encode the true direction of et+1 by sub-partitioning
into the corresponding interval, as shown in Fig. 7. One
approach is to encode all the detected edges in one MB
as one AEC codeword. However, edges often follow
an object’s contour in the 3D scene, thus the entire
contour can be coded into a single AEC codeword for
better coding efficiency. On the other hand, z-mode
may not be the best performing coding mode for all the
MBs with edges along the object contour. This means
modes along the object contour must be chosen jointly
for RD-optimal coding performance. We postpone this
discussion to Section V-C.

V. Optimizing Edge Coding

After describing the core AEC coding engine for de-
tected sub-block boundary in a MB, in this section we
discuss how AEC can be lossily encoded and optimally
used in block-based depth video coding. We first dis-
cuss an edge modification strategy that slightly alters
detected edges to improve edge coding efficiency. We
then describe an optimization framework where z-mode
in a sequence of blocks along an object’s contour are
selected in an RD-optimal manner.

A. Edge Simplification by Irregularities Detection

Always faithfully encoding the detected boundary
losslessly may be too costly, especially at low-bitrate.
When minimizing the coding rate is more a concern
than signal distortion, it may be more efficient to en-
code a coarse approximation of the boundary, i.e., a
simpler boundary that can be more easily predicted by
our statistical model and requires fewer coding bits.
Because of the mismatch between the original detected
sub-block boundary and the actual encoded boundary,
this will lead to larger prediction residuals than lossless
encoding of the original boundary. However, if the larger
prediction residuals are more coarsely quantized at low
bitrate anyway, then the resulting increase in distortion
may be small relative to the gain in boundary coding
efficiency.

As discussed in Section IV, bits required to encode
edges can be reduced if the geometrical structure of the
boundary is well predicted. However, the boundary can
contain a certain amount of localized irregularities that
are hard to predict. To tackle this issue, we propose to
identify those irregularities and encode the boundary

depth

augmentation

Fig. 9. Depth map has been augmented to match the coarse approx-
imation of the boundary of Fig. 8.

disregarding them. In other words, we seek to locally
reduce the variation of the boundary, while maintaining
a coarse approximation close to the original boundary.

We determine how to simplify the boundary as fol-
lows. Given a sub-block dividing boundary, we identify
irregularities in the boundary that temporally deviates
from the current direction and return soon after. Fig. 8
illustrates such behavior where we can see one pixel or a
group of two pixels at the wrong side of the boundary af-
ter simplification. As a boundary is represented through
its directional chain code, we identify an irregularity
as a small set of consecutive directions that temporally
deviates from the current direction. We empirically limit
the deviation criterion to a 1-pixel-distance, and the
number of consecutive directions to five. Such limitation
ensures the approximation to stay close to the original
boundary. The problem of identifying the irregularities
can then be casted as the problem of pattern matching in
a sequence of symbols. According to the directional code
shown in Fig. 5(c) and the described irregularity, patterns
to be found in the directional chain code are: ’1 − 2 − 2’,
’2−1−1’, ’1−2−0−2’, ’2−1−0−1’. Finally, the detected
irregularities are disregarded during construction of the
new boundary as illustrated in Fig. 8.

B. Depth Pixel Augmentation for View Synthesis

As previously discussed, changes in encoded sub-
block boundary can lower AEC cost, but can also result
in large prediction residuals. If the intended application
of depth video coding is solely view synthesis at decoder,
it is possible to augment the depth signal itself to match
the new simpler sub-block boundary, resulting in smaller
prediction residuals after MP3. In other words, when
depth maps are intended solely for view synthesis, depth
information is essentially an auxiliary information that
assists in the processing of target images, but is not
itself directly observed. That means one can pro-actively
augment the ground truth depth maps as long as the
augmentation does not lead to noticeable increase in
target synthesized image distortion4. To avoid the afore-
mentioned larger prediction residuals due to encoding
of a coarse approximation of the original boundary, we

3We emphasize the point that we only pro-actively augment depth
values when the intended application is view synthesis. For other
applications where original depth maps must be faithfully represented,
we perform coarse coding of edges but not depth pixel augmentation.

4Pro-active depth pixel augmentation was also done in [18], [19] via
transform domain sparsification.

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 9

propose to augment a subset of pixels along the new sub-
block boundary so that the augmented signal matches
the coarse encoded version of the boundary. The pixels
we deem amenable to such augmentation are termed
imprecise depth pixels.

Unlike texture map, where edges can be blurred due
to alpha-blending of foreground and background (e.g.,
a consequence of an out-of-focus capturing camera at
that spatial location), edges in depth maps tend to be
sharp. One reason can be that, during acquisition, a
time-of-flight camera like [2] will return the per-pixel
distance between the capturing camera and either a
foreground object or background, but not a combination
of both. However, in reality it is indeed possible for a
depth pixel square to cover part foreground object and
part background—i.e., the true foreground / background
boundary is at a sub-pixel level—in which case the depth
pixel suffers from imprecision no matter if it is counted
as foreground or background pixel. These imprecise pixels,
each with corresponding texture pixel that is alpha-
blended, are the ones that we can optionally augment
towards better edge coding efficiency.

We exploit this imprecision of depth pixels to im-
prove coding performance as follows. As the chain code
representation of a simplified edge is being encoded
into an arithmetic codeword, we augment an imprecise
depth pixel from foreground to background (or vice
versa) to lower the prediction residuals. We can classify
a pixel as “augmentable” empirically by mapping the
corresponding texture pixel in the same view to the
corresponding location in a neighboring texture map,
and calculate the resulting pixel intensity difference. As
an example, in Fig. 9 several boundary depth pixels have
been converted from background to foreground (and
vice versa).

In more details, we perform the following procedure
after a contiguous boundary of edges dividing a block
into two sub-blocks has been determined, as described
in the previous section. We first assume that the tex-
ture map Tv from the same viewpoint v as the target
depth map Zv (coded view) is also available at encoder.
Further, texture map Tu of another nearby viewpoint u
(projected view) is also available—availability of texture
and disparity maps of multiple nearby viewpoints is
typical in MVC setup, as described in the Introduction.
For simplicity of explanation, we will assume also that
synthesized camera viewpoint u is a pure horizontal
shift of camera viewpoint v. That means a texture pixel
Tv(x, y) in view v will map to a corresponding pixel

Tu(x +
tx· f

Zv(x,y) , y) in view u, where the amount of horizon

shift
tx· f

Zv(x,y) is determined by the depth value Zv(x, y)

in view v, a measure tx of the distance between the
two camera viewpoints, and the focal length f of the
reference camera v.

Let pixel Zv(x, y) in view v be a boundary pixel; i.e., a
pixel on either side of a detected edge in a code block.
Suppose we reassign it the depth value of pixel Zv(x′, y′)

a b

c

k

(a) blocks along contour

z-mode

(original contour)

z-mode

(simpli�ed contour)

H.264 mode +

simpli�ed contour

H.264 mode

...

...

...

...

MB a MB b MB c MB k

(b) trellis-based mode selection

Fig. 10. Coding modes for blocks along a detected contour are selected
together as a group.

on the other side of the detected edge. We can evaluate
the change in synthesized distortion du,v((x, y), (x′, y′))
due to the depth value reassignment as follows:

dv,u((x, y), (x′, y′)) = |Tv(x, y)− Tu(x +
tx · f

Zv(x, y)
, y)| −

|Tv(x, y)− Tu(x +
tx · f

Zv(x′, y′)
, y)|(8)

If dv,u((x, y), (x′, y′)) is smaller than a threshold δ, then
reassigning the boundary pixel from foreground to back-
ground (or vice versa) will have a minimal effect on
synthesized distortion, and we can safely declare the
boundary pixel as an imprecise pixel. All boundary
pixels are tested in this manner to see they can be
classified as imprecise pixels. After, for each imprecise
pixel along the coarse approximation of the boundary,
we apply a median filter including the 8-neighbor pixels
on the same side of the boundary to compute its new
depth value. In that way, imprecise pixels are augmented
from foreground to background (or vice versa) to lower
prediction residual energy.

C. Trellis-based Optimization

As discussed in Section IV, we can code edges be-
longing to an object’s contour that divide a block into
two sub-blocks on a MB-by-MB basis (i.e., one AEC
codeword for each MB), or we can code edges for a
sequence of neighboring MBs along an object’s contour
into the same AEC codeword, as shown in Fig. 10(a).
In the latter case, though the AEC coding efficiency is
improved when coding a long contour of edges into
one AEC codeword, z-mode may not be the RD-optimal
coding mode for all the MBs along the contour. That
means that the coded edges are not needed for ASMP,
and are coded only to maintain continuity of the contour.
On the other hand, if edges are only coded for blocks
selected with z-mode, then continuity of the contour is
lost, and each reinitialization of arithmetic codeword will
cause coding inefficiency. In this section, we discuss an
optimization strategy to optimally select the right set of
edges along an object contour for AEC in a depth image
for compression gain.

There are two basic ideas to our strategy. The first
idea is to allow a code block that does not select z-
mode for ASMP to nonetheless encode edges in the block

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 10

for the sake of contour continuity (for efficient coding
of edges in the following block(s) along the contour).
The second idea is to make coding mode decisions for
a sequence of blocks along a contour in a dependent
manner. Specifically, we make mode decisions on an
image basis in a two-pass process as follows. In the first
pass, we first make individual block mode decision for
non-contour blocks in a conventional raster scan order,
assuming each contour block (block containing edges
that belong to an object’s contour) is encoded in z-mode
using either the original and simplified contour. This is
a reasonable assumption for non-contour block mode
selection, since statistically speaking, z-mode is selected
for contour blocks majority of the time at medium and
high bitrate.

In the second pass, the sequence of contour blocks
along one detected contour are re-examined to see if
better mode decisions can be made as a group of blocks.
In particular, we use a trellis to formalize our block
mode selections as follows. Each state represents a par-
ticular selection of coding mode—z-mode using original
contour, z-mode using simplified contour (as described
in Section V-A), conventional H.264/AVC mode plus
simplified contour coding in the block, or H.264/AVC
mode without contour coding—for a particular block x.
The four states for a given block x are then stacked in a
vertical column called stage, and the stages for different
blocks are organized in the order of appearance along
the contour. See Fig. 10(b) for an illustration.

To find the optimal set of modes, we find the shortest
path from any state in the first stage of the trellis to any
state in the last stage of the trellis, where the cost of the
path is expressed in terms of a weighted sum of rate
and distortion. Specifically, let L(st) be the smallest cost
sub-path from any state s1 of the first stage to state st

of stage t. Initially, L(s1) of a state s1 in the first stage is
simply the cost of coding the first block using a coding
mode indicated by s1:

L(s1) = D(s1) + λR(s1) (9)

where D(s1) and R(s1) are respectively the distortion
and rate when the first block is coded using mode
indicated by s1. λ is the Lagrange multiplier that trades
off distortion and rate.

For state st in each subsequent stage t, shortest sub-
path cost L(st) is found by examining each combination
of sub-path cost L(st−1) of the previous stage, plus the
additional cost of coding MB t in mode indicated by st,
for all possible st−1:

L(st) = min
st−1

{

L(st−1) + D(st) + λR(st|st−1)
}

(10)

Note that in (10), the distortion term D(st) is indepen-
dent of previous mode selected in state st−1 of previous
stage t− 1. This is accurate, since the distortion depends
only on the type of motion prediction (or intra coding)
performed given the coding mode, each resulting in
a different prediction residual, from which distortion

D(st) is computed. Rate R(st|st−1), on the other hand,
depends on the mode st−1 chosen in stage t − 1. This
is to capture the dependency we discussed early about
AEC; if edges in block t− 1 were coded, edges in block t
can be predicted, and thus coded with higher efficiency.
Otherwise, edges in block t will be encoded as a new
AEC codeword, which is more coding expensive.

The complexity of the trellis-based optimization can
be analyzed simply as follows. There are four states in
each stage, and there are as many stages as there are
MBs along an object’s contour, say N. For each state
st, the shortest sub-path cost L(st) is computed using
(10), which is O(4). Hence the total complexity of the
optimization is O(42 ·N).

VI. Experimentation

In this section, we evaluate the performance of our
proposed framework using the multiview depth video
sequences Ballet and Breakdancers (1024×768 @15 Hz),
provided by Microsoft [36], at the camera position 4,
and sequences bookArrival (1024×768 @16.67 Hz) and
Undo Dancer (1280×720 @25 Hz) at camera position 8
and 1 respectively. For the first three sequences, the
depth video provided for each camera was estimated
via a color-based segmentation algorithm [37], which
resulted in sharp depth boundaries. Undo Dancer is a
synthetic sequence with no depth estimation errors.

We implemented the proposed z-mode in the motion
prediction unit of JM 18.0, where only the luminance
component has been considered. The JM has been set
up with the main profile and a full ME search. The max-
imum amplitude parameter ρ in our statistical model, as
defined in (7), is set to 8. In the following, the comparison
of depth compression performance is illustrated in dif-
ferent rate-distortion (RD) curves, where peak signal-to-
noise ratio (PSNR) (of either the depth signal itself or the
virtual view image synthesized using our compressed
depth maps) is plotted against the bitrate (kbits/s) over
30 frames. The RD results correspond to four QP quan-
tization parameters (QP): 32, 37, 42 and 47. Further, to
measure the relative gain we used the Bjontegaard met-
ric [9]. Synthesized views were generated using MPEG
standard view synthesis software VSRS version 3.5. We
note that all RD curves related to z-mode include the
extra rate of sending the edges as side information.
Specifically, Fig. 11 illustrates the objective PSNR of the
coded depth video, while Fig. 14 and Fig. 15 show the
evaluation of one synthesized view that uses the coded
depth video as discussed in Section V-B. We see that in
both results the addition of our z-mode in H.264/AVC
results in significant compression gain. Details are dis-
cussed in next sub-sections.

A. Depth Video Coding Evaluation

In this section, we evaluate the RD performance of
depth video coding using our proposed z-mode against
our earlier work in [33], edge coding scheme using

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 11

200 400 600 800 1000 1200 1400
36

38

40

42

44

46

48

50
Ballet

Bitrate (kbit/s)

P
S

N
R

 (
dB

)

z−mode + AEC
z−mode in [22] + AEC
z−mode + MPEG−4 DCC
H.264/AVC

(a)

0 500 1000 1500 2000
42

44

46

48

50

52

54
Breakdancers

Bitrate (kbit/s)

P
S

N
R

 (
dB

)

z−mode + AEC
z−mode in [22] + AEC
z−mode + MPEG−4 DCC
H.264/AVC

(b)

Fig. 11. RD results of depth video coding. The classical H.264/AVC
codec is used as baseline to evaluate the performance of the proposed
framework: z-mode and the adaptive edge coding (AEC).

27 32 37 42
0

20

40

60

80

100

Quantization parameter QP

P
er

ce
nt

ag
e

z−mode (original contour)
z−mode (simplified countour)
H.264 mode + simplified contour
H.264 mode

(a) Ballet

27 32 37 42
0

20

40

60

80

100

120

Quantization parameter QP

P
er

ce
nt

ag
e

z−mode (original contour)
z−mode (simplified countour)
H.264 mode + simplified contour
H.264 mode

(b) Breakdancers

Fig. 12. Percentage of selected z-mode MBs along depth discontinu-
ities.

MPEG-4 DCC (see details in Section VI-C) and classical
modes in H.264/AVC. With respect to the Bjontegaard
metric, we observe a PSNR gain up to 2.9dB and bitrate
reduction up to 33.7% over the native H.264/AVC for
the depth video sequence Ballet. An average PSNR
gain up to 1.8dB and bitrate reduction up to 32.2%
is observed for the sequence Breakdancers. Against
our earlier work [33], we observe an average of 2.1dB
PSNR gain and 19.7% bitrate reduction for the Ballet
sequence. An average 1.9dB PSNR gain and 26.5% bitrate
reduction for the Breakdancers sequence.

In particular, we observe major improvements over
our earlier work at low bitrates as shown in Fig. 11.
While in our earlier work we did not incorporate the
edge encoding cost into the RD block mode decision, in
this work we devise: i) a lossy coding of the edges, and
ii) a trellis-based framework on a block-by-block basis.
As a result, our proposed framework is competitive at
both low and high bitrates, while our earlier work was
only competitive at high bitrates.

In Fig. 12, we illustrate the percentages of selected
modes for different QPs using our modified H.264/AVC
software with the new z-mode implementation. We ob-
serve that our z-mode is selected more frequently at high
and middle bitrates, while the cost of sending edges
reduces the number of selected z-mode at low bitrate.
Note also that the fraction of selected z-mode using
simplified contour out of all selected z-mode becomes
larger as the QP becomes coarser.

In addition to the RD performance gain, we can visu-
ally confirm the benefit of using our proposed arbitrarily

(a) classical H.264/AVC coding (b) proposed framework

Fig. 13. Example of coded depth map at QP=37.

shaped motion prediction (ASMP) in Fig. 13. We observe
that the block partitioning into two non-overlapping
arbitrarily shaped regions entails a much better preser-
vation of object boundaries. Our framework then pos-
sesses an inherent edge-preserving property that will
improve the performance of many depth-image-based
applications, such as object detection, object tracking and
DIBR-based sview synthesis, which we will demonstrate
in the next section.

We have demonstrated the effectiveness of our pro-
posed work against both our previous work [7] and
classical prediction modes in H.264/AVC with respect to
depth video coding. Because better depth map quality in
general can lead to better performance for applications at
decoder that use depth maps as input, by showing that
we have non-negligible PSNR improvement in decoded
depth maps, we have also demonstrated we have non-
negligible performance improvement in the applications
at decoder that depends on the quality of the decoded
depth maps. In what follows, we evaluate also the im-
pact of our scheme with respect to view synthesis quality
and the performance of our arithmetic edge codec.

B. Synthesis View Quality Evaluation

In the case when the intended application is for view
synthesis via DIBR, we evaluate the rendering quality
of the synthesized view using the decoded depth video
against the case where the depth video is encoded using
the original H.264/AVC codec. Further, the evaluation is
done without consideration for disoccluded regions (e.g.,
white regions in Fig. 16) and we assume the texture
video is losslessly encoded. The purpose is to seek to
evaluate the impact of depth video coding on the syn-
thesized views, regardless of the hole-filling procedure
and the texture map encoding algorithm used. Other-
wise, issues such as bitrate allocation between texture
and depth video should also be considered, which is
an important but orthogonal research topic [38] and is
outside the scope of this paper.

In addition to the pure depth coding gain shown in
Fig. 11, the aforementioned edge-preserving property of
our scheme directly reflects on the quality of the syn-
thesized view5 as shown in Fig. 16. Our proposal clearly

5It has been previously reported in [39] that coding-errors located at
depth discontinuity impact on the quality of the synthesized view.

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 12

200 400 600 800 1000 1200 1400
30.4

30.6

30.8

31

31.2

31.4

31.6

31.8

32
Ballet

Depth Video Bitrate (kbit/s)

S
yn

th
es

iz
ed

 V
ie

w
 P

S
N

R
 (

dB
)

z−mode + AEC
H.264/AVC

(a)

0 500 1000 1500 2000
31

31.2

31.4

31.6

31.8

32

32.2

32.4
Breakdancers

Depth Video Bitrate (kbit/s)

S
yn

th
es

iz
ed

 V
ie

w
 P

S
N

R
 (

dB
)

z−mode + AEC
H.264/AVC

(b)

Fig. 14. RD results of the synthesized video using different decoded
depth video. The view synthesis is done by the projection of camera 4
onto camera 3 of the Microsoft multiview sequence.

200 400 600 800 1000
31

31.5

32

32.5

33

33.5
BookArrival

Depth Video Bitrate (kbit/s)

S
yn

th
es

iz
ed

 V
ie

w
 P

S
N

R
 (

dB
)

z−mode + AEC
H.264/AVC

(a)

300 350 400 450 500
30.5

31

31.5

32

32.5

33
Dancer

Depth Video Bitrate (kbit/s)

S
yn

th
es

iz
ed

 V
ie

w
 P

S
N

R
 (

dB
)

z−mode + AEC
H.264/AVC

(b)

Fig. 15. RD results of the synthesized video using different decoded
depth video. For BookArrival, we projected from camera 8 onto 10,
and for Dancer, we projected from camera 1 to 5.

can limit depth-coding-induced-errors in the synthesized
view, while a standard depth video coding fails at low
bitrates. As a result of sharp edge preservation in our
proposal, objectively we observe about 0.8dB PSNR gain
for both sequence Ballet and Breakdancers as shown
in Fig. 14, and about 0.7dB and 1.2dB gain respectively
for sequences BookArrival and Undo Dancer as shown
in Fig. 15. We conjecture that the better results obtained
for Undo Dancer is due to its better quality depth video.
This means that as technologies of depth sensor improve
over time resulting with cleaner depth maps, the gain of
our proposal can be expected to be more significant.

C. Edge coding evaluation

There have been various proposals on shape coding
in MPEG-4 standard [40]. A notable lossless coding
approach that relies on the boundary representation is
the chain-code-based shape encoders [41]. Experiments
conducted in MPEG-4 working group confirmed that
DCC has higher efficiency lossless coding than a normal
chain coding, with an average of 1.2 bits/boundary pel
and 1.4 bits/boundary pel for a 4- and 8-connected chain,
respectively [40].

In what follows, we compare our proposed AEC with
the classical DCC utilized in MPEG-4, which can be
considered as the current state-of-the-art for lossless
boundary coding. In addition, we compare our AEC
implementation with the iid and non-iid assumption of
the source. With the iid case, one pmf is computed for all
the edges and transmitted as overhead to the decoder.

(a) H.264/AVC (b) proposed framework

Fig. 16. Example of projected texture and depth map from camera
4 to camera 3, where the reference depth map has been coded using
(a) H.264/AVC with visible depth-coding-induced-errors and (b) the
proposed edge-preserving framework. Disoccluded regions are repre-
sented in white color.

TABLE I
Average edge rate in bits/boundary pel (bpp)

MPEG-4 DCC iid AEC non-iid AEC

Ballet 1.2 bpp 1.36 bpp 0.27 bpp

Breakdancers 1.2 bpp 1.43 bpp 0.31 bpp

Bookarrival 1.2 bpp 1.26 bpp 0.33 bpp

Undo Dancer 1.2 bpp 1.17 bpp 0.24 bpp

Non-iid AEC corresponds to the scheme proposed in this
paper. Entire contour in a frame was encoded, which
was not a significant loss of coding efficiency since our
z-mode was very often selected as the optimal mode for
MB encoding at the boundary of objects.

As shown in Table I our scheme clearly outperformed
the current state-of-the-art MPEG-4 DCC by a factor of
4 for all four test sequences. In addition, the comparison
with the assumption of an iid model confirmed the ben-
efit of our proposed statistical model used in adaptive
arithmetic coding.

VII. Conclusion

In this paper we proposed two main contributions: i)
a novel, precise and compact motion prediction method
that partitions a block into two non-overlapping sub-
blocks for separate motion estimation and compensa-
tion, which we denoted as arbitrarily shaped motion
prediction (ASMP), and ii) an entropy coding scheme
to compress the dividing boundary as side information
needed at the decoder side. Experimental results show
that these two contributions can bring about substantial
coding gain. In addition, our scheme better preserves ob-

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 13

jects boundaries at both high and low bitrate. This edge-
preserving property enhances the performance of depth-
based image processing applications, such as DIBR view
synthesis. Further, we demonstrated that our arithmetic
edge coding scheme is more coding-efficient than current
state-of-the-art.

References

[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and
C. Zhang, “Multi-view imaging and 3DTV,” in IEEE Signal Pro-
cessing Magazine, vol. 24, no.6, November 2007.

[2] S. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth
sensor—system description, issues and solutions,” in Conference
on Computer Vision and Pattern Recognition Workshop (CVPRW),
Washington, DC, June 2004.

[3] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-
viewpoint TV,” in IEEE Signal Processing Magazine, vol. 28, no.1,
January 2011.

[4] C. Zhang, Z. Yin, and D. Florencio, “Improving depth perception
with motion parallax and its application in teleconferencing,” in
IEEE International Workshop on Multimedia Signal Processing, Rio
de Jeneiro, Brazil, October 2009.

[5] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” in IEEE
Transactions on Circuits and Systems for Video Technology, vol. 13,
no.7, July 2003, pp. 560–576.

[6] P. Merkle, C. Bartnik, K. Muller, D. Marpe, and T. Weigand,
“3D video: Depth coding based on inter-component prediction
of block partitions,” in 2010 Picture Coding Symposium, Krakow,
Poland, May 2012.

[7] I. Daribo, D. Florencio, and G. Cheung, “Arbitrarily shaped sub-
block motion prediction in texture map compression using depth
information,” in 29th Picture Coding Symposium, Krakow, Poland,
May 2012.

[8] G. Cheung, A. Ortega, and T. Sakamoto, “Fast H.264 mode selec-
tion using depth information for distributed game viewing,” in
IS&T/SPIE Visual Communications and Image Processing (VCIP’08),
San Jose, CA, January 2008.

[9] G. Bjontegaard, “Calculation of average PSNR differences be-
tween RD curves,” Austin, TX, USA, Apr. 2001, ITU SC16/Q6,
13th VCEG Meeting, Austin, Texas, USA, VCEG-M33 doc.

[10] P. Merkle, A. Smolic, K. Mueller, and T. Wiegand, “Multi-view
video plus depth representation and coding,” in IEEE International
Conference on Image Processing, San Antonio, TX, October 2007.

[11] G. Shen, W.-S. Kim, S. Narang, A. Ortega, J. Lee, and H. Wey,
“Edge-adaptive transforms for efficient depth map coding,” in
IEEE Picture Coding Symposium, Nagoya, Japan, December 2010.

[12] W. Hu, G. Cheung, X. Li, and O. Au, “Depth map compression
using multi-resolution graph-based transform for depth-image-
based rendering,” in IEEE International Conference on Image Pro-
cessing, Orlando, FL, September 2012.

[13] J. Gautier, O. L. Meur, and C. Guillemot, “Efficient depth map
compression based on lossless edge coding and diffusion,” in 29th
Picture Coding Symposium, Krakow, Poland, May 2012.

[14] Y. Morvan, P. de With, and D. Farin, “Platelets-based coding of
depth maps for the transmission of multiview images,” in SPIE
Stereoscopic Displays and Applications, San Jose, CA, January 2006.

[15] V.-A. Nguyen, D. Min, and M. N. Do, “Efficient techniques for
depth video compression using weighted mode filtering,” in IEEE
Transactions on Circuits and Systems for Video Technology, vol. 23,
no.2, February 2013, pp. 189–202.

[16] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila, “Depth
map distortion analysis for view rendering and depth coding,”
in IEEE International Conference on Image Processing, Cairo, Egypt,
November 2009.

[17] ——, “Depth map coding with distortion estimation of rendered
view,” in SPIE Visual Information Processing and Communication,
San Jose, CA, January 2010.

[18] G. Cheung, A. Kubota, and A. Ortega, “Sparse representation of
depth maps for efficient transform coding,” in IEEE Picture Coding
Symposium, Nagoya, Japan, December 2010.

[19] G. Cheung, J. Ishida, A. Kubota, and A. Ortega, “Transform
domain sparsification of depth maps using iterative quadratic
programming,” in IEEE International Conference on Image Process-
ing, Brussels, Belgium, September 2011.

[20] G. Cheung, W. s. Kim, A. Ortega, J. Ishida, and A. Kubota, “Depth
map coding using graph based transform and transform domain
sparsification,” in IEEE International Workshop on Multimedia Signal
Processing, Hangzhou, China, October 2011.

[21] H. Oh and Y.-S. Ho, “H.264-based depth map sequence coding
using motion information of corresponding texture video,” in
The Pacific-Rim Symposium on Image and Video Technology, Hsinchu,
Taiwan, December 2006.

[22] I. Daribo, C. Tillier, and B. Pesquet-Popescu, “Motion vector
sharing and bit-rate allocation for 3D video-plus-depth coding,”
in EURASIP: Special Issue on 3DTV in Journal on Advances in Signal
Processing, vol. 2009 (2009), January 2009.

[23] M. Maitre, Y. Shinagawa, and M. Do, “Wavelet-based joint estima-
tion and encoding of depth-image-based representations for free-
viewpoint rendering,” in IEEE Transactions on Image Processing,
vol. 17, no.6, June 2008, pp. 946–957.

[24] H. A. Nguyen, P. A. Chou, and Y. Chen, “Compression of hu-
man body sequences using graph wavelet filter banks,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
Florence, Italy, May 2014.

[25] Y. Gao, G. Cheung, T. Maugey, P. Frossard, and J. Liang, “3D
geometry representation using multiview coding of image tiles,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, Florence, Italy, May 2014.

[26] H. Helgason, H. Li, and M. Flierl, “Multiscale framework for
adaptive and robust enhancement of depth in multi-view im-
agery,” in IEEE International Conference on Image Processing, Or-
lando, FL, October 2012.

[27] R. Li, D. Rusanovskyy, M. Hannuksela, and H. Li, “Joint view fil-
tering for multiview depth map sequences,” in IEEE International
Conference on Image Processing, Orlando, FL, October 2012.

[28] W. Sun, G. Cheung, P. Chou, D. Florencio, C. Zhang, and
O. Au, “Rate-distortion optimized 3d reconstruction from noise-
corrupted multiview depth videos,” in IEEE International Confer-
ence on Multimedia and Expo, San Jose, CA, July 2013.

[29] E. Hung, R. D. Queiroz, and D. Mukherjee, “On macroblock par-
tition for motion compensation,” in IEEE International Conference
on Image Processing, Atlanta, GA, October 2006.

[30] R. Ferreira, E. Hung, R. D. Queiroz, and D. Mukherjee, “Efficiency
improvements for a geometric-partition-based video coder,” in
IEEE International Conference on Image Processing, Cairo, Egypt,
November 2009.

[31] H. Freeman, “On the encoding of arbitrary geometric configura-
tions,” IRE Transactions on Electronic Computers, no. 2, pp. 260–268,
1961.

[32] A. Katsaggelos, L. Kondi, F. Meier, J. Ostermann, and G. Schuster,
“MPEG-4 and rate-distortion-based shape-coding techniques,” in
Proceedings of the IEEE, vol. 86, no.6, June 1998, pp. 1126–1154.

[33] I. Daribo, G. Cheung, and D. Florencio, “Arithmetic edge cod-
ing for arbitrarily shaped sub-block motion prediction in depth
video coding,” in IEEE International Conference on Image Processing,
Orlando, FL, September 2012.

[34] W. J. Teahan, “Probability estimation for PPM,” in In the Proc.
of the New Zealand Computer Science Research Students’ Conference,
1995.

[35] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive
binary arithmetic coding in the H.264/AVC video compression
standard,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no.7, July 2003, pp. 620–635.

[36] “Microsoft sequence ballet and breakdancers,” 2004,
[Online] Available: http://research.microsoft.com/en-
us/um/people/sbkang/3dvideodownload/.

[37] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski, “High-quality video view interpolation using a lay-
ered representation,” The 31st International Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH), vol. 23, no. 3, pp.
600–608, Aug. 2004.

[38] G. Cheung, V. Velisavljevic, and A. Ortega, “On dependent bit
allocation for multiview image coding with depth-image-based
rendering,” in IEEE Transactions on Image Processing, vol. 20, no.11,
March 2011, pp. 1109–1126.

IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2014 14

[39] I. Daribo and H. Saito, “Influence of wavelet-based depth coding
in multiview video systems,” in 28th Picture Coding Symposium,
2010, pp. 334–337.

[40] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Ostermann, and
G. M. Schuster, “MPEG-4 and rate-distortion-based shape-coding
techniques,” Proceedings of the IEEE, vol. 86, no. 6, pp. 1126–1154,
1998.

[41] M. Eden and M. Kocher, “On the performance of
a contour coding algorithm in the context of image
coding part I: Contour segment coding,” Signal Processing,
vol. 8, no. 4, pp. 381–386, 1985. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0165168485900015

Ismael Daribo (M’10) received B.Sc.,
M.Sc./M.Eng. and Ph.D. degrees in specialty
of Multimedia, Computer Science, Image and
Signal Processing in 2002, 2005 and 2009,
respectively.From 2010 to 2013, he has been
a specially appointed Assistant Professor
and Visiting Research Scientist in Japan,
where he became a specialist in 3D Video
Communication Systems and related Signal
Processing.

His research interests include all technical
aspects of 3D video communication end-to-end services, including
multiple viewpoint camera acquisition, 3D video data representation,
and 3D video coding and image-based rendering on 3D displays.

Dinei Florencio (M’97—SM’05) has been a Re-
searcher with Microsoft Research, Redmond,
WA, USA, since 1999. He received the B.S. and
M.S. degrees from the University of Brasilia,
Brasilia, Brazil, and the Ph.D. degree from the
Georgia Institute of Technology, Atlanta, GA,
USA, all in electrical engineering. Before joining
Microsoft, he was a Member of the Research
Staff at the David Sarnoff Research Center from
1996 to 1999. He was also a Co-Op Student with
the AT&T Human Interface Laboratory (now

part of NCR) from 1994 to 1996, and a Summer Intern at Interval
Research Corporation, Palo Alto, CA, USA, in 1994. He has authored
over 70 papers, and holds 54 granted U.S. patents.

Dr. Florencio was the General Co-Chair of MMSP 2009, WIFS 2011,
Hot3D 2010 and 2013, and Technical Co-Chair of WIFS 2010, ICME
2011, and MMSP 2013. He is the Chair of the IEEE SPS Technical
Committee on Multimedia Signal Processing (from 2014 to 2015). He
is also an Elected Member of the IEEE SPS Technical Committee on
Information Forensics and Security, and an Associate Editor of the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.

Gene Cheung (M’00—SM’07) received the B.S.
degree in electrical engineering from Cornell
University in 1995, and the M.S. and Ph.D.
degrees in electrical engineering and computer
science from the University of California, Berke-
ley, in 1998 and 2000, respectively.

He was a senior researcher in Hewlett-
Packard Laboratories Japan, Tokyo, from 2000
till 2009. He is now an associate professor in Na-
tional Institute of Informatics in Tokyo, Japan.

His research interests include image & video
representation, immersive visual communication and graph signal
processing. He has published over 140 international conference and
journal publications. He has served as associate editor for IEEE Trans-
actions on Multimedia from 2007 to 2011 and currently serves as as-
sociate editor for DSP Applications Column in IEEE Signal Processing
Magazine, APSIPA Journal on Signal & Information Processing and
SPIE Journal of Electronic Imaging, and as area editor for EURASIP
Signal Processing: Image Communication. He currently serves as mem-
ber of the Multimedia Signal Processing Technical Committee (MMSP-
TC) in IEEE Signal Processing Society (2012-2014). He has also served
as area chair in IEEE International Conference on Image Processing
(ICIP) 2010, 2012-2013, technical program co-chair of International
Packet Video Workshop (PV) 2010, track co-chair for Multimedia Signal
Processing track in IEEE International Conference on Multimedia and
Expo (ICME) 2011, symposium co-chair for CSSMA Symposium in
IEEE GLOBECOM 2012, and area chair for ICME 2013. He is a co-
author of best student paper award in IEEE Workshop on Streaming
and Media Communications 2011 (in conjunction with ICME 2011),
best paper finalists in ICME 2011 and ICIP 2011, best paper runner-up
award in ICME 2012, and best student paper award in ICIP 2013.

