
Informed data distribution selection in a
self-predicting storage system

Eno Thereska�, Michael Abd-El-Malek�, Jay J. Wylie†, Dushyanth Narayanan‡, Gregory R. Ganger�
�Carnegie Mellon University, Pittsburgh, PA

†HP Labs, Palo Alto, CA
‡Microsoft Research, Cambridge, UK

Abstract— Systems should be self-predicting. They should
continuously monitor themselves and provide quantitative an-
swers to What...if questions about hypothetical workload or
resource changes. Self-prediction would significantly simplify
administrators’ decision making, such as acquisition planning
and performance tuning, by reducing the detailed workload and
internal system knowledge required. This paper describes and
evaluates support for self-prediction in a cluster-based storage
system and its application to What...if questions about data
distribution selection.

I. INTRODUCTION

Storage administration is a difficult and expensive task [1],
[2], [3]. One major portion of this task involves making
decisions about such things as acquisitions, component config-
urations, assignment of datasets/workloads to components, and
performance problem resolutions. For many of these decisions,
the most complex aspect is understanding the performance
consequences of any given decision.1 These consequences
usually depend on workload specifics (e.g., the interleaved I/O
patterns of the applications) and storage system internals.

Traditionally, administrators use two tools when mak-
ing such decisions: their expertise and system over-
provisioning [4]. Most administrators work with a collection
of rules-of-thumb learned and developed over their years
of experience. Combined with whatever understanding of
application and storage system specifics are available to them,
they apply these rules-of-thumb to planning challenges. For
example, one administrator might apply the rule “if average
queueing delays are greater than 10 ms, then spread data/work
over more disks” to resolve a perceived performance problem.
Since human-utilized rules-of-thumb are rarely precise, over-
provisioning is used to reduce the need for detailed decisions.
For example, one common historical rule-of-thumb called for
ensuring that disk utilization stayed below 30% (i.e., always
have three times the necessary disk throughput available). Both
tools are expensive, expertise because it requires specialization
and over-provisioning because it wastes hardware and human 2

resources. Further, sufficient expertise becomes increasingly
difficult to achieve as storage systems and applications grow
in complexity.

1Non-performance issues, such as cost and reliability, are also involved.
But, these usually require much less understanding of the inner workings of
system components and applications.

2The additional hardware must be configured and maintained.

We believe that systems must provide better assistance
to administrators. Systems should be self-predicting: able to
provide quantitative answers to administrators’ performance
questions involved with their planning. With appropriate built-
in monitoring and modeling tools, we believe that systems
can answer What...if questions about potential changes. For
example, “What would be the performance of workload X
if its data were moved from device A to device B?”. With
answers to such What...if questions, administrators could make
informed decisions with much less expertise. Further, iterating
over What...if questions (e.g., one for each possible option)
enables a search-based approach to automating, or at least
guiding, planning and tuning decisions.

This paper describes support for self-prediction in a cluster-
based storage system and its application to What...if questions
about data distribution choices. The data distribution for a
dataset describes how it is encoded (e.g., replication vs. erasure
coding) and assigned to storage-nodes within the cluster. No
single data distribution choice is best for all data [5], and
cluster-based storage systems will support a variety of choices
just like disk array systems (RAID 5, RAID 0�1, etc.).
The data distribution used for a given dataset has a large
impact on its performance, availability, and confidentiality.
Self-prediction assists with understanding the performance
impact of any given data distribution.

Of course, the performance for a data distribution is a
complex function of I/O workload and storage-node charac-
teristics. Selecting the right encoding requires knowledge of
the access patterns and the bottleneck resources. For example,
small random writes often interact poorly with erasure coding,
but large streaming writes benefit from the reduced network
bandwidth relative to replication. Data placement requires
similar knowledge plus information about how workloads will
interact when sharing storage-nodes. For example, two work-
loads that benefit from large caches may experience dramatic
performance decreases if assigned to the same storage-node.
Answering What...if questions about data distribution choices
requires accounting for all such effects.

Self-prediction has two primary building blocks: monitoring
and modeling. The monitoring must be detailed so that per-
workload, per-resource demands and latencies can be quan-
tified. Aggregate performance counters typically exposed by
systems are insufficient for this purpose. Our system uses
end-to-end instrumentation in the form of traces of “activity

Proceedings of the International Conference on Autonomic Computing (ICAC-06),
Dublin, Ireland. June 12th-16th 2006.

records” that mark steps reached in the processing of any given
request. Those traces are post-processed to compute demands
and latencies. Modules for answering What...if questions use
modeling tools and observation data to produce answers. Tools
used include experimental measurements (for encode/decode
CPU costs), operational laws (for bottleneck analysis), and
simulation (for cache hit rate projections). What...if questions
can be layered, with high-level What...if modules combining
the answers of multiple lower-level What...if modules. For
example, “What would be the performance of client A’s
workload if we add client B’s workload onto the storage-nodes
it is using?” needs answers to questions about how the cache
hit rate, disk workload and network utilization would change.

Evaluations show that our self-prediction infrastructure
is effective. Most importantly, high-level What...if questions
about how performance for different workloads will change
with dataset migration or encoding changes are answered with
less than 15% error in almost all cases. Such accuracy should
be sufficient for most planning decisions, and the answers
exceed the detail usually available for the traditional approach.
The monitoring instrumentation places less than 6% overhead
on foreground workloads, which we view as an acceptable cost
for the benefits provided.

II. DATA DISTRIBUTION SELECTION

It is difficult to understand the performance implications
of a data distribution choice. To do so requires a detailed
understanding of the interactions between a workload and
the system resources, and an understanding of how those
interactions change with the encoding choice. Both choosing
the right encoding and the right set of storage-nodes on which
to place the data are dynamic problems. Clients enter and
leave a system, and storage-nodes are added and retired during
failures. Clients’ workloads also change and may require re-
encoding and re-distribution onto different sets of storage-
nodes for load balancing. To improve the process of data dis-
tribution selection, we have developed a generic infrastructure
that can evaluate the impact of hypothetical choices.

A. Cluster-based storage systems

Traditional storage systems are built around a single-vendor,
monolithic disk array design. Such systems provide high
performance and availability, but they are expensive and do
not scale easily. Incremental scaling is not an option with such
systems, as a client must buy and manage another monolithic
system when scalability requirements slightly exceed the ex-
isting array system. Cluster-based storage systems, built from
commodity hardware, have been developed to address these
scalability and cost issues [5], [6], [7]. The individual servers
are often called storage-nodes, and each provides a certain
amount of CPU, buffer cache and storage. These components
can be inexpensive mass-produced commodities. Incremental
scalability is provided by their addition into the system.

Commodity hardware is often less reliable than customized
hardware, and these storage-nodes usually have lower perfor-
mance than customized disk arrays. To make up for the lower

TABLE I

DATA ENCODING TUNABLE PARAMETERS

n Data is encoded in n fragments.

m Any m fragments reconstruct the data.

encryption type Encryption ensures confidentiality.

storage-node reliability and performance, data is strategically
distributed to enable access parallelism and reliability in the
face of node failures. A data distribution is an algorithm for
encoding the data to meet availability and confidentiality needs
and choosing the set of storage-nodes to host the data.

There is no single data distribution that is best for all data.
The data distribution choice has major impact on three crucial
system metrics: availability, confidentiality and performance.
The data a bank stores, for example, has different availability
goals than the data of an online retailer [8], and thus may
require a different encoding. The online retailer may have a
stricter confidentiality goal than an email provider and thus
may require encryption. The online retailer may have more
stringent performance requirements than the bank, and may
require that response times be kept below a threshold.

B. Data encoding

A data encoding specifies the degree of redundancy with
which a piece of data is encoded, the manner in which
redundancy is achieved, and whether or not the data is en-
crypted. Availability requirements dictate the degree of data
redundancy. Redundancy is achieved by replicating or erasure
coding the data [9], [10]. Most erasure coding schemes can
be characterized by the parameters �m�n�. An m-of-n scheme
encodes data into n fragments such that reading any m of them
reconstructs the original data. Confidentiality requirements
dictate whether or not encryption is employed. Encryption is
performed prior to encoding (and decryption is performed after
decoding). Table I lists these tunable parameters.

There is a large trade-off space in terms of the level of
availability, confidentiality, and system resources (such as
CPU, network, storage) consumed as a result of the encoding
choice. For example, as n increases, relative to m, data
availability increases. However, the storage capacity consumed
also increases (as does the network bandwidth required during
data writes). As m increases, the encoding becomes more
space-efficient: less storage capacity is required to provide
a specific degree of data redundancy. However, availability
decreases. More fragments are needed to reconstruct the data
during reads. When encryption is used, the confidentiality
of the data increases, but the demand on CPU increases (to
encrypt the data). Other trade-offs with respect to CPU, storage
and network demand are discussed in Section III-C.4 and
Section III-C.5.

The workload for a given piece of data should also be
considered when selecting the data encoding. For example,
it may make more sense to increase m for a write-mostly
workload, so that less network bandwidth is consumed. As

the evaluation section shows, 3-way replication (i.e., a 1-of-3
encoding) consumes approximately 40% more network band-
width than a 3-of-5 erasure coding scheme for an all-write
workload. For an all-read workload, however, both schemes
consume the same network bandwidth. Others have explained
these trade-offs in significant detail [11], [12].

Because of this large trade-off space and the dependence on
workload characteristics, it is very difficult for an administrator
to know a priori the effects of an encoding change — hence
the need for system self-prediction. This paper shows that a
system can answer high-level performance questions related
to throughput and latency by answering sub-questions of the
form “What would be the CPU/network/storage demand of
workload A, if data is encoded using scheme E?”.

C. Data placement

In addition to selecting the data encoding, the storage-
nodes on which encoded data fragments are placed must also
be selected. When data is initially created, the question of
placement must be answered. Afterwards, different system
events may cause the placement decision to be revisited —
for example, when new storage-nodes are added to the cluster,
when old storage-nodes are retired, and when workloads have
changed sufficiently to warrant re-balancing load. Quantifying
the performance effect of adding or subtracting a workload
from a set of storage-nodes is non-trivial. Each storage-node
may have different physical characteristics (e.g., the amount
of buffer cache, types of disks, and network connectivity) and
host different pieces of data whose workloads lead to different
levels of contention for the physical resources.

Workload movement What...if questions (e.g., “What is the
expected throughput/response client A can get if its workload
is moved to a set of storage-nodes S?”) need answers to
several sub-questions. First, the buffer cache hit rate of the
new workload and the existing workloads on those storage-
nodes need to be evaluated (i.e., for each of the workloads the
question is “What is the buffer cache hit rate if I add/subtract
workload A to/from this storage-node?”). The answer to this
question will depend on the particulars of the buffer cache
management algorithm the storage-node uses. Second, the
disk demand (or service time) for each of the I/O workloads’
requests that miss in buffer cache will need to be predicted
(i.e., for each of the workloads, the question is “What is the
average I/O service time if I add/subtract workload A to/from
this storage-node?”). Third, the network load on each of the
storage-nodes that results from adding/subtracting workloads
needs to be predicted as well.

It is challenging for administrators to answer What...if ques-
tions such as the above. Doing so requires one to understand
the system internals (e.g., buffer cache replacement policies)
and keep track of the workloads each resource is seeing
(e.g., buffer cache records for each workload and storage-
node). The next section describes how encoding and workload
addition/subtraction problems can be answered with end-to-
end instrumentation and built-in models.

Client (encoding) Storage-nodes

m Fragments
Block

n Fragments

Block

 ATI: CPU, network, cache, disk monitoring

What...if modules: CPU, network, cache, disk

Mechanical
tier

Administrator

Availability, confidentiality,
performance goals

Automation agents

What...If questions

Client (decoding)

Management
tier

Quantitative predictions

(optional) What...If questions

Fig. 1. High-level architecture of Ursa Minor. The mechanical tier, on the
bottom, services I/O requests for clients. The management tier, on the top,
provides automation. It makes use of the self-predicting capabilities of the
individual system components to get answers to various What...if explorations.

III. SYSTEM DESIGN AND ARCHITECTURE

This section describes a cluster-based storage system and
how its design supports performance self-prediction.

A. Versatile cluster-based storage

Ursa Minor is a cluster-based storage system that provides
data distribution versatility (i.e., a wide range of options within
a single system) and the ability to change data to a different
distribution online. Its architecture and implementation are
described by Abd-El-Malek et al. [5]. At the core of its ar-
chitecture is the separation of mechanical functions (servicing
client requests) from management functions (automating ad-
ministrative activities). The management tier consists of agents
and algorithms for automating internal decisions and helping
administrators understand the consequences of external ones.
The mechanical tier is designed to self-monitor and includes
self-predictive capabilities used by the management tier. The
high-level architecture of Ursa Minor is shown in Figure 1.
Below, we explain some of the terminology used.

Clients: Clients of the system store and access data. Data
may have different availability, confidentiality and perfor-
mance goals. Clients use the PASIS consistency protocols to
read and write data [12], [13]. Clients include an Ursa Minor
library that encodes data and implements the PASIS protocols.
Illustrated in Figure 1 are two clients. The first is writing data
using a 3-of-5 encoding scheme (thus having to write to 5
storage-nodes). The second is reading the data from 3 of the
5 storage-nodes.

Storage-nodes: The storage-nodes have CPUs, a buffer
cache and disks. Storage-nodes are expected to be hetero-
geneous, as they get upgraded or retired over time and are
purchased from different vendors.

Administrators: Administrators are responsible for setting
availability, confidentiality and performance goals. Availability
goals may be expressed with a monetary value attached to data

loss or data outage (e.g., as Keeton et al. describe [8]). Con-
fidentiality may be specified by the data encryption method.
Performance goals are often expressed in terms of service-
level objectives that specify a desired level of throughput and
response time. Administrators are not required to understand
the workload-system interactions. They can use the predictive
infrastructure to ask What...if questions (e.g., for guiding
purchase decisions).

Automation agents: Automation agents are responsible for
making sure that administrator goals are met. Automation
agents come with a set of pre-defined What...if questions that
the system implementor has made available. Previous work
has shown how to convert availability and confidentiality goals
into encoding decisions [8], [12], [13]. This paper focuses on
enabling the automation agents to quantify the performance
impact of data distribution choices.

Activity tracking infrastructure (ATI) and What...if mod-
ules: The ATI continuously tracks requests as they move from
component to component in Ursa Minor. The ATI is integrated
in every storage-node and the Ursa Minor client library. The
ATI presents a unified distributed performance monitoring
infrastructure and allows differentiation among multiple work-
load streams. What...if modules use the ATI to quantify re-
source consumption by different clients and make performance
predictions regarding hypothetical workload and/or resource
changes. Predictions from several resource-specific What...if
modules may be analyzed by the automation agents to make
high-level throughput and response time predictions. The ATI
design and implementation details are described by Thereska
et al. [14]. The next section summarizes key features of the
ATI used to make informed data distribution decisions.

B. Activity tracking infrastructure (ATI)

The ATI is responsible for tracking the performance of every
client request along its execution path. The ATI retains activity
records, such as buffer cache reference records, I/O records,
and network transmit/receive records. The sequence of records
allows tracking of a request as it moves in the system, from
one computer, through the network, to another computer, and
back. Retaining activity records permits automation agents to
use simulation techniques to answer What...if questions.

An activity record is a sequence of (attribute, value) pairs.
Figure 2 shows an example activity record. Each activity
record contains an automatically-generated header comprised
of a timestamp, breadcrumb, kernel-level process ID, and user-
level thread ID. Each timestamp is a unique value generated by
the computer clock that permits accurate timing measurements
of requests. The breadcrumb permits records associated with
a given request to be correlated within and across computers.
Activity records are posted at strategic locations in the code
so that the demand on a resource is captured. For example,
the disk activity record is posted both when the request is
sent to disk and when the request completes. Both postings
contain the same breadcrumb, because they belong to the
same request, and so can be correlated. Activity records are
posted on the critical path; however, as our evaluation shows,

timestamp breadcrumb pid tid diskno lbn size op

header payload

Fig. 2. Example activity record. Each activity record has a common header
and a payload. The payload for the disk request activity record shown includes
the disk id, logical block number, size of the I/O, and operation type.

such posting causes minimal impact on foreground perfor-
mance. Table II lists the instrumentation points in Ursa Mi-
nor. KernelProcessSwitch records are provided by the Linux
kernel3; the other records are posted from instrumentation
points in user-level processes. There are approximately 200
instrumentation points in Ursa Minor.

Each computer runs a single ATI instance. An ATI instance
is responsible for presenting any process running on that
computer with APIs for posting and querying activity records.
For querying flexibility, ATI records are stored in relational
databases (Activity DBs). Activity records posted to an ATI
instance are periodically sent to Activity DBs. Activity DBs
run on the same infrastructure computers with the rest of the
system. The DBs store the records in relational tables and
answer queries on those records. Storing activity records in a
database permits efficient execution of queries.

Activity DBs are queried by internal resource-specific
What...if modules using the common SQL language. For exam-
ple, to get a disk I/O trace for a certain storage-node, one could
query the Activity DB that keeps records for that storage-
node’s disk activity records. Activity records are effectively a
super-set of performance counters. Any performance counter
value of interest can be extracted by querying the DBs.

C. What. . . if modules

What...if modules are structured in two tiers. The lower
tier answers performance questions pertaining to individual
resources (e.g., CPU, buffer cache hit rate, I/O service times).
The upper tier is part of the Automation Agents and is respon-
sible for using the lower tier to make high-level predictions of
performance metrics of interest.

1) Performance metrics: Performance metrics of interest
in this paper are expected client throughput and response time
under a hypothetical data distribution change. In addition, we
want to predict client peak achievable throughput. Throughput
depends on the number of outstanding requests the client
issues to fill the pipeline of request processing. Intuitively,
peak throughput is achieved when the pipeline is full. Any
further increase in number of outstanding requests does not
increase throughput but may increase response time. Other
metrics such as throughput and response time variance are
also important, but such second-order statistics are difficult
to predict. They require making assumptions about workload
characteristics (e.g., exponential interarrival times) that in
practice may or may not hold.

3Other operating systems, such as Windows, also expose kernel-level
context switches [15].

TABLE II

ACTIVITY RECORD TYPES POSTED IN URSA MINOR

Record Type Arguments Description
CPU demand UserThreadSwitch oldthread, newthread A user-level context switch

KernelProcessSwitch cpu ID, oldprocess, newprocess A kernel-level context switch
Buffer cache demand BufferReadHit file, offset, size Denotes a buffer cache hit

BufferReadMiss file, offset, size Denotes a buffer cache miss
BufferWrite file, offset, size Denotes a write and marks buffer dirty
BufferReadAhead file, offset, numpages, pagesize Prefetch pages (non-blocking)
BufferFlush file, offset, size Flushes a dirty page to disk
BufferEvict file, offset, size Evicts a page from the cache

Network demand NetworkTransmit sender, receiver, numbytes Monitors network flow
Disk demand DiskOp disk ID, LBN, size, operation Monitors disk activity

2) Throughput prediction: To predict aggregate through-
put under a hypothetical distribution change, our algorithms
assume a closed-loop workload4 and use operational analy-
sis [16] on all resources (CPUs, networks, buffer cache, disks).
Table III is a reference for the notation used.

Let Dk
i be the average demand, in seconds, of a request

from client i on resource k. Let Dmax
i be the largest demand

client i places on any resource (that resource with the highest
demand is called the bottleneck resource). Let Di be the sum
of all demands on all resources a request uses.

If the ATI measures that client i has, on average, Ni

requests outstanding, and that the average client think time
(or processing time after a request is received and before the
next is sent) is Zi, then client i’s throughput bound Ti is:

Ti � min

�
1

Dmax
i

�

Ni

Di�Zi

�
(1)

If the client has a small number of outstanding requests, and
thus cannot keep all resources utilized, then its throughput
is predicted to be the second part of the equation (Ni��Di �
Zi�). Otherwise, the throughput is the peak throughput 1�D max

i
obtained by saturating the bottleneck resource. The threshold
N�

i for determining if the load is light or not is N �

i � �Di �
Zi��Dmax

i , where N�

i can be thought of as the minimum number
of requests required to keep the request pipeline full.

The peak throughput of the client CPU, in terms of requests
it can process, equals 1�DCPU

i , where DCPU
i is the average

CPU demand per request. The new CPU demand is predicted
using the method described in Section III-C.4.

The peak network throughput, in terms of number of
requests it can process, equals 1�DNET

i , where DNET
i is the

average network demand per request. The original network de-
mand is measured while the workload runs. The new network
demand is predicted based on the observed workload patterns
and the new configuration as described in Section III-C.5.

The peak storage-node throughput, in terms of number of
requests that it can process, equals 1�DI�O

i , where DI�O
i equals

pi �DBUF
i � �1� pi� �DDISK

i . Some read requests hit in the
buffer cache (with probability pi) and their service time is the
access time from the cache. The other read requests miss in

4If the workload is open-loop, then throughput is the number of requests
the client is sending and does not need to be predicted.

TABLE III

FORMULA NOTATION

Dk
i Average demand of a request from client i on resource k.

Dmax
i Largest demand client i places on any resource.

Di Sum of demands on all resources client i’s request uses.

Ni Average number of requests a client has outstanding.

N�

i Threshold for determining if client i’s load is low or high.

pi Buffer cache hit rate for client i.

Ri Response time bound for client i.

Ti Throughput bound for client i.

Zi Average client think time.

the buffer cache (with probability 1� pi) and incur a service
time denoted by DDISK

i . All write requests eventually go to
disk, hence pi for them is always zero.

Both pi and DDISK
i need to be predicted for a hypothetical

data distribution. Both depend heavily on the interaction
among the node’s buffer cache size and eviction policy and
disks at each node, as explained in Sections III-C.6 and III-C.7
respectively. They also depend on workload access patterns
(e.g., sequential or random).

3) Response time prediction: We predict response time
Ri by transforming our throughput predictions above using
Little’s law [16], which states that

Ri �
Ni

Ti
�Zi (2)

Equation 2 determines the minimum response time when
the client achieves peak throughput. Any further increases in
the number of client outstanding requests will not increase
throughput, but will increase response time linearly.

4) CPU What. . . if module: The goal of the client CPU
module5 is to answer sub-questions of the form “What is the
request demand DCPU

i for requests from client i if the data is
encoded using scheme E?”. The CPU modules use direct mea-
surements of encode/decode costs to answer these questions.
Direct measurements of the CPU cost are acceptable, since

5There is CPU consumed at the storage-nodes as well (e.g., during data
copying). However, the storage-node CPU does not become the bottleneck in
practice, so we focus on the client CPU, which is used for encoding/decoding
and encryption.

each encode/decode operation is short in duration. Direct mea-
surements sidestep the need for constructing analytical models
for different CPU architectures. Inputs to the CPU module are
the hypothetical encoding E and the measured read:write ratio
of the workload (as measured by the ATI). The CPU module
encodes and decodes one block several times with the new
hypothetical encoding and produces the average CPU demand
for reads and writes. Intuitively, schemes based on replication
utilize little client CPU, but place more demand on the network
and storage resources. Schemes based on erasure coding are
more network and storage efficient, but require more client
CPU work to encode the data. All schemes require significant
amounts of CPU work when using encryption. Furthermore, as
discussed in the extended technical report of this paper [17],
some CPU is also consumed by network TCP processing.
Currently, for every machine in the system, we construct a
simple TCP CPU consumption model by measuring the CPU
consumed when the network link is fully saturated, using
different client request sizes.

5) Network What. . . if module: The goal of the network
module is to answer sub-questions of the form “What is the
request demand DNET

i for requests from client i if the data is
encoded using scheme E?”. To capture first-order effects, the
network module uses a simple analytical function to predict
network demand based on the number of bytes transmitted.
Inputs to the network module are the hypothetical encoding
E and the measured read:write ratio of the workload (as mea-
sured by the ATI). In Ursa Minor, a write updates n storage-
nodes and a read retrieves data from only m storage-nodes.
The network demand for a single request is the minimum time
needed to transmit the data for a request (i.e., if that request
was the only one using the network) plus an empirical fixed
cost for the network stack processing. The time to transmit
data equals the size of the request in bytes divided by the
network bandwidth. The fragment’s size is the original request
block size divided by m.

6) Buffer Cache What. . . if module: The goal of the buffer
cache module is to answer sub-questions of the form “What
is the average fraction of read requests 1� pi that miss in the
buffer cache (and thus have to go to disk) if a workload from
client i is added to a storage-node?”. The buffer cache module
can similarly answer questions on other workloads when one
client’s workload is removed from a storage-node. A buffer
cache miss requires orders of magnitude more time than a
buffer cache hit, hence the performance the client sees is very
much dependent on the storage-node’s buffer cache. The buffer
cache behavior of a workload depends on its access patterns,
working set size, and the storage-node’s buffer cache size and
replacement policy.

Consider workload Ww being placed on a storage-node that
already hosts w� 1 workloads W1� ����Ww�1. The prediction
takes the form:

�p1� p2� ���� pw�� BufferCachemodule�W1�W2� ����Ww� (3)

The buffer cache module uses simulation to make a pre-
diction. The module uses buffer cache records of each of

the W1�W2� ����Ww workloads, collected through the ATI, and
replays them using the buffer cache size and policies of
the target storage-node. The output from this module is the
fraction of hits and misses and a trace of requests that have
to go to disk for each workload.

Simulation is used, rather than an analytical model, because
buffer cache replacement and persistence policies are often
complex and system-dependent. They cannot be accurately
captured using analytical formulas. The storage-node buffer
cache policy in our system is a variant of least-recently-used
(LRU) with certain optimizations.

7) Disk What. . . if module: The goal of the disk module
is to answer sub-questions of the form “What is the average
service time DDISK

i of a request from client i if that request is
part of a random/sequential, read/write stream?” The average
service time for a request is dependent on the access patterns
of the workload and the policy of the underlying storage-node.
Storage-nodes in Ursa Minor are optimized for writes, utilize
NVRAM, and use a log-structured layout on disk [18].

When a disk is installed, a model is built for it. The model is
based on the disks maximum random read and write bandwidth
and maximum sequential read and write bandwidth. These four
parameters are usually provided by disk vendors and are also
easy to extract empirically.

The disk module is analytical. It receives the interleaved
sequence of I/Os of the different workloads from the buffer
cache What...if module, scans the combined trace to find se-
quential and random streams within it, and assigns an expected
service time to each request, based on the four extracted disk
parameters.

8) Using the What. . . if modules together: To predict client
A’s throughput, the Automation Agent consults the resource-
specific What...if modules to determine which of the resources
will be the bottleneck resource. Client A’s peak throughput will
be limited by the throughput of that resource. In practice, other
clients will be sharing the resources too, effectively reducing
the peak throughput those resources would provide if client A
was the only one running. The Automation Agent adjusts the
predicted client A’s throughput to account for that loss.

IV. EVALUATION

This section evaluates the predictive framework. First, we
show the accuracy of the individual What...if modules under
several encoding choices. Second, we show the accuracy
of high-level What...if questions regarding throughput and
response time that make use of several of the above modules
at once. Third, we show that the overhead of the requisite
instrumentation is low.

A. Experimental setup

The experiments use a cluster of x86-based computers.
Clients are run on machines with Pentium 4 Xeon 3.0 GHz
processors with 2 GB of RAM. Unless otherwise mentioned,
all storage-nodes have Pentium 4 2.6 GHz processors with
1 GB of RAM; each has a single Intel 82546 gigabit Ethernet
adapter, and they are connected via a Dell PowerConnect

5224 switch. The disk configuration in each computer varies
and disk capacities range from 8 to 250 GB. All computers
run the Debian “testing” distribution and use Linux kernel
version 2.4.22. We use micro- and macro-benchmarks. Macro-
benchmarks are unmodified and make use of an NFS server
that communicates directly with the storage-nodes using the
PASIS access protocol. Micro-benchmarks access the storage-
nodes directly using the PASIS access protocol.

SSIO BENCHMARK: This micro-benchmark allows con-
trol of the workload read:write ratio, access patterns and num-
ber of outstanding requests. The performance of a workload is
reported in terms of requests/sec or MB/s and response time
per request. The access size is 32 KB for this benchmark.

OLTP workload: The OLTP workload mimics an on-
line database performing transaction processing. Transactions
invoke 8 KB read-modify-write operations to a small number
of records in a 5 GB database. The performance of this
workload is reported in transactions per minute (tpm).

Postmark: Postmark is a user-level file system benchmark
designed to emulate small file workloads such as e-mail and
netnews. It measures the number of transactions per second
that the system is capable of supporting. A transaction is a
file creation or deletion, paired with a read or an append. The
configuration parameters used were 20000 files, 20000 trans-
actions, and 140 subdirectories. All other parameters were left
as default. The performance of this workload is reported in
transactions per second (tps).

IOzone: IOzone is a general file system benchmark that
can be used to measure streaming data access (e.g., for
data mining) [19]. For our experiments, IOzone measures the
performance for 64 KB sequential writes and reads to a single
2 GB file. The performance of this workload is reported in
megabytes per second read and written.

For conciseness, we present results for only six data en-
codings. These results are indicative of the many other en-
codings we explored. “1-of-1” refers to 1-way replication.
“1-of-1 encr” is 1-way replication where the data is also
encrypted to ensure confidentiality. For encryption, we use the
AES cipher with a key size of 128 bits in CBC mode. “1-of-3”
is 3-way replication which tolerates two storage-node crashes.
“1-of-3 encr” is 3-way replication with encryption. “3-of-5”
is an erasure coding scheme that tolerates two storage-
node crashes, but is more storage efficient than “1-of-3”.
“3-of-5 encr” is the “3-of-5” scheme with encryption. Unless
otherwise mentioned, all experiments are run ten times, and the
average and the standard deviation are reported. The average
client think time Zi is zero in all experiments.

B. Resource-specific What. . . if modules

This section evaluates the resource-specific What...if mod-
ules in isolation. The CPU and network What...if modules are
based on direct measurements, hence the prediction accuracy
is almost perfect. For those two resources we just show
how resource consumption changes as a function of encoding
choice. The memory and disk What...if modules are based

0.0

0.2

0.4

0.6

0.8

1.0

Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

1-1 1-1 encr 1-3 1-3 encr 3-5 3-5 encr

C
PU

 d
em

an
d

 (m
s)

Fig. 3. CPU What...if module output. This figure illustrates how the CPU
demand per request differs based on the chosen data encoding. The cost for
encoding data (during a write) and decoding it (during a read) are shown for
six encoding choices.

0.0

0.2

0.4

0.6

0.8

1.0

Write Read Write Read Write Read Write Read Write Read Write Read

1-1 1-1 encr 1-3 1-3 encr 3-5 3-5 encr

N
et

w
o

rk
 d

em
an

d
 (m

s)

Fig. 4. Network What...if module output. This figure illustrates the network
demand per request as a function of the chosen data encoding.

on simulation and analytical models, respectively, and so we
concentrate on the prediction accuracy of these modules.

CPU What...if module: Recall from Section III-C.4 that the
goal of the CPU module is to answer sub-questions of the form
“What is the request demand DCPU

i for requests from client i
if the data is encoded using scheme E?”. Figure 3 shows how
the CPU demand varies based on the encoding scheme used.
The module runs 100 encode/decode operations and reports
the average. Some encoding schemes differ from others by
more than an order of magnitude, and as we show later in
this evaluation, the client CPU can become a bottleneck. Two
trends are worth noting. First, the cost of encryption dominates
the cost of data encoding/decoding. Second, erasure coding
requires more CPU than replication for encoding data.

Network What...if module: Recall from Section III-C.5 that
the goal of the network module is to answer sub-questions of
the form “What is the request demand DNET

i for requests from
client i if the data is encoded using scheme E?”. Figure 4
shows how the network demand varies based on the encoding
schemes used. A trend worth noting, is that replication places
a larger demand on the network than erasure coding, for the
same number of storage-node crashes tolerated. In general,

0

20

40

60

80

100

32 64 128 256 384 512 640 768

Buffer cache size (MB)

C
ac

h
e

h
it

 ra
te

 (%
)

PostmarkSim
Postmark
OLTPSim
OLTP
IOzoneSim
IOzone

Fig. 5. Buffer Cache What...if module output. This figure illustrates
the accuracy of the buffer cache simulator in predicting the storage-node
buffer cache hit rate under various workloads. For Postmark and IOzone,
the measured and predicted hit rate are almost indistinguishable, indicating
excellent prediction accuracy.

for n-way replication, n�blocksize bytes are sent through the
network during a write. For m-of-n erasure coding schemes,
on the other hand, only n�blocksize�m bytes are sent. During
reads, both schemes consume the same amount of network
bandwidth.

Buffer Cache What...if module: Recall from Section III-C.6
that the goal of the buffer cache module is to answer sub-
questions of the form “What is the average fraction of read
requests 1� pi that miss in the buffer cache (and thus have to
go to disk) if a workload from client i is added to a storage-
node?”. Figure 5 illustrates the accuracy of the buffer cache
module under three workloads of varying working-set size and
access patterns. The encoding for these workloads is 1-of-1.
For each of the workloads, the ATI collected the original buffer
cache reference trace when the buffer cache size was 512 MB,
and the What...if module predicted what will happen for all
other buffer cache sizes. (The choice of 512 MB is rather
arbitrary, but we have verified that any other size in the range
shown gives similar results). This experiment illustrates what
would happen if, for example, another workload was added to
the storage-node and the amount of buffer cache available to
the original one shrank, or if a workload was removed from
the storage-node and the amount of buffer cache available to
the original one increased.

An important metric for evaluating the efficiency of the
buffer cache What...if module is the simulator’s throughput,
in terms of requests that can be simulated per second. We
have observed that for cache hits the simulator and real cache
manager need similar times to process a request. The simulator
is on average three orders of magnitude faster than the real
system when handling cache misses (the simulator spends
at most 9,500 CPU cycles handling a miss, whereas, on a
3.0 Ghz processor, the real system spends the equivalent of
about 22,500,000 CPU cycles).

Disk What...if module: Recall from Section III-C.7 that the
goal of the disk module is to answer sub-questions of the form
“What is the average service time DDISK

i of a request from

0

2

4

6

8

10

32 64 128 256 384 512 640 768

Buffer cache size (MB)

D
is

k
d

em
an

d
 (m

s)

PostmarkSim
Postmark
OLTPSim
OLTP
IOzoneSim
IOzone

Fig. 6. Disk What...if module output. This figure illustrates the accuracy
of the disk module in predicting request service times for several workloads
with different access patterns.

client i if that request is part of a random/sequential, read/write
stream?”. Figure 6 illustrates the accuracy of the disk module.
The buffer cache module produces a disk reference trace (for
requests that miss in buffer cache) and the disk module takes
those requests, analyzes their access patterns, and predicts
individual request service times. The module captures well
the service time trends, but there is room for improvement, as
seen in the Postmark case. The rather large inaccuracy at the
512 MB buffer cache size occurs because more requests are
hitting in the buffer cache, and the few requests that go to disk
are serviced in FIFO fashion, thereby reducing the efficiency
of the disk head scheduler. Recall from Section III-C.7 that
the disk module is built using four parameters extracted form
the disk: maximum random read and write bandwidth and
maximum sequential read and write bandwidth. Maximum
bandwidths usually imply that the disk queue size is full
(that leads to more efficient disk scheduling). Hence, our
disk module assumes that the disk queues are always full
when making a prediction. That leads to inaccuracies when
the disk queue is not full (as is the case for the Postmark
case). In general, predicting the size of the disk queue requires
assumptions about arrival patterns (e.g., Poisson arrivals) that
we do not wish to make. The prediction inaccuracy seen is
the penalty we pay for using a simple model. In practice,
however, such a model is sufficient in predicting when the
disk becomes a bottleneck. More accurate disk modules (e.g.,
based on simulation) could be used to improve the accuracy.

C. Automation agent predictions

This section evaluates the accuracy of the automation agents
in predicting the throughput and response time using several
of the What...if modules in combination.

Predicting cost of encryption: The first experiment is
illustrated in Figure 7. The high-level performance question
that this experiment answers is “What is the peak throughput
client A can get if its workload’s encoding changes from 3-way
replication to 3-way replication with encryption (or the other
way around)?”. There are several trends worth noting. First,
the predictions track well the actual throughput lines. Second,

0

20

40

60

80

100

120

0 20 40 60 80 100

% reads

Th
ro

u
g

h
p

u
t

(M
B

/s
)

1-of-3 measured throughput
1-of-3 predicted throughput
1-of-3 encr measured throughput
1-of-3 encr predicted throughput

Fig. 7. Predicting peak throughput for CPU-bound workloads.
SSIO BENCHMARK is used to measure throughput for different read:write
ratios.

when using encryption, the client’s CPU is the bottleneck
resource. Third, although the CPU cost of encoding is higher
than that of decoding for the encoding with encryption, the
throughput increases slightly as the read percentage increases.
This is because writes are sent to three machines, thus re-
quiring more network bandwidth than reads. As described in
Section III-C.4, the higher the network bandwidth required, the
higher the CPU demand needed for TCP processing. Thus, less
CPU time is available for the encoding and encryption of data.
Fourth, as the read percentage increases, the throughput for
the encoding without encryption increases, since reads obtain
data from only one of the storage-nodes, while writes need to
update all three storage-nodes, thus placing more load on the
network and CPU.

Replication vs. erasure codes: The second experiment is
illustrated in Figure 8. The high-level performance question
that this experiment answers is “What is the peak throughput
client A can get if its workload’s encoding changes from 3-
way replication to a 3-of-5 erasure coding scheme (or the
other way around)?”. A 3-of-5 scheme is more storage efficient
than 3-way replication, while tolerating the same number of
storage-node crashes (two). The prediction accuracy for the
3-of-5 scheme is less than that of the 3-way replication. We
believe this arises from a TCP inflow problem, as has been
observed in similar systems [20]. When reading under the
3-of-5 encoding, three storage-nodes are contacted to retrieve
the data. The storage-nodes simultaneously reply to the client,
causing packets to be dropped at the network switch. That
leads to TCP retransmissions. We plan to incorporate this
loss in throughput due to TCP retransmissions in our network
module in the future.

A trend worth noting is that, for a mostly-write workload,
the 3-of-5 encoding performs best, since the workloads are
network bound. The amount of “extra” data that needs to be
transmitted to tolerate two crashes is three times more than the
data that needs to be transmitted when no crashes are tolerated,
for the 3-way replication; however, the 3-of-5 scheme only
transmits 5

3 times more data. Hence, the network demand is
less for that scheme.

0

20

40

60

80

100

120

0 20 40 60 80 100

% reads

Th
ro

u
g

h
p

u
t

(M
B

/s
)

3-of-5 measured throughput
3-of-5 predicted throughput
1-of-3 measured throughput
1-of-3 predicted throughput

Fig. 8. Predicting peak throughput for network-bound workloads.
SSIO BENCHMARK is used to measure throughput for different read:write
ratios.

0

10

20

30

40

Measured
throughput

Predicted
throughput

Measured
throughput

Predicted
throughput

Moving to idle set Moving to 50% utilized set

Th
ro

u
g

h
p

u
t

(M
B

/s
)

Fig. 9. Predicting peak throughput for workload movements. The high-
level performance question that this experiment answers is “What is the peak
throughput client A can get if its workload is moved to a new set of storage-
nodes?” In this experiment, the first set of nodes is not loaded, however
one of the machines in that set is behind a slow network. The second set
of nodes contains a workload that places a 50% load on the network. Both
SSIO BENCHMARK workloads consist entirely of writes.

Data placement: The next experiment answers the question
“What is the peak throughput client A can get if its workload
is moved to a new set of storage-nodes?”. Client A’s workload
is encoded using 3-way replication. Two sets of possible
nodes are considered for data placement. The first set S 1 is
currently not utilized. However, one of the nodes is behind a
100 Mbps network (the other nodes are behind a 1000 Mbps,
or gigabit, network). The second set S2 currently services a
second workload, and the ATI measures a load of 50% on the
network of the set S2 nodes. Figure 9 shows the accuracy of
the predicted performance.

Data placement with buffer cache interference: The next
experiment is also concerned with the data placement question
“What is the peak throughput client B can get if its workload is
moved to a new set of storage-nodes?”. The encoding is again
3-way replication but there are several setup differences. The
first set of nodes S1 is currently being used by a sequential
workload A that hits in the buffer cache of the storage-nodes.
Workload B accesses data randomly, and the administrator
wants to know the performance implication of moving that

0

20

40

60

80

100

Workload 1
measured

throughput

Workload 1
predicted

throughput

Workload 1
measured

throughput

Workload 1
predicted

throughput

Workload 2
measured

throughput

Workload 2
predicted

throughput

Original setup Workload 2 added

Th
ro

u
g

h
p

u
t

(M
B

/s
)

Fig. 10. Predicting peak throughput for workload movements. The
high-level performance question that this experiment answers is “What is the
peak throughput client A can get if its workload is moved to a new set of
storage-nodes?” In this experiment, the first set of nodes contains a second
workload that is sequential and hits in the buffer cache. SSIO BENCHMARK
is used to control the workload access patterns.

workload to the S1 set of storage-nodes. Figure 10 shows
the results. The prediction is shown for both the original
and new setups. Several observations can be made. First, the
prediction accuracy is reasonable for both workloads. Second,
once workload B is added, it competes with the buffer cache
accesses of workload A, causing workload A to miss in
cache. The buffer cache What...if module correctly predicts the
resulting hit and miss rate for each of the workloads. Third,
although workload A is inherently sequential and it should
theoretically get a higher bandwidth from disk than workload
B, its requests are interleaved with those of workload B,
resulting in semi-random accesses from the disk’s perspective.
The disk What...if module correctly predicts the resulting
service time for each of the workloads.

Throughput and response time distributions: The next
experiment answers the question “What is the distribution of
throughput and response time if the number of outstanding
requests Ni from client i changes?”. It is intuitive that the
client’s throughput will peak after a certain number of out-
standing requests, while the response time may continue to
increase after that point as more requests are queued. Our
predictive infrastructure quantifies the change in both metrics.
Figure 11 illustrates the prediction accuracy for a client
that is using the 3-of-5 scheme and is network-bound. After
the request pipeline fills up (N�

i � 3) the throughput peaks,
while the response time increases linearly as the formulas in
Sections III-C.2 and III-C.3 predict. The ATI monitors the
actual number of outstanding requests from a client from an
online system, and predicts the expected client throughput
and response time. In addition it predicts the peak throughput
achievable and the minimum number of outstanding requests
needed to do so.

D. Overhead of predictive infrastructure

The predictive infrastructure is lightweight enough for
common usage. There are approximately 200 instrumentation
points in Ursa Minor that post the records shown in Table II.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10
N

Th
ro

u
g

h
p

u
t

(M
B

/s
)

0

0.001

0.002

0.003

0.004

0.005

Re
sp

o
n

se
 t

im
e

(s
)

Measured throughput

Predicted throughput

Measured response time

Predicted response time

i

Fig. 11. Predicting throughput and response time distributions. The
high-level performance question that this experiment answers is “What is the
distribution of throughput and response time if the number of outstanding
requests Ni from client i changes?” SSIO BENCHMARK is used to control
the number of outstanding requests. The workload consists entirely of reads.

The ATI places demands on the CPU for encoding and
decoding trace records, as well as network and storage demand
for sending the records to the Activity DBs. It also places a
fixed demand of 20 MB of buffer cache at each computer for
temporarily buffering records. The impact of the instrumenta-
tion on the above benchmarks’ performance is observed to be
less than 6%. The efficiency of querying the instrumentation
framework for generating per-client, per-resource demands is
on-par with the efficiency of databases to parse and process
SQL commands. For more details and extended evaluation
of the ATI’s overhead on system performance, please refer
to [14].

V. RELATED WORK

What...if explorations in systems: Some prior systems
have successfully used model-driven explorations to optimize
performance, especially in the area of capacity planning.
Ergastulum computes a good initial configuration of a storage
system by iterating over the space of possible workload charac-
teristics and storage device models [21]. Hippodrome builds on
Ergastulum and continuously refines the configuration based
on online workload-system observations [22]. We share the
same goals, but we want to have system support throughout
and incorporate predictive models within the system. There
are differences in the systems considered too: Ursa Minor
is decentralized rather than within one enclosure and it is
versatile, allowing for many more configuration options.

Indy [23] identifies performance bottlenecks in a running
system and attempts to predict the bottleneck shifts resulting
from resource upgrade. Indy treats the system as a black box,
hence the help it gets from the system is limited. Indy still
requires an expert who knows what kinds of workloads the
system should be able to support and who can provide required
system models, all from an external view of the system. Ursa
Minor has self-prediction at its core, sidestepping the need for
this external expert.

What...if explorations have been successful for database
systems. The AutoAdmin tool can answer What...if perfor-
mance questions as a function of the indices created [24]. The
DB2 advisor provides similar functionality [25]. The Resource
Advisor answers What...if questions related to changing the
database buffer size [26].

Data distribution selection: Categorization of encoding
schemes and their trade-offs can be found in [9], [10], [11],
[12], [27]. We extend such work by providing a predictive
framework, within the system, for choosing the right en-
coding based on observed system conditions and workload
characteristics. AutoRAID [28] provides versatile storage in
a monolithic disk array controller. AutoRAID automatically
adapts the choice for a data block (between RAID 5 and
mirroring) based on usage patterns. Our system is distributed,
hence we do not have a central point that monitors workloads.
Our system deals with a larger spectrum of encoding choices,
whereas AutoRAID utilizes just two.

Instrumentation frameworks and prediction algorithms:
Most existing monitoring systems depend on isolated perfor-
mance counters and logs that the administrator is expected to
collect, filter and analyze and are designed with a single-node
system in mind [15], [29], [30], [31], [32], [33]. Other mon-
itoring systems scale well in distributed systems [34], [35],
but provide only aggregate resource consumption statistics,
and do not maintain per-client information. Such aggregate
performance monitors cannot differentiate among different
workloads in a shared distributed system. This makes it dif-
ficult to answer fine-grained What...if questions. We designed
the ATI for self-monitoring. It uses more detailed per-client
activity records that keep track of all resources touched by
a request as it goes through the system. In that respect, our
instrumentation framework is most similar to Magpie [36].

Work has been done on pinpointing performance bottlenecks
in systems. In a middleware-based system, Chen et al. show
that by instrumenting just the middleware, several resource
bottlenecks can be detected [37]. Aguilera et al. describe a
system where software components are treated as black-box
and bottlenecks are detected by monitoring the packets flowing
among them [38]; the instrumentation framework provides
coarse-grained answers in that case. Ursa Minor has detailed
instrumentation built-in and can provide finer-grained, per-
client answers.

Much research has been done on prediction algorithms. It
is not our goal to invent new methods, but rather to design
systems so that these approaches can work. We utilize queuing
analysis to make predictions [16], because we have access
to the system’s source code and are thus able to monitor
all queues where request processing happens. Others have
used statistical techniques [39], [40] to make coarse-grained
performance predictions in black-box systems.

VI. DISCUSSION

There are several improvements that can be made to our
What...if modules. First, as discussed throughout this paper,
they make use of simple simulation or analytical models. We

opted for simple models that account for first-order effects.
There is room for improvement, especially for the disk models.
Second, the cost of re-distribution is not included in the models
currently. It is desirable for the Automation Agents to predict
the time it will take to re-distribute the data or to take as
input an upper bound on how long re-distribution is allowed to
take. Third, our modules currently deal only with closed-loop
workloads. An important extension of this work is to predict
the response time of open-loop workloads [41]. In practice,
it is difficult to determine, from within the system, whether a
client’s workload is open- or closed-loop (or a hybrid).

An assumption in designing the ATI for Ursa Minor is
that machines will only run our code and the underlying
operating system. The only modification we had to make
outside our code-base was a small change in the Linux OS
to allow for posting of context switch records (in Windows
there is already built-in support for this [15]). It will be
valuable to make predictions about off-the-shelf components,
like databases, which are closed source, that store data in Ursa
Minor. We expect that the accounting for the resources such
components use will be coarse-grained compared to the ATI
instrumentation built into Ursa Minor and so will lead to less
accurate predictions.

There could be instances where hardware and/or software
mis-configurations in the system cause the system behavior
to diverge from what is expected. For example, we observed
several instances where switches and NICs were not config-
ured correctly, and the system was not getting the performance
predicted. In those cases, we believe our predictive infrastruc-
ture could still be of value to an administrator and provide
suggestions for the cause of the problem. For example, a
typical suggestion could be: “The client’s throughput should
be 50 MB/s, but it is only getting 20 MB/s. The CPUs and
network are underutilized, and the workload is hitting in the
buffer cache, so the disk is not a bottleneck. Perhaps there is
a problem with the network switch”. Such suggestions would
reduce, but not eliminate, the time the administrator needs to
spend to find the root cause of a problem.

VII. SUMMARY

A self-predicting system monitors itself and answers
What...if questions about hypothetical changes. This paper
describes and evaluates self-prediction support in a distributed
storage system that can accurately answer What...if questions
about the performance impact of data encoding changes,
adding or removing datasets/workloads, and adding or re-
moving storage-nodes. The results demonstrate the feasibility
of self-prediction in a real system, and we believe that the
same monitoring architecture and modeling tools will work in
general. Such self-prediction reduces the amount an admin-
istrator must understand about the complex workload-system
interactions and is a step towards the goal of self-managing
distributed systems.

VIII. ACKNOWLEDGEMENTS

We thank Matthew Wachs for answering questions on the
Linux kernel. We thank the anonymous reviewers for their
useful feedback. We thank the members and companies of the
PDL Consortium (including APC, EMC, Equallogic, Hewlett-
Packard, Hitachi, IBM, Intel, Microsoft, Network Appliance,
Oracle, Panasas, Seagate and Sun) for their interest, insights,
feedback, and support. This work is supported in part by Army
Research Office grant number DAAD19-02-1-0389, by NSF
grant number CNS-0326453, by DARPA’s SRS program via
Air Force contract number FA8750-04-01-0238, and by the Air
Force Research Laboratory via contract F49620-01-1-0433.

REFERENCES

[1] G. R. Ganger, J. D. Strunk, and A. J. Klosterman, “Self-* Storage:
brick-based storage with automated administration,” Carnegie Mellon
University, Tech. Rep., August 2003.

[2] Gartner Group, “Total Cost of Storage Ownership — A User-oriented
Approach,” Research note, Gartner Group, February, 2000, research
note, Gartner Group.

[3] J. Gray, “A conversation with Jim Gray,” ACM Queue, vol. 1, no. 4,
June 2003.

[4] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback, “Self-tuning
Database Technology and Information Services: from Wishful Thinking
to Viable Engineering.” in VLDB, August, 2002, pp. 20–31.

[5] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R. Ganger,
J. Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad, B. Salmon,
R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk, E. Thereska,
M. Wachs, and J. J. Wylie, “Ursa Minor: versatile cluster-based storage,”
in Conference on File and Storage Technologies. USENIX Association,
2005, pp. 59–72.

[6] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence, “FAB:
building distributed enterprise disk arrays from commodity components,”
in Architectural Support for Programming Languages and Operating
Systems. ACM, 2004, pp. 48–58.

[7] Z. Zhang, S. Lin, Q. Lian, and C. Jin, “RepStore: a self-managing
and self-tuning storage backend with smart bricks,” in International
Conference on Autonomic Computing. IEEE, 2004, pp. 122–129.

[8] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, “Designing for
disasters,” in Conference on File and Storage Technologies. USENIX
Association, 2004, pp. 59–72.

[9] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: high-performance, reliable secondary storage,” ACM Computing
Surveys, vol. 26, no. 2, pp. 145–185, June 1994.

[10] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM, vol. 36, no. 2,
pp. 335–348, April 1989.

[11] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication:
a quantitative approach,” in International Workshop on Peer-to-Peer
Systems. Springer-Verlag, 2002.

[12] J. J. Wylie, “A read/write protocol family for versatile storage infrastruc-
tures,” Ph.D. dissertation, Carnegie Mellon University, October 2005.

[13] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient
Byzantine-tolerant erasure-coded storage,” in International Conference
on Dependable Systems and Networks, 2004.

[14] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,
J. Lopez, and G. R. Ganger, “Stardust: Tracking activity in a distributed
storage system,” in ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, June, 2006.

[15] Microsoft, “Event tracing,” 2005, http://msdn.microsoft.com/.
[16] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik, Quantitative

system performance: computer system analysis using queuing network
models. Prentice Hall, 1984.

[17] E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan, and G. R.
Ganger, “Informed data distribution selection in a self-predicting storage
system,” Carnegie Mellon University, Tech. Rep., January 2006.

[18] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger,
“Metadata efficiency in versioning file systems,” in Conference on File
and Storage Technologies. USENIX Association, 2003, pp. 43–58.

[19] W. Norcott and D. Capps, “IOzone filesystem benchmark program,”
2002, http://www.iozone.org.

[20] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale stor-
age cluster - delivering scalable high bandwidth storage,” in ACM/IEEE
SC2004, 2004.

[21] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and Q. Wang,
“Ergastulum: quickly finding near-optimal storage system designs,” HP
Labs, Tech. Rep., 2001.

[22] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch,
“Hippodrome: running circles around storage administration,” in Con-
ference on File and Storage Technologies. USENIX Association, 2002,
pp. 175–188.

[23] J. Hardwick, E. Papaefstathiou, and D. Guimbellot, “Modeling the
Performance of E-Commerce Sites,” in 27th International Conference
of the Computer Measurement Group, vol. 105:3, no. 12, 2001.

[24] S. Chaudhuri and V. Narasayya, “AutoAdmin what–if index analysis
utility,” in ACM SIGMOD International Conference on Management of
Data. ACM Press, 1998, pp. 367–378.

[25] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman, and A. Skelley,
“DB2 Advisor: An optimizer smart enough to recommend its own
indexes,” in International Conference on Data Engineering, 2000, pp.
101–110.

[26] D. Narayanan, E. Thereska, and A. Ailamaki, “Continuous resource
monitoring for self-predicting DBMS,” in International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2005.

[27] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote, and
P. K. Khosla, “Survivable information storage systems,” IEEE Computer,
vol. 33, no. 8, pp. 61–68, August 2000.

[28] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID
hierarchical storage system,” ACM Transactions on Computer Systems,
vol. 14, no. 1, pp. 108–136, February 1996.

[29] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic in-
strumentation of production systems,” in USENIX Annual Technical
Conference. USENIX Association, 2004, pp. 15–28.

[30] J. P. Bouhana, “UNIX Workload Characterization Using Process Ac-
counting,” in 22nd International Computer Measurement Group Con-
ference, 1996, pp. 379–390.

[31] IBM Corporation, “DB2 Performance Expert,” 2004,
http://www-306.ibm.com/software.

[32] Microsoft, “Windows Server 2003 Performance Counters Reference,”
2005, http://www.microsoft.com/technet/.

[33] Oracle Corporation, “Oracle Database Manageability,” 2004,
http://www.oracle.com/technology/.

[34] E. Anderson and D. Patterson, “Extensible, scalable monitoring for
clusters of computers,” in Systems Administration Conference. USENIX
Association, 1997, pp. 9–16.

[35] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience,” Parallel
Computing, vol. 30, no. 7, July 2004.

[36] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for
request extraction and workload modelling,” in Symposium on Operating
Systems Design and Implementation, 2004.

[37] M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox, and
E. Brewer, “Path-based failure and evolution management,” in Sympo-
sium on networked system design and implementation, 2004, pp. 309–
322.

[38] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black
boxes,” in ACM Symposium on Operating System Principles. ACM
Press, 2003, pp. 74–89.

[39] M. Goldszmidt and B. Sabata, “Research issues in applying pattern
reconfiguration and statistical models to system managment and model-
ing,” in Algorithms and Architectures for Self-Managing Systems. HP
Labs, IET Inc., 2003, pp. 29–34.

[40] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R.
Ganger, “Storage Device Performance Prediction with CART Models,”
in International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems. IEEE/ACM, 2004.

[41] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Closed versus open
system models and their impact on performance,” in Symposium on
Networked Systems Design and Implementation, 2006.

