
Decentralized Task-Aware Scheduling for
Data Center Networks

Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Ant Rowstron
Microsoft Research

Abstract

Most data center applications perform rich and com-
plex tasks (e.g., executing a search query or generating a
user’s wall). From a network perspective, these tasks typ-
ically comprise multiple flows, which traverse different
parts of the network at potentially different times. Exist-
ing network resource allocation schemes, however, treat
all these flows in isolation – rather than as part of a task
– and therefore only optimize flow-level metrics.

In this paper, we show that task-aware network
scheduling, which groups flows of a task and schedules
them together, can reduce both the average as well as
tail completion time for typical data center applications.
Based on the network footprint of real applications, we
motivate the use of a scheduling policy that dynamically
adapts the level of multiplexing in the network. To apply
task-aware scheduling to online applications with small
(sub-second) tasks, we design and implement Baraat, a
decentralized task-aware scheduling system. Through
experiments with Memcached on a small testbed and
large-scale simulations, we show that, compared to ex-
isting schemes, Baraat can reduce tail task completion
times by 60% for data analytics workloads and 40% for
search workloads.

1 Introduction

Today’s data center applications perform rich and com-
plex tasks, such as answering a search query or building
a user’s social news-feed. These tasks involve hundreds
and thousands of components, all of which need to fin-
ish before a task is considered complete. This has moti-
vated efforts to allocate data center resources in a “task-
aware” fashion. Examples include task-aware allocation
of cache [7], network bandwidth [11], and CPUs and net-
work [6].

In recent work, Coflow [10] argues for tasks (or
Coflows) as a first-order abstraction for the network data
plane. This allows applications to expose their seman-
tics to the network, and the network to optimize for
application-level metrics. For example, allocating net-

work bandwidth to tasks in a FIFO fashion, such that
they are scheduled over the network one at a time, can
improve the average task completion time as compared to
per-flow fair sharing (e.g., TCP) [11]. While an exciting
idea with important architectural ramifications, we still
lack a good understanding of the performance implica-
tions of task-aware network scheduling in data centers–
(i). How should tasks be scheduled across the network?,
(ii). Can such scheduling only improve average perfor-
mance?, and (iii). Can we realize these gains for small
(sub-second) tasks common in data centers? In this pa-
per, we answer these questions and make the following
three contributions.

First, we study policies regarding the order in which
tasks should be scheduled. We show that typical data
center workloads include some fraction of heavy tasks
(in terms of their network footprint), so obvious schedul-
ing candidates like FIFO and size-based ordering per-
form poorly. We thus propose FIFO-LM or FIFO with
limited multiplexing, a policy that schedules tasks based
on their arrival order, but dynamically changes the level
of multiplexing when heavy tasks are encountered. This
ensures small tasks are not blocked behind heavy tasks
that are, in turn, not starved.

Second, we show that task-aware policies like FIFO-
LM (and even FIFO) can reduce both the average and
the tail task completion times. They do so by smooth-
ing bursty arrivals and ensuring that a task’s completion
is only impacted by tasks that arrive before it. For ex-
ample, data center applications typically have multiple
stages where a subsequent stage can only start when the
previous stage finishes. In such scenarios, FIFO schedul-
ing can smooth out a burst of tasks that arrive at the first
stage. As a result, tasks observe less contention at the
later stages, thereby improving the tail completion times.

Third, we design Baraat, a decentralized task-aware
scheduling system for data centers. Baraat avoids the
common problems associated with centralized schedul-
ing (i.e., scalability, fault-tolerance, etc) while address-
ing the key challenge of decentralized scheduling i.e.,
making coordinated scheduling decisions while incur-
ring low coordination overhead. To achieve this, Baraat
uses a simple heuristic. Each task has a globally unique

1

priority – all flows within the task use this priority, ir-
respective of when these flows start or which part of the
network they traverse. This leads to consistent treatment
for all flows of a task across time and space, and im-
proves the chances that all flows of a task make progress
together.

By generating flow priorities in a task-aware fash-
ion, Baraat transforms the task-aware scheduling prob-
lem into the relatively well-understood flow prioritiza-
tion problem. While many flow prioritization mecha-
nisms exist (e.g., priority queues, PDQ [16], D3 [25],
pFabric [5]), we show that they do not meet all the re-
quirements of supporting FIFO-LM. Thus, Baraat in-
troduces Smart Priority Class (SPC), which combines
the benefits of priority classes and explicit rate proto-
cols [16, 12, 25]. It also deals with on-the-fly identi-
fication of heavy tasks and changes the level of mul-
tiplexing accordingly. Finally, like traditional priority
queues, SPC supports work-conservation which ensures
that Baraat does not adversely impact the utilization of
non-network resources in the data center.

To demonstrate the feasibility and benefits of Baraat,
we evaluate it on three platforms: a small-scale testbed
for validating our proof-of-concept prototype; a flow
based simulator for conducting large-scale experiments
based on workloads from Bing and data-analytics ap-
plications; the ns-2 simulator for conducting micro-
benchmarks. We have also integrated the popular in-
memory caching application, Memcached1, with Baraat.
Our results show that Baraat reduces tail task completion
time by 60%, 30% and 40% for data-analytics, search
and homogeneous workloads respectively compared to
fair-sharing policies, and by over 70% compared to size-
based policies. Besides the tail, Baraat further reduces
average completion time for batched data parallel jobs
by 30%-60% depending on the configuration.

2 A Case for Task-Awareness

Baraat’s design is based on scheduling network resources
at the unit of a task. To motivate the need for task-aware
scheduling policies, we start by studying typical applica-
tion workflows, which leads us to a formal definition of
a task. We then examine task characteristics of real ap-
plications and show how flow-based scheduling policies
fail to provide performance gains given such task char-
acteristics.

2.1 Task-Oriented Applications
The distributed nature and scale of data center applica-
tions results in rich and complex workflows. Typically,

1http://memcached.org/

a) Parallel Workflow c) Sequential Workflow

b) Partition-Aggregate Workflow

A

Client

Storage

Parallel flows

Front-End

Service 2

Sequential
Access

read()
Service 1

W

………… A

W W .. W W W .. W W W .. W W W ..

Worker(W)

Aggregator(A)

A A A

Figure 1: Common workflows.

these applications run on many servers that, in order to
respond to a user request, process data and communicate
across the internal network. Despite the diversity of such
applications, the underlying workflows can be grouped
into a few common categories which reflect their com-
munication patterns (see Figure 1).

All these workflows have a common theme. The “ap-
plication task” being performed can typically be linked
to a waiting user. Examples of such tasks include a read
request to a storage server, a search query, the building of
the user’s wall or even a data analytics job. Thus, we de-
fine a task as the unit of work for an application that can
be linked to a waiting user. Further, completion time of
tasks is a critical application metric as it directly impacts
user satisfaction. In this paper, we aim to minimize task
completion time focusing at both the average and the tail.

As highlighted by the examples in Figure 1, a typical
application task has another important characteristic: it
generates multiple flows across the network. A task’s
flows may traverse different parts of the network and not
all of them may be active at the same time. When all
these flows finish, the task finishes and the user gets a
response or a notification.

Task characterization. We use data from past studies
to characterize two features of application tasks in to-
day’s data centers: 1) the task size and 2) the number of
flows per task. Both are critical when considering task-
aware scheduling for the network; the first influences the
scheduling policy, while the latter governs when task-
aware scheduling outperforms flow-based scheduling, as
we will later discuss.

(1) A task’s size is its network footprint, i.e. the sum
of the sizes of network flows involved in the task. We
examine two typical prominent applications, namely web
search and data analytics. Figure 2 (left) presents the nor-
malized distribution of task sizes for the query-response

2

http://memcached.org/

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Task size (normalized)

C
D

F

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
00

0.2

0.4

0.6

0.8

1

Input size (normalized)

C
D

F

Figure 2: Normalized distribution of task sizes for
search (left), data analytics (right) workflows.

workflow at Bing. For each query, the task size is the sum
of flows sizes across all workers involved in the query.
The figure reflects the analysis of roughly 47K queries
based on datasets collected in [17]. While most tasks
have the same size, approximately 15% of the tasks are
significantly heavier than others. This is due to the vari-
ability in the number of the responses or iterations [4].
By contrast, Figure 2 (right) presents the distribution
of the input size across MapReduce jobs at Facebook
(based on the datasets used in [9]). This represents the
task size distribution for a typical data analytics work-
load. The figure shows that the task sizes follow a heavy-
tailed distribution, which agrees with previous observa-
tions [9, 8, 7]. Similar distributions have been observed
for the other phases of such jobs.

Overall, we find that the distribution of task sizes de-
pends on the application. For some applications, all tasks
can be similarly sized while others may have a heavy
tailed distribution. In § 3.2, we show that heavy-tailed
task distributions rule out some obvious scheduling can-
didates. Hence, a general task-aware scheduling policy
needs to be amenable to a wide-range of task size distri-
butions, ranging from uniform to heavy-tailed.

(2) For the number of flows per task, it is well accepted
that most data center applications result in a complex
communication pattern. Table 1 summarizes the num-
ber of flows per task for a number of applications in var-
ious production data centers. Flows per task can range
from a few tens, to hundreds or thousands, and as dis-
cussed, subsets of flows can be active at different times
and across different parts of the network.

Implications for Data Center Network. Some of the
above task characteristics (e.g., large number of concur-
rent flows) also contribute towards network congestion
(and losses), which in turn, results in increased response
times for the users. This has even been observed in pro-
duction data centers(e.g., Bing [4, 17], Cosmos [6], Face-
book [19]) which typically have modest average data

Application Flows/task Notes
Web search [4] 88

(lower-
bound)

Each aggregator queries 43
workers. Number of flows
per search query is much
larger.

MapReduce [7] 30
(lower-
bound)

Job contains 30 map-
pers/reducers at the median,
50000 at the maximum.

Cosmos [23] 55 70% of tasks involve 30-100
flows, 2% involve more than
150 flows

Table 1: Tasks in data centers comprise multiple
flows.

center utilization. Thus, the network, and its resource al-
location policy, play an important role in providing good
performance to data center applications. In the following
section, we show why today’s flow-based resource allo-
cation approaches are a misfit for typical task-oriented
workloads.

2.2 Limitations of Flow-based Policies
Traditionally, allocation of network bandwidth has tar-
geted per-flow fairness. Transport protocols like TCP
and DCTCP [4] achieve fair-sharing by apportioning an
equal amount of bandwidth to all the flows. This in-
creases the completion time of flows and thus, the task
completion time too. Because latency is the primary goal
for many data center applications, recent proposals give
up on per-flow fairness, and optimize flow-level metrics
like meeting flow deadlines and minimizing flow com-
pletion time [25, 16, 5]. For example, PDQ [16] and
pFabric [5] can support a scheduling policy like short-
est flow first (SFF), which minimizes flow completion
times by assigning resources based on flow sizes.

However, as we have shown, tasks for typical data cen-
ter applications can comprise hundreds of flows, poten-
tially of different sizes. SFF considers flows in isolation,
so it will schedule the shorter flows of every task first,
leaving longer flows to the end. This can hurt applica-
tion performance by delaying completion of tasks.

We validate this through a simple simulation that
compares fair sharing (e.g., TCP/DCTCP) with SFF
in terms of task completion times, for a simple sin-
gle stage partition-aggregate workflow scenario with 40
tasks comprising flows uniformly chosen from the range
[5, 40]KB. Figure 3 shows SFF’s improvement over fair-
sharing as a function of the number of flows in a task.
We also compare it with the performance of a task-aware
scheme, where flows for the same task are grouped and
scheduled together. If a task has just a single flow, SFF
reduces the task completion time by almost 50%. How-
ever, as we increase the number of flows per task, the

3

 0

 20

 40

 60

 80

 100

1 10 50 100

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Number of Flows Per Task

SFF
Task-aware

Figure 3: SFF fails to improve on fair sharing for re-
alistic number of flows per task while a task-aware
policy provides consistent benefits.

benefits reduce. Most tasks in data centers involve tens
and hundreds of flows. The figure shows that in such
settings, SFF performs similar to fair-sharing propos-
als. While this is a simple scenario, this observation ex-
tends to complex workflows as shown in our evaluation
(§5). In contrast, the benefits are stable for the task-aware
scheme.

3 Scheduling Policy
The scheduling policy determines the order in which
tasks are scheduled across the network. Determining
an ordering that minimizes task completion time is NP-
hard; flow-shop scheduling [13, 22], a well known NP-
hard problem in production systems, can be reduced to
task-aware scheduling. Flow-shop scheduling is consid-
ered as one of the hardest NP-hard problems, with exact
solutions not known for even small instances of the prob-
lem [14]. Thus, we need to consider heuristic scheduling
policies.

The heuristic policy should meet two objectives. First,
it should help reduce both the average as well as tail
task completion time. Second, it should be amenable
to decentralized implementation, i.e., it should facilitate
scheduling decisions to be made locally (at the respective
end-points and switches) without requiring any central-
ized coordination.

3.1 Task Serialization
The space of heuristics to allocate bandwidth in a task-
aware fashion is large. Guided by flow-based policies
that schedule flows one at a time, we consider serving
tasks one at a time. This can help finish tasks faster by
reducing the amount of contention in the network. Con-
sequently, we define task serialization as the set of poli-
cies where an entire task is scheduled before moving to
the next.

Through simple examples, we illustrate the benefits of
task serialization (TS) over fair sharing (FS). The first ex-
ample illustrates the most obvious benefit of TS (Fig 4a).

Figure 4: Distilling the Benefits of Task Serialization
(TS) over Fair Sharing (FS).

Figure 5: FIFO ordering can reduce tail completion
times compared to fair sharing (FS).

There are two tasks, A and B, which arrive at the same
time (t = 0) bottlenecked at the same resources. FS as-
signs equal bandwidth to both the tasks, increasing their
completion times. In contrast, TS allocates all resources
to A, finishes it, and then schedules B. Compared to FS,
A’s completion time is reduced by half, but B’s comple-
tion time remains the same.

We now consider an application with two stages
(Fig 4b), as in the partition-aggregate workflow of
search. We consider a different network bottleneck for
each of the two stages – for example, downlink to the
mid-level aggregator in the first stage and downlink to the
top-level aggregator in the second. There are two tasks,
A and B, which arrive in the system at the same time (t =
0). With FS, both tasks get the same amount of resources
and thus make similar progress: they finish the first stage
at the same time, then move together to the second stage,
and finally finish at the same time. TS, in contrast, en-
ables efficient pipelining of these tasks. Task A gets the
full bandwidth in the first stage, finishes early, and then
moves to the second stage. In parallel, B makes progress
in the first stage. By the time B reaches the second stage,
A is already finished. This reduces the completion times
of both the tasks.

Next, we consider specific policies that can achieve
task serialization.

3.2 Task Serialization Policies
We begin with two obvious policies for task serializa-
tion: FIFO which schedules tasks in their arrival order
and STF (shortest task first) that schedules tasks based on
their size. STF can provide good average performance

4

but can lead to high tail latency, or even starvation, for
large sized tasks. Moreover, it requires knowledge about
task sizes up front, which is impractical for many appli-
cations.

FIFO is attractive for many reasons. In addition to be-
ing simple to implement, FIFO also limits the maximum
time a task has to wait, as a task’s waiting time depends
only on the tasks that arrive before it. This is illustrated in
Figure 5 which compares a FIFO policy with fair sharing
(FS). While tasks A and B arrive at t = 0, task C arrives
later (t = 4). With FS, C’s arrival reduces the bandwidth
share of existing tasks as all three tasks need to share the
resources. This increases the completion times of both
A and B and they both take 10 units of time to finish.
In contrast, with TS, C’s arrival does not affect existing
tasks and none of the tasks take more than 8 units of time
to finish. This example illustrates that in an online set-
ting, even for single stage workflows, a FIFO task serial-
ization policy can reduce both the average and tail task
completion times compared to FS.

In fact under simple settings, FIFO is proven to be
optimal for minimizing the tail completion time, if task
sizes follow a light tailed distribution. i.e., task sizes are
fairly homogeneous and do not follow a heavy-tailed dis-
tribution [24]. However, if task sizes are heavy-tailed,
FIFO may result in blocking small tasks behind a heavy
task. As discussed earlier in §2.1, data center applica-
tions do have such heavy tasks. For such applications,
we need a policy that can separate out these “elephants”
from the small tasks.

3.3 FIFO-LM

We propose to use FIFO-LM2, which processes tasks in
a FIFO order, but can dynamically vary the number of
tasks that are multiplexed at a given time. If the degree
of multiplexing is one, it performs exactly the same as
FIFO. If the degree of multiplexing is ∞, it works similar
to fair sharing. This policy is attractive because it can
perform like FIFO for the majority of tasks (the small
ones), but when a large task arrives, we can increase
the level of multiplexing and allow small tasks to make
progress as well.

An important question is how to determine that a task
is heavy i.e., how big is a heavy task. We assume that
the data center has knowledge about task size distribu-
tion based on historically collected data. Based on this
history, we need to identify a threshold (in terms of task
size) beyond which we characterize a task as heavy. For
applications with bi-modal task size distribution or re-
sembling the Bing workload in Figure 2, identifying this
threshold is relatively straightforward. As soon as the

2typically referred to as limited processor sharing in scheduling the-
ory [18].

task size enters the second mode, we classify it as heavy
and increase the level of multiplexing. For heavy-tailed
distributions, our experimental evaluation with a num-
ber of heavy-tailed distributions such as Pareto or Log-
normal with varying parameters (shape or mean respec-
tively), shows that a threshold in the range of 80th-90th

percentile provides the best results.

4 Baraat

Baraat is a decentralized task-aware scheduling system
for data center networks. It aims to achieve FIFO-LM
scheduling in a decentralized fashion, without any ex-
plicit coordination between network switches.

In Baraat, each task is assigned a globally unique iden-
tifier (task-id) based on its arrival (or start) time. Tasks
with lower ids have a higher priority over ones with a
higher id. Network flows carry the identifier of the task
they belong to and inherit its priority. This ensures that
switches make consistent decisions without any coordi-
nation. If two switches observe flows of two different
tasks, both make the same decision in terms of flow pri-
oritization (consistency over space). If a switch observes
flows of two tasks at different times, it makes the same
decision (consistency over time). Such consistent re-
source allocation increases the likelihood that flows of
a task get “similar” treatment across the network and
hence, tasks actually progress in a serial fashion. Finally,
switches locally decide when to increase the level of mul-
tiplexing through on-the-fly identification of heavy tasks.

In the next section, we discuss how the task priorities
are generated. We then discuss how switches act on these
priorities and why existing mechanisms are insufficient.
Finally, we present the Smart Priority Class mechanism,
and discuss how it meets our desired prioritization goals.

4.1 Generating Task Identifiers
Baraat uses monotonically increasing counter(s) to keep
track of incoming tasks. We only need a single counter
when all incoming tasks arrive through a common point.
Examples of such common points include the load bal-
ancer (for user-facing applications like web search), the
job scheduler (for data parallel and HPC applications),
the metadata manager (for storage applications), and so
on.

The counter is incremented on a task’s arrival and is
used as the task’s task-id. We use multiple counters
when tasks arrive through multiple load balancers. Each
counter has a unique starting value and an increment
value, i, which represents the number of counters in the
system. For example, if there are two counters, they can
use starting values of 1 and 2 respectively, with i = 2. As

5

Table 2: Desired properties and whether they are sup-
ported in existing mechanisms.

a result, one of them generates odd task-ids (1, 3, 5,...)
while the other generates even task-ids (2, 4, 6...). This
approximates a FIFO ordering in a distributed scenario.
These counters can be loosely synchronized and any in-
consistency between them could be controlled and lim-
ited through existing techniques [26]. To deal with wrap-
around, counters are periodically reset when the system
load is low.

The generation of task identifiers should also account
for background services (e.g., index update) that are part
of most production data centers. Tasks of such services
often involve long flows which can negatively impact
tasks of online services, if not properly handled. In
Baraat, we assign strictly lower priority to such back-
ground tasks by assigning them task-ids that do not over-
lap with the range of task-ids reserved for the high prior-
ity online service. For example, task-ids less than n could
be reserved for online service while task-ids greater than
n could be used for the background service.

Propagation of task identifiers. A flow needs to
carry the identifier for its parent task. Thus, all physi-
cal servers involved in a task need to know its task-id.
Applications can propagate this identifier along the task
workflow; for example, for a web-search query, aggrega-
tors querying workers inform them of the task-id which
can then be used for the response flows from the workers
back to the aggregators.

4.2 Prioritization Mechanism - Require-
ments

Baraat’s task-aware assignment of flow priorities, in the
form of task-ids, opens up the opportunity to use exist-
ing flow priortization mechanisms (e.g., priority queues,
pFabric [5], PDQ [16], etc) at the switches and end-
points. While these mechanism provide several attrac-
tive properties, they do not meet all the requirements of
supporting FIFO-LM. Table 2 lists the desired properties
and whether they are supported in existing mechanisms.

The first two properties, strict priority and fair-
sharing, are basic building blocks for FIFO-LM: we
should be able to strictly prioritize flows of one task over

another; likewise, if the need arises (e.g., heavy task in
the system), we should be able to do fair-sharing of band-
width amongst a set of flows. These two building blocks
are effectively combined to support FIFO-LM through
the third property – handling heavy tasks, which involves
on-the-fly identification of heavy tasks and then chang-
ing the level of multiplexing accordingly.

The last two properties, work-conservation and pre-
emption, are important for system efficiency. Work con-
servation ensures that a lower priority task is scheduled
if the highest priority task is unable to saturate the net-
work – for example, when the highest priority task is too
small to saturate the link or if it is bottlenecked at a sub-
sequent link. Finally, preemption allows a higher priority
task to grab back resources assigned to a lower prior-
ity task. Thus, preemption complements work conserva-
tion – the latter lets lower priority tasks make progress
when there is spare capacity, while the former allows
higher priority tasks to grab back the resources if they
need to. These two properties also prove crucial in sup-
porting background services; such services can continue
to make progress whenever there are available resources
while high priority tasks can always preempt them.

Limitations of existing mechanisms. As the table
highlights, no existing mechanism supports all these five
properties. Support for handling heavy tasks is obvi-
ously missing as none of these mechanisms targets a
policy like FIFO-LM. PDQ [16] does not support fair-
sharing of bandwidth, so two flows having the same pri-
ority are scheduled in a serial fashion. Similarly, pFab-
ric [5] does not support work-conservation in a multi-
hop setting because end-hosts always send at the max-
imum rate, so flows continue to send data even if they
are bottlenecked at a subsequent hop. In such scenarios,
work-conservation would mean that these flows back-off
and let a lower priority flow, which is not bottlenecked at
a subsequent hop, send data. Thus, we need additional
functionality (e.g., explicit feedback from switches) to
support work-conservation in multi-hop settings.

These limitations of existing mechanisms motivate
Smart Priority Class (SPC), which we describe next.

4.3 Smart Priority Class
SPC is logically similar to priority queues used in
switches: flows mapped to a higher priority class get
strict preference over those mapped to a lower priority
class, and flows mapped to the same class share band-
width according to max-min fairness. However, SPC dif-
fers from traditional priority queues in two aspects: i) it
employs an explicit rate based protocol: switches assign
rates to each flow and end-hosts send at the assigned rate;
ii) each switch has a classifier that maps flows to classes

6

and is responsible for handling heavy tasks. A key aspect
of SPC design is that we mitigate two sources of over-
head present in prior explicit rate protocols – the high
flow switching overhead and the need to keep per-flow
state at the switches.

Classifier: By default, the classifier maintains a one-
to-one mapping between tasks and priority classes. The
highest priority task maps to the highest priority class
and so on. The decision to map all flows of a task to
the same class ensures that flows of the same task are ac-
tive simultaneously, instead of being scheduled one-by-
one [16], thereby reducing the overhead of flow switch-
ing.

The classifier also does on-the-fly identification of
heavy tasks, hence tasks need not know their size up-
front. The classifier keeps a running count of the size
of each active task and uses the aggregate bytes reserved
by flows of a task as a proxy for its current size. If the
task size exceeds a pre-determined threshold, the task is
marked as heavy. Subsequently, the heavy task and the
task immediately next in priority to the heavy task share
the same class. Finally, by just changing the way flows
are mapped to classes, we can support other scheduling
policies (e.g., fair sharing, flow level prioritization, etc).

Explicit Rate Protocol: Similar to existing explicit
rate protocols [12, 16, 25], switches assign a rate to each
flow and senders sent data at that rate.3 However, instead
of keeping per-flow state at the switches, we only main-
tain aggregate, per-task counters. Given the typical large
number of flows per task, this can provide an order of
magnitude or more reduction in the the amount of state
kept at the switches.

However, without per-flow state, providing work-
conservation becomes challenging, as switches no longer
keep track of the bottleneck link of each flow. We
address this challenge through a combination of two
techniques: First, switches provide richer feedback to
sources. Switches inform senders about two types of
rates. An actual rate (AR) at which senders should send
data in the next RTT and a nominal rate (NR), which is
the maximum share of the flow based on its priority. NR
might differ from AR due to flow dynamics –the switch
might have already assigned bandwidth to a lower prior-
ity flow which needs to be preempted before NR is avail-
able. NR essentially allows senders to identify their cur-
rent nominal bottlenck share. Second, our mechanism
puts increased responsibility on end-points. Instead of
just asking for their maximum demand, the end-host de-
mands intelligently, keeping in view the feedback from
the switches. While the sender initially conveys its max-
imum demand, it lowers it for the next RTT, if it is bottle-
necked at some switch. This allows the non-bottlenecked

3We assume that end-hosts and switches are protocol compliant, a
reasonable assumption for production data center environments.

links to free up the unused bandwidth and use it for some
low priority flow.

We now describe the details of our explicit rate pro-
tocol, focusing on the key operations that end-hosts and
switches need to perform.

Algorithm 1 Sender – Generating SRQ

1: MinNR - minimum NR returned by SRX
2: Demandt+1 ← min(NIC Rate,DataInBu f f er ×

RT T) //if flow already setup
3: if MinNR < Demandt then
4: Demandt+1← min(Demandt+1,MinNR+δ)
5: end if

Algorithm 2 Switch - SRQ Processing

1: Return Previous Allocation and Demand
2: Class =Classi f ier(TaskID)
3: ClassAvlBW =C−Demand(HigherPrioClasses)
4: AvailShare =ClassAvlBW −Demand(MyClass)
5: if AvailShare >CurrentDemand then
6: NominalRate(NR)←CurrentDemand
7: else
8: NR←ClassAvlBW/NumFlows(MyClass)
9: end if

10: if (C−Allocation)> NR then
11: ActualRate(AR)← NR
12: else
13: AR← (C−Allocation)
14: end if
15: Update Packet with AR and NR
16: Update local info – Demand(MyClass), BytesRe-

served(TaskID), and Allocation

4.3.1 End-host Operations

Every round-trip-time (RTT), the sender transmits a
scheduling request message (SRQ), either as a stand-
alone packet or piggy-backed onto a data packet. The
most important part of SRQ is the demand, which con-
veys the sender’s desired rate for the next RTT.

Algorithm 1 outlines the key steps followed in gener-
ating an SRQ. The initial demand is set to the sender’s
NIC rate (e.g., 1Gbps) or lower if the sender has only
a small amount of data to send (Step 2). In addition to
the demand, the SRQ also contains other information,
including the task-id, previous demand, and allocations
made by the switches in the previous round. We later
explain how this information is used by the switches.

Based on the response (SRX), the sender identifies the
bottleneck rates: it transmits data at AR and uses NR
to determine how much it should demand in the next

7

RTT. If the flow is bottlenecked on a network link, the
sender lowers its demand for the next RTT and sets it
equal to NR+δ Lowering the demand allows other links
to only allocate the necessary bandwidth that will actu-
ally be used by the flow, using the rest for lower priority
flows (i.e., work conservation). Adding a small value (δ)
ensures that whenever the bottleneck link frees up, the
sender recognizes this and is able to again increase its
demand to the maximum level.

4.3.2 Switch Operations

We explain how switches process SRQ; the key steps are
outlined in Algorithm 2. Each switch locally maintains
three counters for each task: i) total demand, ii) total
bytes reserved so far (this acts as a proxy for the size of
the task), iii) number of flows in the task. In addition, the
switch maintains a single aggregate counter for each link
that keeps track of the bandwidth allocations that have
already been made.

As noted earlier, the SRQ response consists of two
pieces of information: The first is NR, which is the band-
width share of the flow, based on its relative priority vis-
a-vis the other flows traversing the switch. To calculate
NR of a new flow with class k, a switch needs to know
two things: i) demands of flows belonging to higher pri-
ority classes i.e., those with priority > k; these flows have
strictly higher priority, so we subtract their demand from
the link capacity (C), giving us ClassAvlBw, the amount
of bandwidth available for class k (Step 2), and ii) de-
mands of flows of the same task i.e., task id k; these flows
have the same priority and thus share ClassAvlBw with
the new flow.

Even if a flow’s share is positive, the actual rate at
which it can send data may be lower because the switch
may have already reserved bandwidth for a lower pri-
ority flow before the arrival of the current flow. In this
case, the switch needs to first preempt that flow, take
back the bandwidth and then assign it to the higher prior-
ity flow. Thus, each switch also informs the sender about
AR, which is the actual rate the switch can support in the
next RTT. It is equal to or lower than the flow’s NR. The
switch adds these two rates to the SRQ before sending it
to the next hop.

Finally, switches play a key role in supporting preemp-
tion. While calculating NR, the switch ignores demands
of lower priority flows, implicitly considering them as
preemptable. Of course, a flow that gets preempted needs
to be informed so it can stop sending data. This flow
switching can take 1-2 RTTs (typical task setup overhead
in Baraat). Finally, the protocol adjusts to over and under
utilization of a link by using the notion of virtual capac-
ity, which is increased or decreased depending on link
utilization and queuing [12, 25].

4.4 Implementation
We have built a proof-of-concept switch and end-host
implementation and have deployed it on a 25 node
testbed. We have also integrated Baraat with Mem-
cached application. While we focused on the prioriti-
zation mechanism in the previous sections, our imple-
mentation supports complete transport functionality that
is required for reliable end-to-end communication. Both
the end-host and switch implementations run in user-
space and leverage zero-copy support between the kernel
and user-space to keep the overhead low.

At end-hosts, applications use an extended Sockets-
like API to convey task-id information to the transport
protocol. This information is passed when a new socket
is created. The application also ensures that all flows per
task use the same task-id. In addition to the rate con-
trol protocol discussed earlier, end-hosts also implement
other transport functionality, such as reliability and flow
control. Note that due to the explicit nature of our pro-
tocol, loss should be rare, but end-hosts still need to pro-
vide reliability. Our reliability mechanism is similar to
TCP. Each data packet has a sequence number, receivers
send acknowledgments, and senders keep timers and re-
transmit, if they do not receive a timely acknowledgment.

Our switch implementation is also efficient. On a
server-grade PC, we can saturate four links at full duplex
line rate. To keep per-SRQ overhead low in switches,
we use integer arithmetic for rate calculations. Overall,
the average SRQ processing time was indistinguishable
from normal packet forwarding. Thus, we believe that
it will be feasible to implement Baraat’s functionality in
commodity switches.

Header: The SRQ/SRX header requires 26 bytes.
Each task-id is specified in 4 bytes. We encode rates
as Bytes/µs. This allows us to a use a single byte to
specify a rate – for example, 1Gbps has a value of 128.
We use a scale factor byte that can be used to encode
higher ranges. Most of the header space is dedicated
for feedback from the switches. Each switch’s response
takes 2 bytes (one for NR and one for AR). Based on
typical diameter of data center networks, the header al-
locates 12 bytes for the feedback, allowing a maximum
of 6 switches to provide feedback. The sender returns
its previous ARs assigned by each switch using 6 bytes.
We also need an additional byte to keep track of the
switch index – each switch increments it before sending
the SRQ message and uses 2 bytes to specify the current
and previous demands.

5 Evaluation
We evaluate Baraat across three platforms: our small
scale testbed, an ns-2 implementation and a large-scale

8

Avg Min 95th perc. 99th perc.

FS 40ms 11ms 72ms 120ms
Baraat 29ms 11ms 41ms 68ms
Improvement 27% 0 43% 43.3%

Table 3: Performance comparison of Baraat against
FS in a Memcached usage scenario.

data center simulator. In all experiments, we use flow-
level fair sharing (FS) of the network as a baseline since
it represents the operation of transport protocols like TCP
and DCTCP used in today’s data centers. Further, com-
pletion time of tasks is the primary metric for compari-
son. In summary, we find–
Testbed experiments. For data retrievals with Mem-
cached, Baraat reduces tail task completion time by 43%
compared to fair-sharing. The testbed experiments are
also used to cross-validate the correctness of our protocol
implementation in the ns-2 and large-scale simulators.
Large-scale simulations. We evaluate Baraat at data-
center scale and compare its performance against vari-
ous flow and task aware policies based on the workloads
in §2. We show that Baraat reduces tail task completion
time by 60%, 30% and 40% for data-analytics, search
and homogeneous workloads respectively compared to
fair-sharing policies, and by over 70% compared to size-
based policies. We also analyze Baraat’s performance
across three different workflows – partition-aggregate,
storage retrieval and data parallel.
ns-2 micro-benchmarks. We have used ns-2 to bench-
mark Baraat’s protocol performance under various sce-
narios. With the help of controlled experiments, we
have validated the correctness of our protocol and ver-
ified that it achieves the desired properties (e.g., work-
conservation and preemption). We have also evaluated
the impact of short flows and tiny tasks on Baraat’s per-
formance.

5.1 Testbed experiments
For the testbed experiments, we model a storage retrieval
scenario whereby a client reads data from multiple stor-
age servers in parallel. This represents a parallel work-
flow. To achieve this, we arrange the testbed nodes in
five racks, each with four nodes.

Online Data Retrieval with Memcached. Our Mem-
cached setup mimics a typical web-service scenario. We
have one rack dedicated to the front-end nodes (i.e.,
Memcached clients) while the four other racks are used
as the Memcached caching backend. The front-end com-
prises of four clients; each client maintains a separate
counter that is used to assign a task-id to incoming re-
quests. Each counter is initialized to a unique value and

is incremented by four for every incoming request. This
models a scenario where requests arrive through multiple
load-balancers (see §4.1).

For the experiment, we consider an online scenario
where each client independently receives requests based
on a poisson arrival process. A new request is queued if
the client is busy serving another request. Each request
(or task) corresponds to a multi-get that involves fetching
data from one or more memcached servers.

We compare Baraat’s performance against FS. For FS,
we use an optimized version of RCP [12].4 Table 3
shows results of an experiment with 1000 requests, task
size of 800KB, and an average client load of 50%. In
this case, Baraat reduces average task completion time
by 27% compared to FS. We observe more gains at high
percentiles where Baraat provides around 43% improve-
ment over FS. Finally, the minimum task completion
time is the same for both FS and Baraat, which verifies
that both perform the same when there is just a single
task in the system.

Batched Requests. We now evaluate the impact of
varying the number of concurrent tasks in the system
and also use this experiment to cross-validate our testbed
results (without Memcached) with the simulation plat-
forms. For this experiment, one node acts as a client
while the other three nodes in the rack act as storage
servers. All data is served from memory. For the request,
the client retrieves 400 KB chunks from each of the three
servers. The request finishes when data is received from
all servers.

Figure 6 compares the performance of Baraat against
FS as we vary the number of concurrent tasks (i.e., read
requests) in the system. Our results ignore the overhead
of requesting the data which is the same for both Baraat
and FS. The first bar in each set shows testbed results.
For a single task, Baraat and FS perform the same. How-
ever, as the number of concurrent tasks increases, Baraat
starts to outperform FS. For 8 concurrent tasks, Baraat
reduces the average task completion time by almost 40%.
The experiment also shows that our implementation is
able to saturate the network link — a single task takes
approximately 12msec to complete, which is equal to the
sum of the task transmission time (1.2MB

1Gbps) and the proto-
col overhead (2 RTTs of 1msec in our testbed).

Cross-validation. We repeated the same experiment
in the ns-2 and large-scale simulators. Figure 6 also

4We have introduced a number of optimizations to account for data
center environments, such as information about the exact number of ac-
tive flows at the router (RCP uses algorithms to approximate this). With
our RCP implementation sources know exactly the rate they should
transmit at, whereas probe-based protocols like TCP/DCTCP need to
discover it. Hence, our RCP implementation can be considered as an
upper-bound for fair-share protocols.

9

Figure 6: Baraat’s performance against FS for a par-
allel workflow scenario across all experimental plat-
forms. At 8 concurrent tasks, average task comple-
tion time reduces by roughly 40% with Baraat. Ab-
solute task completion times are similar across plat-
forms, thus cross-validating the ns-2 and flow-based
simulations.

shows that the results are similar across the three plat-
forms; absolute task completion times across our testbed
and simulation platforms differ at most by 5%. This es-
tablishes the fidelity of our simulators which we use for
more detailed evaluation in the following sections.

5.2 Large-scale performance
To evaluate Baraat at large scale, we developed a sim-
ulator that coarsely models a typical data center. The
simulator uses a three-level tree topology with no path
diversity, where racks of 40 machines with 1Gbps links
are connected to a Top-of-Rack switch and then to an
aggregation switch. By varying the connectivity and the
bandwidth of the links between the switches, we vary the
over-subscription of the physical network. We model a
data center with 36,000 physical servers organized in 30
pods, each comprising 30 racks. Each simulated task in-
volves workers and one or more layers of aggregators.
The simulator can thus model different task workflows
and task arrival patterns.

For single-stage workloads, the aggregator queries
all other nodes in the rack, so each task comprises 40
flows. For two-stage workloads, the top-level aggrega-
tor queries 30 mid-level aggregators located in separate
racks, resulting in 1200 flows per task. Top-level aggre-
gators are located in a separate rack, one per pod. We use
network over-subscription of 2:1 and a selectivity of 3%,
which is consistent with observations of live systems for
data aggregation tasks [9]. We examine other configura-
tions towards the end of the section.

Over the following sections, we first examine the ef-
fectiveness of different scheduling policies under various
distributions of task sizes, and then analyze the expected

0.5 1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Task completion time (msec)

C
D

F

FIFO

FS
STF

Baraat

Figure 7: Aggregate CDF of task completion times for
a Bing-like workload (x-axis in log scale.)

benefits of Baraat across a number of application work-
flows and parameters.

5.2.1 Evaluation of policies

We evaluate Baraat’s performance under three different
workloads. The first two workloads are based on the
Bing and Facebook traces discussed earlier (§2) while the
third one models a more homogeneous application with
flow sizes that are uniformly distributed across [2KB,
50KB] (as suggested in prior work [4, 25, 16]).

We compare performance of Baraat (i.e., FIFO-LM)
against four other scheduling policies – two flow-based
policies (FS and SFF) and two task-aware policies (FIFO
and STF). We model one stage where workers generate
responses to aggregators. We report results for the exe-
cution of 10,000 tasks and for an 80% data center load,
which captures the average load of bottlenecked network
links. We examine how load and other parameters affect
results in the following section.

Table 4 summarizes the results for the median, 95th

and the 99th percentile of the task completion times of
Baraat relative to all other policies for the three work-
loads. In all cases, Baraat significantly improves task
completion times compared to all other policies, espe-
cially towards the tail of the distributions, and as distri-
butions become more heavy-tailed.

For Bing-like workloads (Figure 7), all policies are
comparable till roughly the 70th percentile at which point
size-based policies (i.e., SFF & STF) start penalizing
heavier tasks, leading a number of tasks to starvation.
For data-analytics workloads exhibiting heavy-tailed dis-
tributions, FIFO’s performance suffers from head-of-line
blocking. In this case, size-based policies do result in re-
duction of completion time compared to FS, especially
beyond the median up to the 95th percentile. However,
even in this case, Baraat’s FIFO-LM policy results in im-
proved performance of roughly 60% relative to FS and

10

Bing Data-analytics Uniform
Policy median 95th perc. 99th perc. median 95th perc. 99th perc. median 95th perc. 99th perc.
FS 1.05 0.7 0.66 0.75 0.42 0.38 0.93 0.63 0.6
SFF 0.96 0.3 0.24 0.96 0.57 0.39 0.62 0.34 0.25
STF 1.08 0.16 0.03 1 0.63 0.34 1 0.99 0.94
FIF0 0.72 0.73 0.84 0.06 0.07 0.16 1 1 1

Table 4: Task completion times with Baraat relative to other policies.

 0

 20

 40

 60

 80

 100

40 60 80 100

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Data center load (%)

0.6 0.6
6 9

27

37

60 61 64
60

53 55

Average
95th percentile

Worst-case

Figure 8: Reduction in task completion time for the
partition-aggregate workflow.

36% over size-based policies at the 95th percentile. For
uniform workloads, Baraat and STF perform similarly
with the exception of the tail. With an STF policy, the
worst-case completion time is inflated by 50% relative to
FS, whereas Baraat reduces worst-case completion time
by 48% relative to FS. Note that Baraat and FIFO col-
lapse to the same policy in this case due to the absence of
heavy tasks. Overall, these results highlight that Baraat
can reduce the task completion time both at the median
and at the tail, and for a wide range of workloads (uni-
form, bi-modal, heavy-tailed, etc).

5.2.2 Varying workflows

We now look at Baraat’s performance under the differ-
ent workflows described in Figure 1 in §2. In particular,
we examine three workflows – (i) a two-level partition
aggregate workflow where requests arrive in an online
fashion, (ii) the storage retrieval scenario used for our
testbed experiments where tasks have parallel workflows
and request arrival is online, and (iii) a data-parallel ap-
plication where tasks have a parallel workflow and there
is a batch of jobs to execute. To compare performance
across workflows, we look at homogeneous workloads
with flow sizes uniformly distributed (as in the previous
section). We simulate the arrival and execution of 48,000
requests.

Figure 8 plots the reduction in the task completion
time with Baraat compared to fair share for the partition-
aggregate workflow. As expected, the benefits increase
with the load - at 80% load, the worst case task com-
pletion time reduces by 64%, while the average and 95th

percentile by 60% and 61% respectively. In all cases, the
confidence intervals for the values provided are less than
10% within the mean, and are not plotted for clarity.

 0

 20

 40

 60

 80

 100

40 80 120 160 200 400 600 800

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Batch size

2 3

25

36 33

47

37

53

40

56

44

63

46

65

47

66

single-stage
multi-stage

Figure 9: Reduction in mean task completion time for
data-parallel jobs.

 0

 20

 40

 60

 80

 100

40 60 80 100

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Data center load (%)

0.2 0.2 0.5 2 4

29

16

35 36

50 53 55

Average
95th percentile

Worst-case

Figure 10: Reduction in task completion time com-
pared for storage retrieval scenario.

For the storage retrieval scenario (Figure 10), the
worst case completion time reduces by 36% compared
to fair-sharing at 80% load (35% and 16% reduction at
95th percentile and the average respectively). The re-
duced benefit results from the fact that tasks here involve
only a single stage.

Figure 9 presents Baraat’s benefits for the scenario in-
volving a batch of data-parallel jobs. For batch sizes of
400 jobs, average task completion time is reduced by
44% and 63% for single-stage and multi-stage jobs re-
spectively. As discussed in §2, batch execution scenarios
involving single-stage jobs only provide benefits at the
average. For multiple stages, worst case completion time
also drops beyond batch sizes of 40; for batch sizes of
400, worst case completion time reduces by 32%.

5.2.3 Varying parameters

We now examine how varying the experiment parameters
affect performance. We will focus on the web search
scenario at 80% load.
Adding computation. While our paper focuses on net-
work performance, we now consider tasks featuring both
network transfers and computation. Intuitively, bene-

11

 0

 20

 40

 60

 80

 100

40 60 80

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Data center load (%)

11
7 4 3

38

18

7 4

53
49

34

25

12.5%
25%

37.5%
50%

Figure 11: Reduction in worse-case task completion
time with Baraat compared to fair-sharing when con-
sidering computation. Computation time is expressed
as percentage of the overall task completion time.

fits of task-based network scheduling depend on whether
network or computation is the overall bottleneck of the
task. We extend the simulator to model computation for
worker machines; it is modeled as an exponentially dis-
tributed wait time before a worker flow is started. Fig-
ure 11 presents the corresponding results, by varying the
percentage a task spends on computation when there is
no network contention. As expected, as this percentage
increases, the benefits of Baraat drop since task com-
pletion time mostly depends on computation. However,
overall Baraat still provides significant benefits. For ex-
ample, at 80% load and when computation comprises
50% of the task, the worst case completion time reduces
by 25% and the average completion time reduces by
14%.
Over-subscription and selectivity. Increasing over-
subscription and selectivity have similar effects; increas-
ing over-subscription implies less available cross-rack
bandwidth, and increasing selectivity more network-
heavy cross-rack transfers. Hence, in both cases, the
main network bottleneck is shifted to top-level aggre-
gator stage. Thus, the benefits of Baraat start approx-
imating benefits of single-stage tasks; significant gains
are observed for the average case but the gains for the
worst case reduce as the over-subscription or selectivity
increases. As a reference point, increasing the network
over-subscription to a ratio of 8:1 results in average gains
of 60% and 28% for the worst case; similarly, increas-
ingly the selectivity to 10% results in gains of 54% and
21% respectively.

5.3 ns-2 Micro-benchmarks
We use ns-2 to benchmark various aspects of Baraat’s
performance.

Benefits extend to smaller tasks and tiny flows. To
quantify the benefits of Baraat for smaller tasks, we re-
peat our testbed experiments with varying task sizes. To
achieve this, we change the size of the response gener-
ated by each of the three servers. We consider 8 concur-

 0

 10

 20

 30

 40

 50

13.5 45 135 450 4500

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Task Size (KB)

Baraat

Figure 12: Benefits of Baraat extend to small tasks.
Benefits increase with the task size and become stable
to roughly 40% above task sizes of 135KB.

 0

 5

 10

 15

 20

 25

 30

3 9 20 40

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Number of Servers

Baraat

Figure 13: Benefits for tiny flows for 3 packets. Bene-
fits increase as the number of flows per task increases.

rent tasks and a RTT of 100µsec. Figure 12 shows the re-
duction in average task completion time with Baraat over
FS. As expected, the benefits increase as the task size
increases because the task switching overhead is amor-
tized. Benefits become significant beyond task sizes of
45KB. Beyond a task size of 400KB, the overhead be-
comes negligible and the benefits are stable. In contrast,
for a small task of 13.5KB, the overhead is significant
and Baraat provides little benefits. Note that the task
size is the sum of all flows per task; hence a task size of
13.5KB implies a task with three flows of only 3 packets.

While we do expect applications to generate such tiny
flows, most tasks will have dozens of such flows as high-
lighted in Table 1. Figure 13 presents such a scenario
of tiny flows against the number of flows per task. With
a larger number of flows per task, the benefits of Baraat
compared to FS increase. Even though the individual
flows are small (3 packets each), the overall task size is
big enough to amortize the overhead.

Finally, if tasks are too small, we can aggregate multi-
ple tasks and map them onto the same class. This amor-
tizes the overhead of switching. Note that as we increase
the aggregation level the scheduling granularity moves
from task serialization to fair-sharing. This is shown in
Figure 14 where we consider a scenario with small tasks
(13.5KB each) and how aggregation helps in improving
performance. As we map more tasks to the same class,
the switching overhead gets amortized. We observe max-
imum performance gains (compared to FS) when 8 tasks

12

 0

 5

 10

 15

 20

1 4 8 12 16 24

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Number of Tasks Per Priority Class

Baraat

Figure 14: Aggregating tiny tasks into a single class.

A

C

B

Task 2

Task 3

Task 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

G
bp

s)

Time(ms)

Flow1-Task1
Flow1-Task2
Flow1-Task3

Figure 15: Verifying that Baraat ensures the proper-
ties of work-conservation and preemption.

are aggregated. Too much aggregation leads to increased
multiplexing and we approach the performance of fair
sharing.

Preemption and work conservation. We now val-
idate that Baraat satisfies the two basic properties of
work-conservation and preemption. We use a simple ex-
ample with three tasks traversing different links. Each of
the three tasks has two flows and both flows traverse the
same set of links. For clarity, we report the throughput
of one flow for each task (throughput of the other flow is
similar). Figure 15 shows the setup and the results.

Initially, only flows of Task 3 are present in the sys-
tem, with each of its two flows getting roughly half of
the link bandwidth. As soon as flows of Task 2 arrive,
both of Task 3’s flows are preempted. This validates
that flows belonging to higher priority tasks can preempt
lower priority flows and can quickly reclaim bandwidth –
roughly 200µsec in the experiment (twice the RTT). Fi-
nally, when Task 1 arrives, it preempts flows of Task 2 on
their common link. Since Task 2 cannot make progress,
work-conservation specifies that Task 3 should utilize the
bandwidth as it does not share any link with Task 1. In-
deed, the figure shows that Task 2’s flows retract their
demands, allowing Task 3’s flows to grab the bandwidth.
Hence, because of work conservation, Tasks 1 and 3 can
make progress in parallel.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 2 4 6 8 10 12 14 16 18 20

Li
nk

 U
til

iz
at

io
n

Time(ms)

Intra-Task FS
Intra-Task Serialization

Figure 16: Intra-task fair sharing leads to improved
link utilization compared to intra-task serialization

Benefits of Intra-Task fair sharing. Finally, we show
that intra-task fair sharing results in more flows being si-
multaneously active, and thus, lowers the switching over-
head compared to per-flow serialization [16]. We con-
sider four concurrent tasks, each comprising of 10 flows.
With intra-task serialization, only a single flow is active
at a given time. This leads to frequent switching between
flows and causes link utilization to drop (Figure 16). In
comparison, higher level of multiplexing with intra-task
fair sharing improves link utilization, enabling the tasks
to finish faster.

6 Discussion

The notion of task serialization underlying Baraat is both
affected by and has implications for various aspects of
data center network design. We briefly discuss two issues
here.

Multi-pathing. Today’s data centers typically use
multi-rooted tree topologies that offer multiple paths be-
tween servers. The path diversity is even greater for more
recent designs like fat-tree [2] and hypercube topolo-
gies [1]. However, existing mechanisms to spread traf-
fic across multiple paths, like ECMP and Hedera [3],
retain flow-to-path affinity. Consequently, packets for
a given flow are always forwarded along a single path.
This means that Baraat can work across today’s multi-
path network topologies. Further, the fact that Baraat in-
volves explicit feedback between servers and switches
means it is well positioned to fully capitalize on net-
work path diversity. Senders can split their network
demand across multiple paths by sending SRQ packets
along them. Since per-flow fairness is an explicit non
goal, the logic for splitting demand for a sender can be
simpler than existing multi-pathing proposals [21].

Non-network resources. Baraat reduces network
contention through task serialization. However, it still
retains pipelined use of other data center resources. Con-
sider a web search example scenario where an aggrega-
tor receives responses from a few workers. Today, either
the CPU or the network link at the aggregator will be

13

the bottleneck resource. Baraat is work conserving, so it
will ensure the fewest number of simultaneously active
tasks that can ensure that either the aggregator’s network
link is fully utilized or the CPU at the aggregator is the
bottleneck. Thus, Baraat does not adversely impact the
utilization of non-network resources. While additional
gains can be had from coordinated task-aware scheduling
across multiple resources, we leave this to future work.

7 Related Work
Baraat is related to, and benefits from, a large body of
prior work. We broadly categorize them into:

Cluster Schedulers and Resource Managers. There
is a huge body of work on centralized cluster schedulers
and resource managers [15, 20, 11]. Most of these pro-
posals focus on scheduling jobs on machines while we
focus on scheduling flows (or tasks) over the network.
Like Baraat, Orchestra [11] explicitly deals with network
scheduling and how task-awareness could provide bene-
fits for MapReduce jobs. Baraat differs from Orchestra
in two important directions. First, scheduling decisions
are made in a decentralized fashion rather than through
a centralized controller. Second, Baraat uses FIFO-LM
which has not been considered in prior work.

Straggler Mitigation Techniques. Many prior pro-
posals attempt to improve task completion times through
various straggler mitigation techniques (e.g., re-issuing
the request) [6, 17]. These techniques are orthogonal to
our work as they focus on non-scheduling delays, such
as delays caused by slow machines or failures, while we
focus on the delays due to the resource sharing policy.

Flow-based Network Resource Management. Most
existing schemes for network resource allocation target
flow level goals [25, 16, 4, 12], either fair sharing or
some form of prioritization. As we show in this pa-
per, such schemes are not suitable for optimizing task-
level metrics. However, the design of our prioritization
mechanism does leverage insights and techniques used
in flow-based schemes, especially ones that use explicit
rate protocols [12, 16].

Task-Aware Network Abstractions. As noted ear-
lier, CoFlow [10] makes a case for task-awareness in
data center networks and proposes a new abstraction.
However, for specific task-aware scheduling policies, it
relies on prior work (e.g., Orchestra).

8 Conclusions
Baraat is a decentralized system for task-aware network
scheduling. It provides a consistent treatment to all flows
of a task, both across space and time. This allows ac-
tive flows of the task to be loosely synchronized and

make progress at the same time. In parallel, Baraat en-
sures work-conservation so that utilization and system
throughput remain high. By changing the level of mul-
tiplexing, Baraat effectively deals with the presence of
heavy tasks and thus provides benefits for a wide range
of workloads. Our experiments across three platforms
show that Baraat can significantly reduce the average as
well as tail task completion time.

References
[1] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and

A. Donnelly. Symbiotic routing in future data centers. In
ACM SIGCOMM, 2010.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In Proc.
of ACM SIGCOMM, 2008.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic flow scheduling for data
center networks. In Proc. of NSDI, pages 19–19, 2010.

[4] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In ACM SIGCOMM, pages
63–74, 2010.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pfabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM, 2013.

[6] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
outliers in map-reduce clusters using mantri. In OSDI,
volume 10, page 24, 2010.

[7] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. PACMan: coordinated memory caching for parallel
jobs. In Proc. of NSDI, 2012.

[8] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,
and A. Rowstron. Scale-up vs scale-out for hadoop: Time
to rethink? In Proceedings of the ACM Symposium on
Cloud Computing, 2013.

[9] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The
case for evaluating mapreduce performance using work-
load suites. In Proc. of MASCOTS, pages 390–399, 2011.

[10] M. Chowdhury and I. Stoica. Coflow: An application
layer abstraction for cluster networking. In ACM Hotnets,
2012.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Sto-
ica. Managing data transfers in computer clusters with
orchestra. In Proc. of ACM SIGCOMM, 2011.

[12] N. Dukkipati. Rate Control Protocol (RCP): Congestion
control to make flows complete quickly. PhD thesis, Stan-
ford University, 2007.

[13] M. Garey and D. Johnson. Computers and intractability.
1979.

[14] L. Hall. Approximability of flow shop scheduling. Math-
ematical Programming, 82(1):175–190, 1998.

14

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data cen-
ter. In Proceedings of the 8th USENIX conference on Net-
worked systems design and implementation, pages 22–22.
USENIX Association, 2011.

[16] C. Hong, M. Caesar, and P. Godfrey. Finishing flows
quickly with preemptive scheduling. ACM SIGCOMM
Computer Communication Review, 42(4):127–138, 2012.

[17] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Ry-
balkin, and C. Yan. Speeding up distributed request-
response workflows. In Proceedings of the ACM SIG-
COMM, pages 219–230, 2013.

[18] J. Nair, A. Wierman, and B. Zwart. Tail-robust scheduling
via limited processor sharing. Performance Evaluation,
67(11):978–995, 2010.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at facebook. In Pro-
ceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, pages 385–398.
USENIX Association, 2013.

[20] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: Scalable scheduling for sub-second parallel
jobs. Technical report, Tech. Rep. UCB/EECS-2013-29,
EECS Department, University of California, Berkeley,
2013.

[21] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wis-
chik, and M. Handley. Data center networking with mul-
tipath tcp. In Proceedings of the Ninth ACM SIGCOMM
Workshop on Hot Topics in Networks, page 10. ACM,
2010.

[22] H. Röck. The three-machine no-wait flow shop is np-
complete. Journal of the ACM, 31(2):336–345, 1984.

[23] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha.
Sharing the data center network. In Proc. of NSDI, 2011.

[24] A. Wierman and B. Zwart. Is tail-optimal scheduling pos-
sible? Operations Research, 60(5):1249–1257, 2012.

[25] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron.
Better never than late: Meeting deadlines in datacenter
networks. In Proc. of ACM SIGCOMM, 2011.

[26] H. Yu, A. Vahdat, et al. Efficient numerical error bound-
ing for replicated network services. In Proceedings of
the Twenty-Sixth International Conference on Very Large
Data Bases, pages 123–133. Citeseer, 2000.

15

	Introduction
	A Case for Task-Awareness
	Task-Oriented Applications
	Limitations of Flow-based Policies

	Scheduling Policy
	Task Serialization
	Task Serialization Policies
	FIFO-LM

	Baraat
	Generating Task Identifiers
	Prioritization Mechanism - Requirements
	Smart Priority Class
	End-host Operations
	Switch Operations

	Implementation

	Evaluation
	Testbed experiments
	Large-scale performance
	Evaluation of policies
	Varying workflows
	Varying parameters

	ns-2 Micro-benchmarks

	Discussion
	Related Work
	Conclusions

