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Abstract

The choice of where a thread scheduling algorithm preemps o
thread in order to execute another is essential to reveatucon
rency errors such as atomicity violations, livelocks, arddiocks.
We present a scheduling strategy calfdemption sealinghat
controls where and when a scheduledisabledfrom preempt-
ing threads during program execution. We demonstrate st t
strategy is effective in addressing two key problems iningst
industrial-scale concurrent programs: (1) tolerating#ng errors
in order to find more errors, and (2) compositional testingpgt
ered, concurrent systems. We evaluate the effectivengssefp-
tion sealing, implemented in theHEsstool, for these two scenar-
ios on newly released concurrency libraries for MicrosofNET
framework.

1. Introduction

Concurrent programs are difficult to design, implementt, tassd
debug. Furthermore, analysis and testing tools for coeatipro-
grams lag behind similar tools for sequential programs. Ae-a
sult, many concurrency bugs remain hidden in programs threil
software ships and runs in environments that differ fromtés
environment.

Systematic concurrency testing offers a promising satutm
the problem of identifying and resolving concurrency bugghis
work, we focus on systematic concurrency testing as imphtede
in CHESS[16], a tool being used to test concurrent programs at Mi-
crosoft. A CHEssuser provides a collection of tests, each explor-
ing a different concurrency scenario for a program. A corency
scenario might range from a simple harness that calls intona ¢
current data structure to a web browser starting up and riznde
web page. Given such a scenarigjESSsrepeatedly executes the
program so that each run of the program explores a diffeheeat!
schedule, using novel stateless exploration algorithms]3].

Of course, selecting which thread schedules are most useful

among the exponentially many possible schedules is a ¢@ntfa:

lem for the effectiveness of a tool likeHESs We faced the fol-
lowing two related problems when deployingi€ssat Microsoft,

which helped mativate this work:
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Figure 1. Dependencies among .NET 4.0 concurrency classes.
SemaphoreSlim, Barrier, and ManualResetEventSlim

are synchronization primitives (SYN, purple)Blocking
Collection, ConcurrentDictionary, and ConcurrentBag

are concurrent data structures (CDS, orang&sk and
TaskScheduler are part of a task parallel library (TPL, green).
PLINQ and Parallel.For are parallel versions of LINQ and
for-loops (blue).

1. Users want the ability to findhultiple bugsso they can pipeline
the testing process and not be blocked waiting for bug fixes.

2. Users want to perforrmompositional testingo they can focus
the test on the components they are responsible for.

The first problem arises because many different thread sched
ules may manifest the same bug. Thus, even if the systeneaticts
continues after finding a bug, that same bug may cause thensyst
to crash repeatedly. This problem is important because Isof-
ware systems often have a large number of bugs, some known and
many unknown. Known bugs can be in various life stages: the de
veloper might be debugging, finding the root cause, desipaifix,
or testing the fix. Depending on its severity, a bug may be fisred
mediately or the fix may be deferred to a future release. Asultre
it may be several weeks or even months before a bug is fixed and
the fix is available to the tester. Thus, a tool such aE€swill
be most useful if it finds new bugs while avoiding schedules th
trigger known bugs.

The second problem arises because a systematic searcilltests
possible schedules, even those that are irrelevant to thefe
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system being tested. Well-engineered software consideyefed the operation or not. We ug€’| to denote the length of execution
modules where upper layers depend on services of lowerdayer E and E[i] to denote the event at positianin executionE. We
but not vice versa. Figure 1 shows an example of such a layeredaccess the components of an eventith '’ notation:

system from the .NET 4.0 libraries, which we will return teelain
the paper. Usually, different teams are responsible foeldging
and testing different layers. A testing tool should allovenssto
“focus” the exploration on specific layers. If a particulayér, such
as a low-level concurrency library, has been extensivedjeteor
verified, then repeatedly testing its functionality whetezhfrom
higher layers is a waste of valuable testing resources.

Preemption sealings a simple but effective strategy to address
these problems. A preemption is an unexpected interruptfon
a thread’s execution caused, for example, by the threadis ti
slice expiring or a hardware interrupt occurring. A predompt
sealing scheduler disables preemptions in a particulapesad
program execution, resorting to non-preemptive scheduwiithin
that scope.

By resorting to non-preemptive scheduling, a preemption-
sealing scheduler avoids exposing concurrency bugs thaires
at least one preemption within a given scope. To identifytipial
errors, we seal preemptions in a scope related to the rosecau
of a bug. If an error-inducing schedule contains a preemgtio

(e.tid, e.ctx, e.op, e.loc, e.blk)

An evente is blocking if e.blk is true. A completing evenfor

a blocking event is the event(e.tid, e.ctz, e.op, e.loc, false).

A sequence isvell-formedif for every blocking evente in an
executionFE, the next event performed by thread:d in E, if any,

is the completing event far. We only consider executions that are
well-formed. Also, we use to denote thep andloc components
of events that do not access shared state.

A context switchin an executionE is identified by an index
csuchthatd < ¢ < |E| — 1 and E[c].tid # E|c + 1].tid. A
context switche is said to benon-preemptivef E|[c].blk is true
or E[c].op is the thread “exit” operation, signaling the end of the
execution of thread’[c].tid. Otherwise the context switch is said to
be preemptive We call a preemptive context switchpeeemption
for short.

The preemption bound of an executifhis the number of pre-
emptions inE. Preemption-bounded scheduling ensures that each
execution contains at mog$t preemptions, wheré is a number

methodm, then the scheduler seals preemptions whenever control chosen by the tester. Note that a preemption bound of zenulysim

is within the scope ofn in subsequent runs. To enable composi-
tional testing, the user provides a set of methods or typatsdh
not require testing. By sealing preemptions in these scapes
scheduler conserves valuable testing time.

Preemption sealing builds upon prior work gmeemption
bounding[14], a technique that prioritizes executions that con-
tain fewer preemptions. The hypothesis of preemption bimgnd
is that most concurrency errors surface in executions thiatiam
few preemptions. This hypothesis has been validated byuwsiri
researchers [2, 14, 12]. Accordingly, a preemption-bodrsished-
uler explores executions with fewer preemptions first. Pigéon
bounding and preemption sealing are orthogonal schedstage-
gies that combine naturally.

We implement preemption sealing in thed€ss concurrency
testing tool and evaluate its effectiveness on a set ofgilatfi-
braries for .NET that provide essential concurrency comssrto
programmers. Testers for these libraries have been ushes€
over the past year to more thoroughly test these criticafqia
layers. We leverage 74 of their concurrency unit tests andhem
to demonstrate preemption sealing’s effectiveness inrfgndaul-
tiple errors and enabling compositional testing. Our expents
show that GiESs successfully finds multiple errors by sealing
methods containing bug-inducing preemptions. Also, orraye
compositional testing with preemption sealing cuts the Ipemof
executions explored during testing by more than half.

In the remainder of the paper, we formalize preemption-tedn
scheduling (Section 2), define preemption sealing (Se&jpjus-
tify its use for finding multiple errors (Section 3.1) and quusi-
tional testing (Section 3.2), describe our implementatbrpre-
emption sealing and evaluate it on a set of .NET concurretaty p
form libraries (Section 4), discuss related work (Sectipnabd
conclude (Section 6).

2. Preemption-Bounded Scheduling

We model the execution of a concurrent program as a sequénce o

events, each corresponding to an operation performed byadh
We represent an event with a five-tup(éd, ctz, op, loc, blk),
wheretid is the thread id¢tx is the context of the thread including
its program countercf{z.pc) and its call stackdz.stack), op is
the operation performedoc is the (shared) memory location or
object on which the operation is performed, dikl is a boolean
flag that indicates whether the thread is blocked while pariiog

means that the scheduler runs non-preemptively, exectitergur-
rent thread until it blocks and then switching to a differ@ntabled)
thread. If non-preemptive scheduling is unable make pemyfiee-
cause all threads are blocked), then the program contaies@ d
lock. Thus, when a preemption-bounded scheduler runs quriesf
emptions, it simply resorts to nhon-preemptive schedulingl the
end of execution or a deadlock is encountered.

In addition to the choice of where to place preemptive cantex
switches, the scheduler also has the choice of which enétinledd
to execute after a context switch. This latter choice isdgity
constrained by a desire for fair scheduling, but fairnedseigond
the scope of this paper (for more details about fair statetesdel
checking, see [15]). In this paper, we assume the schedufeze
to schedule any enabled thread after a context switch.

Figure 2(a) shows a buggy “bank account” claset and a
test methodrestAcct containing a test scenario. The test scenario
creates three threads that test the class. Threadt1 withdraws
from the bank account, threa® reads the account balance, and
threadt3 deposits to the account.

Figure 2(b) shows an execution of this program that exposes a
assertion failure. For brevity, we represent the contexthieypro-
gram label and use the stringéc” to refer to the single instance
of the Acct class. For example, the operation at labglis a lock
operation on the objecicc, while the operation at labél4 is a
read operation on the fielskc.bal. In this execution, the transi-
tion from (t1,L5,_,_,F) to (t3,L6,lock,acc,F) represents a
preemption. Threat1 is preempted at labeb of theRead method
after reading the account balance, but before acquiringpttieon
acc at labelL2 of thewWithdraw method. Next, thread3 executes
the entireDeposit method. Then, because thread has com-
pleted, a non-preemptive context switch returns contrdghtead
t1, which acquires the lock at labe2 and executes to completion.
This execution violates the assertion at ldatiebecause threatB’s
deposit is lost.

3. Preemption Sealing

Preemption sealing uses information associated with swerde-
termine whether an event meets certain criteria, which wWeaca
“scope”. If an event is within scope, preemption sealingvengs
the scheduler from performing a preemption prior to thaheve

A scopeis a functionF' that takes an event as input and returns
true if that event is “in scope” and false otherwise. The fiorc
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@ public class Acct { void TestAcct() {

volatile int bal; var acc = new Acct(10);
public Acct(int n) { var t1 = new Thread(o =>
bal = n: { (o as Acct).Withdraw(2);
} ’ L9: 1);
puk?lic void Withdraw(int n) { var t2 = new Thread(o =>
L1: int tmp = Read(); { var b = (o as Acct).Read();
L2: lock (this) { LA: assert (b>=8);
bal = tmp - n; LB: 1});
L3: }
} var t3 = new Thread(o =>
public int Read() { { (o as Acct).Deposit(1);
L4: return bal; LC: B
L5: }

t1.Start(acc); t2.Start(acc);

public void Deposit(int n) { £3.Start (acc) ;
L6:  lock (this) { t1.Join(); t2.Join(); t3.Join();
var tmp = bal;
bal = 0; LD: assert(account.Read() == 9);
L7: bal = tmp + n; LE:
LU: } }
L8: }

1

(t2,L4,read,acc.bal,F) (t2,L5,_,_,F) (¢2,LA,_,_,F) (t2,LB,_,_,F)

(®) (t1,L1,_,_,F) (t1,L4,read,acc.bal,F) (t1,L5,_,_,F) (t3,L6,lock,acc,F)
(t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F) (t3,L8,_,_,F) (t3,LC,_,_,F)
(t1,L2,1lock,acc,F) (t1,L3,unlock,acc,F) (t1,LA,_,_,F) (t0,LD,_,_,F)

(t3,L6,1lock,acc,F) (t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F)
(t2,L4,read,acc.bal,F) (t2,L5,_,_,F) (t2,LA,_,_,F)

(©

Figure 2. (a) Simple bank account example with two bugs and (b)-(c)exexutions demonstrating the two bugs.

F may examine any data associated with an everstuch as its compositional testing, we find that preemption sealing oaps the
thread id,e.tid, its operatione.op, etc. In this paper, we assume efficiency and efficacy of systematic search by eliminatimgad
a finite set of scopes, given by a finite set of functions. Tlus, interleavings that fall within a well-defined scope.

scopeF' identifies a subsequence of an executiBrcontaining

those event#/[i] such that'( E[i]) is true. Operationally, for each

event executed, we can apply the functirio determine if it is in 3.1 Detecting Multiple Errors
the scope of or outside it, though we use more efficient means in Detecting multiple errors is a difficult problem because yndif-
practice. Preemptions are disabled at events that aredjpeS@nd ferent thread interleavings may expose the same bug. Tdathe
are enabled at events that are not in any scope. this problem, preemption sealing capitalizes on the olasienvthat
By disabling preemptions in certain scopes, the scheddier e during a preemption-bounded search, the preemptionsviestah
fectively focuses its search on other parts of the searatesjiis- a failure-inducing schedule are good indicators ofrt causeof
abling preemptions does not introduce new deadlocks. Aedriat the failure. This observation is a consequence of the fatiguwo
the previous section, when a scheduler has no preemptiarsefo  reasons: (1) the scheduler always has a choice regardinthevhe
it simply resorts to non-preemptive scheduling. Thus, thig way or not to introduce a preemption prior to a given event andh@)

the scheduler cannot make progress in the presence of plieemp  scheduler carefully exercises this choice to explore ei@usiwith
sealing is if the program deadlocks. Also, itis straighifard to see fewer preemptions first. Thus, the preemptions in a failndeicing
that disabling preemptions does not introduce additiorabliors schedule are crucial to expose the bug. Otherwise, the sigied
in the program and thus does not introduce safety violations would have found the same bug with fewer preemptions.
Preemption sealing can be seen as an extension of previ- We return to the bank account example in Figure 2(a) to il-
ous work that addresses the relationship between data amcks  |ustrate the problem of finding multiple errors. Figure 2¢hpws
the placement of preemptions [14]. In that work, Musuvathil a  an execution that ends in an assertion failure at labdbecause

Qadeer partition the world of all objects into synchrorizatob- the bank account balance is incorrect. This failure occecabse
jects and data objects, as is typical when defining data ratey the Wwithdraw method does not contain proper synchronization,
show that if a program is data-race free then it is possibtésable which makes its effect appear non-atomic. A preemption kztlla
preemptions at operations on data objects without missigsin L2 in the Withdraw method, followed by complete execution of
the program. theDeposit method, will cause the assertion failure.

Preemption sealing builds upon this work by disabling preem Figure 2(c) shows an execution that fails due to anotherctlefe
tions at operations on synchronization objects when thpseas in the classicct. Because th@ead method does not use synchro-
tions occur within a particular scope. We discuss circurrsta un- nization, it may observe an intermediate value of the accbah
der which preemption sealing can be done safely withoutingss  ance (after it has been set to zero by tegosit method). This
errors. In the two scenarios we consider, finding multiptersrand execution leads to an assertion failure at label
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We wish to find both errors rather than first finding one, asking
the programmer to fix it, waiting for the fix, and then runnirgaa
to find the second error. We would like the search to avoid know
errors once they have been identified by “tolerating” thereirm a
temporary way.

Our idea is inspired by the observation that programmeeniht
many, if not most, methods to appear atomic in their effecenvh
executed concurrently [6]. Thus, once we find an error thaires
a preemption in methodn to surface, we wish to seal method
m from being preempted in the rest of the search. Effectively,
this means that once the scheduler starts executing methatd
executes it to completion (modulo the case wherblocks). Note
that we could seal just at the specific program counter wheze t
preemption took place, but there are likely many other ppgem

This work derives the definition of atomicity from the clasdefi-
nition of conflict-serializability and treats all functiaalls into the
lower layer as transactions.

The concept of layering means that we partition the codedinto
upper layerd and a lower layeB such thatA calls intoB, B never
calls into A, and execution starts and ends4nFor an execution
E, defined earlier as a sequence of events, we label all events a
A-events orB-events. For simplicity, we assume that each thread
executes at least oné-event or B-event in between any pair of
calls/returns that transition between layers.

For a fixed executiorEy we define transactions as follows. Let
E: be the sequence of events by threadore formally, E; is
the maximal subsequence Bfconsisting of events by only We
then define aransactionof threadt to be a maximal contiguous

points in the same method that will expose the same error. The subsequence df; consisting of onlyB-events. Atomicity is now

above observation implies that methods are a natural saope i
which to disable, or seal, preemptions.

We generalize this idea to multiple preemptions. Assumesa pr
emption bounded search that explores all executions Ritre-
emptions before exploring any executions with+ 1 preemp-
tions. Thus, if no errors were found with preemptions, then an
error found withP + 1 preemptions could not be found with
or fewer preemptions. If an error surfaces in executiorwith
preemption sefS of size |S|, then at mostS| methods must be
sealed. Thepreemption methodare the active methods (meth-
ods on top of the call stack) in which the preemptions occur:
{m | s € S, E[s].ctz.stack.top = m}. If two different tests fail
with the same set of preemption methods, the failures aetyldue
to the same error.

Note that preemption sealing at the method level may not-elim
inate the failure. For example, suppose methodalls methodr
and a preemption in either method leads to the same failiitee |
preemption in methodh occurs first, then sealing only methad
will not prevent the failure. If the preemption in methedoccurs

first, however, and we use dynamic scope when sealing the pre-

emption in methodn, then we will ensure that methodwill not
be preempted when called from. Thus, we use dynamic scoping
when sealing preemption methods.

3.2 Compositional Testing

Strict layering of software systems is a basic softwarersging
practice. Upper layers depend on the services of lower $aymert
not vice versa. Different teams may develop and test therdifit
layers. The efficiency of testing the entire system depeneatly
on eliminating redundant tests. This observation implieg tn a
layered system, tests for the upper layers need not (indbed)d
not) perform redundant tests on the functionality of the lovesr |
ers.

Complicating matters, each layer of a system may be “thread-
aware”, protecting its data from concurrent accesses bypaeru
layer’s threads, while explicitly creating threads itsmlfperform
its tasks more efficiently.

However, although one may imagine and craft arbitrarily eom
plicated interactions between layers, in practice, fumctalls into
lower layers are often meant to appear atomic to the upperday
In fact, several dynamic analysis tools (such as SideTra8k At-
omizer [6], and Velodrome [8]) rely on this programming piree,
as they are designed to check the atomicity of such functdis.c
What this means for preemption sealing is that

if we can establish or trust the lower-level functions to be
atomic, it is safe to disable preemptions in the lower layer
while testing the upper layer.

Although this claim may be simple to understand intuitiyety
should be understood in the context of prior work on atomiféi.

characterized as follows, in reverse order of logical depeny:

e The layerB is atomicif all executionsE are serializable.

e An executionFE is serializableif it is equivalent to a serial
execution.

Two executions arequivalentif one can be obtained from the
other by repeatedly swapping adjacent independent events.

Two events aralependentf either (1) they are executed by

the same thread, (2) they are memory accesses that target the
same location and at least one writes to the location, (3) the
are operations on the same synchronization object, andoare n
both side-effect-freé.

An executionE is calledserialif there are no context switches
within transactions. For any context switch at positigrthe
event E[c] is either not part of any transaction, or is the last
event of a transaction.

Thus, if B is atomic, then for any execution that reveals a bug, there
exists an equivalent serial execution that also revealbulgeSuch

a serial execution does not contain any preemptions in8idso

the search will still cover this serial execution even whealiag
preemptions inB.

4. Implementation and Evaluation

We implemented preemption sealing irHESS a tool for con-
currency testing [14]. @essrepeatedly executes a concurrency
unit test and guarantees that each execution takes a diffbread
schedule. @essrecords the current thread schedule so that when
it finds an error, it can reproduce the schedule that led tethe
ror. CHESsdetects errors such as assertion failures, deadlocks, and
livelocks, as well as data races, which are often the causéhef
failures. GHESScontains various search strategies, one of which is
preemption bounding.

After finding an error, GESSruns in “repro” mode to reproduce
the error by replaying the last stored schedule. During itigo
execution GiESS collects extensive context information, such as
the current call stack, to produce an attributed executiacetfor
source-level browsing. During this executionsiEssalso outputs
preemption methodfrom the stored schedule. The preemption
methods consist of methods in whickEssplaced a preemption.

To implement preemption sealing, we extendedeGss API
with methods to enable and disable preemptions. We impleeden
a preemption sealing strategy via a&ssmonitor that tracks con-
text information, such as which method is currently on the dé
the call stack, and makes calls to the new API to enable/@isab
preemptions. Command-line parameters teeGsenable preemp-

1An example of a side-effect-free operation is a failed (kiog) lock
acquire operation.
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tion sealing based on assembly name, namespace, classarame, the CCR scheduler that contains no synchronization opaigtand
method name. For the purposes of this paper, we use two gption that does not yield the processor (a violation of the “Gooth&a
/dpm:M for “disable/seal preemptions in method M'dpt:T for itan” principle [15]). Because these assertion failures timeouts
“disable/seal preemptions in all methods in typé.T&s currently occurred on the initial execution, which contains no pregong,
implemented, we disable preemptions in the dynamic scome of they were not candidates for preemption sealing.
method, which suits our two applications (as discussedquisiy). The 40 tests that failed with a livelock all failed well into
Other scoping strategies are possible within the framewerkm- CHEsstesting. Each failure was found in a schedule containing a
plemented. single preemption in the meth@fueue . TryDequeue, as output
We evaluated preemption sealing’s ability to find multipte e by CHESsduring the repro phase. To evaluate preemption sealing,
rors and enable compositional testing on new parallel freonle we ran GHESS on the 53 tests again, sealing only the method
libraries available for .NET. These libraries include: DQueue.TryDequeue (Row 2). The effect of sealing is stark: all
40 of the tests that previously livelocked were able to avbil
livelock3 While sealing only one method, HEss was able to
avoid a livelock in 40 tests, verify 35 of those tests correithin
their preemption bound, and detect five new failures: onerties
failure, one deadlock, one thread leak, and two timeouts. fivle
new failures all have associated preemption methods, bipu
CHESS(TEW = TaskExecutionWorker):

e Concurrency and Coordination Runtim@CR) provides a
highly concurrent programming model based on message-
passing with powerful orchestration primitives enablirapie
dination of data and work without the use of manual threading
locks, semaphores, etc. (http://www.microsoft.com/ssfd

e New synchronization primitive¢SYN), such asBarrier,
CountdownEvent, ManuelResetEventSlim, SemaphoreSlim,

SpinLock, andSpinWait;

e Concurrent data structurg€€DS), such aBlockingCollection,

ConcurrentBag, ConcurrentDictionary, €etc.

e Task Parallel Library(TPL) supports imperative task paral-

e Assertion failure TEW. WaitForTask, TEW.Signal;

e TimeoutsTEW.WaitForTask;

e Deadlock Port .RegisterReceiver, Port.PostInternal;
e Thread LeakTEW.WaitForTask, Port.PostInternal;

lelism.

. ) Based on these results, we performed two more runs HESS
o Parallel LINQ (PLINQ) supports declarative data parallelism.

(Rows 3 and 4 of Table 1). In the third run, we sealed the addi-
tional methodl'EW . WaitForTask. This converted one test from an
assertion failure into a deadlock. In the fourth run, we tddally
sealed the methods that contained preemptions leading tiirih
deadlock:Port.RegisterReceiver andPort.PostInternal.

As seen in Row 4, sealing these methods eliminated both algex|
and the thread leak, converting both into passing tests.

The results of this experiment show the efficacy of preemptio
sealing at the method level for the CCR code base. Without any
code modification, sealing the method that led to 40 livelogk
tests resulted in five new bugs and 35 passing tests. Fughbng
exposed an additional deadlock, and enabled more testaitmru
completion.

In all of the experimental results below, we ram&ss with its
default settings: preemptions are possible at all synébation
operations, interlocked operations, and volatile memangesses;
the scheduler can use at most two preemptions per test ex@cut

4.1 Discovering Multiple Unique Errors

We first evaluate preemption sealing’s ability to discoveitiple
unique errors on the CCR code base, which has an accompany
ing set of concurrency unit tests. Most of these tests rahowit
modification under @ess The only modification we made was
to decrease the iteration count for certain loops. Soms t=si-
tained high-iteration count loops to increase the likadith@f new
thread interleavings. BecauseHEss systematically searches the
space of possible thread interleavings, this repetitiomigecessary
within a single test. We took all of the CCR unit tests fromGtare-
Suite, CausalitySuite, SimpleExamplasd TaskTessuites, which
resulted in 53 independent concurrency unit tests. without preemption sealing?; (2) for tests that producesiume
Table 1 shows the results of runningi€sson each of the 53 results with and without sealing, what is the run-time benaeffi
tests. The first column shows the set of preemption-sealgd-me preemption sealing?
ods/types (initially empty). The next five columns show thena We take another look at CCR before moving to the other .NET
ber of tests that failedAssertsoccur when a test assertion fails; libraries. CCR uses a queue (implementedQyeue) containing
Timeouts occur when a test execution takes longer than ten sec- tasks for the CCR scheduler to run. The scheduler removks tas
onds (GHEssdefault); Livelocks occur when a test executes over  from this queue, while other CCR primitives create new tabks
20,000 synchronization operationsHEss default, most concur- are placed in the queue. Using the terminology from Secti@n 3
rency unit tests, including those in CCR, execute hundrédgro the clas®DQueue is layer B, and the other components (the sched-
chronization operationsPeadlocksare self explanatoryt.eaks uler and the CCR primitives) are layer, which make use of the
means that the test terminates with child threads alivee$sre- services ofB.
quires that all child threads complete before the test teaites. The The last row in Table 1 shows the results of runningeGs
final column OK) contains the number of tests for whicHEss with preemption sealing on all methods in the cla§seue. As
successfully explored all schedules within the preempkioand expected, preemption sealing at this level will not find tive-|
without finding an error. lock because the methd@fueue . TryDequeue is sealed. However,
During the first GiESsrun (Row 1) we see five assertion fail- CHEssdiscovers both deadlocks, which indicates that these dead-
ures. All of these failures occurred on the first test exeeytivhich locks are due to defects in laygr. The analysis in the previous
never contains a preemption. These five failures represersen
the test harness code. The three timeouts also occur onghexir
ecution. These timeouts have a single root cause, whichoigih

4.2 Compositional Testing

When evaluating preemption sealing for compositionalingsive
consider two metrics: (1) what is the bug yield relative tstiteg

3 An interesting twist to the livelock bug is that while the dmper agreed
that there was a potential performance problem, he thoughould not

occur very often and decided not to address the issue. Indhis the ability
to avoid the livelock without requiring a change to the codeswrucial to
make progress finding more bugs.

2The sense for these switches could trivially be switchechaothe user
could disable preemptions everywheneceptthe specified scope.
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Sealed methods/types Asserts | Timeouts | Livelocks | Deadlocks | Leaks || OK
[ 5 3 40 0 0 5
+ DQueue.TryDequeue 6 5 0 1 1 40
+ TEW.WaitForTask 5 5 0 2 1 40
+ Port.RegisterReceiver
+ Port.PostInternal 5 5 0 0 0 43
| DQueue [5 [ 5 [ O [ 2 [ O [ 41 ]

Table 1. Evaluation of preemption sealing for detecting multiplees (Rows 1-4), and for compositional testing (Row 5).

section confirms this result. For the two deadlockeg&swith the

determines which parts of an error trace are unique fromimzss

DQueue class sealed found them in 4,662 schedules (59 seconds)traces and placelsalt statements at these locations to guide the

and 142 scheules (2 seconds), respectively. The runs tivad the
deadlocks without sealinpQueue took 9,774 schedules (126 sec-
onds) and 10,525 schedules (330 seconds), respectively.

The other concurrency libraries that we consider inclugddai-
ers illustrated in Figure 1. This figure shows dependendiesng
a subset of the classes in these libraries. At the lowest bree
the new synchronization primitives (SYN) and the concurdata
structures (CDS, mostly lock-free). On top of these twodites
sits a new task scheduler (TPL), with a set of primitives skt
parallelism. Finally, on top of TPL sits the implementatioinpar-
allel LINQ (PLINQ) for querying LINQ data providers, and pélel
for loops for data parallelism. The test team for these fibsex-
plicitly developed Giesstests for most of these classes. We used
their tests, unmodified, for our experiments.

Table 2 shows the results of these experiments. The first col-
umn is the test name, which indicates the class being teSezded
scopelists the class that we toldiEssto seal based on the depen-
dencies shown in Figure 1 (see caption for abbreviatiorts).rext
three columnsResult, Executions and Seconds present results
for two CHESSruns, one without sealing (columns labeled 'N’)
and one with sealing (columns labeled 'S’). The coluBxecs/sec
shows the executions per second for both runs. Finallyatstecbl-
umn is the speedup in total execution time attained via pptiem
sealing.

For example, the first row shows thati€ssfound a deadlock
in the testBlockCol1 both with and without preemption sealing.
With class SemaphoreSlim sealed, however, Ess found the
deadlock after exploring one-third as many test executiand 2.6
times faster.

The Result columns validate that preemption sealing at lower
layers did not mask errors in higher layersd&ssreported the
same result for all tests both with and without preempticalisg.
On average, preemption sealing reduced the number of ésesut
explored by more than half. In all but three tests, preempgieal-
ing reduced the time taken forHEssto finish or left it the same,
resulting in an average speedup of 1.83. We expect thesearamb
to improve if we optimize the instrumentation required tplez
ment preemption sealing. In particular, our instrumentatesults
in a prohibitive overhead in the TPL tests, probably dueeqgdient
calls to small methods.

5. Related Work

The main contribution of this paper is the concept of preémnpt
sealing as a solution to two important problems in concuayen
testing—finding multiple distinct bugs in a single test ramd
compositional testing.

The idea of using preemption sealing to discover multipte di
tinct errors in concurrent programs can be viewed as a raaeca
analysis for concurrency errors. For sequential prograisiag ex-
ecutions that pass to help localize the cause of failuresbhan
popular [1, 9]. For example, the SLAM software model che¢kgr

model checker away from the error trace and towards otherserr
This idea is analagous to preemption sealing, but for theesgal
rather than the concurrent case.

The idea of using preemption sealing for compositionairigst
is most closely related to the use of atomicity for simplifyicor-
rectness proofs of multithreaded programs (e.g., [7, 4pwéler,
that work used atomicity only for the purpose of static vesi
tion; to the best of our knowledge, ours is the first effort $e this
idea in the context of runtime verification. Our use of atdtyifor
compositional testing is orthogonal to the large body ofkvon
runtime verification techniques for detecting atomicitglations
(e.g., [13, 8, 5)). It is also worth noting that while most wan
static compositional verification of concurrent prograraguires
manual specifications, our approach is fully automatic; s thhe
preemption-sealed version of a component as its specificati

Delta-debugging can be used to identify, from a failing exec
tion, the context switch points that cause a multithreadednam
to fail [3]. Our work exploits preemption bounding to makésth
problem simpler. Since preemptions are the likely causdsugé
and the erroneous execution discovered YeEs has few pre-
emptions, the problem of discovering the root cause is lyreih-
plified. Finally, our goal goes beyond root-cause analysifirnd
multiple qualitatively different bugs.

Apart from improving concurrency testing, preemption segl
can be used to make programs more resilient to concurrenagser
in a spirit similar to recent work on tolerating locking-digline
violations [17] and deadlocks [20, 11].

Recent work has investigated techniques for creating rsald
races [19] and deadlocks [10] by using feedback from other co
servative static or runtime analysis techniques. Our werdkthog-
onal and complementary to this work; while they focus on wher
to place preemptions we focus on where not to place preengptio
via preemption sealing.

6. Conclusions

Preemption sealings a scheduling strategy that increases the ef-
ficiency and efficacy of run-time tools for detecting coneuy
errors. Preemption sealing has many potential applicaigon we
considered two of them in depth here: tolerating existingrsrin
order to find more errors; and compositional testing of laglesys-
tems. The power of preemption sealing is that it does notirequ
code modifications to the program under test and can be easily
plemented in existing schedulers, whether part of modetlchg,
testing, or verification tools. Our evaluation shows thagpnption
sealing is effective at finding multiple bugs and testinglayg con-
current systems more efficiently.
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