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Abstract

We describe a novel system for the examination of patients suffering from rheumatoid arthritis.

Basis of this system is a laser imaging technique which is sensitive to the optical characteristics of finger

joint tissue. From the laser images acquired at baseline and followup, finger joints can automatically

be classified according to whether the inflammatory status has improved or worsened. To perform the

classification task, various linear and kernel-based systems were implemented and their performances

were compared. Based on the results presented in this paper, one can conclude that the laser-based

imaging permits a reliable classification of pathological finger joints, making it a sensitive method for

detecting arthritic changes.

I. I NTRODUCTION

Rheumatoid arthritis (RA) is an inflammatory arthropathy with a prevalence rate of about 1-

2% of the population. Many patients develop severe disability early in the course of the disease

because of progressive joint destruction. Hence, effective therapy with disease-modifying an-

tirheumatic drugs (DMARDs), which retard or even prevent joint destruction, should be initiated

as early as possible [1]. Therefore, early diagnosis is essential and would lead to a considerable

improvement in the overall prognosis of RA patients, particularly as new effective therapeutic

approaches are now widely available.

Objective quantification of joint inflammation is a major challenge not only in the clinical

diagnosis of RA but also in the development of new drugs, especially biologicals. Thus, novel

methods to rapidly, objectively, and reproducibly assess joint swelling are needed to supplement

and objectify clinical assessment [2].

In an in vitro study, Prapavat et. al. [3], [4] showed that joint tissues such as bone, cartilage

and synovia have distinct absorption and scattering coefficients when analyzed with laser light

of a certain wavelength. They showed that there were significant differences in the optical

characteristics of normal and pathological tissue.

Based on these studies, a laser-based imaging technique was developed specifically for prox-

imal interphalangeal finger joints [2]. A laser transilluminates the finger joint from above, and

a CCD sensor1 below the finger joint captures the distribution of transmitted and deflected laser

light. Fig. 1 shows a schematic drawing of the system, together with two example images taken
1Charge Coupled Device, a semiconductor camera element as it can also be found in normal video cameras
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from healthy and inflamed joints. The goal of the work presented in this paper is to analyze if the

inflammatory status of a finger joint can reliably be classified on the basis of the laser image, in

combination with state-of-the-art machine learning techniques. Provided that the accuracy of the

overall system is sufficiently high, the imaging technique with the automatic inflammation clas-

sification can be combined to realize a novel device that allows an inexpensive and reproducible

assessment of inflammatory joint changes.

The paper is organized as follows. In Sec. II we describe the laser imaging system in more

detail, as well as the process of data acquisition. Sec. III briefly lists the linear and kernel-based

classifiers used in the experiments. In Sec. IV we describe how the methods were evaluated and

compared. We present experimental results in Sec. V, and give conclusions and an outlook to

future developments in Sec. VI.

II. L ASER-BASED IMAGING FOR DETECTING ARTHRITIC CHANGES

A. Background

Rheumatoid arthritis (RA) is a chronic inflammatory disease that often leads to progressive

joint damage. Pathologically, the early stage of RA is characterized by congestion, edema and

cellular infiltration of the synovial membrane whereas the typical cartilage and bone erosions

usually occur at a later disease stage [5]. Synovial fluid becomes cloudy and opaque of varying

degree, depending on the concentration protein, leukocytes, and debris present.

Recent studies have convincingly shown that early treatment and therefore an early diagno-

sis and sensitive follow-up is mandatory to prevent or at least delay joint destruction [6], [7].

Therapy with DMARDs has a proven ability to retard or prevent joint damage. Since the re-

sponsiveness to the treatment with individual DMARDs is patient specific, it is important to

objectively quantify the inflammatory changes and therefore the effectiveness of these drugs,

especially biologicals, during follow-up. Novel methods to sensitively assess joint swelling and

inflammatory soft tissue changes in early disease stages are needed to supplement clinical as-

sessment. These methods should be non-invasive, of low cost, examiner independent and readily

available in daily practice [2].

In addition to clinical and laboratory findings, imaging techniques play an important role in

the diagnosis and monitoring of RA. Until now, conventional radiography has been the main
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imaging tool in the assessment of RA. However, this method detects only late joint destructions

(erosions) and is not sensitive to early inflammatory changes (synovitis). In contrast, magnetic

resonance imaging (MRI) and ultrasound not only provide information about osseous but also

about soft tissue changes such as synovitis, effusions and tendon abnormalities. Both imaging

methods, MRI and ultrasound, have been evaluated as possible alternatives for the diagnosis

of early arthritic changes [8], [9]. However, ultrasound and MRI also have their limitations.

Ultrasound is laborious and requires a trained examiner while MRI is both time-consuming and

costly.

B. The Laser-based Imaging Technique

Using anin vitro joint model, Prapavat et. al. [3], [4] recently performed studies on opti-

cal characteristics including absorption and scattering coefficients of synovial fluid and tissue.

They found a detectable change between specimen from inflamed RA joints and that of healthy

controls.

Based on these observations, a new imaging technique has been developed [2] which allows

thein vivotransillumination of finger joints with laser light in the near infrared wavelength range.

The scattered light distribution is detected by a camera and is used to assess the inflammatory

status of the finger joint. A schematic drawing of the imaging system, together with two example

images, is shown in Fig. 1. The current prototype is depicted in Fig. 2.

A description of the scattered light distribution by nine numerical features is in turn used to

automatically assess the inflammatory status of the finger joint. In this second part, machine

learning techniques are used to classify the inflammatory joint changes. A description of the

numerical features, derived from the images, will be given in Sec. II-D and Appendix A.

[Figure 1 about here.]

[Figure 2 about here.]

C. Data Acquisition

In the clinical diagnosis of RA it is necessary to assess the synovial joint inflammation during

follow-up, yet an objective quantification of inflammatory changes may be difficult. The laser

imaging system was designed to support and objectify this diagnosis. In the classification step of

January 17, 2003 DRAFT



5

the imaging system, the goal is to decide—based on features extracted from the optical data—if

there was an improvement of joint activity or if the joints remained unchanged or worsened.

The data we consider in this article is based on a study with 22 patients with rheumatoid arthri-

tis [2]. All of the patients had been or were being treated with disease-modifying antirheumatic

drugs. The main steps in the study were as follows:

1) All proximal interphalangeal (PIP) joints II, III, IV and V of the 22 patients underwent a

precise clinical examination at baseline and followup.

2) Laser images of all 176 relevant PIP joints were taken at baseline and followup, using the

above described imaging technique.

3) Out of the total 176 PIP joints, only 72 showed clear clinical signs of a change in their

inflammatory status. The laser images of these 72 PIP joints at baseline and followup,

together with the clinically assessed change of inflammatory status, make up the raw data

used in this work.

We will now give brief descriptions of steps 1 and 3, further details can be found in [2].

1) Clinical Examination: The joints considered in the present study were proximal interpha-

langeal (PIP) joints II to V of 22 patients. All PIP joints were examined at baseline and during

a followup visit after a mean duration of 42 days.

On both visits, all patients were examined by one investigator (AKS) to assess the clinical

degree of inflammation. The diagnostic criteria used were

• The clinical arthritis activity, scored according to the degree of synovitis (swelling, tender-

ness or warmth) on a scale ranging from 0 (inactive) to 3 (very active).

• The degree of pain for each joint, as indicated by the patients on a scale ranging from 0 (no

pain) to 10 (unbearable pain)

• Joint circumference, measured by a conventional measuring tape.

For every joint under consideration, data for each of the 3 above criteria from baseline and

followup were compared and rated as improvement (+), worsening (-) or unchanged (0).

2) Selecting a Clear Reference:We will later on train a classification system to best approx-

imate the rheumatologists findings, based solely on information taken from the laser images.

It is thus particularly important to have precise clinical references. Therefore, out of the total

of 176 PIP joints we selected a subset of 72 joints with clinically clear signs of a change of
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inflammatory status between baseline and followup. Detailed criteria are given in [2].

3) Reproducibility: To enable an exact inter-individual comparison of images, fingers have

to be positioned on the laser imaging device in exactly the same way during baseline and fol-

lowup. This was accomplished by comparing, at followup, the live image with the image taken

at baseline. This procedure achieves a repositioning accuracy of< 1 mm [2]. Investigations

on a group of healthy controls revealed that an accuracy of 85% can be reached in achieving

reproducible laser images [2].

D. Pre-processing

Once the medical study was complete, pre-processing of the acquired data lead to a repre-

sentation that was suitable for further use in developing a system to assess arthritic changes.

Major steps were image pre-processing and an intra-individual comparison of images acquired

at baseline and followup.

1) Feature Extraction: In the image pre-processing step, we seek to describe relevant parts

of the laser image by a set of numerical features. For our aims, the most relevant part is the

light intensity near the center of the finger joint. Thus, to calculate the numerical features, a

horizontal line along the vertical center of the laser image is selected. The distribution of light

intensity along this line has the shape of a bell curve, similar to a Gaussian density function. For

this curve, we consider figures such as the maximum light intensity, the curvature of the light

intensity at the maximum, and several others. A detailed description of all features is given in

Appendix A.

2) Comparison of Baseline and Followup:The laser images showed high inter-individual

variations in optical joint characteristics, resulting from individual differences in joint anatomy

[2]. These differences can significantly overlie arthritic effects, making it impossible to tell the

inflammatory status of a joint from one single image. Instead, special emphasis was put on the

intra-individual comparison of baseline and followup data.

For every joint examined, data from baseline and followup visit were compared and changes

in joint activity were rated as improvement, unchanged or deterioration. Similarly, the features

derived from the laser images (see the previous section) at baseline and followup were sub-

tracted. In the classification step, the task will be to predict the change of joint activity from the

change of laser image features.

January 17, 2003 DRAFT



7

3) Final Data: From a machine learning point of view, the data for developing the classifi-

cation system built on top of the laser imaging device is as follows: We have a set of 72 vectors,

each holding the difference of ten feature values between baseline and followup. Nine of these

features are derived from the laser images, the tenth feature is the difference of joint circumfer-

ence between baseline and followup. For each of the 72 vectors we have a label+1 (indicating

joints where a clinically clear improvement of joint activity had been observed, with a total of

46 joints) or label−1, indicating joints with unchanged or worsened activity, a total of 26 joints.

III. C LASSIFICATION METHODS

In this section, we describe the employed linear and kernel-based methods we have been

using to classify the inflammatory status of a finger joint from the laser image. Kernel-based

methods have shown excellent performance on many challenging classification and regression

tasks and thus represent the current state of the art in machine learning. In this section, we will

mainly focus on design issues and give references to introductory and in-depth material on the

respective methods.

A. Gaussian Process Classification (GPC)

In Gaussian processes [10], [11], a function

f(x) =
M∑
j=1

vjk(x,xj,Θ) (1)

is described as a superposition ofM kernel functionsk(x,xj,Θ), defined for each of theM

training data pointsxj, with weightvj. The kernel functions are parameterized by the vectorΘ.

In two-class Gaussian process classification, the logistic transfer functionσ(f(x)) = (1 +

e−f(x))−1 is applied to the prediction of a Gaussian process to produce an output which can be

interpreted asπ(x), the probability of the inputx belonging to class 1 [12], [13].

For the experiments we chose the Gaussian kernel function (also called the squared exponen-

tial kernel)

k(x,xj,Θ) = θ0 exp
[
−1

2
(x− xj)

Tdiag(θ1, . . . , θd)
−1(x− xj)

]
(2)

with input length scalesθ1, . . . , θd whered is the dimension of the input space.diag(θ1, . . . , θd)

denotes a diagonal matrix with entriesθ1, . . . , θd.
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For training the Gaussian process classifier (that is, determining the posterior probabilities

of the parametersv1, . . . , vM , θ0, . . . , θd) we used a full Bayesian approach, implemented with

Readford Neal’s freely available FBM software [14]. Details of the experimental setup can be

found in Appendix B.

B. Gaussian Process Regression (GPR)

In Gaussian process regression [10], [15], [16] we treat the classification problem as a regres-

sion problem with target values{−1,+1}, i.e. we do not apply the logistic transfer function as

in the last subsection. Any GP output< 0 is treated as indicating an example from class−1, any

output>= 0 as an indicator for class 1.2 The disadvantage is that the GPR prediction cannot be

treated as a posterior class probability; the advantage is that the fast and non-iterative training

algorithms for GPR can be applied.

The parametersΘ = {θ0, . . . , θd} of the kernel function Eq. (2) were chosen by maximizing

the evidenceP (y|x1,xM ,Θ) with respect toΘ via a scaled conjugate gradient method [10],

wherey is a vector containing theM class labels of the training data.

Later on this method will be referred to as “GPR Bayesian”3. Results are also given for a

simplified covariance function withθ0 = 1, θ1 = θ2 = . . . = θd = r, where the common length

scaler was chosen by cross-validation (later on referred to as “GPR crossval”).

C. Support Vector Machine (SVM)

The SVM is a maximum margin linear classifier [17], [18], [19]. As in Sec. III-B, the SVM

classifies a pattern according to the sign off(x) in Eq. (1). The difference is that the weights

v = (v1, . . . , vM)T in the SVM minimize the particular cost function

vTKv +
M∑
i=1

Ci(1− yif(xi))+ (3)

where(·)+ sets all negative arguments to zero. Here,yi ∈ {+1,−1} is the class label for training

point xi. Ci ≥ 0 is a constant that determines the weight of errors on training pointxi, andK

is anM ×M matrix containing the amplitudes of the kernel functions at the training data, i.e.
2Similarly, neural networks are sometimes trained with sum-of-squares error function on classification problems.
3Though in a strict sense, it is not fully Bayesian, since we only use a point estimate forΘ instead of the full probability

distribution.
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Kij = k(xi,xj,Θ). The motivation for this cost function comes from statistical learning theory

[19]. Many authors have previously obtained excellent classification results by using the SVM.

One particular feature of the SVM is the sparsity of the solution vectorv, that is, many elements

vi are zero.

In the experiments, we used both an SVM with linear kernel (“SVM linear”) and an SVM

with a Gaussian kernel (“SVM Gaussian”), equivalent to the Gaussian process kernel Eq. (2),

with θ0 = 1, θ1 = θ2 = . . . = θd = r. The kernel parameterr was chosen by cross-validation.

In practical applications, for example in the medical domain [20] or in recommender systems

[21], it has been noted that the standard formulation of the SVM, as given by Eq. (3) with

Ci = C for all i, is susceptible to unbalanced class distributions.4 A well-known remedy is

using a cost function that penalizes errors in the minority class more than errors on examples

of the majority class. For SVMs, different cost functions for minority and majority class can be

simply introduced in Eq. (3) by usingCi = Cmaj for the majority class andCi = Cmin > Cmaj

for the minority class. Theoretical work on this method, specifically aimed at support vector

machines, is presented in [23]. In our experiments, we found empirically thatCmin = 1 and

Cmaj = 0.8 gives the best balance of sensitivity and specificity.

D. Generalized Linear Model (GLM)

Generalized linear models are well established statistical techniques to solve regression and

classification problems [24], [25], [26]. A GLM is built up from a linear model for the input

data, together with a link function that relates the linear predictor to the mean of the outcome

variables. If we choose the canonical link function for Bernoulli distributions, the output of the

linear modelf(x) = wTx is in turn input to the logistic transfer functionσ(·)

σ(f(x)) = (1 + e−f(x))−1 = (1 + e−wTx)−1 (4)

that computesπ(x), the probability of the inputx belonging to class 1. Training of the GLM

was done by iteratively re-weighted least squares (IRLS), implemented with the Netlab toolbox

by Chris Bishop and Ian Nabney [27].
4Yet this property is also shared by other classification algorithms, such as neural networks [22].
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IV. T RAINING AND EVALUATION

One of the challenges in developing the classification system for the laser imaging system

is the low number of available training examples. Data was collected through an extensive

medical study, but only data from 72 fingers were found to be suitable for further use. As with

many medical applications, data acquisition is rather costly and needs to be conducted carefully.

Based on the positive results presented in this paper, it is planned to acquire further data in future

studies.

A. Training

From the currently available 72 training examples, classifiers need to be trained and evaluated

reliably. Part of the standard methodology for small data sets is N-fold cross-validation, where

the data are partitioned intoN equally sized sets. The system is trained onN − 1 of those sets

and tested on theN th data set left out, this is repeatedN times.

Since we wish to make use of as much training data as possible,N = 36 seemed the appro-

priate choice, giving test sets with two examples in each iteration. For some of the methods

model parameters needed to be tuned (for example, choosing SVM kernel width), where again

cross-validation is employed. This leads to the following procedure for training and evaluation:

Run 36-fold CV

For Bayesian methods or methods without tunable

parameters (SVM linear, GPC, GPR Bayesian, GLM):

Use full training set to train classifier

For Non-Bayesian methods

(SVM Gaussian, GPR crossval):

Run 35-fold CV on the training set, choose

parameter to minimise CV error

evaluate the classifier on the 2 example test set

This nested loop ensures that in no case any of the test examples is used for training or pa-

rameter tuning.

B. ROC Curves

In medical diagnosis, biometrics and other areas, the common means of assessing a clas-

sification method is the receiver operating characteristics (ROC) curve. An ROC curve plots
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sensitivity versus 1-specificity5 for different thresholds of the classifier output. ROC curves can

be compared at a coarse level by calculating the area under the ROC curve by integration. Based

on the ROC curve it can be decided how many false positives resp. false negatives one is will-

ing to tolerate, thus helping to tune the classifier threshold to best suit a certain application. A

random assignment of classes to data would result in an ROC curve in form of a diagonal line

from (0,0) to (1,1) with an ROC area of 0.5.

Acquiring the ROC curve typically requires the classifier output on an independent test set.

We instead use the union of all test set outputs in the cross-validation routine. This means that

the ROC curve is based on outputs of slightly different models, yet this still seems to be the most

suitable solution for such few data. For all classifiers we assess the area of the ROC curve and

the cross-validation error rate. Here the above mentioned threshold on the classifier output is

chosen such that sensitivity equals specificity.

V. RESULTS

[Table 1 about here.]

[Figure 3 about here.]

Table I lists error rates for all methods listed in Sec. III. Gaussian process regression (GPR

Bayesian) with an error rate of≈ 14% clearly outperforms all other methods, which all achieve

comparable error rates in the range of20 . . . 24%. We attribute the good performance of GPR

to its inherent feature relevance detection, which is done by adapting the length scalesθi in the

covariance function Eq. (2). A largeθi means that thei-th feature is essentially ignored.

In an additional experiment we wanted to find out if classification results could be improved

by using only a subset of input features6. We found that only the performance of the two linear

classifiers (GLM and SVM linear) could be improved by input feature selection. Both now

achieve an error rate of16.67%, which is only slightly worse than GPR on the full feature set

(see Table I). In absolute numbers, GLM and SVM linear with reduced feature set differ from
5Sensitivity = true positives

true positives+false negatives

Specificity = true negatives
true negatives+false positives

6This was done with the input relevance detection algorithm of the neural network tool SENN, a variant of sequential backward

elimination where the feature that least affects the neural network output is removed. The feature set was reduced to the three

most relevant ones.
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GPR Bayesian only by 2 misclassifications on the test set. We can thus not identify a “clear

winner” out of this set of three methods, which is also confirmed by statistical hypothesis testing

(see the following paragraph).

A. Significance Tests

Using a statistical hypothesis test, we compared all classification methods pairwise. A de-

scription of the test is given in Sec. C. It turned out the three best methods (GPR Bayesian,

and GLM and SVM linear with reduced feature set) perform better than all other methods at

a confidence level of90% or more. Amongst the three best methods, no significant difference

could be observed.

B. Comparison with Baseline Methods

A further set of experiments was conducted to compare the performance of the methods de-

scribed in Sec. III with the performance of baseline methods. We chose the nearest neighbour

classifier7 as the baseline method, with the evalutation framework described in Sec. IV. Using

the full set of ten features, the nearest neighbour classifier achieved an error rate of22.2%, and

27.8% with the reduced feature set. Thus only the three best performing classifiers have achieved

significant advantages over baseline.

It is also interesting to consider results that use only one single feature. Using only finger

circumference in a GPR Bayesian classifier, we achieved an error rate of22.2%. While finger

circumference can thus already provide some initial information on the inflammatory status, the

laser image features are essential to achieve a prediction accuracy that is suitable for medical

use.

C. ROC Curves

For the three best classification methods (GPR Bayesian, and GLM and SVM linear with

reduced feature set), we have plotted the receiver operating characteristics (ROC) curve in Fig. 3.

According to the ROC curve a sensitivity of≈ 80% can be achieved with a specificity at around

90%. GPR Bayesian seems to give best results, both in terms of error rate and shape of the ROC

curve.
7For each test point, assign the label of the training point that has minimum Euclidean distance to the test point.
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D. Choice of Methods

To summarize, when the full set of features was used, Bayesian kernel-based classifiers (Gaus-

sian process regression) appear to have advantages over the other approaches due to their in-

herent input relevance detection. Comparable yet slightly worse results could be achieved by

performing feature selectiona priori and reducing the number of input features to the three

most significant ones. In particular, the error rates of linear classifiers (GLM and linear SVM)

improved by this feature selection, whereas more complex classifiers did not benefit. The best

overall classification method for the laser imaging system seems to be Gaussian process regres-

sion (GPR), operating on the full set of features, although—as stated before—the differences in

performance to the two linear methods GLM and SVM with reduced feature set are not statis-

tically significant. Still we can draw the important conclusion that a sensitivity of80% can be

reached at a specificity of approximately90%.

Further developments of the classification step in the laser imaging system will incorporate

information from established medical imaging systems such as magnetic resonance imaging

(MRI). MRI provides information about soft tissue changes in the finger joint and thus can be

used to assess objectively the inflammatory status of the joint. In contrast, in the present study

the inflammatory status is assessed by a rheumatologist and the patients subjective degree of

pain, thus we may expect a certain degree of label noise in the data on which the classification

system has been trained.

VI. CONCLUSIONS

In this paper we have reported results from the analysis of a new system to classify joint in-

flammation (synovitis in patients with rheumatoid arthritis, RA) based on images captured by

a novel laser imaging technique. Out of a set of linear and kernel-based classification meth-

ods, Gaussian process regression performed best, followed closely by generalized linear models

and the linear support vector machine, the latter two operating on a reduced feature set. The

promising results achieved with the best methods showed that a further development of the RA

classification system is desirable. We achieved a sensitivity of80% at a specificity of approxi-

mately90%. Further studies to improve on these results are currently being prepared.

In summary, the new laser imaging device with the RA classification system might allow

an early and reliable monitoring of inflammatory processes. Laser imaging is of only limited
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help for an individual early arthritis diagnosis due to anatomical inter-individual differences of

the joint structures. Thus, the new technique may be especially useful for a sensitive followup

analysis of joint inflammation, and therefore may provide important information about both the

response to medication and for the objective quantification of the effectiveness of antirheumatic

medication. Although the current study has only evaluated the laser imaging technique on pa-

tients with rheumatoid arthritis, it may as well be suitable to examine arthritic changes of other

genesis.

The new laser imaging technique is easy to handle, non-invasive and inexpensive. It therefore

has many advantages over conventional imaging techniques and provides information about

inflammatory processes in early disease stages. Laser imaging may supplement our imaging

armamentarium and help to better assess arthritis patients. However, additional studies with

more patients and a comparison to other, established imaging techniques have to be performed

before the overall usefulness of this new technique can conclusively be evaluated.

A. Future Work

Further medical and technical studies on the presented laser-based imaging technique are

currently being prepared. In particular, we plan to carefully compare the laser technique with

laboratory findings and other established imaging techniques (MRI and ultrasound) which have

shown a high sensitivity in detecting early arthritic changes. Using this information, it is hoped

that sensitivity and specificity of the RA classification system can significantly be enhanced.

Ultimately, this should lead to an accurate and fully automatic classification of the inflammatory

joint status based on the laser imaging technique.
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APPENDIX

A. Computing Features from Laser Images

Starting with the laser image, as captured by the CCD camera, smoothing and resizing are the

first pre-processing steps.

• Crop the original image to a size of55 × 415 pixels. Here, only the lines near the vertical

center of the image are retained, that is, the lines around the center of the finger joint.

• Partition the image into disjoint patches of size5 × 5 pixels and average the pixel values

over each patch. This leads to a matrixM of size11 × 83, containing a smoothed and

resized version of the original laser image that concentrates on the center point of the finger

joint.

To describe the optical characteristics of the joint, the following nine numerical features are

computed from matrixM :

1) Average light intensity along line 6, that is,1
83

∑83
j=1 M6,j

2) Maximum light intensitymaxi,j{Mi,j}

3) Maximum of average light intensities along each linemaxi{ 1
83

∑83
j=1 Mi,j}.

4) Leta be the line containing this maximum average light intensity,a = arg maxi{
∑83
j=1 Mi,j}.

Let b = arg maxj{Ma,j} be the point of maximum light intensity in linea. Feature 4 is

computed as the average light intensity around the maximum1
7

∑b+3
j=b−3 Ma,j.

5) The light intensity along linea is bell shaped. We thus fit a Gaussian density function

to the light intensity in linea, by approximatinglogMa,· by a polynomial of degree two.

Features 5 through 7 are the coefficients of this polynomial.

6) Curvature of the light intensity curve around its maximum. We use the simple heuristic8

Ma,b−Ma,b−5 for the curvature left of the maximum (feature 8) andMa,b−Ma,b+5 for the

curvature right of the maximum (feature 9).

B. Setup for Neal’s FBM Software

We used Radford Neal’s FBM software (availabe fromhttp://www.cs.toronto.edu/

˜radford/ ) for implementing Gaussian process classification. As a prior distribution for ker-

nel parameterθ0 we chose a Gamma distribution.θ1 . . . θd are samples of a hierarchical Gamma
8We might of course compute the curvature based on the Gaussian density approximation, yet this would duplicate errors

caused by poorly fitting polynomials.
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distribution. In FBM syntax, the prior is0.05:0.5 x0.2:0.5:1 . Sampling from the poste-

rior distribution was done by persistent hybrid Monte Carlo, following the example of a 3-class

problem in [14].

C. Performance Comparison

In order to compare the performance of two given classification methods, one usually employs

statistical tests. An overview of tests commonly used in the machine learning community can

be found in [28]. When using such tests to compare the classification methods for data from

the laser imaging system, we noticed two points: For some tests (such as the5× 2 pairedt test

proposed by Dietterich) we need to further subdivide the data, which is unacceptable for our

few training data. Furthermore, a test for our needs should exploit the fact that we perform a

pairwise comparison in the cross-validation procedure, where two classification methods make

their predictions on a test point.

We thus propose a simple hypothesis test that allows a performance comparison of two given

classification methods A and B. A similar test has been used in [29] to compare text categoriza-

tion methods.

We start out by looking at the test points one by one, computing the predictions of both

methods A and B on the test point, and checking which of the methods predicts correctly. Basis

of the proposed test is a matrix of counts, similar to the data used by McNemar’s test (see [30],

chapter 8)

Number of points which A classifies correctly A misclassifies

B classifies correctly a b

B misclassifies c d

wherea+ b+ c+ d = N gives the total number of test points. Similarly to McNemar’s test,

we assume that both countsa andd (the number of examples that are correctly classified resp.

misclassified by both methods) do not contribute to the performance difference of methods A

and B.

We assume the remaining countsb andc to be the sufficient statistics of a Binomial random

variable, where the parameterθ is the proportion of cases where method A performs better than

method B.

The null hypothesisH0 is that the parameterθ = 0.5, that is, both methods A and B have the
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same performance. HypothesisH1 is thatθ > 0.5. The test statistics under the null hypothesis

is the Binomial distributionBi(i|b+ c, θ) with parameterθ = 0.5. We reject the null hypothesis

if the probability of observing a countk ≥ c under the null hypothesis

P (k ≥ c) =
b+c∑
i=c

Bi(i|b+ c, θ = 0.5) (5)

is sufficiently small.
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(a) The principle underlying the laser-based imaging system. Laser light
illuminates the finger joint from above. The light distribution below the
joint is captured by a camera element and sent to a PC for evaluation

(b) Laser image of a proximal interpha-
langeal (PIP) joint of a healthy control

(c) Laser image of an actively inflamed
PIP joint

Fig. 1. Schematic drawing of the laser-based imaging method and two example images, as they are captured by the camera
element. On both images, the palm is on the left, the finger tip on the right side. For actively inflamed joints, the extended area
in the middle of the image typically appears darker due to changed optical characteristics of the joint
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Fig. 2. The prototype laser imaging system. A laser light source (in the upper part of the apparatus) transilluminates the
patient’s proximal interphalangeal joint. The finger is placed in a specially designed holder that eases a reproducable positioning
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Fig. 3. ROC curves of the best classification methods, both on the full data set and on a reduced data set wherea priori feature
selection was used to retain only the three most relevant features
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L IST OF TABLES

I Error rates of different classification methods on the rheumatoid arthritis prediction
problem. All error rates have been computed by 36-fold cross-validation, with the
classifier threshold set such that sensitivity equals specificity. “Reduced feature
set” indicates experiments wherea priori feature selection has been used . . . . . 24
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Method Error rate

GLM 20.83%
GLM, reduced feature set 16.67%
GPR Bayesian 13.89%
GPR crossval 22.22%
GPC 23.61%
SVM linear 22.22%
SVM linear, reduced feature set 16.67%
SVM Gaussian 20.83%

TABLE I

ERROR RATES OF DIFFERENT CLASSIFICATION METHODS ON THE RHEUMATOID ARTHRITIS PREDICTION PROBLEM. ALL

ERROR RATES HAVE BEEN COMPUTED BY36-FOLD CROSS-VALIDATION , WITH THE CLASSIFIER THRESHOLD SET SUCH

THAT SENSITIVITY EQUALS SPECIFICITY. “REDUCED FEATURE SET” INDICATES EXPERIMENTS WHEREa priori FEATURE

SELECTION HAS BEEN USED
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