
Automatically Extracting Fields from Unknown Network Protocols

Karthik Gopalratnam1,2
karthig@cs.washington.edu

Sumit Basu1

sumitb@microsoft.com
John Dunagan1

jdunagan@microsoft.com
Helen J. Wang1

helenw@microsoft.com

Microsoft Research (Redmond, WA) , 2University of Washington (Seattle, WA)

ABSTRACT

There are thousands of network protocols in active use
on the internet. System administrators often need to
extract information from particular fields in such
protocols without having sufficient information or time
to programatically parse the packets. We propose an
active learning framework to perform this extraction in
an unknown protocol, in which the user presents the
system with a small number of labeled instances. Our
system then automatically generates an abundance of
features and negative examples; we then use a boosting
approach for feature selection and classifier
combination. The system then displays its results for
the user to correct and/or add new examples and
iterate. In our preliminary experiments on DNS
queries and responses, we achieve less than 0.1%
generalization error using only a handful of labeled
examples and thus a minimum of user effort. This
translates to perfect retrieval from 86% of unlabeled
packets.

KEYWORDS: network management, protocol
analysis, active learning, boosting.

1. INTRODUCTION

Machines communicate with each other through a wide
variety of network protocols. Indeed, there are a vast
number of actual protocols that are in use at any given
time. This number is magnified by the variety of
implementations and version of each protocol. A quick
survey in just five minutes of traffic for two buildings
at Microsoft Research, there were more than 50 unique
protocols. This diversity of protocols creates a huge
headache for the network or systems engineer. For
instance, if she’s only interested it knowing what
filenames are being transported via a filesharing
application, perhaps to check for illicit activity, she has
to find the specification for that protocol and then write
code to decode the packet according to the
specification. If said specification does not exist, she is
forced to reverse engineer the protocol. While there
are tools like Ethereal [4] that can understand many
protocols, there are so many variations and
subprotocols that it is difficult for such a tool to cover
them all. Furthermore, extracting the field can be far
from trivial: even relatively simple protocols have
variable length fields, such as strings, which means the

field of interest can be an arbitrary offset within the
packet or TCP flow. In this paper, we examine a UDP-
based protocol where each message is contained in a
single packet, but our method applies to TCP flows as
well.

Our work addresses precisely this scenario. Because
network engineers often only want to extract a
particular field from a protocol, a full decoding of the
protocol is neither practical nor necessary. We thus
propose a method in which we attempt to directly
target the field of interest by learning a classifier.
There is an additional twist, though, to this scenario –
the engineer wants to do as little labeling as possible,
and is unlikely to be willing to label a large number of
packets. As a result, it is undesirable to use the typical
supervised learning approach, i.e., batch learning a
complex classifier on a fixed training set.

To deal with these constraints, we propose an active
learning framework. The system works with as little or
as much data as the user is willing to give, often
beginning with only one labeled example. Given a
starting point of a dataset of packets from the protocol
of interest and at least one packet with the field(s) of
interest labeled, the system automatically generates
negative examples, since all other subranges in that
packet cannot be the field of interest. It then proposes
dozens of simple candidate features that are
automatically generated based on the positive
examples, each of which results in a simple classifier;
we then use a boosting approach [6] to do both feature
selection and classifier combination. Upon
convergence, the system returns a set of qualifying
subranges based on the classifier it has learned. The
user then adds labels by either marking the false
positives from that set or adding more positive
examples, at which point the system learns a new
classifier and brings back new results; these iterations
continue until the user is satisfied or the system is
unable to improve.

This active learning and classifier combination
approach is beneficial for three reasons. First, it
requires less effort from the user, since she only has to
label as many examples as it takes to get the
performance she desires. Second, the complexity of the
classifier scales with the number of labels. If the user
labels one example and one of the simple features is

sufficient to consistently return the field, only that one
feature will have significant weight. On the other
hand, if the problem is more complex, more features
will be used in the final classifier. In contrast, a
classifier of fixed complexity typically requires a fixed
amount of labeling to avoid overfitting. Finally, if the
network engineer speculates that new families of
features that might be useful to a given task, she can
add these to the bag without risking the error
performance, even if the features are completely
useless. Indeed, the bag of possible features can keep
growing risk-free over time as people add custom
features or feature families, making new problems
easier to solve.

In the following sections, we describe the details of our
approach to the field extraction problem and show our
preliminary results. While our efforts are not
complete, and we currently have only implemented the
first iteration of the active learning process, the results
are promising, and imply that with additional iterations
we can achieve near-perfect extraction on typical fields.

2. RELATED WORK

There has been a variety of work on analyzing and
parsing network protocols with varying degrees of
automation. The work of Borisov et al. [3], GAPAL, is
a general framework in which network protocols can be
specified and parsed via hand-written grammars. This
allows for precise recovery of all protocol elements, but
requires significant manual effort to precisely describe
the entire protocol. On the other hand, there have
been fully automatic approaches like the RolePlayer
system [2], in which the authors automatically modeled
the server responses for various protocols to fool
attackers into attempting to exploit vulnerabilities. In a
similar vein is the work of Ma et al. [5], which
attempts to classify packet streams into protocols based
on learned Markov models. While these more
automatic methods are able effectively to fool attackers
and identify protocols, the models they learn are not
sufficiently specific to extract arbitrary fields, leading
us to our current work.

From the machine learning perspective, we draw our
inspiration from the work of Tieu and Viola [1], in
which the authors developed a system for image
retrieval based on a small number of example images.
For each query, they proposed a wide variety of
features and used boosting to do classifier combination
and feature selection. We take a similar approach to
the field extraction problem, adapting the features to
the space of network packets.

On the application side, our contribution has been to
approach the field extraction problem directly – instead
of trying to model the network protocols, we treat the
problem as one of detecting special structures within
unstructured data as in the Tieu and Viola work. On

the learning side, we have not only applied the feature
selection and combination approach to a new domain,
but we have also incorporated it into an active learning
framework, thus minimizing the amount of effort that
the user must expend in order to achieve a sufficiently
accurate classifier.

3. ACTIVE LEARNING FRAMEWORK

In the most general sense, active learning scenarios are
those in which the learner can query the user for labels
or additional examples which will guide it towards a
better solution. This paradigm is particularly valuable
in situations such as ours where it is difficult or time-
consuming for the user to label a large dataset prior to
beginning the learning. The learner can do the best
with the data it has available and then demonstrate its
performance to the user. If the performance is not
satisfactory, the system can ask the user to mark its
mistakes or add more examples and thus improve its
performance. In this section, we describe the
particulars of our active learning framework for field
extraction.

The user supplies the system with a small number of
packets, possibly just one, within which she has
specified the field of interest by means of an offset and
a field length. In addition, she supplies a dataset of
packets that are from the protocol of interest. This
requires little user effort: simply specifying a
server/port allows the system to cull the relevant data
from the network.

The system then proposes a large set of features for the
classification problem (see section 3.1 for details) and
creates a decision stump for every feature. The decision
stump is a very simple classifier – if the feature is
Boolean, the decision stump is the feature itself; if the
feature is real valued, the decision stump is a simple
classifier that provides a mapping from ℜ to {0,1},
e.g., a two class Gaussian model as in [1].

The system also generates a large number of negative
examples. This is a relatively easy task given that there
is only one correct answer per packet, so all other
offset/length pairs are guaranteed to be negative
examples. In fact, there are too many to be able to use
them all. However, in addition to examples drawn
randomly from this set, we make sure to include some
examples that draw particularly sharp contrast with the
positive examples. Specifically, we can take the correct
offset of a labeled packet but use an incorrect length,
and similarly an incorrect offset but choose a length
such that it terminates at the same location as the true
field. These “almost correct” negative examples
prevent the system from overfitting to characteristics of
a small number of labeled examples. For example, if
byte[0] of the field is always 255, the system may
propose that this feature is enough to determine the
field, regardless of the length – simply because it has

seen no negative examples where this feature is true
and yet the field is not correctly extracted.

At this point, we begin the feature selection and
combination process. In a typical boosting scenario,
we would train the same classifier (e.g., a simple
hyperplane) over and over again, reweighting the
individual data points and learned classifiers on each
iteration as in [6]. In our case, as in [1], we have a
large number of classifiers to choose from, each based
on a very simple feature. At each boosting step, we
thus choose the best of these features/classifiers, i.e.,
the classifier that will most improve our classification
accuracy on the weighted data. We then weight the
resulting classifier as in standard AdaBoost [6]. This
process thus performs both feature selection (by
choosing the best classifier at each step) and feature
combination (via the weighted combination from
boosting). Due to the relative bias in the number of
positive vs. negative examples, we scale the weight of
the data points relative to the number of examples in
each class.

The system then classifies all possible candidate
packets and fields therein using the learned classifier,
and returns the instances that are classified as correct
fields. Note that this is an expensive operation – there
are O(N2) possible fields in a packet of length N: all
offsets and all lengths for each offset. For instance,
identifying the field of interest from 10000 packets of
average length 100 would involve 5*107 classifications.
We will discuss more efficient methods in Section 5.

The user then can then provide feedback on the
extracted fields in two ways – she can provide negative
examples (by identifying some of the extracted fields as
wrong) or provide more positive examples if the recall
rate is perceived to be too low. These active learning
steps are repeated until the user receives satisfactory
results.

3.1. Feature Generation

The learner’s feature proposal process for field
extraction is completely agnostic to the actual protocol.
The proposed features can take a number of forms. The
simplest of these is the case where each feature
corresponds to whether or not a byte relative to the
field location takes on a particular value. However, the
naïve method of proposing these features is prohibitive,
since that would involve proposing a separate feature
for each byte taking on each value in the range
{0…255}. Instead, we use the positive examples as a
guide to propose these single byte features in the
following manner. We first align the positive
examples along the start of the field (see Figure 1).

We then use this alignment to propose features
corresponding to each byte value within some window
(+/-10 in our case) around the beginning of the field.
For example, in Figure 1, we would propose features

such as “byte[offset-1] == 0”, “byte[offset-2] == 2”,
“byte[offset-2] == 7”, byte[offset+1] == 48” and so
on, where offset (a variable) is the starting position of
the field for the given packet. We then do the same
for the end of the field. In our preliminary evaluation
on the DNS protocol, we found that these simple
features performed very well.

Figure 1: Aligning the positive examples along the beginning of the
demarcated field in order to propose features. Note offset and
length are both variables and are different for different packets.

In addition to these single byte equality features, there
are a number of other features that can be proposed.
We plan to explore this in the context of more complex
protocols.

4. EXPERIMENTAL SETUP AND RESULTS

This section describes the preliminary evaluation of our
system on extracting fields from the DNS protocol,
using traces collected from a gateway router at a
building on the Microsoft Redmond campus. This
NetMon trace was collected over 5 minutes while
traffic was flowing at 95% capacity on a 100Mbps link.
We extracted all the DNS traffic (Port 53). We
separated the DNS queries and responses and focused
on determining if our system could reliably extract the
domain name from DNS queries, and the returned IP
address from the DNS responses.

DNS is a relatively simple protocol, but we argue that
being able to extract these in a completely protocol
agnostic fashion makes a compelling proof of concept
for our active learning and classification system for the
following reasons. The domain name in the DNS query
is an example of a variable length field in a binary
protocol, which makes it an interesting case, since a
classifier has to somehow find the bounds of the field.
In the case of the IP address in the DNS response, there
can be multiple responses following the variable length
query (the query is repeated in the response).

We chose to use just the simple byte-equality features
based on lining up the positive examples (Section 3.1)
for our classification. To evaluate of the classification
algorithm, we created a test data set of both DNS
queries and responses – each consisting of packets with
the query and response IP fields marked out. We used
Ethereal’s parsing of the packets to label our test data.

4.1 Performance vs. Number of Training Examples

The first evaluation we made was to understand the
effect of the number of positive and negative examples

on the accuracy of the classifier. This was measured by
training the boosting algorithm on varying numbers of
positive and negative examples, and testing them on a
test set of 1,000 positive examples (a subrange
corresponding to a field) and 1,000 negative examples
(a subrange not corresponding to a field) from DNS
queries. Figure 2 shows the percentage error of the
classifier vs. the number of positive examples, averaged
over 20 sets of 200 randomly selected negative
examples. The plot shows the error rates on the
positive and negative instances. In this experiment, the
error drops to zero after labeling less than ten
examples, which implies minimal effort from the user.
We observed similar performance on the DNS
responses. We also observed that the algorithm was
not particularly sensitive to the number of random
negative training examples, and that very similar
curves were obtained on the testing set.

Classifier Evaluation

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Number of Positive Examples

G
en

er
al

iz
at

io
n

 E
rr

o
r

Positive Error

Negative Error

Fig. 2: Generalization Error for Boosting vs. number of positive
examples on extracting DNS queries. The positive and negative
test sets are the same size (1,000 of each).

4.2 Features Identified by the Classifier

Our next evaluation was to see which features were
identified as important by the classifier, and we aimed
to use our knowledge of the DNS protocol to evaluate
whether the features with high weight made sense. For
this evaluation, we ran the classifier on a set of 10
positive examples and 10 sets of 1,000 randomly
generated negative examples, and made a list of the
selected features and their average weight. Table 1
shows the top 6 features with the highest weight.

FEATURE WEIGHT
byte[offset+length+5] == 1 4.52919
byte[offset – 7] == 1 3.304362
byte[offset+length-8] == 116 3.213337
byte[offset – 10] == 1 3.184982
byte[offset+7] == 73 1.851104
byte[offset + 26] == 67 1.483588

Table 1: Top 6 Most important features for identifying the DNS
query

For instance, the above table indicates that the most
important feature is that five bytes after the candidate
field, the byte value is ‘1’ and that seven bytes before
the offset, the byte value is ‘1.’ In reality, the DNS
query always starts after the header, (which has a ‘1’
seven bytes before the start of the query field), and the
first ‘0’ indicates the end of the query. However,
several bytes after the final delimiting ‘0’ are constant,
and thus were effective in finding the end of the query,
explaining the high weight for the first feature.

To understand why the final delimiting ‘0’ was not a
highly weighted feature, we constructed a histogram of
the various byte values in DNS queries. This showed a
disproportionate number of ‘0’s. Therefore, with a
relatively high probability, our randomly chosen
negative examples contained instances where the byte
after the candidate field was a ‘0’, thereby lowering the
weight of that feature during classification training.
This does not particularly hurt us for the DNS
queries/responses case, but for more complex protocols,
it could be important to find the exact features that
delimit the field of interest.

4.3. False Positives

The third evaluation was to understand the extent of
false positives while actually searching through a set of
given packets for the field of interest. To do this, we
chose a set of 100 packets with the DNS query field.
We then generated every possible candidate field (i.e.
every possible combination of offset and length) for
each of these packets, and using a learned classifier,
classified each of these candidate fields. We then
counted the number of packets for which the classifier
correctly extracted (and only extracted) the query field.
The evaluation was done for either two or four positive
examples, and then repeated over 20 sets of 200
randomly selected negative examples. This establishes
the extent to which the search for the field of interest
among all the candidate packets is likely to yield false
positives. Table 2 summarizes this result.

NUM.
POSITIVE
TRAINING
INSTANCES

AVG. NUM.
PACKETS
CORRECTLY
MARKED

MAX.. NUM.
PACKETS
CORRECTLY
MARKED

MIN. NUM.
PACKETS
CORRECTLY
MARKED

2 70 95 42

4 86 100 68

Table 2: Extent of False Positives: Packets with exactly one query
field found during exhaustive enumeration of fields

We observed over multiple runs of the classification
algorithm that there is a high degree of variance in the
number of packets that are marked correctly. This is
owing to the fact that the random set of negative
training examples may not contain examples of the
type that resolve the ambiguity that is reflected in these
misclassifications. This underlines the promise of the
active learning framework; we can rectify this by

adding the misclassified fields as negative examples for
the next active learning iteration. However, we may
have to ascribe a greater weight to the user-labeled
negative examples relative to the randomly generated
negative examples, since otherwise these specific
examples will not generate enough of a penalty for
misclassification during training, and therefore be
effectively ignored. In fact, we can iteratively increase
the weights until the classifier either gets these
examples correct or can no longer improve its
performance. This is an extension to the classification
algorithm that we have not fully implemented, and
leave this for future work.

5. DISCUSSIONS AND FUTURE WORK

We have shown that our initial implementation of an
active learning system for field identification is able to
achieve reasonable success; it is still an open question
as to how well it will generalize to other protocols. As
we described above, though, it seems clear that by
making better use of our negative examples, we can
drive the errors down to still lower levels.

In our future work, we first want to evaluate more
explicitly the advantages of active learning over batch
labeling, as is traditional in supervised learning
scenarios. We can do this by measuring performance
against the number of examples a user has to label in
rounds of active learning, as compared to the same
number of (randomly selected) examples labeled as a
batch. Furthermore, we would like to investigate how
we can optimially choose which labels the system
presents to the user for labeling, given that those that
are the most ambigious (i.e., closest to the decision
boundary) are the most likely to need user feedback.

We would also like to extend our system in a number of
other directions. First, we would like to implement the
“feature cascade” used in [1] to efficiently filter the
input with successive passes of the component features
instead of enumerating all possible subpackets as we
described in Section 3. Second, we would like to
model the cost to the user of labeling negative
examples vs. adding more data, allowing us to optimize
in terms of user effort as well as classifier performance.
Finally, we would like to explore how to generalize our
work as a means of automatically extracting the
structure of a protocol – if we can learn extractors for a
number of tokens in a protocol, it is likely we can build
models for how these tokens relate to each other.

From an applications perspective, we would also like to
explore the range of possible tasks for which our
methods could be helpful. For instance, one may want
to extract the filenames of files sent over the network to
enforce company policies, debug distributed systems
problems related to particular field values, track the
content of traffic to particular servers to understand
their usage for management purposes, or identify

whether applications with known vulnerabilities are
being used on the network. We are optimistic that our
methods could be helpful in many such scenarios.

6. ACKNOWLEDGEMENTS

We would like to thank the reviewers for their helpful
comments and suggestions.

7. REFERENCES

[1] Kinh Tieu and Paul Viola. “Boosting Image Retrieval.”
International Journal of Computer Vision. 56 (1), 2004.

[2] Weidong Cui, Vern Paxson, Nicholas Weaver and Randy
H. Katz. “Protocol-Independent Adaptive Replay of
Application Dialog.” Proceedings of the 13th Annual
Network and Distributed System Security Symposium
(NDSS). San Diego, CA, February 2006.

[3] Nikita Borisov, David J. Brumley, Helen J. Wang, John
Dunagan, Pallavi Joshi, and Chuanxiong Guo, “Generic
Application-Level Protocol Analyzer and its Language.” MSR
Technical Report MSR-TR-2005-133. February 2005.

[4] Ethereal: A Network Protocol Analyzer.
http://www.ethereal.com/

[5] Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan
Savage, and Geoffrey Voelker. “Automatic Protocol
Inference: Unexpected Means of Identifying Protocols.”
UCSD Computer Science Technical Report CS2006-0850.
February 2006.

[6] Yoav Freund and Robert Schapire. “A Short
Introduction to Boosting.” Journal of Japanese
Society for Artificial Intelligence 14(5):771-780.
September, 1999

