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ABSTRACT
This paper explores the viability of precise indoor localization
using physical layer information in WiFi systems. We find
evidence that channel responses from multiple OFDM subcar-
riers can be a promising location signature. While these sig-
natures certainly vary over time and environmental mobility,
we notice that their core structure preserves certain proper-
ties that are amenable to localization. We attempt to harness
these opportunities through a functional system called PinLoc,
implemented on off-the-shelf Intel 5300 cards. We evaluate
the system in a busy engineering building, a crowded student
center, a cafeteria, and at the Duke University museum, and
demonstrate localization accuracies in the granularity of 1m
x 1m boxes, called “spots”. Results from 100 spots show that
PinLoc is able to localize users to the correct spot with 89%
mean accuracy, while incurring less than 6% false positives.
We believe this is an important step forward, compared to the
best indoor localization schemes of today, such as Horus.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless commu-
nication

General Terms
Design, Experimentation, Performance

Keywords
Wireless, Localization, Cross-Layer, Application

1. INTRODUCTION
Precise indoor localization has been a long standing problem.
While the frontier of localization technology has advanced
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over time, new kinds of location based applications are rais-
ing the bar. For instance, the advertising industry is beginning
to expect location accuracies at the granularity of an aisle in
a grocery shop [1]. Museums are expecting user locations at
the granularity of paintings [2], so tourists can automatically
receive information about the paintings they stop at. In ad-
dition to such high accuracy demands, these applications are
inherently intolerant to small errors. If a localization scheme
incorrectly places a user in the adjacent aisle in the grocery
store, or displays information about the adjacent painting,
the purpose of localization is entirely defeated. This is unlike
traditional applications – say GPS based driving directions –
where small errors are tolerable. As a consequence, new lo-
calization schemes will need to meet strict quality standards,
without incurring a heavy cost of installation and mainte-
nance. We refer to this problem as spot localization, where
a device in a specific 1m x 1m box needs to be accurately
identified. Localizing the device outside the box will be use-
less, irrespective of whether the estimated location is close or
far away from the box.

The state of the art in indoor localization is quite sophis-
ticated. Different schemes optimize distinct objectives, in-
cluding accuracy [3–5], computation [4, 6], ease of calibra-
tion [7, 8], energy [9], etc. While the literature is rich, we
sample few of the representative schemes to outline the fron-
tier of today’s location technology. Cricket [10] achieves high
accuracy using special (ultrasound-based) infrastructure in-
stalled on ceilings. Noting the difficulties of installing special
hardware, RADAR, Place Labs and Horus [4, 6, 8] explored
the feasibility of using signal strengths from existing WiFi
APs. While RADAR and Horus both rely on signal calibration,
EZ [7] recently demonstrated the ability to eliminate calibra-
tion at the expense of accuracy degradation. Summarizing
all these schemes, we find that the state of the art achieves
median location error of 4m and 7m, with and without cal-
ibration, respectively [7]. While this accuracy can enable a
variety of applications, there are others that need precision at
the granularity of “1m x 1m”. This paper targets such high
accuracies while ensuring that the calibration complexity is
no worse than RADAR or Horus. We call our proposal PinLoc,
as an acronym for Precise indoor Localization.

PinLoc’s main idea is simple. While most WiFi based localiza-
tion schemes operate with signal strength based information



at the MAC layer, we recognize the possibility of leveraging
detailed physical (PHY) layer information. Briefly, the intu-
ition is that the multipath signal components arrive at a given
location with distinct values of phase and magnitude. When
aggregated over multiple OFDM sub-carriers in 802.11 a/g/n,
these rich data poses as a fingerprint of that location. Since
we define each spot as a cluster of locations, war-driving each
spot produces an array of location fingerprints. A training
algorithm runs on each array of fingerprints to learn the sta-
tistical attributes of that spot. Later, when a mobile device
arrives at a spot, it computes a fingerprint (from a sequence
of overheard beacons), and classifies it to one of the spots
by matching against the learnt attributes. We find that de-
vices are reliably classified to the correct spot, despite move-
ments of people and other objects in the environment. Our
war-driving effort is comparable to RADAR or Horus – we
mounted a laptop on a Roomba robot and programmed it
to move randomly within each spot for around 4 minutes.
Finally, where several other schemes are strongly reliant on
multiple APs, PinLoc offers reasonable performance even in
WiFi-sparse environments. In some cases, PinLoc is able to
localize even with signals from a single AP.

At first glance, our findings seemed too good to be true. We
expected the signal phases to be sensitive to the orientation
of the laptop, human movements, and/or structural changes
in the environment (such as repositioning of chairs, boxes,
shelves). We suspected that frequent war-driving would be
necessary to adapt to such environmental perturbations. While
these concerns were natural, we were surprised to find that
the fingerprints actually preserved statistical properties even
under perturbations. For instance, although the channel re-
sponse at a specific location varied with time and environ-
mental dynamism, they could be consistently organized around
a set of few tight clusters. When combined across 30 subcarri-
ers and different APs (i.e., high-dimensional data), we found
that even the sets of clusters could be reasonably unique. Fur-
ther, since spots are composed of many “distinct locations”,
the fingerprint of a spot is a string of channel responses from
multiple distinct locations inside that spot. Thus, even if the
channel response from one distinct location is not unique,
the probability that the string of channel responses appears
in more than one spot is far lower. These and other factors
(discussed later) together contribute to PinLoc’s robustness.
RSSI, on the other hand, is an average of the magnitudes on
each sub-carrier, which hides fine-grained information about
that location, ultimately limiting the accuracy of localization.

Harnessing the above opportunities into a working system
(using off-the-shelf wireless cards) forms the core of PinLoc.
The detailed PHY layer information is first extracted from the
driver and sanitized using a phase correction operation. The
sanitized parameters are then fed to a machine learning algo-
rithm that models the channel response distribution. Later,
during system tests, the channel parameters are extracted
from received WiFi beacons, and classified to one of the war-
driven spots. To address energy issues, PinLoc disables active
scanning, and only uses beacons from APs in the same chan-
nel. Finally, the individual modules are combined into a full
system, and tested over a variety of scenarios. The results
are promising – with less than 4 minutes of wardriving per-
spot, we observe 89% mean accuracy and false positives con-
sistently below 6%. From the application’s perspective, Pin-

Loc was tested in the modern art wing of Duke University’s
museum. Spots in front of each of 10 paintings were localized
with high accuracy.

To the best of our knowledge, no prior work has demonstrated
PHY layer-based WiFi localization on off-the-shelf platforms.
Zhang et. al. [11] used signal amplitudes and phases on USRP
platforms to demonstrate location distinction. We note that lo-
cation distinction detects when a node’s location has changed
(e.g., for security purposes), but does not need to establish
uniqueness for each location. Localization is naturally a far
stricter problem, especially when the target is sub-meter ac-
curacies. PinLoc makes an early effort towards this goal – the
main contributions may be summarized as follows.

• We target the problem of spot localization where suc-
cess is defined as the ability to place a device within a
1m x 1m area, called spots. We break away from RSSI
based schemes and explore the feasibility of using detailed
PHY layer information.

• We utilize the per-subcarrier frequency response as fea-
tures of a location, and rely on machine learning algo-
rithms to classify a device to one of the trained spots.
We use off-the-shelf Intel 5300 cards; the entire system re-
lies on existing WiFi deployments, and requires no special
installation.

• We evaluate PinLoc at varying accuracy standards, namely,
discriminating between seats in a lab, chairs in a cafe-
teria, and adjacent paintings in a museum. We observe
consistent accuracies under mobile/dynamic environments,
outperforming Horus [4], the most accurate RSSI based lo-
calization.

The subsequent sections expand on each of these contribu-
tions, beginning with definition and applications, followed by
measurement, design, and evaluation.

2. LOCATIONS, SPOTS, AND APPLICATIONS
The above section loosely used the terms “locations” and “spots”
– we clearly define them here. Locations are like pixels that
define the resolution of our localization system. Each loca-
tion is a small area that has a unique fingerprint. As we show
later, the “size” of a location is approximately 2cm × 2cm.
Spots are larger boxes, say 1mx1m, and composed of multi-
ple locations. We will see later how the fingerprint of a spot
is essentially a combination of fingerprints from all locations
in that spot.

Apps for Spot Localization.
The ability to localize users to the granularity of a spot is obvi-
ously useful — for instance, precisely tracking a user’s indoor
location can empower numerous applications. What might be
less obvious is that a reasonable number of applications may
be enabled even if only a few spots are reliably identified. For
instance: (1) Advertising agencies may post discounts on to
the user’s phone when she pauses in front of select products
in the store. (2) Spot localization may be applicable to ge-
ofencing – students at different desks may see different sets
of exam questions. (3) Logical locations [12] refer to places
(Starbucks, Airport, public library) as opposed to geographic
coordinates (latitude/longitude from GPS). Since such places



are often adjacent to each other, separated only by a wall, it
has been difficult to tell the exact place in which a person is
located. Spot localization may be able to detect when a user
enters/exits through a door, thereby identifying the place of
the user. In a related application, a blind person could come
to an approximate location and be prompted with “the door in
front of you is Dr. Brown’s eye clinic”. This may also aid secu-
rity applications, the content from a server may be download-
able only when a person is inside a restricted area [13]. (4)
Even identifying which aisle a person is in could be achieved
if the entry and exit points of an aisle are spot-localized. We
argue that PinLoc is particularly amenable to these applica-
tions since the war-driving effort gets proportionally reduced
with fewer spots. While the same reduction may apply to
all war-driving based schemes in general, their error margins
may still be an issue. Horus [4], for example, incurs 4m mean
error, which may not discriminate between adjacent grocery
aisles or between two adjacent wide-screen TVs at Best Buy.
PinLoc is tasked to achieve this discrimination.

3. HYPOTHESES AND MEASUREMENTS
This section aims to show through experiments that PHY layer
channel information from existing WiFi deployments can be
an indicator of location. We identify the essential hypotheses
that must hold, and verify them through measurements. The
next section draws on the findings to design and implement
the machine learning components in PinLoc. We begin our
discussion with a brief background on channel frequency
response.

3.1 Background
Most modern digital radios use OFDM communication, and
transmit signals across orthogonal subcarriers at different fre-
quencies. Each transmitted symbol X(f) is modulated on a
different subcarrier f , and the quality of the received symbol
Y (f) will depend on the channel H(f):

Y (f) = H(f)X(f) (1)

Vector H = (H(f))f=1,··· ,F is called channel frequency re-
sponse (CFR), and it is a complex vector that describes the
channel performance at each subcarrier. A 802.11 a/g/n re-
ceiver implements F = 48 data sub-carriers, and includes a
channel estimation circuit as a part of the hardware. The Intel
5300 [14] card, released recently with a publicly download-
able driver, exposes the per-subcarrier CFR to the user. Figure
2(a,c) shows examples of some CFR vectors.

Two important properties of the CFR are of interest in PinLoc.
(1) The CFR changes entirely once a transmitter or a receiver
moves more than a fraction of a wavelength [15]. Since the
WiFi wavelength is about 12 cm, the CFR offers a possibil-
ity to discriminate between two nearby locations. (2) Even
when the device is static at a specific location, the CFR ex-
periences channel fading due to changes in the environment
at different time-scales. This introduces randomness in the
CFRs, injecting ambiguity in signatures. However, it is un-
clear whether this randomness is completely unpredictable or
whether it exhibits some statistical structure that lends itself
to localization. The following hypotheses and measurements
are designed to answer these and related questions.

3.2 Hypotheses
We present 3 main hypotheses that need to hold if CFRs are
to be used for PinLoc.

1. The CFRs at each location appear random, but actually
exhibit a statistical structure. This structure is preserved
over time and environmental changes.

2. The “size” of the location (over which the CFR structure is
defined and preserved) is small.

3. The CFR structure of a given location is different from
the structures of all other locations, with high probability.
The probability increases when aggregating the CFRs
from multiple APs.

Towards verifying these hypotheses, we first describe our testbed
environment and experiment methodology, followed by the
measurements and findings.

3.3 Experiment Methodology
Our initial experiments were performed in a relatively busy
engineering building (see floorplan in Figure 1). We con-
sider a set of 15 different spots in our lab and the adjacent
classroom. The center of these spots are approximately 2m
apart from each other. We place a laptop equipped with the
Intel 5300 WiFi card [14] at each of these spots, and asso-
ciate them to existing WiFi APs (the same set of WiFi APs
are audible from each of these spots). The laptops are made
to download packets through each of the nearby APs (using
iPerf) – the corresponding channel frequency responses (CFR)
are recorded for each packet. The Intel 5300 card firmware
exports a subset of the CFRs (30 out of 48 data subcarriers),
and we only use these for our scheme.

Figure 1: Engineering building floorplan. Different sets
of spots shown in different colors – our initial measure-
ments in this section uses only one set of 15 spots (shown
in green).

.
For each location we perform 4-6 measurements at different
times during busy office hours. During the measurements in
the lab (a 10m x 10m area), there were between 3 to 5 people
who frequently walked in and out. Classroom measurements
were performed during and between classes (classroom ca-
pacity of 24 seats) – one measurement coincided with all stu-
dents exiting the classroom at the end of a class.
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Figure 2: (a) The amplitudes and phases of the channel responses H of 50 (out of 20000) packets sent over the same
link (we see two unique clusters, U1 and U2); (b) PDF of the complex value of the same 20000 channel responses H(f)
for a single subcarrier f = 20; (c) The amplitudes and phases of the channel responses H of 50 packets at a different
client location.

3.4 Measurement and Verification
(Hypo. 1) The CFRs at each location appear random but actu-
ally exhibit a statistical structure over time.

Testing on a Single Location: Figure 2(a) shows the channel
frequency responses (CFR) recorded on a laptop at a fixed lo-
cation (the laptop received 20, 000 packets from a specific AP
over a period of 100s, but for visual clarity, we only show 50
CFRs from 50 randomly selected packets). We observe two
emerging clusters, denoted with two vectors U1 and U2 –
CFRs belonging to the same cluster are not identical but ap-
pear as noisy realizations of the cluster mean. This is an out-
come of fading, caused by different electro-magnetic propa-
gation effects and/or environmental changes.

We now take subcarrier f = 20, gather all its CFRs from
all 20, 000 packets, and plot the empirical probability density
function (PDF) in Figure 2(b). The CFRs are complex num-
bers, and hence we plot the Real (Re) and Imaginary (Im) val-
ues on X and Y axes – darker colors represent higher values
of the PDF. We again see that two dominant clusters emerge,
each cluster appearing as a complex Gaussian random vari-
able, with means U1(f) and U2(f) and variances V1(f) and
V2(f), respectively. Of course, this is only a visual indication
– we will carefully model this later in section 4.2.

Figure 2(c) shows the outcome of the same experiment, but
with the laptop placed at a different location. We find only a
single cluster of CFRs, and the shapes of the CFRs differ dis-
tinctly from those in Figure 2(a). These few representative
clusters hint at the possible existence of complex but invari-
ant structures in per-location CFR, motivating further investi-
gation. Figure 3 pictorially explains the cluster computation
process.

Temporal stability of CFR Clusters: We now test whether
the observations from these two locations generalize to a larger
number of locations, under various environmental changes.
Figure 4 shows the distribution of the number of represen-
tative CFR clusters from 30 distinct links in total. For each
of the 30 links we aggregate all the available data, collected
over 2 days – this adequately captures the links’ temporal fluc-

OFDM Subcarriers 1       2       3       4       5                                          48 Packets 
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location (L) 

CFR1 CFR2 CFR48 CFR3 
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Clustering (per-subcarrier) 
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Cluster22 
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(mean, var) 
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Cluster481 
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Cluster482 
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Location (L) Fingerprint 

CFR1 CFR2 CFR48 CFR3 

Test CFR 
… 

Cross-Correlation 

Cluster1k 
(mean, var) 

Cluster2k 
(mean, var) 

Cluster3k 
(mean, var) 

… Cluster48k 
(mean, var) 

Figure 3: The process of creating clusters (which to-
gether form the location fingerprint), and how test CFRs
are cross-correlated with the fingerprint.

.
tuations. We use the clustering algorithm, described later in
section 4.3, to identify representative CFR clusters. Evident
from Figure 4 (a), more than 80% of links experience 4 CFR
clusters or less. However, we still see a substantial number
of links with a large number of clusters, even up to 19. This
could well suggest that the CFR structure is quite random in
dynamic scenarios (e.g., in the classroom), and thus, PinLoc
may only be applicable in very static environments.

To verify this, we next look at frequency of occurrence of
different clusters. Figure 4(b) shows that the distribution is
highly non-uniform, with a strong predominance of the more
frequent clusters (i.e., the frequent clusters occur very fre-
quently, and the vice versa). Evidently, the fourth-most fre-
quent cluster occurs no more than 10% of the cases in any
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spot, and the 5th, 6th, ... 19th clusters are almost rare. This
suggests that even if a few spots experience large number of
clusters, we are not very likely to see most of them, both dur-
ing the training and localization.
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Figure 5: CFR cross correlation in presence of human
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Impact of environmental changes: To understand the im-
pact of environment changes on CFR clusters, we perform two
controlled experiments. First, we study the effect of human
mobility on CFR stability. We place a laptop at a fixed location
and start gathering CFRs from two different APs. We run the
experiment during night, and observe a single CFR cluster for
both links. Then, we position a human at an increasing dis-
tance d from the laptop. We plot the CDF of cross-correlation
of each received CFR with the CFR cluster observed without
the human (Figure 3). We define cross-correlation1 of two
CFR cluster means a and b as

c(a,b) =

∑F
i=1 aibi√∑F

i=1 a
2
i

√∑F
i=1 b

2
i

. (2)

Figure 5(a) shows high correlation, suggesting that human
obstructions may not create a significant change to the CFRs
from AP6230. This is probably because the human does not
alter any of the strong signal paths between the laptop and
the AP. The link to AP 5A10, however, changes with human
movement; nevertheless, the change is substantial only when
the human is very close to the laptop (1 foot away). Even then
the median cross-correlation is larger than 0.75. In all other
cases, the cross-correlation remains high, suggesting that hu-
man movements around the device may not distort the CFRs
too much from its core structure.
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Figure 6: (a) CFR cross correlation for (a) door open vs.
closed and (b) original metal shelf vs. moved; for various
distances from the laptop.

Next, we study the effects of moving objects in the environ-
ment – doors, chairs, metal shelves, etc. We place a laptop
at a fixed location and gather CFRs from different APs. Fig-
ure 6(a) shows that wooden door obstructions do not induce
a significant change to the CFRs. Our measurements also
1We use cross-correlation as a metric here for illustrational
purposes, and we design a more accurate metric in section 4.



−0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1
C

D
F

 

 

Similarity difference between actual and other locations

Loc# 1

Loc# 2

Loc# 3

Loc# 4

Loc# 5

Loc# 6

Loc# 7

Loc# 8

AP 3490

−0.2 −0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

Similarity difference between actual and other locations

C
D

F

 

 

Loc# 1

Loc# 2

Loc# 3

Loc# 4

Loc# 5

Loc# 6

Loc# 7

Loc# 8

AP 28E0

−0.04 −0.02 0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

C
D

F

 

 

Similarity difference using multiple APs

Loc# 1

Loc# 2

Loc# 3

Loc# 4

Loc# 5

Loc# 6

Loc# 7

Loc# 8

Figure 7: CDF of the difference in similarities Sown − Sothers observed at 8 locations, for two different access point: (a)
AP 3490, (b) AP 28E0. (c) CDF of the maximum similarity difference (Sown − Sothers) across all APs.

show similar results for other non-metallic objects. However,
a repositioned metallic cupboard (approximately 3.5 feet high
and 3 feet wide) altered the CFRs significantly – Figure 6(b)
shows the impact. Importantly, however, these alterations are
localized only around the shelf’s original and final locations;
spots more than 4 meters away from the shelf are much less
perturbed, and need not be re-calibrated. While the above
results are from controlled experiments, section 5 reports re-
sults from uncontrolled settings (student center, cafe, mu-
seum), with hundreds of mobile humans and shifting objects.

(Hypo. 2) The “size” of the location (over which the CFR struc-
ture is defined and stable) is small.

Precise localization will require the CFR structure to vary over
space. If the structure varies in large granularities (say, mul-
tiple meters), PinLoc’s accuracy will naturally be bounded by
that granularity.
Thus to understand the “size” of each location, we move a
test location increasingly further away from a reference lo-
cation, and compute their respective CFR cross-correlations.
Various existing channel measurements [11,15] show that the
channel changes entirely once a receiver is moved more than
a wavelength, which is 12cm in the case of WiFi. Figure 8
shows that the cross-correlation drifts apart with increasing
distance, and is quite low even above 2cm. While this may
suggest that localization is feasible at 2cm resolution, we will
see later that multiple locations in a room may exhibit match-
ing fingerprints. This is why we will require PinLoc to col-
lect multiple fingerprints from very nearby locations (within
a 1m × 1m spot). The combined fingerprint from a specific
“spot” is much less likely to occur in other spots, and hence,
we will attain reliable localization at the granularity of spots.

(Hypo. 3) The CFR structure of a given location is different from
the structures of all other locations.

To evaluate the (dis)similarities of CFRs among different lo-
cations, we divide the measured data into a training and a
test set. Each location has a set of CFR clusters pertaining
to an AP, represented by their mean and variance and learnt
from the training set. For a test CFR from a location L, we
use correlation to find the best matching CFR cluster from L’s
training data. The correlation value, denoted as Sown, indi-
cates similarity of the test CFR with the trained fingerprint at
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Figure 8: Cross-correlation drifts away for CFRs that are
apart by 2cms or more.

the same location. Now, for all fingerprints of all other loca-
tions, we find the one that exhibits maximum similarity of this
test CFR – we denote this similarity as Sothers. If a device’s
measured CFR is more similar to a different location than its
own, we will naturally misclassify the device’s location.

Figure 7 (a) and (b) plot the CDF of the difference in simi-
larities, Sown − Sothers, for 8 different locations, for two dis-
tinct APs2. If the difference is negative, then the packet is
likely to be misclassified. Also, the larger the difference, the
greater the confidence in packet location. Figure 7 (a) and
(b) show that the CFR from a single AP is often sufficient to
correctly classify location. Of course, in some cases – such as
(Location 7, AP3490) – more than 50% of the CFRs are more
similar to other locations, implying misclassification. How-
ever, when considering the CFRs of location 7 to a different
AP, the misclassification reduces significantly. This suggests
that CFRs are diverse across different APs, and this diversity
can be leveraged to improve localization. Figure 7 (c) shows
the effect of exploiting AP diversity with 2 APs. Specifically,
we now pick the AP with the highest similarity difference.
Clearly, there is significantly less negative values in Figure 7
(c), implying that AP diversity can help create dissimilarity in
location fingerprints.

2Note that Sown and Sothers are computed per-AP.



One may ask: Figure 7 shows that a packet may be classified
to one out of 8 different spots. In reality, the system will need
to discriminate between many more spots – will the system scale
to such scenarios? We note that PinLoc does not need to dis-
criminate between all spots in a large area. Prior work has
used WiFi SSIDs alone to localize devices to around 10m x
10m regions in indoor environments [8]. PinLoc will lever-
age such schemes to first compute a coarse-grained macro-
location, and then discriminate only between the spots inside
that macro-location. Having verified these hypotheses, we
now design the full localization scheme, including CFR clus-
tering and matching over multiple sub-carriers. Thereafter,
we evaluate PinLoc’s performance in section 5.

4. DESIGN AND IMPLEMENTATION
Figure 9 shows the architectural overview of PinLoc. Dur-
ing war-driving, a Roomba-mounted laptop moves randomly
through a spot for around 4 minutes. Recall from sections 1
and 2, that a spot is composed of many “locations” (Figure 10),
hence, the laptop measures the CFR of every location it hits.
Of course, due to the Roomba’s random mobility, the laptop
may not be able to collect CFRs from all locations in a spot,
making our war-driving process far less painstaking. The war-
driven data is then sanitized through a phase correction oper-
ation and fed to a clustering algorithm, which outputs a few
dominating CFR clusters per-location. As mentioned earlier,
these clusters are expressed as cluster means and variances,
and together form the training set. The training set from dif-
ferent locations in the same spot are stored under the corre-
sponding spot database.
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Figure 9: PinLoc architecture

During the real-time localization phase, each mobile node
passively records strings of CFRs it receives from AP beacons
(string length of 4 denoted with shaded squares in Figure 10).
The mobile either sends these CFRs to a PinLoc server, or re-
quests the spot databases for candidate spots in its (known)
macro-location. The next step is matching. A single CFR read-
ing will not match exactly the ones from the spot-databases
due to random fluctuations, but on average, they are more
likely to fall in the correct cluster than a wrong one. To im-
prove the accuracy, instead of matching a single reading, we
match the string of consecutive CFR readings. Each of these
4 CFRs may match well with a location from a random in-
correct spot, but it is unlikely that all the CFRs from a string
will match better with locations from the same wrong spot.

User path

2
cm

Per Location 
CFR

1
m

1m

Figure 10: A device records multiple CFRs from a spot.

Results from the next section will confirm this robustness of
spot localization. However, before presenting the results, we
discuss the sanitizing, clustering, and matching modules in
details.

4.1 Data Sanitization (Phase and Time Lag)
The CFRs received at a location cannot be directly used for
calibration – an unknown phase β and time lag ∆t (which
also differ across subsequent packets) can distort the CFR.
The sanitization module in PinLoc aims to correct for these
offsets. The problem arises because the transmitter and the
receiver do not attempt to precisely synchronize their timing
and their phases (beyond symbol level) before transmitting a
packet3. Hence, the phase of the channel response of subcar-
rier f will be φ̂f = φf + 2πff∆t + β + Zf , where φf is the
genuine channel response phase we are searching for and Zf

is some measurement noise. It is important to notice that we
do not need to learn the exact values of ∆t and β for each
packet (which is probably impossible). Since we feed φ̂f to a
classification algorithm, we need to make sure that whenever
we measure φ̂f , the measurement includes the same values of
∆t and β.

We use a simple transform to achieve the goal. For every
received channel response we calculate

a =
φ̂F − φ̂1

2πF
,

b =
1

F

∑
1≤f≤F

φ̂f .

Intuitively, a is the slope of the received response’s phase and
b is the offset. It is then easy to verify that, if the measure-
ment noise Zf is small, φ̂f − af − b eliminates the random
∆t and β time lags. We verify that this is indeed the case in
our measured datasets and we use the post-processed phase
value φ̂f − af − b in all our further calculations.

3This is not a problem for a conventional OFDM receiver that
only needs to remove, but not learn the channel response.



4.2 Modeling the channel response
We see from a sample measurement, presented in section 3,
that the channel responses look like noisy replicas of a few
representative clusters. However, it may not be obvious how
to identify clusters and the main challenge of the classifica-
tion algorithm is how to deal with the measurement noise. We
make a reasonable assumption to model the noise (also called
fast-fading) as a complex Gaussian noise, which corresponds
to Rayleigh fading [15]. We first verify this assumption visu-
ally by looking at the samples across subcarriers, such as the
one illustrated in Figure 2 (b). We then take a few samples
from the measurements and verify using QQ plots that the
distribution fits well to a complex Gaussian and that the real
and the imaginary parts are i.i.d. We also assume that the
noise is independent across subcarriers.

Let us consider a link from a single location to a single AP.
Recall that U = {U1, · · · ,Uu} is the set of means of the rep-
resentative CFR clusters of the link, as discussed in section 3,
where each Ui = (U i

f )f=1,··· ,F . Let us suppose we observe
packet P = (Pf )f=1,··· ,F , where Pf is the complex channel
response for subcarrier f .

Following the observations from the measurements, we pro-
pose to model the channel response as a random vector with a
Gaussian mixture distribution. That is, the channel response
is assumed to be drawn from one of the representative CFR
clusters, chosen at random for each packet. The channel re-
sponse is modeled as a combination of the representative CFR
clusters. We model each representative CFR cluster as a com-
plex Gaussian random vector with mean Ui and some vari-
ance Vi (since the real and imaginary parts are i.i.d, the vari-
ance is scalar). Assuming that the packet P belongs to the
CFR cluster with the mean Ui, we have that the probability
of packet P is

P(P|Ui,Vi) =

F∏
f=1

1

2π
(
V i
f

)2 exp

−||Pf − U i
f ||2

2
(
V i
f

)2
 . (3)

We see that each representative CFR cluster is described with
a pair of complex vectors (Ui,Vi) representing the mean and
the variance of the observations. In section 4.3 we discuss
how to derive (Ui,Vi) from the measured data set.

Furthermore, we can apply logarithm to (3) and remove con-
stants to derive the log likelihood distance metric

d(P,Ui) =

F∑
f=1

log(V i
f ) +

F∑
f=1

 ||Pf − U i
f ||2(

V i
f

)2
 , (4)

which we shall use as a distance metric in the classification
algorithm. Note that d is indeed a distance metric, but it also
has a probabilistic interpretation from (3), which we will use
later while combining multiple readings to improve classifica-
tion accuracy.

4.3 Clustering algorithm
Recall that we model the data at each location as a Gaus-
sian mixture distribution, with K clusters with means and
variances (Uk, Vk). We denote with wk the probability that
an observed packet belongs to a particular cluster k, which

corresponds to how often we “see” cluster k in our training
data. According to the Gaussian mixture model, this probabil-
ity is independent across packets. Thus, the parameters of our
model are (wk, Uk, Vk), k = 1, ...,K. The classical approach
to estimate these parameters is the expectation-maximization
algorithm [16]. Instead, we estimate the parameters using
variational Bayesian inference [16]. Variational inference is
provided by the Infer.NET [17] framework that we use to im-
plement the clustering algorithm. It is particularly convenient
here because it tends to prune unneeded clusters. Instead of
estimating the number of clustersK by running the algorithm
multiple times with different values of K, we perform one
run with K = 10 and drop the clusters with small weights
wk. Some locations may actually have more than 10 clusters
but this is rare and discarding these extra clusters has little
impact on performance.

We note that another potential clustering algorithm that could
be used here is k-means clustering algorithm. However, our
approach takes into account that the noise has a Gaussian dis-
tribution and hence can perform a more accurate clustering.
For further discussion on the drawbacks of the k-means clus-
tering, please see [16, Chapter 9].

4.4 Classification algorithm
Our classification algorithm is composed of two parts. First,
PinLoc computes a macro-location based on WiFi SSIDs alone
[8], and shortlists the spots within this macro-location; we
call these spots the candidate set, C. The second task is to
pick one spot from C, or to declare that the device is not in
any of these spots. To this end, the WiFi device overhears bea-
cons from the APs as it roams around (we discuss the energy
implications in section 5.5). Let A be the set of all APs and let
AP (P) denote the AP which transmitted packet P. We define
the distance between a given packet P and a spot Si as

d(P, Si) = min
Ui∈Zi,AP (Ui)=AP (P)

d(P,Ui). (5)

where Zi is a set of representative CFR clusters learned from
spot Si. Then, for all values of i, we compute the minimum
of d(P, Si) – this outputs the most likely spot that the user
is located at, based on the CFRs from packet P. The oper-
ation repeats for every packet received within a short time
window (typically 30 packets from 3 APs), and the spot that
is picked most often (highest vote) is identified. PinLoc does
not immediately declare the highest voted spot as the user’s
location. If the highest vote count is small, it suggests low
confidence and the possibility that the user is not located at
any of the trained spots4. Thus, PinLoc ensures that the num-
ber of votes is above a rejection threshold before announc-
ing that spot as the user’s location. If the number of votes is
below the threshold, then PinLoc announces the location as
“not-a-spot”. The rejection threshold can be selected from the
training data and a application-specified false positive rate.
We use 15% of the number of possible votes as the threshold
in our evaluation. E.g., if the maximum number of votes are
30, PinLoc announces a location as “not-a-spot”, if the highest
matching spot obtain less than 5 votes.

4We note that, in order to deal with the outliers, we use the
majority voting scheme with the distance function (5) instead
of the direct probabilistic interpretation (4).



5. EVALUATION
We evaluate PinLoc across 100 different spots using war driven
training data and several test samples. Our wardriving ap-
proach is explained next.

5.1 War-Driving
The channel model and clustering algorithm from section 4.2
can be applied only to data from the same location. As we
have seen in section 3, the size of a location that has the same
representative CFR clusters is about 2cm × 2cm. It is impor-
tant to get enough data from the same location to be able to
accurately learn the channel responses. Also, it is important
to collect responses from many (2cm × 2cm) locations within
the 1m × 1m spot.

Our current war-driving procedure is in 2D. We transmit a
packet from an AP every 1ms. A Roomba robot, mounted
with a laptop, moves at a programmed speed of 30cm/s. Fig-
ure 11 shows an example of war-driving at the museum. We
receive about 60 packets during a 2cm stretch. We divide all
packets received in one spot into batches of 60 packets and
run clustering algorithm on each batch.

Figure 11: PinLoc war-driving at different spots in the
museum. The Roomba robot mounted with a laptop, and
4 virtual wall devices at the corners of the spot.

There are three important questions that arise about war-
driving. The first question is do we need to record every sin-
gle representative CFR cluster during war-driving? As we show
later in section 5, PinLoc’s performance is not too sensitive
to war-driving accuracy – the accuracy degrades gracefully as
the Roomba is made to war-drive for shorter durations.

The second question is do we need to war-drive in a partic-
ular fashion? During the localization we match each sample
against all learned representative CFR clusters to find the best
fit, thus it is not important in which order we store the clus-
ters in the learning database. One can swipe through a spot in
any direction, multiple times and in multiple rounds. More-
over, war-driving does not have to be done in any particular
channel conditions (e.g. during busy or off-peak hours). In
fact, the accuracy increases if we accumulate channel samples
from diverse channel conditions.

The third question is why not define a spot as a single location
(2cm × 2cm)? Recall from Figure 10 that a string of CFRs
improves the probability of spot localization. This is because
a single test CFR may match with a different random spot;
but it is unlikely that a string of test CFRs will all match better
with the same wrong spot. In leveraging this diversity gain,
we find that strings of length 5 are reasonable. Given that AP
beacons are spaced 100ms apart in WiFi b/g/n, and human
indoor walking speed is 1m/sec, getting 10 beacons implies
that the person moves almost 1m. Hence, we fix our spot-
size to 1m × 1m. Of course, even if a person is not walking,
we assume that there will be inherent swaying motions of the
body in the granularity of few cms – such motions will be
sufficient for PinLoc.

5.2 Experiment Design
We evaluate PinLoc in 4 environments: (1) Hudson Engineer-
ing building with faculty offices and classrooms, (2) busier
Bryan Student Center, (3) Twinnies cafe, and (4) Duke Uni-
versity Nasher Museum. Both training and test samples are
taken from the laptop, mounted on the Roomba robot. In all
the experiments, the laptop associates to all APs on the same
frequency channel, and receives beacon packets from them
for a duration of 1s. This 1s duration ensures that a mo-
bile user (walking at 1m/s) will remain inside the same spot
while receiving all the beacons. For the engineering building
scenario, we take test samples during daytime with more than
100 people around. The cafeteria experiments are performed
during busy lunch hours, with more than 50 people present
at any time, along with a high churn. For the museum mea-
surements PinLoc was trained for 10 large paintings in one
wing of the museum, and tested for these spots. The measure-
ments were obtained on a slightly less busy day to minimize
interference with real visitors. Both training and test samples
are taken at the same height (we discuss the ramifications of
height in section 6).

Metrics: Our goal is to show that we can accurately local-
ize test samples to the corresponding spots, but also to detect
when a sample does not belong to any spot. We use the fol-
lowing two metrics to evaluate PinLoc. (1) Accuracy – the
fraction of cases in which the user was localized to the cor-
rect spot. (2) False positives (FP) – the fraction of cases in
which the users were localized to an incorrect spot/non-spot.
In other words, false positives also take into account the cases
where PinLoc localizes the user to a trained spot, even though
the user was not located at any of these spots.

Comparison with RSSI: We also evaluate whether we can
use RSSI to achieve a similar accuracy with the same number
of APs. For this, we compare PinLoc with a modified Horus al-
gorithm. The original Horus algorithm [4] interpolates RSSI
measurements to simplify war-driving. In order to provide a
fair comparison, we modify Horus to use the same war-driven
training set we use in PinLoc. We define the similarity analo-
gously to (5), replacing correlation with a difference between
two RSSI. This is consistent with equation (3) in Horus [4],
where the localization metric is a joint probability of seeing
different access points. We compare the modified Horus algo-
rithm with PinLoc by using the same test data across the same
number of APs.
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Figure 12: PinLoc in office environment: (a) Accuracy, (b) False positive against Horus (c) Per macro-location.

5.3 PinLoc accuracy and false positives
Figure 12 reports results from the engineering building exper-
iments. PinLoc achieves nearly 90% mean accuracy across 50
spots (Figure 12(a)), consistently outperforming Horus. The
false positives (FP) are also maintained to less than 7%, com-
pared to more than 25% in Horus (Figure 12(b)). RSSI based
algorithm is significantly worse than PinLoc, since it is repre-
sented with a single real number. CFR is represented with 30
complex numbers and contains much richer information. In
this comparison, we were tuned to a single channel, and ob-
served 1 to 4 APs on that channel. Ofcourse, PinLoc’s, as well
as Horus’s, performance will improve if more APs are avail-
able. But this may require scanning across channels which
may increase energy consumption.

Figure 12(c) zooms into the performance of PinLoc and shows
the accuracy/FP on a per-WiFi macro location5. The number
of spots per WiFi region is shown on top of the bars. Stu-
dent center has a more dynamic environment with cafes and
shops – we evaluate PinLoc at 34 spots across 3 WiFi macro
locations. Figure 13(a) shows that even in such an active en-
vironment PinLoc can maintain low false positive(7.3%) and
high accuracy(86%). An obvious question is whether such
performance will degrade if adjacent spots need to be identi-
fied (i.e., center of spots are 1m apart). Figure 13(b) shows
that PinLoc is able to discriminate in such settings with a rea-
sonable average accuracy of 82%.

Similar accuracy/FP graphs are plotted for the cafeteria and
museum in Figure 14. The mean accuracy for the cafeteria
case is 90.07% and the mean FP is 4.5%. For the museum,
the mean accuracy is 90.28%, and the mean FP, 4.1%. In
all four scenarios, PinLoc achieves high accuracy/low FP for
most of the spots, except around 20% where the performance
drops. Careful investigation showed that these spots received
packets at low SNR from many APs. To probe this further and
understand their ramifications, we next perform an analysis
across various system parameters.

5.4 Impact of Parameters
5Recall that a macro-location is derived from WiFi SSIDs; Pin-
Loc discriminates only between candidate spots inside the
macro-location.
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Figure 13: Pinloc performance in student center (a) Ac-
curacy, false pos., (b) Performance of adjacent spots.

Impact of number of test packets
A user extracts CFRs from beacon packets that are transmit-
ted by APs every 100ms. Thus, assuming up to 1m/s walking
speeds, the user dwells for at least 1s inside a spot, thereby re-
ceiving 10 beacons per-AP. Figure 15 (a) shows the variation
of accuracy and FP with the number of received beacons per-
AP. With the typical size of 10 packets per AP, PinLoc achieves
mean accuracy of 89% and false positives of 7% across 50
spots in the engineering building; 15 packets raise them to
91% and 5%, respectively. Figure 15 (a) also shows low accu-
racy (68%) and high FP (14%) if only 1 packet per AP is used.
This is because one single reading may randomly match with
an incorrect spot. However, even with 5 packets, we find the
accuracy above 82%, and FP less than 10%. This indicates
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Figure 15: Accuracy of PinLoc against: (a) number of beacons, (b) number of APs and (c) duration of war-driving.
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Figure 14: PinLoc performance in cafeteria and museum
(a) Accuracy and FP per spot in cafeteria. (b) Accuracy
and FP per-spot in the museum.

that even at higher user mobility, or with failure in beacon re-
ception, PinLoc can sustain a reasonably good performance.

Impact of the number of APs
PinLoc’s performance in sparse WiFi environments is of in-
terest. To this end, we analyze the performance for varying
number of APs. While collecting the test data, we were tuned
to a single channel, and observed 1 to 4 APs on that channel
(we did not scan across channels to limit energy consump-
tion). We divide the spots into different categories depending
on how many APs are visible within each spot – Figure 15 (b)
shows the results. An encouraging observation is that even
when only a single AP is visible, PinLoc can perform spot lo-
calization with accuracy of over 85% and false positives below
7%. This is in contrast to other WiFi-based localization meth-

ods that need at least 3 APs to attain reasonable precision.
Furthermore, as the number of visible APs increases, the per-
formance improves quickly.

Impact of war-driving
It is important to understand how long we need to war-drive
to achieve high localization accuracy. The tradeoff is that
short war-driving will record fewer CFRs, incurring the possi-
bility of overlooking an important CFR cluster. To understand
the impact, we run PinLoc on different training sets, drawn
from different war-driving durations. Figure 15 (c) plots the
accuracy and the FP (per-spot) as a function of this duration.
Evidently, a few minutes of war-driving per-spot suffices; we
observe reasonable performance when using only 1 minute of
war-driving data.

Impact of mobility
We turn to the cafeteria scenario to analyze the effect of the
mobility on the accuracy of localization. We take one hour
of test data for three spots in the cafeteria. We perform lo-
calization on each batch of 10 beacon packets and plot its
success or failure in Figure 16. For all three spots, we see
that the time instants when localization failed are short and
uniformly spread over the measurement interval. The mean
accuracy was 85% with 7% false positives. Thus, even in a
very busy environment such as the cafeteria, we are able to
provide localization without prolonged disruption.
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Figure 16: Success of PinLoc localization over time for
three spots and over an interval of 1 hour.



Impact of old training data
We concede that PinLoc will need a fresh round of war-driving
for spots that are affected by significant environmental changes
(e.g., metallic shelves). But with “small” structural changes
will PinLoc’s war-driven training data remain valid over days
and months? To evaluate this we tested 5 spots in our engi-
neering building 7 months after wardriving them. Figure 17
shows a moderate median accuracy of 73% per spot in this
scenario. Depending on application requirements, war-driving
can be periodically scheduled to improve accuracy. This may
not be hard since war-driving can be automatically be done
using a Roomba robot.
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Figure 17: Accuracy of 5 spots tested 7 months after
training.

5.5 Energy consumption
PinLoc is designed with energy efficiency in mind. Contrary to
existing schemes that rely on power-hungry active scanning,
PinLoc uses only beacons from APs in a single channel. For
this, it synchronizes with the beacon-schedules of these APs
and periodically wakes up to collect the CFRs. It sends this
information to a central server for computing location. The
amount of such data is low, approximately 1200 bytes per sec-
ond for 2 APs and 1m/s speed, and can be easily batched with
existing traffic that communicates to the location based ser-
vice. Consequently, the data upload energy is marginal. Now,
for the energy footprint of beacon reception, we performed
measurements on Google Nexus One phones, using the Mon-
soon Power Meter. We found that receiving beacons from 2
APs every 100ms incurs an additional 5.28mW power on av-
erage. This may be negligible compared to 1326.72mW on
average to stream YouTube video. We omit the details in the
interest of space but argue that PinLoc’s low energy overhead
makes it a practical proposition.

6. LIMITATIONS AND DISCUSSION
• Antenna’s orientation: PinLoc’s war-driving and testing
were all performed with a laptop on a Roomba robot, in a
2D plane. The antenna is placed in the laptop’s lid and the
lid was closed, hence the antenna was parallel to the test-
ing plane. During wardriving and testing, Roomba robot took
random turns, constantly pointing the antenna in different di-
rections. Hence we can conclude our results are robust to the
antenna’s orientation on the 2D plane.

Low energy consumption
for beacon reception

Energy hungry
Data packet reception

Figure 18: Beacon energy consumption from the Mon-
soon Power Meter tool.

• Height, 3D war-driving, and phone mobility: In real-
ity, users will carry their phones at different heights and 3D
war-driving would be necessary. We discuss the effects of 3D
wardriving with help of two simple micro-benchmarks.

(1) We manually war-drive a 1m×1m×50cm box for 15 min-
utes (a person holds a laptop in hand and moves it in random
directions across the box), and we collect CFR samples from 4
APs. We then collect test data within the same box by moving
the laptop around it and rotating the laptop. The person that
holds the laptop also moves around it. We compare the test
data with the manually war-driven 3D data and with the pre-
viously war-driven 2D data for 9 different locations. We plot
the localization accuracy in time in Figure 19(a). The mean
accuracy is 84%. We see that the accuracy is similar to the
one reported in section 5 hence we can speculate that with
suitable extensions, PinLoc might scale real-world scenarios.

(2) To understand the complexity of 3D wardriving, we mea-
sure the vertical “size” of a location (the z axis analogue of
Figure 8). We see that cross-correlation between CFRs drifts
apart at 10cm or more (Figure 19(b)). This suggests that 3D
war-driving may be feasible, perhaps with a height-varying
tripod on top of a Roomba. We were unable to construct a
robot for 3D wardriving. We leave 3D localization to future
work, as well as issues that may emerge from phone orienta-
tion, or users inserting their phones in pockets and bags.

• Dependency on particular hardware cards: We run the
experiments reported in section 5 alternating among 4 lap-
tops (each with an Intel 5300 card). Since Intel 5300 was the
only available card that exposes CFR information, we were
not able to test PinLoc with cards from different vendors. We
speculate that cross-platform calibration would be necessary,
similar to existing RSSI based schemes [7,18].

• Localization and MIMO: We did not explore MIMO capa-
bilities in our current test-bed. A MIMO receiver would pro-
vide as many CFR samples as the number of receive antennas,
and could be highly valuable for localization. We leave this
for future investigation.
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Figure 19: (a) Accuracy of a 3D spot over time. (b) Corre-
lation drifts away with height differences of 10cm or more.

7. RELATED WORK
The topic of indoor localization has seen a variety of approaches
that may be broadly classified as active and passive, and sub-
classified into RF and sensing based techniques. We sample
some of the key ideas, and discriminate PinLoc from them.

RF signal strength-based localization has been the dominant
theme of localization for more than a decade. RADAR [8] per-
forms detailed site surveys a priori and then utilizes the SSIDs
and received signal strength reported by wireless devices to
generate location fingerprints. Horus [4] and LEASE [19]
propose enhancements to RADAR by exploiting the structure
of RSSI. Place Lab [6] and the Active Campus project [20]
attempt to reduce the overhead of calibration – they show
that collecting signal information from WiFi and GSM base
stations through war-driving is adequate for reasonably accu-
rate localization. Finally, Patwari and Kasera [11] have also
recently explored the use of signal characteristics of a wireless
channel to achieve location distinction – that is, they reliably
identify when a device has moved from one location to an-
other.

Time-based techniques utilize time delays in signal propaga-
tion to estimate distances between wireless transmit-receiver
pairs. Examples include GPS [21], PinPoint [22], and work
by Werb et. al. [23]. The TPS system uses difference in time
of arrival of multiple RF signals from transmitters at known
location [24]. Similarly, the PAL system [25,26] uses time dif-
ference of arrival between UWB signals at multiple receivers
to determine location. The Cricket system [10, 27] and AH-
LoS [28] utilize propagation delays between ultrasound and
RF signals to estimate location of wireless devices. Such a
solution requires installation of ultrasound detectors on wire-
less devices, limiting their applicability.

Angle-of-arrival based techniques utilize multiple antennas
to estimate the angle at which signals are received, and then

employ geometric or signal phase relationships to calculate
bearings to other devices with respect to the device’s own
axis [29–31]. Besides positioning, such methods can also
provide orientation capabilities. However, these techniques
require extremely sophisticated antenna systems (4 to 8 an-
tennas) and non-trivial signal processing capabilities, unfore-
seeable on mobile devices in the near future. PinLoc’s reliance
on WiFi alone, along with the ability to utilize PHY layer infor-
mation from off-the-shelf interfaces [32], makes it a potential
candidate for immediate deployment.

8. CONCLUSIONS
This paper shows that PHY layer information, exported by
off-the-shelf Intel 5300 cards, offer new opportunities to lo-
calize WiFi devices in indoor environments. We leverage the
observation that multipath signals exhibit stable patterns in
the manner in which they combine at a given location, and
these patterns can lend themselves to meter-scale localiza-
tion. Evaluation results from the engineering building, cafete-
ria, student center, and the university museum, demonstrate
a mean accuracy of 89% for 100 spots. From the application’s
perspective, PinLoc could enable product advertisements on a
shopping aisle, or offer information on each exhibit at a mu-
seum. We believe this is a step forward in the area of indoor
localization, even though some more work is necessary before
it is ready for real-world deployment.
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