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Database systems use precomputed synopses of data to estimate the cost of alternative plans

during query optimization. A number of alternative synopsis structures have been proposed, but

histograms are by far the most commonly used. While histograms have proved to be very effective

in (cost estimation for) single-table selections, queries with joins have long been seen as a challenge;

under a model where histograms are maintained for individual tables, a celebrated result of Ioan-

nidis and Christodoulakis [1991] observes that errors propagate exponentially with the number of

joins in a query.

In this article, we make two main contributions. First, we study the space complexity of us-

ing synopses for query optimization from a novel information-theoretic perspective. In particular,

we offer evidence in support of histograms for single-table selections, including an analysis over

data distributions known to be common in practice, and illustrate their limitations for join queries.

Second, for a broad class of common queries involving joins (specifically, all queries involving only

key-foreign key joins) we show that the strategy of storing a small precomputed sample of the

database yields probabilistic guarantees that are almost space-optimal, which is an important

property if these samples are to be used as database statistics. This is the first such optimality

result, to our knowledge, and suggests that precomputed samples might be an effective way to

circumvent the error propagation problem for queries with key-foreign key joins. We support this

result empirically through an experimental study that demonstrates the effectiveness of precom-

puted samples, and also shows the increasing difference in the effectiveness of samples versus

multidimensional histograms as the number of joins in the query grows.
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1. INTRODUCTION

Query optimizers use synopses of the contents of a database to decide the most
efficient plan of execution (e.g., Selinger et al. [1979]), and synopsis-based cost
estimation is widely recognized as one of the central challenges in query opti-
mization. Using histograms as a synopsis method has been extensively stud-
ied [Ioannidis 2003]. Several previous efforts such as Ioannidis [1993], Ioannidis
and Christodoulakis [1993], Jagadish et al. [1998], Koudas et al. [2000], and
Poosala and Ioannidis [1995] have focused on constructing single and multi-
dimensional histograms that are optimal.

On the other hand, to the best of our knowledge, the only study of the hard-
ness of the problem of using synopses for cost estimation is Ioannidis and
Christodoulakis [1991]. In this widely cited paper, the error in the estimate
of the join result size is shown to grow exponentially as the number of joins
increases. The model of estimation used for joins is that the data distribution
in the join columns for each individual relation is independently approximated,
say through a histogram, and that the join result is estimated by joining these
approximated distributions. This model is consistent with what most database
systems implement in practice. However, the conclusions of this study do not
apply to synopsis techniques that follow a different estimation model. For ex-
ample, techniques such as the recently proposed sketches [Alon et al. 1999,
1996] are not covered by this model since they summarize the data distribution
in the join column of a relation into a single number without storing, either
accurately or approximately, the frequency of any individual join element.

In this article, we study the problem of using synopses for query optimiza-
tion from a space-complexity prespective. We assume an estimation model that
works in two phases—a preprocessing phase that processes the database and
computes synopses, and a run-time phase that, given an input Select-Project-
Join (SPJ) query, uses these synopses to provide an estimate of the result size.
This model covers all techniques that do not examine the data during optimiza-
tion time, which includes most proposed techniques including histograms and
sketches. An example of a technique not covered by our model is adaptive sam-
pling [Lipton et al. 1990]. We consider the following measures of error—absolute
error, defined as the (absolute value of) the difference between the correct result
and the estimated result; ratio error, defined as the ratio between the estimated
result and the correct result; and relative error, defined as the ratio of the ab-
solute error to the correct result (the ratio and relative error measurements
assume that the result is non-empty). In addition to these standard measures
of error, we consider a fourth metric of error. Often, query optmizers choose
between alternative plans of execution depending on whether the result size of
a query is large or small [Chaudhuri 1998; Selinger et al. 1979]. In such cases,
an accurate estimate of the result size is not as crucial as deciding whether the
result size is above or below a given threshold. We define this requirement to
be the threshold error requirement.

ACM Transactions on Database Systems, Vol. 30, No. 4, December 2005.



1104 • R. Kaushik et al.

Our first main contribution is a series of results that shed light on the use of
synopses for cost estimation, and in particular, the strengths and weaknesses
of histograms on individual tables. We begin by showing that under our esti-
mation model, for the class of SPJ queries, unless the synopsis essentially con-
tains the whole database, it is impossible to guarantee low—that is, constant or
polylogarithmic—error bounds for the absolute, ratio and relative error metrics
(Corollary 3). This applies even for the simplest case of single-column equality
selections. If we consider the threshold error requirement with the values of the
threshold linear in the table size which we believe to be the most interesting
case, we can address equality selections efficiently, by simply storing the high-
frequency elements in the synopsis. However, for the class of range slections,
we cannot provide any non-trivial guarantees unless the synopsis essentially
contains the whole database (Corollary 7). This result serves to distinguish
equality selection queries from range selection queries, and also to distinguish
the threshold error metric from the standard metrics. The above results are
information-theoretic and hold irrespective of whether the estimation process
is deterministic or probabilistic.

This negative result suggests that we must be willing to tolerate looser error
guarantees, which are known to be provided by histograms for single-column
selections. This is in keeping with traditional wisdom that histograms are suf-
ficient to handle single-column selections in practice. Indeed, we show that for
single-column selections, histograms are almost optimal, in that for a given er-
ror requirement, they provide the best possible space complexity, even consider-
ing probabilistic alternatives. This is our second result (Section 3.2), and it dif-
fers from prior work on constructing optimal histograms such as Ioannidis and
Christodoulakis [1993], Ioannidis [1993], Jagadish et al. [1998], and Koudas
et al. [2000] in that we characterize the relative optimality of histograms ver-
sus all other synopsis structures covered by our estimation model.

Empirical results with histograms [Ioannidis 1993; Ioannidis and
Christodoulakis 1993; Jagadish et al. 1998; Koudas et al. 2000; Poosala
and Ioannidis 1995] typically yield errors that are much better than indi-
cated by our worst case analysis. Note that our results on histograms do
not assume anything about the data distribution. We then consider example
data distributions that broadly exhibit the property that a few values occur
with a very high frequency (Section 3.3). Such distributions are known to be
very common [Christodoulakis 1984; Faloutsos and Jagadish 1992]. For these
distributions, we show that we can suitably construct histograms that yield
guarantees that are much better than the worst-case guarantees (Property 6
and Lemma 12).

Next, we consider queries with joins, and show (Section 4.1) that the space
needed to provide a similar absolute error guarantee is higher, adding fur-
ther evidence (complementing the error-propagation result of Ioannidis and
Christodoulakis [1991]) that maintaining histograms on individual tables is
not a promising approach to estimating the cost of join queries.

We observe that this negative result does not hold for the special case of
key-foreign key joins, and this leads to our second main contribution, which
is to show that precomputed samples are an effective approach to estimating
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the cost of queries with (arbitrarily many) key-foreign key joins. We model the
special case of queries with (only) key-foreign key joins as a distributed selec-
tion over a single “fattened” table defined by precomputing all the joins. We
show that by keeping a small sample of the precomputed join and estimating
the query cost by running the query on the sample and scaling up results, we
obtain an estimate that is provably good with high probability (Theorem 15).
Our estimate has the property that when the query result size is high, there is
a probabilistic bound on the ratio error, whereas when the query result size is
small, there is a probabilistic bound on the absolute error. This fits nicely with
the observation that ratio error matters more for larger results and absolute
error matters more for smaller results. This result also translates into a looser
guarantee for the threshold error metric. We also show that the amount of space
consumed by this solution for a given guarantee is almost optimal (Section 4.3).
Our empirical results show the effectiveness of this solution versus multidimen-
sional histograms as the number of joins grows. We note that this strategy is
an extension of join synopses, which have been proposed for approximate query
processing [Acharya et al. 1999], to the problem of query optimization, where
the space and error requirements are very different.

2. PRELIMINARIES

2.1 Data Model

A (k, t) database schema D consists of a fixed set of relation names {R1, . . . , Rk},
where relation R j consists of a fixed ordered list of t column names
{Cj1

, . . . , Cjt }. In this article, we fix k to be a constant.
An (N , t)-database instance I populates each relation R j with a multiset of

N j tuples, such that the maximum among all N j is N . Each value in a tuple is
drawn from {1, 2, . . . , k.N .t} ∪ {null}. I is said to have (N , t)-rowcols. I is said
to be an l (≤ k)-relation instance if only l relations are nonempty.

2.2 Queries

An (N , t)-query Q is a relational algebra expression involving the operations
σ, π and � (in other words, we only consider SPJ queries) over the (k, t)
database schema and constants from {1, 2, . . . , k.N .t}. We assume multiset se-
mantics for these operations.

We refer to a finite class of (N , t)-queries as an (N , t)-workload. For a work-
load Q consisting only of SPJ queries, let size be a function that given an
(N , t)-database instance I and query Q ∈ Q, returns its result size measured
as the number of rows returned. For instance I and integer f , the subset of Q
with result size < f is defined as the set of f -small queries, and its complement
is defined as the set of f -large queries.

2.3 Error Metrics

One central goal of maintaining statistics over a database is to estimate size
approximately. An error metric is a function err that takes as input a number x
to be approximated, an error bound e, and returns an interval on the real line.
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Statistics computed over a database typically target a specific error metric. We
consider the following error metrics in this article:

—Absolute Error: abserr(x, e) = (x − e, x + e) for e > 0, the interval consisting
of all integers between, but not including x − e and x + e.

—Ratio Error: For e ≥ 1, ratioerr(x, e) = (x/e, e.x).

—Relative Error: For 0 < e < 1, relerr(x, e) = (x(1 − e), x(1 + e)). Note that
a relative error of e > 1 is not interesting since we could always return 0,
which attains the bound 1.

—Threshold Error: thresherr(x, e) = [0, e) if x < e and [e, ∞) if x ≥ e. This
metric is motivated by the fact that often, query optimizers do not want tight
guarantees on the result size, rather they only require to know whether the
result size is above or below a certain threshold, typically a large threshold.
A classic example of this is when given a single-table selection, the optimizer
has to decide between an unclustered index seek and a table scan. This de-
cision depends on whether the number of records returned by the selection
is above or below a threshold, typically a fixed fraction of the table size.

2.4 Estimation Model

An estimator E(Q) for an (N , t)-workload Q consists of a pair of functions
<SF , EF>, called respectively the summarizing function and the estimator
function. For any (N , t)-instance I , SF (I ) returns a synopsis S. At optimiza-
tion time, given Q ∈ Q, EF (Q , S), returns an estimate of size(I, Q). EF is only
allowed to access the summary S, and not I itself. We do not restrict the com-
putational power of either function.

Since the computational power of the estimator function is not restricted, we
require it to be deterministic. On the other hand, we do allow the summarizing
function to be randomized. A randomized summarizing function SF(I, r) takes
an additional input r, a random string r chosen uniformly from a (finite) domain
Rand, and produces a summary S. We do not place any restriction on the size of
Rand, so long as it is finite. For the same I andQ, we obtain different summaries
Sr depending on the random string r. Without loss of generality, we assume that
all summaries Sr consume the same amount of space. An estimator is said to
be deterministic if the summarizing function is deterministic, and randomized
if the summarizing function is randomized.

For an error metric err and an error bound e:

—A deterministic estimator E =<SF, E F> is said to succeed for query Q over
instance I if EF (Q , S) ∈ err(size(I, Q), e), and is said to fail otherwise.

—A randomized estimator E =<SF, E F> is said to succeed with probability p
for query Q over instance I if a fraction of at least p of all the random strings
r yield summaries Sr such that EF (Q , Sr ) ∈ err(size(I, Q), e).

Fix a workload Q and an estimator E for Q. Let I be an instance and QI ⊆ Q.
E is said to have p-success for I over QI , if:

(1) E is deterministic and it succeeds on a fraction of at least p queries in QI .
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(2) E is randomized and for each query in QI , it succeeds with probability at
least p.

This model of estimation covers all proposed techniques for statistics esti-
mation that do not examine the data at optimization time, such as histograms
and sketches. We relate deterministic and randomized estimators through the
following property, obtained by a simple averaging argument, which is useful
in later sections.

Property 1. If there is a randomized estimator for a workload Q that has
p-success over instance I , then there is a deterministic estimator for Q that
consumes the same amount of space and also has p-success over I .

2.5 Space Complexity

Clearly, we are interested in estimators where the summary does not consume
too much space. Fix an (N , t)-workload Q.

The space consumed by an estimator E(Q), Space(E), is defined to be the
maximum space consumed by the synopsis S among all (N , t)-instances. We
call an estimator E s-bounded if Space(E) ≤ s.

For error metric err, error bound e, real number p, 0 < p < 1 and positive
integer f , we define LARGESPACEerr(Q, e, p, f ) to be smallest s such that
there is an estimator E for Q: (1) with Space(E) = s, and (2) which for each
(N , t)-instance, has p success over the subset of f -large queries; here success
is defined with respect to err and error bound e. We define SPACEerr (Q, e, p) to
be LARGESPACEerr (Q, e, p, 1)

2.6 Relationship between the Error Metrics

Finally, before moving on to the rest of the article, we relate our error metrics
through the following property.

Property 2. Assume we have fixed a workload and an instance.

(1) If an estimator succeeds on a nonempty query Q with respect to the relative
error metric, where the error bound is 1 − 1/e (e ≥ 1), then it also succeeds
with respect to the ratio error metric with error bound e.

(2) Suppose estimator E succeeds on a nonempty query Q with respect to the
absolute error metric with error bound e − 1(e ≥ 1). Then, the estimator E ′

which behaves exactly like E , except that it returns an estimate of 1 when
E returns 0, succeeds with respect to the ratio error metric with bound e.

3. SINGLE-COLUMN SELECTIONS

We begin with a study of the simplest case of single-column selections, which
is deemed largely solved in practice. Nonetheless, it is of interest because any
lower bounds that we obtain for this case carry over trivially to more complex
queries. Further, since we are interested in space complexity of estimators, the
results we show in this section for histograms complete the picture.

We first show that unless we essentially store the whole database, it is im-
possible to even probabilistically guarantee small ratio errors for single-column
selections. If we allow queries that are empty, then this result becomes trivial
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since any strategy that yields any bound on the ratio error must return 0 if the
correct result size is 0, and hence can be used to identify the values present in
the database. Hence, in order to make our study meaningful, for the rest of the
article, we only consider queries where the result is not empty. In particular,
we assume that the database is not empty.

3.1 Lower Bounds

We first prove the following general theorems that lead to the results we show
in this section.

Ratio and Relative Errors

THEOREM 1. Fix a real number c ≥ 1. Pick an error metric between:

(1) the ratio error metric with bound c,
(2) the relative error metric with bound 1 − 1/c

Fix positive integers t, N, f ≤ N
c8 and s < t.
 N

c8. f �.(log2

√
5 − 1) − 1. Consider the

(N , t)-workload Q of single-column equality selection queries. Fix an estimator
E for Q, such that Space(E) ≤ s. Then, there exists a family of single-relation
(N , t)-instances such that for a majority of these instances, E has less than 1/2
success over the subset of f -large queries.

PROOF. By Properties 1 and 2, it is sufficient to show this result for deter-
ministic estimators and the ratio error metric.

Let n = t.
 N
c8. f �. Consider the (k, t)-database schema. Let I(N , t) be the

family of instances obtained by placing each i ∈ {1, 2, . . . , n} in the (i mod t)th
column of R1 and setting its frequency to be one of { f , f .c2, f .c4, f .c6, f .c8}. In
order to set the number of rows to N , we add nulls that fill up the relation appro-
priately. All other relations in the schema are empty. The number of instances
in I(N , t) is 5n.

The subset of f -large queries of Q includes all queries of the form
σC1a =i(R1), i ∈ {1, 2, . . . , n}, where a = i mod t.

Every synopsis S produced by E yields a unique instance I ′ obtained by
successively finding an estimate of the frequency of each element in {1, 2, . . . , n},
by issuing appropriate queries from Q. Given a member I ∈ I(N , t), we can talk
about the number of i ∈ {1, . . . , n}, where the frequency in I ′ is within a factor
of c of the frequency in I (call it close(I, I ′)). The number of I ∈ I(N , t) such
that close(I, I ′) ≥ 
n

2
� is at most

( n

 n

2
�
) × 5
 n

2
�. Now, we have that:

2s
(

n

n

2
�
)

5
 n
2
� ≤ 2s2n5

n
2

<
1

2
(5n)

since 2s <
1

2
(

√
5

2
)n

Hence, at least half the relation instances in I(N , t) differ from each possible
instance I ′ that the estimator function could output, on at least half the values
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by a factor of ≥ c. Thus, the estimator must fail on at least 
n
2
� values on each

of these instances.

Absolute Error
An absolute error requirement is stronger than a ratio error requirement. As

the following theorem shows, the lower bounds for absolute error are stronger.

THEOREM 2. Fix a real number c ≥ 1. Fix the error metric to be the ab-
solute error metric with bound c. Fix positive integers t, N, f ≤ N

8.c , and
s < t.
 N

8.c. f �.(log2

√
5 − 1) − 1. Consider the (N , t)-workload, Q of single-column

equality selection queries. Fix an estimator E for Q, such that Space(E) ≤ s.
Then, there exists a family of single-relation (N , t)-instances such that for a ma-
jority of these instances, E has less than 1/2 success over the subset of f -large
queries.

PROOF. The proof mimics the argument of Theorem 1 for absolute errors.
The only difference is that the frequencies are set to be one of { f , f + 2.c, f +
4.c, f + 6.c, f + 8.c}.

COROLLARY 3. Consider the (N , t)-workload, Q of single-column equality se-
lection queries. Fix constant c ≥ 1.

(1) LARGESPACEratioerr(Q, c, 1/2, f ) ∈ �(N .t/ f ). In particular,
SPACEratioerr(Q, c, 1/2) ∈ �(N .t).

(2) LARGESPACErelerr(Q, 1 − 1/c, 1/2, f ) ∈ �(N .t/ f ). In particular,
SPACErelerr(Q, 1 − 1/c, 1/2) ∈ �(N .t).

(3) LARGESPACEabserr(Q, c, 1/2, f ) ∈ �(N .t/ f ). In particular,
SPACEabserr(Q, c, 1/2) ∈ �(N .t).

Suppose we are allowed errors that are “small” functions (e.g., polylogarith-
mic in N ). We have:

COROLLARY 4. Consider the (N , t)-workload, Q of single-column equality se-
lection queries. Fix an error function e(N ) ≥ 1.

(1) SPACEratioerr(Q, e(N ), 1/2) ∈ �(N .t/e8(N )).
(2) SPACErelerr(Q, 1 − 1/e(N ), 1/2) ∈ �(N .t/e8(N )).
(3) SPACEabserr(Q, c, 1/2) ∈ �(N .t/e(N )).

In particular, if e(N ) ∈ polylog(N ), each of these lower bounds is in
�(t.N/polylog(N )). The above results show that in general, no strategy for
statistics estimation, whether deterministic or randomized, that is covered by
our estimation model—including histograms, sketches and wavelets—can guar-
antee small errors for even the simplest case of single-column selections, unless
essentially the whole database is stored as a synopsis.

Threshold Error
Recall that the threshold error metric is motivated by the fact that query

optimizers often do not require tight bounds on the error. Rather, it suffices to
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determine whether the query result size is above or below a certain threshold,
typically linear in the table size.

Notice that for large values of the threshold (e in the definition), this problem
can be solved efficiently for equality selection queries by simply storing the
elements with high frequencies.

Property 3. Consider a relation R with (N , t)-rowcols. Let e = N/f . There
exists an α such that in space s = αft, we can satisfy the threshold error re-
quirement with threshold e for equality selection queries. We achieve this by
storing the f points with highest frequency for each column.

This property serves to differentiate the threshold error metric from the
other error metrics we consider. The question arises what happens with range
queries. Notice that since the threshold error metric treats the estimated result
as effectively Boolean (larger or smaller than a threshold), we can proceed as
follows: The summarizing function can simply toss a coin and store a single
bit in the synopsis based on the outcome of the coin toss. If the bit stored is 1
(correspondingly, 0), the estimator function, for any given query, always returns
a value higher (correspondingly, lower) than the threshold.

Property 4. This randomized estimation scheme has 1/2-success over any
workload of range queries. By Property 1, this yields a deterministic scheme
that works for at least 50% of the queries in the workload.

Unfortunately, as we show next, no matter what the threshold value, it is
impossible to do better without using space �(Nt). In order to prove this, we
consider synopsis schemes for the set membership problem, which we define
next.

Definition 5. Fix an integer M and let UM = {1, 2, . . . , M }. A set-
membership scheme at length M is a pair of procedures (SG, E) such that,
given any subset S of UM , SG generates a synopsis s and given the synopsis s
and an element x ∈ UM , E outputs whether x ∈ S or not (the output need not
be correct). We say that the scheme has p-success if for any subset S of UM ,
the output of the estimator is correct for at least p fraction of elements in UM .

Using the efficient list-decodable codes from Hastad et al. [2001], we can triv-
ially prove the following lemma, which we regard to be of independent interest.

LEMMA 5. Fix any ε > 0. Then there exist constants α and β, and an infinite
sequence of integers M1, M2, M3, . . . with the following properties.

—For each i ≥ 1, any set-membership scheme at length Mi with success proba-
bility 1/2 + ε must use synopses of size at least αMi.

—For each i ≥ 1, Mi+1 ≤ βMi.

We reduce the set membership problem to the statistics estimation problem
constrained by the threshold error metric to obtain the following result.

THEOREM 6. Consider the threshold error metric with threshold T. Fix 0 <

ε < 1/2. Let α, β be the constants in Lemma 5. Fix positive integers t, N > T.
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There exists a workload W consisting of single-column range selection queries
and a family of instances I(N , t), each with (N , t) rowcols, such that any s-
bounded estimator for W with more than (1/2 + ε) success over this workload
for each instance must satisfy: s > α

β
(N − T )t.

PROOF. Let N ′ = N − T . Let M be the largest among the Mi in Lemma 5
that are ≤ N ′.t. Consider the set membership problem at length M .

We create a relation instance for each subset of the universe U =
{1, 2, . . . , M }. Given a subset S ⊆ U , we proceed as follows. We map j ∈ U to
the 
 j/t�th column. If j ∈ S, we store the element 2 j , else we store the element
2 j + 1. For each column p, there is a largest l p ∈ U that could get mapped
to p. We add the elements 2l p + 2, 2l p + 4, . . . 2l p + 2T . In each column, we
add dummy elements with a very large value to set the number of rows to
be N .

Note that the range [2 j , 2( j + T − 1) + 1] always has exactly T elements.
And the interval [2 j + 1, 2( j + T − 1) + 1] has T elements if and only if j /∈
S. For each j ∈ U , we include the query [2 j + 1, 2( j + T − 1) + 1] in the
workload W. Clearly, an estimation scheme with more than (1/2 + ε)-success
over this workload for each relation instances yields a set-membership scheme
with success probability (1/2 + ε) for length M . Hence, the space consumed by
the estimation scheme must be at least αM ≥ α

β
(N − T )t.

COROLLARY 7. Consider the (N , t)-workload W of single-column range
selection queries in the above theorem. SPACEthresholderr(W, T, 1/2 + ε) ∈
�(N .t)

Fix threshold T . Fix numbers l < T < u. Since the threshold requirement
as stated is impossible to achieve unless we use space linear in the size of the
database, we relax the metric by only requiring the estimator to return either of
the intervals [0, u) and (l , ∞) that contains the query result size. We refer to this
as the (l , T, u)-threshold error requirement. As for the other error metrics, we
define SPACEweakthresherr(Q, (l , T, u), p) to be the smallest s with an estimator
E for Q such that: (1) Space(E) = s, and (2) for each (N , t)-instance, it has
p success; here success is defined with respect to the (l , T, u)-threshold error
metric.

Special cases of interest are when l = T/c, u = T.c, and when l = T − c, u =
T + c, for some c. We have the following space lower bounds for the relaxed
threshold error requirement.

THEOREM 8. Consider the (T/c, T, T.c)-threshold error metric. Fix 0 < ε <

1/2. Let α, β be the constants in Lemma 5. Fix positive integers t, N. There exists
a workload W consisting of single-column range selection queries and a family
of instances I(N , t), each with (N , t) rowcols, such that any s-bounded estimator
for W with more than (1/2+ε) success over this workload for each instance must
satisfy: s > α

β
t
 N

Tc �.

PROOF. Let N ′ = 
 N
T.c �. Let M be the largest among the Mi in Lemma 5 that

are ≤ N ′.t. Consider the set membership problem at length M .

ACM Transactions on Database Systems, Vol. 30, No. 4, December 2005.



1112 • R. Kaushik et al.

We create a relation instance for each subset of the universe U =
{1, 2, . . . , M }. Given a subset S ⊆ U , we proceed as follows. We map j ∈ U to
the 
 j/t�th column. If j ∈ S, we store the element j with frequency T/c, else
we store it with frequency T.c. In each column, we add dummy elements with
a very large value to set the number of rows to be N .

Now the threshold error requirement for the range query [ j , j ] can be satis-
fied only by one of the intervals [0, T.c), (T/c, ∞), depending on whether j ∈ S
or not. Consider the workload of queries [ j , j ], j ∈ U . We can see that an es-
timation scheme for this workload translates to a set-membership scheme at
length M with the same success. The result follows.

COROLLARY 9. For the (N , t)-workload, W in the theorem above,

SPACEweakthresherr(W, (T/c, T, T.c), 1/2 + ε) ∈ �(t.N/(T.c)).

For the (T − c, T, T + c)-threshold error requirement, we have the following
result.

THEOREM 10. Consider the (T − c, T, T + c)-threshold error metric. Fix 0 <

ε < 1/2. Let α, β be the constants in Lemma 5. Fix positive integers t, N. There
exists a workload W consisting of single-column range selection queries and a
family of instances I(N , t), each with (N , t) rowcols, such that any s-bounded
estimator for W with more than (1/2 + ε) success over this workload for each
instance must satisfy: s > α

β
t(
 N

2c � − T
2c ).

PROOF. Let γ > 1 be such that T/γ.c is a (positive) integer. Define T ′ =
T/γ.c, and N ′ = 
N/γ.c�.

We proceed with N ′ and T ′ as the N and T in the proof of Theorem 6, except
the frequency of each element is set at γ.c and use the fact that γ ≤ 2.

COROLLARY 11. For the (N , t)-workload, W in the theorem above,
SPACEweakthresherr(W, (T − c, T, T + c), 1/2 + ε) ∈ �(t.N/c).

3.2 Histograms are Almost Space-Optimal

The above lower bounds hold for the simplest case of single column selections,
which is contrary to traditional wisdom that histograms are sufficient for this
case. The reason is that, at least for single column selections, higher errors can
be tolerated in practice.

Consider single relation instances with N rows and t columns. Let e: Z → Z
denote an error function. It is known that an equi-depth histogram on each
column with 
 N

2.e(N )
� buckets yields an absolute error of at most e(N ) for single-

column equality and range selection queries [Piatetsky-Shapiro and Connell
1984]. For instance, an equi-depth histogram with 20 buckets yields an abso-
lute error of at most 10% of the number of rows in the table. Notice that the
same equi-depth histogram satisfies the [T −e(N ), T, T +e(N )] threshold error
requirement.

Now, from Corollary 4, we know that any deterministic or randomized esti-
mator that yields an absolute error of e(N ) for single-column equality selection
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queries must use space �(t.N/e(N )). Similarly, from Corollary 11, any estima-
tion scheme that satisfies the weaker [T − e(N ), T, T + e(N )]-threshold error
requirement must use space �(t.N/e(N )). Hence, we conclude that histograms
are almost space optimal for single-column selections.

3.3 Behavior of Histograms on Special-Case Distributions

Histograms are deemed to have largely solved the problem of single-column se-
lections. The analysis above deals with the worst-case behavior of histograms,
in the absence of any assumptions on the distribution of the data. Empirical
results in previous work [Ioannidis 1993; Ioannidis and Christodoulakis 1993;
Jagadish et al. 1998; Koudas et al. 2000; Poosala and Ioannidis 1995] show that
the errors obtained are much smaller than indicated by our analysis of the pre-
vious section. The question arises whether there are specific data distributions
where errors are smaller.

In this section, we consider example data distributions that broadly exhibit
the property that a few values occur with a very high frequency. Such distri-
butions are known to be very common [Christodoulakis 1984; Faloutsos and
Jagadish 1992]. For such distributions, we show that we can suitably construct
histograms that yield guarantees that are much better than the worst-case
guarantees.

We begin with the zipfian distribution. We consider the form of the zipfian
distribution given by the formula:

f = T
r

where f is the frequency of an element f is inversely related to its rank in the
descending order of frequency, and T is of the form αN . Here, N is the number
of rows in the relation. Note that if the column has D distinct values, we have:

1 + 1

2
+ · · · + 1

D
= 1

α

Since 	(1/n) diverges, the number of distinct values is at most a constant.

Property 5. For the zipfian distribution as defined above, storing the fre-
quencies of the distinct values explicitly is an accurate histogram with zero
error.

While real data distributions are based on generalizations of the zipfian
distribution as defined above, Property 5 captures the intuition behind why
end-biased histograms [Poosala and Ioannidis 1995] perform really well for the
zipfian distribution.

In general, histograms perform much better than the worst-case guarantee
when the number of distinct values in a table is much smaller than the number
of rows, for example O(

√
N ), when we can explicitly represent the full relation

using a histogram.
We next consider the exponential distribution, where we have that the frac-

tion of elements that are ≤ x is 1 − exp(−λx). We proceed by processing the
elements in descending order of their frequency, storing each explicitly till
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the remaining elements together constitute, say < N/100 (N is the number
of rows). For these remaining elements, we use an equi-depth histogram

√
N

buckets. We recall that this is referred to as the Compressed histogram in prior
work [Poosala et al. 1996]. This yields an absolute error of at most

√
N/50.

LEMMA 12. For the exponential distribution, ths compressed histogram de-
scribed above uses

√
N + c buckets for some constant c and yields an absolute

error of
√

N/50.

This is to be contrasted with the generic equi-depth histogram described in
the previous section that yields an absolute error of

√
N . Again, the underlying

theme here is that an end-biased histogram that stores the highest frequency
elements explicitly yields a much lower error, owing to the vagaries of the data
distribution.

Observe that among all single-column selections, histograms first of all focus
on the subclass of equality and range selection queries. For arbitrary selections,
the errors yielded by histograms can be much higher than what we have ana-
lyzed in Section 3.2. In addition, the above analysis shows that for commonly
occuring data distributions where only a few values occur very often, the errors
yielded by histograms are even smaller than what is indicated by our worst-case
analysis. This explains the empirical results obtained in previous work.

4. JOINS

We begin with a discussion of arbitrary joins, and then move on to key-foreign-
key joins.

4.1 Arbitrary Joins

We now consider instances with (in general) more than one nonempty rela-
tion. Performing a 2-way self-join over a relation squares the frequencies of its
elements. Based on this observation, we obtain the following results.

THEOREM 13. Fix a real number c ≥ 1. Pick an error metric between (1) the
ratio error metric with bound c, (2) the relative error metric with bound 1 − 1/c.
Fix positive integers t, N and s = t.
 N

c4 �.(log2

√
5 − 1) − 1. There exists an (N , t)-

workloadQ of queries with 2-way equijoins and single-column equality selection,
such that any estimator E for Q which, for each (N , t)-instance, has 1/2 success
over the subset of nonempty queries in Q, must satisfy: Space(E) ≥ s.

PROOF. This follows by reducing the single-column equality selection prob-
lem to a problem involving equi-joins. Consider the family of relation instances
used in the proof of Theorem 1, setting f = 1. Consider the following strategy to
estimate the frequency of any element i in I . We estimate the size of the query
σC1a =i(R1�C1a

R1) (here, a = i mod t), and use its square root as the estimate for
the frequency of i. If the self-join estimator has ratio error c, then this estimate
for the frequency of i has ratio error at most

√
c. Hence, the result follows from

Theorem 1.

We note again that an absolute error requirement is stronger than a ratio
error requirement and hence, we obtain a tighter bound for absolute errors, by
essentially the same proof as above.
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THEOREM 14. Fix a real number c ≥ 1. Set the error metric to be the absolute
error metric with bound c. Fix positive integers t, N and s = t.
 N

8
√

c �.(log2

√
5 −

1) − 1. There exists an (N , t)-workload Q of queries with 2-way equijoins and
single-column equality selection, such that any estimator E for Q that, for each
(N , t)-instance, has 1/2 success over the subset of nonempty queries in Q, must
satisfy: Space(E) ≥ s.

Hence, in particular, if we want to estimate two-way join sizes with an abso-
lute error of say,

√
N , then we need �(t.N 3/4) space. In particular, building a

histogram on each relation of
√

N buckets is not sufficient.
We obtain a corollary analogous to Corollary 3 which shows that for all SPJ

queries, no strategy for statistics estimation can guarantee small errors unless
essentially the whole database is stored as a synopsis.

Since the threshold error requirement is a boolean requirement, the result
of Corollary 7 is directly applicable.

4.2 Key-Foreign Key Joins

Consider the problem of estimating the result sizes of SPJ queries where we
focus only on key-foreign key joins, which is the most common case in practice.
For a large class of schemas, such as star schemas, an SPJ query with only key-
foreign key joins is a selection query over the “fattened” fact table where all joins
are precomputed. For example, if a star schema has fact table F and dimension
tables R1, . . . , Rl , then if we define FatF to be the star join F � R1 � · · · � Rl ,
then a star-join query of the form σpF (F ) � σpi1

(Ri1 ) � · · · � σpim
(Rim) is equiv-

alent to σpi1 ∧···∧pim ∧pF (FatF). Based on this observation, we model the problem
of SPJ query estimation to be one of estimating selections over a single table.
This strategy is an extension of join synopses, which have been proposed for
approximate query processing [Acharya et al. 1999], to the problem of query
optimization. We refer the reader to Acharya et al. [1999] for a detailed analysis
of the class of queries where this strategy is applicable.

In our setting, we model this by restricting ourselves to selection queries
over single-relation (N , t)-instances. Without loss of generality, we assume that
the only nonempty relation (in the (k, t)-database schema) is R1. Consider an
estimator where the summarizing function takes a uniform sample of x rows
from R1, and the estimator function, given a selection query, simply evaluates
it on the sample and scales up the result size. The procedure for a star schema
is shown in Figure 1. Call this estimator Sample(x).

THEOREM 15. Let x ∈ Z with x > 0. Consider the (N , t)-workload of selection
queries over R1. The randomized estimator Sample(x) has the following prop-
erty. For any (N , t)-instance, it succeeds with probability ≥ 1 − (1/e2 + 1/e16/3)
(1) for each (16N/x)-small query with respect to the absolute error metric with
bound 16N/x, and (2) for each (16N/x)-large query with respect to the ratio
error metric with bound 2.

PROOF. Since we only consider single-relation (N , t)-instances, where only
R1 is nonempty, we know that the number of rows in R1 is N . Consider a query
Q that selects r rows out of N . Then, since the sampling process is uniform, with

ACM Transactions on Database Systems, Vol. 30, No. 4, December 2005.



1116 • R. Kaushik et al.

Fig. 1. Sampling estimator for star schema .

respect to Q , it can be viewed as a Bernoulli trial where the success probability
is r

N .
Suppose running Q on the sample yields Y rows. Then, the estimate for

this query is (N/x)Y . The expected value of Y is rx/N , that is, we expect the
result size to be scaled down in the sample. Hence, we expect the estimator
to return the correct value r. In order to assess how far it deviates from the
expected value, we use Chernoff bounds. We consider the case when Y is above
its expected value.

Pr[Y ≥ (1 + ε)rx/N ] ≤ exp (−(ε)2(rx/3N ))

⇔ Pr[NY /x ≥ (1 + ε)r] ≤ exp (−(ε)2(rx/3N ))

and

Pr[Y ≤ (1 − ε)rx/N ] ≤ exp (−(ε)2(rx/2N ))

⇔ Pr[NY /x ≤ (1 − ε)r] ≤ exp (−(ε)2(rx/2N ))

Setting ε = 16N/rx, we get

Pr
[
NY/x ≥ r + 16N

x

]
≤ exp (−(16N/rx)2(rx/3N ))

= exp (−256.N/(3.rx))

≤ exp (−16/3) if r ≤ 16N/x

Similarly, setting ε = 1, we get:

Pr[NY/x ≥ 2r] ≤ exp (−rx/(3N ))

≤ exp (−16/3) if r ≥ 16N/x
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Finally, setting ε = 1/2, we get:

Pr[NY/x ≤ r/2] ≤ exp (−rx/(8N ))

≤ exp (−2) if r ≥ 16N/x

This proves the result.

COROLLARY 16. The randomized estimator Sample(x) also satisfies
the (16N/x, 32N/x, 64N/x)-threshold error requirement with probability
≥ 1 − (1/ exp 2 + 1/ exp (16/3)).

What is interesting about this solution is that this guarantee holds irrespec-
tive of the data distribution. This is in contrast with the attribute value inde-
pendence assumption made by commercial optimizers that is known to lead to
large estimation errors [Bruno and Chaudhuri 2002]. Note also that the above
guarantees do not assume anything about the nature of the selection predicate.
Hence, this result holds for equality, range and even disjunctive selections.

By using a simple averaging argument, we can show that:

COROLLARY 17. For any class of selection queries, the fraction of all random
samples that succeed (in the sense of Theorem 15) for a fraction of at least f , 0 <

f < 1 of the queries is ≥ (1 − 1/ exp 2 − 1/ exp (16/3) − f )/(1 − f ).

Setting f = 0.6, we find that about 65% of all random samples succeed for at
least 60% of all queries. Hence, a majority of the random samples have a high
success ratio.

As discussed in the work on join synopses [Acharya et al. 1999], by suitably
maintaining multiple precomputed samples, we can extend the above properties
to arbitrary SPJ queries over snow-flake schema. Indeed, for any fixed join
template, irrespective of whether the joins are key-foreign key, or even equijoins,
as long as the join size is linear in the size of the base tables, we can easily extend
the sampling strategy to handle this case.

4.3 Sampling is Almost Space-Optimal

Consider a function f: Z → Z . If FatF has N rows and t columns, Sample
(
16.N/ f (N )�) has 
16.N/ f (N )� rows and t columns. In other words, the space
consumed is t.
16.N/ f (N )� “cells”. The (probabilistic) guarantee yielded is that
of a constant ratio error for all f (N )-large (single-column and multicolumn)
queries in addition to an absolute error of f (N ) for f (N )-small queries. Note
that by Corollary 16, the same sample satisfies the ( f (N ), 2. f (N ), 4. f (N ))
threshold error requirement with high probability.

Recall that Corollary 3 shows that any deterministic or randomized estima-
tor that provides a constant ratio error for f (N )-large single-column equal-
ity selection queries must use space �(t.N/ f (N )) (measured in bits). Also, by
Corollary 9, any estimation scheme that satisfies the ( f (N ), 2. f (N ), 4. f (N ))-
threshold error requirement must use space �(t.N/ f (N )). Thus, we obtain the
remarkable conclusion that sampling is almost space-optimal.
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5. EXPERIMENTAL STUDY

As observed in Section 4.2, a select-project-key-foreign key join query is a select-
project query over a “fattened” table corresponding to the join without any
selections. Hence, in addition to the sampling approach, it is also possible to
use techniques such as sketches, multidimensional histograms and wavelets.
The goal of this section is to study the effectiveness of the sampling approach
against the strategy of using multidimensional histograms to estimate the re-
sult size of select-project-join queries, especially as the number of joins in the
query increases. We defer an empirical comparison with sketches and wavelets
to future work, noting that wavelets have a limitation in that they are only
applicable for numeric attributes. We only consider key-foreign key joins and
defer an analysis of nonkey-foreign key joins to future work.

5.1 Analytical Comparison with Multidimensional Histograms

As shown in Muralikrishna and DeWitt [1988], in order to provide absolute
error guarantees of the form N/c for some constant c, an equi-depth multidi-
mensional histograms needs a number of buckets that is exponential in the
number of columns (although several multidimensional histograms have been
proposed later, to the best of our knowledge, none of these comes with better
provable guarantees). On the other hand, the sampling estimator consumes
space linear in the number of columns to yield probabilistic guarantees.

5.2 Empirical Comparison

We next focus on an empirical comparison.

5.2.1 Modeling Joins. Observe that in a star schema, as we increase the
number of joins by joining the fact table with more dimension tables, the number
of attributes over the “fattened” table over which the equivalent selection query
is expressed increases. Indeed, if we assume that each table participating in
the join has exactly two columns, one which is the joining column and another
which contributes one column to a selection, then the number of joins is the same
as the number of dimensions. Hence, we study the behavior of sampling and
multidimensional histograms with increasing number of joins by generating
a “fattened” table with increasing number of columns. In order to vary the
number of joins, we vary the number of columns of the data set.

5.2.2 Data. We use the experimental setup of Bruno et al. [2001] for this
purpose. The data set we use is synthetic and is based on the Gaussian distri-
butions [William et al. 1993] which consist of a predetermined number of over-
lapping multidimensional Gaussian bells. The parameters for these data sets
are (1) the number of Gaussian bells p, (2) the standard deviation of each bell,
σ , and (3) a zipfian parameter z that regulates the total number of tuples con-
tained in each Gaussian bell. For all the experiments, the number of data points
is fixed at 500000. The default setting for parameters is p = 100, σ = 25, z = 1.

We also report results over a real database, the Census3d database [Blake
and Merz 1998], a 3-dimensional projection of a fragment of the US Census
Bureau data. It contains 210138 tuples.
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Fig. 2. No. of joins = 0. Fig. 3. No. of joins = 4.

5.2.3 Workload. The query workload consists of multidimensional range
queries generated by creating a query center uniformly at random and expand-
ing the query boundary to obtain a hyper-rectangle that occupies 20% of the
total volume of the data domain. We classify these queries as large if their
result size is more than 10% of the data size, and small otherwise. We note
here that sampling is not restricted to work for this class of queries alone and
that the analysis in Section 4.2 holds for arbitrary selection queries. In all our
experiments, the number of queries in a workload is set to 500.

5.2.4 Histograms. The most recent multidimensional histograms pro-
posed include the ST-holes histogram Bruno et al. [2001] and the GenHist his-
togram [Gunopulos et al. 2000]. In the results reported in [Bruno et al. 2001],
it is found that the GenHist and ST-holes methods are superior to the rest
and also to the solution implemented in practice based on the attribute value
independence assumption. Hence, we focus on the ST-holes and GenHist his-
tograms for a comparison against sampling. Across all of our experiments over
this data set, the ST-Holes histogram which refines buckets based on a query
workload performs comparably to the GenHist histogram. Hence, we report
only the numbers for the GenHist histogram.

Given a sample size, we fix the number of buckets of the histograms appro-
priately so that the total space consumed by the data structures is the same.
Our results are reported in terms of the number of samples.

5.2.5 Varying the Number of Joins. Figures 2, 3 and 4 show the results
for 0, 4 and 8 joins (0 joins refers to a single table selection), intended to repre-
sent respectively the case of low, medium and large number of joins. Figure 5
shows the results on the Census3d database. The X-axis shows the sample sizes
we use and the Y-axis shows the average relative error. In order to deal with
empty queries, for the purposes of error measurement, we treat them as having
a single result. For each sample size, we separately report the average relative
errors for small and large queries (we use the short hand s for small and l for
large). We observe the following:
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Fig. 4. No. of joins = 8.

Fig. 5. Census data: 3 dimensions.

(1) For the case of 0 joins, which is a single table selection, histograms perform
better than sampling, which is only to be expected. However, the errors
obtained through sampling are within the bounds of what is required for
query optimization. In particular, for large queries, the relative error is
within 10% for all sample sizes more than 100.

(2) For small queries, sampling does significantly better. One potential reason
could be that for this data set and this workload of queries, histograms
over-estimate the result for small queries, yielding high relative errors. On
the other hand, sampling under-estimates the result sizes for small queries
yielding lower relative errors. For example, in the extreme case of an empty
query, sampling always produces an empty result, whereas a histogram
could produce a really high result depending on the query. We examine the
absolute errors to test this hypothesis. While sampling still performs much
better (factors of 2 to 4 times), the difference is not orders of magnitude.
This is consistent with the above hypothesis.

(3) For large queries, sampling is always competitive with GenHist and does
significantly better as the number of joins increases, especially for sam-
ple sizes of 400 and above. This is consistent with the conjecture made in
Gunopulos et al. [2000] that sampling is better for higher dimensions.
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Fig. 6. Varying z.

Fig. 7. Varying σ .

(4) The errors for smaller queries are consistently larger than those for larger
queries confirming our analysis that in limited space, it is difficult to obtain
low relative errors.

5.2.6 Varying Data Characteristics. We next address the comparison be-
tween GenHist and Sampling when the underlying data distribution varies,
roughly from uniform to more skewed. We fix the number of joins at 4. We vary
both the zipfian parameter z and the standard deviation σ . For each value of the
parameter, we compare the average relative error over large queries yielded by
GenHist against the one yielded by Sampling. The trends are very similar for
the smaller queries and we do not report them. Figures 6 and 7 show the results
of these experiments. The X-axis shows the varying parameter (respectively, z
and σ ). The Y-axis plots the average relative error of GenHist and Sampling. We
can observe that both GenHist and Sampling tend to be more effective when
the data is skewed. This is not surprising since when the data is dominated
by fewer values, both these techniques can identify these dominant values and
yield lower errors for larger queries. But, the figures indicate that sampling
tends to be even more effective than GenHist when the skew increases. Thus,
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Fig. 8. Varying query shape.

for example, when z is 0.2, GenHist yields a lower error. On the other hand,
when z is 1.8, Sampling yields a lower error.

5.2.7 Varying the Query Shape. We next study the impact of varying the
query shape. Recall that the multidimensional queries are generated by creat-
ing a query center uniformly at random and expanding the query boundary to
obtain a hyper-rectangle. Clearly, a robust statistics estimation strategy must
be robust as the shape of this hyper-rectangle varies from square to “thin”
rectangles where some dimensions are much wider than others. We generate
our queries with a length-breadth bias parameter that determines the shape
of the resulting query. The parameter is used as follows. A query is initially
expanded to a hypercube and then half the dimensions are expanded by factor
bias, shrinking the other half by the same factor, thus keeping the volume of
the hyper-rectangle constant. Notice that when bias is 1, we generate hyper-
cubes. Figure 8 plots the relative error (for larger queries) yielded by GenHist
and Sampling as bias varies. This experiment is over the synthetic data where
the number of joins is fixed at 4. We notice an interesting trend—the error
yielded by the multidimensional histogram GenHist increases significantly as
bias increases. One explanation for this is the error yielded by a histogram
over a query is proportional to the number of buckets that partially intersect
the query. A “thin” hyper-retangle is likely to partially intersect more buckets
and hence is likely to yield a higher error. Sampling on the other hand yields
a steady error, independent of the query shape. This shows that sampling is
more robust as a statistics estimation strategy.

5.2.8 Summary. We now summarize our empirical results.

(1) Sampling out-performs multidimensional histograms when (1) the number
of joins increases, (2) when the data becomes more skewed (even though
the effectiveness of both tends to increase when the data is skewed).

(2) Sampling is much more robust as the shape of the multidimensional query
changes. On the other hand, GenHist incurs significantly higher errors as
the hyper-rectangle becomes less square.
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(3) The GenHist histogram is constructed by making several passes over the
data. Since commercial implementations typically create the histogram
over a sample of the data [Chaudhuri et al. 1998], the difference between the
two approaches in a commercial implementation is only likely to increase.

(4) Samples on the other hand are very simple to create and algorithms for their
incremental maintenance have been proposed in the literature [Gibbons
et al. 1997].

6. RELATED WORK

There are several sources of error in query optimization such as the statistics
used, the plan space explored and the cost model that computes the effective-
ness of a plan. Previous work has addressed complexity issues in both statis-
tics [Ioannidis and Christodoulakis 1991] and plan space exploration [Chatterji
et al. 2002; Ibaraki and Kameda 1984]. This article focuses on the statistics
aspect.

6.1 Space Complexity

As mentioned in Section 1, the only results on hardness of gathering statistics
that we are aware of is the work by Ioannidis and Christodoulakis on error
propagation. In particular, we are not aware of any results on space complexity
of gathering statistics.

Analyzing the complexity of gathering statistics is reminiscent of the field
of communication complexity [Kushilevitz and Nisan 1997]. This area was in-
troduced by Yao [1979], with the goal of providing a framework to analyze
distributed computations. In the most widely studied two-party model, this
problem deals with how many bits Alice and Bob have to exchange in order to
compute a function when the input is split between them. Communication com-
plexity is a powerful abstraction used to prove several lower bounds, including
some recent lower bounds for computation on streaming data [Bar-Yossef 2002].
Our setting has fundamental differences. We are trying to compute a synopsis
that can be constructed by making multiple passes over the data. Thus, in order
to compute any specific function whose result is small (e.g., frequency moments),
we are allowed to pre-compute its result as part of the synopsis. It is possible
to model the synopsis we talk about as an approximation to the data distribu-
tion. However, common notions of measuring the “distance” between two data
distributions such as mean square error and the L1 norm are “global”—they
do not allow for the possibility of the approximation being close to the actual
distribution on a large fraction of the values and being arbitrarily erroneous
elsewhere. However, for query optimization, strategies where errors are low
for a large fraction of queries—as opposed to all queries—are acceptable. We
are not aware of any published work based on communication complexity that
deals with such a notion of approximation.

6.2 Sampling

The problem of approximating a given data distribution has been studied in
several scientific communities including numerical analysis, in the context of
approximating a function in a piecewise fashion by a class of simple functions
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such as polynomials [Conte and de Boor 1972], and statistics, for instance,
in connection with non-parametric density estimation [Gasser et al. 1985]. The
effort in these areas has been focused on minimizing error without taking space
constraints into account.

In the database community, approaches based on sampling such as
Olken and Rotem [1986], Lipton et al. [1990], Haas and Swami [1992], and
Chaudhuri et al. [1999] have been proposed to estimate the result size of queries.
The main difference in our approach is the following. First of all, we precompute
a set of samples for a given star or snow-flake schema. More importantly, in
contrast with earlier work, we do not ask what is the minimum number of
samples for a given error bound. Instead, we fix the sample size and analyze the
guarantee it provides—in particular, the error metric we use depends on the
query. We also show that the space consumed by sampling for such a guarantee
is essentially optimal. The work that comes closest to our solution is the tech-
nique of computing join synopses for approximate query answering [Acharya
et al. 1999]. Here, the authors propose storing precomputed samples of the
results of relevant key-foreign key joins in a given star or snow-flake schema.
They introduce an algorithm that finds the minimum set of samples to be
maintained for a given schema so as to be able to answer all join queries. They
also discuss the number of samples to be maintained for a given error bound
and algorithms to update the samples as the underlying data changes. Most of
the work in this paper is complementary to the sampling solution we propose.
The main difference in our setting is that there is a strong space constraint,
which is less stringent in the context of approximate query processing.

In addition, several techniques based on histograms [Ioannidis and
Christodoulakis 1993; Ioannidis 1993; Jagadish et al. 1998; Koudas et al.
2000; Poosala and Ioannidis 1995; Poosala et al. 1996; Gunopulos et al. 2000;
Bruno et al. 2001; Muralikrishna and DeWitt 1988], both one-dimensional
and multidimensional, wavelets [Chakrabarti et al. 2000; Vitter and Wang
1999] and sketches [Dobra et al. 2002; Alon et al. 1999] have been proposed.
We are not aware of any lower bounds on space complexity for any of these
approaches. In addition, for multidimensional histograms, while there are
measures of optimality such as V-optimality [Poosala and Ioannidis 1995], the
only properties of the form shown for sampling in this article (in Theorem 15),
that we are aware of are the ones observed in Piatetsky-Shapiro and Connell
[1984]. We are not aware of any such properties of wavelets. Wavelets, in
addition, have the limitation that they have been mainly studied for numeric
attributes. Sketches do have probabilistic guarantees associated with them.
However, even for a two-way join, the only upper bound proven on the variance
of the sketch estimate is directly proportional to the self-join size of each
relation and inversely proportional to the square of the query result size [Alon
et al. 1999]. Hence, the variance is likely to be very high when the query result
size is small, unless we store a large number of sketches.

7. CONCLUSIONS

In this article, we studied the problem of synopses for query optimization from a
space-complexity perspective. Our information-theoretical analysis showed the
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intuitive result that obtaining synopses with very low error bounds in limited
space is impossible, even if we are willing to settle for probabilistic bounds.

We then considered looser error bounds and showed that histograms are es-
sentially optimal for single-dimension selection queries, in that any technique
that offers the same error guarantee they provide requires almost the amount
of space they consume. We also showed that for special classes of data distribu-
tions that are believed to be common in real-life data, the guarantees yielded by
histograms are much better than what our worst-case analysis indicates. For
the case of selections with joins, for the large class of key-foreign key joins, we
showed that taking a small sample of the selection-free join provides an effec-
tive space-bounded synopsis. We also showed that this is essentially optimal,
again in the sense that the guarantee provided by sampling requires almost
the amount of space consumed by sampling. Finally, we presented experimen-
tal results that supported our theoretical results by comparing the benefits of
sampling versus multidimensional histograms.

We now list potential future directions for research.

—An interesting open problem is whether there exists any data structure (in
particular, some variant of multidimensional histograms) that provides ab-
solute error guarantees for multicolumn selections in limited space.

—While the results for sampling in this paper have been proved for key-foreign
key joins, an interesting question would be whether they extend to special
cases of non key-foreign key joins. Even in the absence of theoretical bounds,
it is likely that sampling will continue to be effective for a range of join
selectivities, and it is important to be able to characterize this range.

—We were able to show that histograms are able to successfully exploit prop-
erties of data distributions believed to be common in real life to yield really
small error bounds. The question arises whether along the same lines, there
are classes of multidimensional data distributions where we can design syn-
opsis structures that exploit the properties of these distributions to yield
tighter guarantees than what our worst-case analysis indicates.

—In any commercial implementation of sampling, it would not in general be
feasible to maintain (precomputed) samples of all possible key-foreign key
templates. Strategies need to be discovered for computing statistics in the
presence of partial samples. A natural question here would be if we can do
any better than using independence assumptions.

—One crucial advantage of histograms over sampling is that they store the
number of distinct values per bucket. In this article, we did not focus on
distinct value estimation, which is a crucial component of statistics estima-
tion. A natural extension of our work involves exploring the distinct value
estimation problem.
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