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1 PCA plots for ARIC cohorts before and after filtering
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(a) PCA for Caucasians Before Filtering
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(b) PCA for Caucasians After Filtering

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
EigenVector 1

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

E
ig

e
n
V

e
ct

o
r 

2

PCA for African American Male and Female before cleaning

Female
Male

(c) PCA for African Americans Before Filtering
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(d) PCA for African Americans After Filtering

Figure 1: PCA plots for Caucasians and African Americans. Prior to filtering, some individuals
deviate significantly from the remainder of the group. After filtering individuals based on genetic relatedness
(see Methods), individuals are relatively homogeneous with respect to ancestry.
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2 Comparison of Bayesian posterior with frequentist distribution

for the full ARIC cohort
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3 Comparison of Bayesian posterior with frequentist distribution

for African American females
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4 Comparison of Bayesian posterior with frequentist distribution

for African American males
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5 Comparison of Bayesian posterior with frequentist distribution

for Caucasian females
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6 Comparison of Bayesian posterior with frequentist distribution

for Caucasian males
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7 A theoretical comparison of the posterior distribution of heritability and the 

sampling distribution of the maximum-likelihood estimator for heritability 

 

Consider the log-likelihood of a set of data y , where  is a set of parameters.  A 

maximum likelihood estimator for , denoted by  , is any parameter configuration that 

satisfies the following equation, where L  represents the gradient of the likelihood function with 

respect to  

0)ˆ|( yL .   (1) 

 

As the size of the data, N  , increases to infinity, the sampling distribution of the maximum 

likelihood estimator is known to follow a normal distribution with mean centered at the true  

and with variance lower-bounded by the inverse of the expected information matrix
1
. The 

Fisher’s information matrix is defined as the expected value of the negative Hessian of the log-

likelihood (i.e., of the observed information matrix). We denote the Hessian of the log-likelihood 

as L  and define the expected information matrix F( ) as follows
1
: 

.   (2) 

With this we specify the distribution of the maximum-likelihood estimator as  

.   (3) 

Therefore, the sampling variance of the estimate of  can be quantified using the distributional 

properties of this normal distribution.  

We now show that the posterior distribution of a parameter set  given the data D 

asymptotically follows a normal distribution similar to the one shown in Equation 3.  A thorough 

treatment of this concept may be found in ref
2
 among others, although we follow closely the 



proof given by ref
3
.  Let the posterior distribution of  be denoted by the following

3
: 

  

,   (4) 

 

))}|(log())(exp{log(  Dpp  .   (5) 

 

Let 0 and 1 denote parameter settings that maximize  and  , 

respectively. We can write the second order Taylor expansion around these maxima as follows
2
: 

,    (6) 

.   (7) 

 

Here we have let R0
 and R1

 represent the remainders and we have let H0
 and H1

 represent the 

negative of the Hessian matrix for  and , evaluated at their respective maxima. 

Assuming that, with large sample size, R0
 and R1

 will be small, we ignore them. Additionally, 

we may disregard the terms          )) and            )) as they are constants. We then have 

the following result: 

.      (8) 

Combining terms, we can show the following: 

,    (9) 

)(ˆ
1100

1

1  HHH  
,    (10) 

Ĥ =H0 +H1.   (11) 



Therefore, up to a constant of proportionality, the posterior distribution of  given the data 

follows a normal distribution , where the mean and variance both have a 

prior-dependent term and a data-dependent term.  The variance term is a combination of the prior 

precision (inverse variance) and the observed precision. The latter is the observed information 

matrix. When using a uniform prior, the prior precision will be zero and thus the posterior mean 

will be the maximum-likelihood solution; and the posterior variance will be determined by the 

observed information matrix, .  By definition, the observed information is an 

unbiased estimate of the expected information matrix defined in Equation 2. Note that the 

expected information matrix is defined over the joint multivariate log-likelihood of a dataset of 

size N. 
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