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Abstract a broadcast bus. This approach is popularly referred tetsork-

basedsnoopy cache coherence. While this approach is not as scal-

Snoopy cache coherence can be implemented in any physiedlle as directory schemes, it is inexpensive and may represent the
network topology by embedding a logical unidirectional ring in thebest design approach for medium machine sizes. This general ap-
network. Control messages are forwarded using the ring, whilsroach is used by IBM Power systems [15].
other messages can use any path. While the resulting COherenC@lnterestingly, while the broadcast bus in bus-based snoopy
protocols are inexpensive to implement, they enable many ways gfhemes ensures that coherence messages are delivered in the same
overlapping multiple transactions that access the same line — Maker 1o all the nodes, this is not the case in network-based snoopy
ing it hard to reason about correctness. Moreover, sSnoop request$,emes. Indeed, messages from two different concurrent trans-
are required to traverse the ring, therefore lengthening coherenggiions to the same address can be received by different nodes in
transaction latencies. different orders. This lack of ordering makes the design and verifi-

In this paper, we address these problems and make t™WQtion of efficient network-based snoopy schemes challenging.

main contributions. First, we introduce tl@rdering invariant, To address this lack of ordering, we proposed embedding a logi-

which ensures the correct serialization of colliding transactions i@al unidirectional ring in the physical network of the machine [14]

embedded-ring protocols. Second, based on this invariant, we r'§ﬁoop requests and responses use the logical ring, while other mes-

move the requirement that snoop requests traverse the ring. I"Qafgqes can use any path through the network. This approach is ai-

stead, they are d_ellvered using any netvv_o_rk path, as long as SNQPRetive because it is simple — it places no constraints on network
responses — which are typically off the critical path — use the logi:

cal ring. This approach substantially reduces coherence transactltgr?mogy or timing. However, there are still many ways in which
Iatency.. We call the resulting protoddhcorg multiple transactions that access the same line can overlap.

We show that, on a 64-node Chip Multiprocessor (CMP), Un- In [14], we did not Iist_ the invariants_ that_need to be enforced to
corg improves the performance, on average, by 23% for SPLASHESUre the correct orderlng_of transa_ctlons in t_hese_protocols. More-
applications and by 10% for commercial applications. With an ad?Ver ‘fi” prptocolsthat use r_|ngs—e|ther physical rings (e.g., [1’_7])
ditional simple prefetching optimization, the performance improve®" logical rings [14] — require that snoop requests traverse the ring,

ment is, on average, 26% for SPLASH-2 applications and 18% & they visit all nodes. This requirement limits the parallelism of
commercial applications snoop operations and lengthens the latency of coherence transac-

tions.
1. Introducti To address these problems, this paper makes two main contri-
- Introauction butions. First, it presents ti@rderinginvariant, which ensures the

As systems continue to integrate, it is becoming feasible to builgerrect serialization of overlapping transactions in embedded-ring
medium-scale shared-memory multiprocessors with 32-128 procégmtocols. Second, based on this invariant, it introduces a novel pro-
sor cores at remarkably low cost. In such systems, a major chaqcol that allows snoop requests to be delivered to multiple nodes
lenge for designers is to implement a cache coherence solution tiaParallel, using any path in the network. Snoop responses still use
carefully balances performance, complexity, and cost. the ring, but they are typically off the critical path. The new pro-

Two traditional approaches to cache coherence are snoopy a@§o! is calledunconstrained Snoop Request Delivesy Uncorg
directory-based schemes. Snoopy schemes that rely on oneLB?CO_rq_ greatly reduces miss latency, while still preserving protocol
more broadcast buses cannot scale beyond a small number of cot&plicity.
without significant increases in cost. On the other hand, directory Our results show that Uncorq is very effective. On a 64-node
schemes, while scalable, have the disadvantage of adding one le@iip Multiprocessor (CMP), Uncorg improves the performance, on
of indirection to coherence transactions, increasing latency. Moraverage, by 23% for SPLASH-2 applications and by 10% for com-
over, directories can be expensive and complex to design. mercial applications. Moreover, with an additional simple prefetch-

A cost-effective approach for these machines is to suppoittg optimization, the performance improvementis, on average, 26%
snoopy cache coherence on a point-to-point network rather than tor SPLASH-2 applications and 18% for commercial applications.

- ) ) ) ) This paper is organized as follows. Section 2 presents some
*This work was supported in part by the National Science Foundatlo[g

under grant CCR-0325603; DARPA under grant NBCH30390004; DO 2cKdround; Section 3 presents our invariant; Section 4 introduces
under grant B347886; and gifts from IBM and Intel. Karin Strauss wa ncorg; Section 5 descr'bes lmplemen.tatlon issues; Sections 6
supported by an IBM PhD Fellowship. Karin Strauss is now with Advance@nd 7 present an evaluation; Section 8 discusses related work; and
Micro Devices (AMD). Her e-mail address is karin.strauss@amd.com.  Section 9 concludes.
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Figure 1. Read miss transaction in the Eager protocol.

2. Background far. Circled numbers are events referenced in the text — typically,
but not necessarily, in chronological order.

When requester nodk suffers a read miss (event 1), it places

In embedded-ring snoopy protocols, a unidirectional ring is log féad requesk., and a negative responsg - on the ring. The
ically embedded in whatever network topology a machine uses [14fgtter indicates that no node has yet been found that can supply the
When a processor needs to initiate a coherence operation, it placé§@uested data. Nodgreceivesrz (2), forwards it toB and then
request on the ring. The request traverses the ring, visiting all nodidtiates a local snoop operation, which generates a local snoop out-
in order. In a naive implementation, as the request visits a node GeMe indicating whethe® can supply the requested data. In our
induces a cache snoop. If the request is a miss and the data is foupgmPple, sinc& can supply the data, it generates a positive snoop
the node — which we cafBupplier— sends it to the requester us- Outcome and immediately sends the dataAtaising the shortest
ing the shortest path provided by the network topology. Irrespectivéath. WherB receiveskz 4 from S(3), B forwards it and initiates a
of whether the data is found, after the snoop is completed, the rcal snoop operation, which generates a negative snoop outcome.
quest is forwarded to the next node in the ring. Unless the requei$ S00N as receives the data froi(4), Ais free to use it. When
is a read and the data was already found, the next node repeats §gceives a- from A (5), Scombines it with its positive outcome,
process. As soon as the data arrives at the requester, the latter E8§lting in a positive combined responset, thatSthen forwards
use it; as soon as the request message returns to the requester g, WhenB receives 4+ from S(6), it further combines it with its
the coherence transaction is completed. For load balancing, mé&gative outcome into a new positive combined respense and
sages to different line addresses can use different logical rings, $#NdS it tAA. Whenr 4+ reachesA (7), the transaction completes.
the same ring with different directions. A node can only generate and forward a new combined response

Since the supplier node may be far from the requester, the I4hen both (1) the local snoop operation has completed and gener-
tency of a coherence transaction in this naive implementation majed an outcome and (2) the node has received a combined response
be long. To reduce the latency, the Eager Forwarding algorithi#iom the previous node in the ring.

(Eagel) is used. This algorithm breaks down the message in the When the requester receives the data (or just the data owner-
transaction into aequest(R) and arespons€r) message. The re- ship in case of a store to locally cached but unowned data), the load
quester node places both messages in the ring.Rllages ahead, or store is bound — it cannot be undone. If a load originated the
initiating snoops in all the nodes without waiting for their comple-transaction, the load is now complete and can retire. If a store orig-
tion. As usual, as soon as the data is found in a cache, it is sénated it, there may still be copies of the line in other nodes to be
to the requester. Thetravels behind, leaving a node only after theinvalidated. Only when the requester receivesrtimessage it is
snoop has completed there. It also carries information as to whethgiraranteed that all copies have been invalidated. At this point, the
the data has already been found in one of the visited nodes (positistore is complete. To simplify the coherence protocol implementa-
combined response, of) or not (negative combined response, ortion, in all cases, the requester only changes the state of the line in
r-). As usual, whem reaches the requester, the transaction is conits cache to a stable state and is allowed to supply the line to other
pleted. While Eager was described in [14], the separatidRarid nodes when it receives thenessage.

r was already used in physical-ring protocols [1]. Compared to the naive implementation, Eager reduces transac-

As an illustration, Figure 1 shows a read miss transaction undéon latency but increases the number of snoop operations and ring
Eager. Part (a) shows the ring with nod&sS (the supplier node) messages — increasing power consumption and, in some cases,
andB, and the ring traversal direction of bd&andr messages. Part network contention. These effects are mitigated withFlexible
(b) shows a timeline of events in the three nodes. The notation us&doopingfamily of snooping algorithms [14]. The idea is to aug-
is as follows: requests are denoted By (Y'), snoop operations ment each node with a predictor of how likely the requested line is
by snoop(X,Y,)and local snoop outcomes I5{X,Y) whereXisthe to be found in the node in the appropriate state. Then, when a
requester node ID andis the type of request. A combined responsés received at a node, depending on the predictor’s information, it
is denoted by x+(Y,N)if it is positive orrx-(Y,N)if it is so far  can either (i) proceed as in Eager, (ii) initiate the local snoop while
negative, wheré\ is the number of collected snoop outcomes satallingR until r is received and the snoop is complete, or (iii) sim-

2.1. Basics of Embedded-Ring Protocols
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ply forwardR without snooping. Each algorithm is a different point :

in the energy and performance space. A v~ ack 1. data MS]
The type of transaction illustrated in the example, where a seg [Ms] KY m 1]
ond node satisfies the transaction, is calle@ehe-to-cachérans- Ve aCli
action. If, instead, no other node is able to satisfy the transactior® s} [ D] (D]
the requester receivesra In this case, the requester must get the time
line from memory. When the memory responds with the line, the Figure 2. Two colliding transactions that lead to incompatible
transaction completes. This isyemory-to-cach&ansaction. coherence states.

In this paper, we focus primarily on optimizing cache-to-cache
transactions. These include the misses that, traditionally, have be 8 read request reach&beforeB's invalidation doesS supplies
the most expensive and that are common in many applications 'e data toA and A caches the line in state Master Shared (MS).

6. Such missgs are Ii_kely 0 continL_Je to be f_requent-in the futur(f_, ter,B's invalidation reache§, which invalidates its copy and ac-
as CMPs continue to increase the size of their on-chip caches, wledges the invalidation tB. The latter, having received ac-

workloads become more sharing-intensive to leverage the presenk?]%wledgments fromA and S, transitions to state Dirty (D). The

of multiple on-chip cores. system is now incoherenf caches the line in state Master Shared
2.2. Protocol Used while B caches the same line in state Dirty. This problem is caused
by the inability of the system to ensure that all nodes see the same

_In this paper, we use a coherence protocol witirgle sup-  transaction orderA sees the write transaction before the read one,
plier. This means that the protocol is such that, given a request, @hile Ssees them in the opposite order.

most one node in the machine will be in a state capable of supply-
ing the line to the requester. This condition substantially simplifieg,  Serijalization in Embedded-Ring Protocols
supporting embedded-ring coherence.

Our protocol is an invalidation-based one similar to the one fod.1. Invariant for Correct Serialization
IBM Power4 [15]. The details are presented in [14] although, in
this paper, we evaluate a single-CMP machine. ThereforeSthe
state mentioned in [14] does not exist. The supplier cache can h

Correctly serializing colliding transactions in an embedded-ring
a%otocol is challenging because there is no central transaction arbi-

the requested line in one of the followisyipplierstates. If the line tration point such as a broadcast bus or a directory. Consequently,

has the same value as in memory, the supplier states are Exclusi/e want to_ |d_ent|_fy an |nvqr|§nt such tha_u, i enfprced, ensures the
(no other node has a copy) or Master Shared (other nodes may hg\%rect serialization of colliding transactions. Without loss of gen-
eéality, our discussion assumes collisions of only two transactions.

a cached copy but this one is designated to provide the line). If th ;
line does not have the same value as in memory, the supplier states\Ot€ that requesi) and responserY messages have different

are Dirty (no other cache has a valid copy of the line) or TaggefP!eS- R messages determine theder of transactions: when two

(other nodes may share this dirty line but this one is designated f@nsactions collide, the firgthat reaches the supplier node orders

provide the line and write it back on eviction). its transaction ahead of the other one. The supplier node sends a
When a processor issues a write, the line ends up in its cacH¥sSsage tolthe in.itiator.of thRtwith the supplier status and,.if the

in a supplier state. When it issues a read miss, this is not alwajf@nsaction is a miss, with the data as well. In the rest of this paper,

desirable. However, to simplify the description of our contributionsV€ call this message ti&uppliershipmessage. _ _

unless otherwise indicated, we will assume that read misses also On the other hand, the role of thenessages is ttommunicate

lead to a supplier state. the transaction order to the other nodes, so that they enforce correct
) o o serialization. Specifically, when the node that initiated one of the
2.3. Transaction Collision and Serialization two colliding transactions sees the twanessages (one positive

A collision occurs when two or more coherence transactions df’-‘hd one negativg), it can enfgrce correct serialization. It can do SO
rected to the same line use the ring at the same time. Although c&Iither by squashing (or marking as squashed) the loser transaction

lisions may be rare, the coherence protocol needs to handle th&fthatitis forced to retry, or by completing the winning transaction

properly to ensure correctness. Specifically, given two collidingnd then servicing the loser transaction.

transactions, the coherence protocol has to ensure that (i) they getConsequently, we propose the followiydering invariant to

serialized — namely, that they appear as if one transaction corfllarantee the correct serialization of colliding transactions. The

pleted before the other one started — and (i) all nodes observe tigwariant relies on intuition and is proven by exhaustively testing

same order of the transactions. all possible transaction combinations [13]. Section 3.3 gives an
If such requirements are not guaranteed, different nodes oBverview of the possible cases.

serving two colliding transactions may transition into incompatiblérdering Invariant: Given two colliding transactions, consider the

states, causing incoherence. As an example, consider Figure 2 &jeler in which their messages (one positive and one negative) ar-

assume a generic network topology. rive at the first of the two requesting nodes found in ring order after
Initially, nodesB andScache a line in state Shared (S) and Masthe supplier nod& That order must be the same as the order in

ter Shared (MS), while node does not have the line (IBwants to ~ Which theirR messages arrived &t

write the line, so it broadcasts invalidations. An invalidation reaches Knowing that the order of messages reflects that Rfones at

A, which acknowledges it tB. Later, A wants to read the line and, S gives this first requesting node enough information to enforce the

because it misses in its cache, it sends a read request. Assume tmaitect serialization of the two transactions — either by squashing



the loser transaction or by completing the winner transaction ang| Supplier | Serializ. | Process

.. Node
then servicing the Iosgr one. _ _ _ _ Srecovesk,
This invariant applies when there is a supplier node in the ring Ssends suppliership t&
we will see later the case when there is none. Present | Natural | Areceives 4+
AreceivesR g

A sends suppliership B
AreceivesR g, rg- (Als in transient)

3.2. Supporting the Ordering Invariant
SreceivesR 4

Supporting the Ordering invariant in an embedded ring running Ssends suppliership @
the Eager or Flexible Snooping algorithms requires only three safelt Present | Forced | SreceivesRp

guards. First, botR andr messages should traverse the ring in the Breceives 4 + and records own transaction is losgr
. . . . Areceivesr 4+ and completes its transaction
same direction. Second, a node that observes in the ring a request B receives s - and retries ts transaction
R; to a certain line is not allowed to issue its oRto the same Areceives 4 -
line until after it observes in the ring the corresponding response Not | Natural Arequests data from memory
. . Present Areceivesg- and marks-z - as squashed
to that request. We call this requirement theProgress Transac- B receives: 5 - and retries its transaction
tion Restriction Limiting this type of transaction overlap is easy to AreceivesR p; BreceivesR 4
enforce. Finally, messages to the same line should be transfered jin Arec(g\z;ji o :’;g’;\'};‘:i"
FIFO mode in any ring link and should be processed in FIFO mode Not Forced A andB separately run winner-selection algo
by any node. The only exception to this rule is that, to speed up| Present Areceivesr 4 -; Breceives -
t ti Il dt takmessages from if winner, node gets data from memory
rinsac |onsR_messages are allowed to overia 9 if loser, node retries its transaction
other transactions.

) . . ) Table 1. Handling collisions in Eager.
With these three safeguards, the ring order in which two requests

R; andR; were initially placed in the ring determines the ring order A Forced Serializatiortollision occurs when there is no Natural
in which the corresponding; andr; will follow. This is sufficient  geriglization of the transactions. For Eager, this means that each
to enforce the Ordering invariant. Indeed, if a supplier node resf the two requesting nodes sees the other transactiohisfore
ceives request&; and R; in this order, it will process them in this yeceijving its owrr. Under Forced Serialization, one of the trans-
order, and then receive and forward responsesdr; in the same  actions will be squashed. If there is a supplier in the ring, one of
order. Such response order will be preserved until the first of thge responses is positive and the other negative. In this case, the
two colliding requester nodes in ring order. requesting node that is closest to the supplier in ring order sees the
3.3. Protocol Operation two responses and marks theo.ne as sqgashed. When .the origi-
nator of the squashed transaction sees its squashiédetries the

We now overview an implementation of Eager that relies on th@ansaction.
Ordering invariant to correctly serialize colliding transactions. Still under Forced Serialization, if there is no supplier node in
. the ring, each of the requesting nodes sees: (i) the other nBde’s
3.3.1. Types of Collisions (ii) thegother node’'s-, gnd (iii) its ownr-. Since all responses

To understand the protocol, we classify collisions in two dimenare negative and not marked as squashed, the nodes cannot decide
sions: (i) whether they induddatural or Forced Serializationand  which transaction should be retried based only on the messages ob-
(if) whether or not there is a supplier node in the ring for themserved. An algorithm is separately run in each requesting node to
These two dimensions result in 4 cases, which are shown in Tdecide which node is the winner and, therefore, can access memory,
ble 1. Unless otherwise noted, our description applies equally tind which one is the loser and, therefore, needs to retry.
collisions of two reads, a read and a write, or two writes. .

A Natural Serializatiorcollision occurs when one of the two re- 3-3-2- Overall Operation
guesting nodes (e.g) receives its own responsg before it sees We now consider each of the four cases in detail. Without loss
any messages from the other requesting node. In this case, boftyenerality, we assume that the relative position of nodes in ring
transactions usually complete without squashes. If there is a sugrder is as in Figure 1(aj (one requesting node), th&{supplier,
plier in the ring, the response is positiveif+), and wherAreceives if there is one), the (the other requesting node). In our protocol,
it, the transaction completes. Whérater seed? s, it servicesB's  a node with an outstandirigon a line keeps the entry in its cache
request. Note that there is the uncommon situation where, by thea transient state. This means that it takes no action on reception
time A receivesRg, A has received 4+ but not the suppliership. of anotherR on the line. However, if this otheR is for a write, the
In this caseA’s transaction is not complete and a squash will becache records that, if its own transaction loses, it has to invalidate
required. Specifically, wheA receivesR g, it ignores it, and when the line from its cache.
later A receives -, it marks it as squashed. Whersees thatg-  Supplier Present, Natural Serialization Without loss of gener-

is marked as squashed, it retries its transaction. ality, we describe the case whenwins. In this caseyp traverses
Still under Natural Serialization, if there is no supplier node irthe entire ring befor8 observesk 4.
the ring, nodeA receives a negative response{). At this point, Figure 3 shows an example whehgssues a read miss aiii

nodeA gets the data from memory. As before, if noflsees the an invalidation, as in Figure B sends the invalidation requeRtz

other transaction’s requeskg) after it obtains the memory value, followed by a negative responsg- (1). A receivesR g, forwards

it services the request. OtherwigeignoresRp and, when it sees it, and performs a local snoop operation that generates a negative
the transaction’s responses(-), it marks it as squashed. When outcome (2).A combines the negative outcome with- and for-
nodeB sees that - is marked as squashed, it retries its transactiorwards it (3). After thatA suffers a read miss on the same line and
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Figure 3. Example of Natural Serialization when the supplier is present in the ring.
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Figure 4. Example of Forced Serialization when the supplier is present in the ring.

sends a read requely and ar 4- (4). Our same-address FIFO pol-
icy guarantees the observes and processEs; first, sending the
suppliership tdB (5). Later,Sreceives and forwards the following
three messages in orderi-, which is transformed intez+ (6);
R4 (7); andra-, which remains negative (8). MeanwhilB,re-
ceives the suppliership (not shown) anght (9), which completes
the transaction. LateB receivesR 4 (10), which causes the sup-
pliership to be sent té\, andr4- (11), which is transformed into
ra+. Finally, A receives the suppliership (not shown)+ (12),
and completes. The two transactions have correctly serialized.

Table 1 lists the main events in the dual case whevins.
Supplier Present, Forced Serialization In this caseA andB ob-
serve each otherR before observing their own Due to the posi-
tion of nodes on the ringh\'s transaction has to win. The case whenmemory. IfA has received the data by the time it obseryas,
Rp reachesSfirst, given the In-Progress Transaction RestrictionA servicesB's request. Otherwise) ignoresR s because\'s line
(Section 3.2), is an example of Natural Serialization.

Figure 4 shows an example whekéssues a read miss aBdan
invalidation, as in the previous case. Initialysends a read request tion. Table 1 summarizes the main events in this specific case.
R4 followed by ar4- (1), while B sends an invalidation request Supplier Not Present, Forced Serialization In this case, after a
Rp followed by arg- (2). WhenA receivesRp, it forwards it
and performs a snoop operation to record whether the cache has #iwtion before receiving its own, squash-free, Both requesting
line (3). If present, the line would not be invalidated because of iteodes see the symmetric sequence of messages. In this case, the
transient state; it would be invalidated onlyAf transaction lost.
WhenA receives z-, it combines it with its snoop outcome (which on the messages observed. Instead, when each node receives the
is negative because of the transient state) and forwards it (4). Therher'sr-, the node runs by itself an algorithm to decide which node
SreceivesRk 4 and sends the suppliershipAd5). Later,Sreceives
two messages in any orderi4-, which is transformed inte 4+
and forwarded (6), an® s, which is forwarded (7). Note thats
also invalidates the line fror8s cache. After thatSreceives and

forwardsr - (8).

Meanwhile,B receivesR 4 and realizes there is a collision (9).
Later, whenB receives- 4+ (10), it realizes that its transaction has
lost, records it, and forwards, +. EventuallyAreceives the suppli-
ership (not shown) ands+ (11), which completes its transaction.

B receives - and, knowing that its transaction has been squashed,
retries it (12).

The Ordering invariant has enabled the correct handling of the
collision. It ensured that the first of the two requesting nodes after
Sin ring order B) sees the two in the same sequence &saw the
two R. Table 1 summarizes the main events in the example.
Supplier Not Present, Natural Serialization In this caseA re-
ceivesr 4-, which indicates that no other node can supply the data,
before A observes any other messagk.then gets the data from

is in transient state and, whelater receives g-, it marks it as
squashed. In this case, whBmreceivesrg-, it retries the transac-

node initiates a transaction, it sees tandr- of the other trans-

two nodes cannot decide which transaction is the winner based only

is the winner. Later, when the node finally receives its owit acts
based on the outcome of the algorithm: if the node was the winner,
it proceeds to get the data from memory; if the node was the loser,
it invalidates the line from its cache (if the winner was a write) and
retries the transaction.
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Figure 5. Comparing a transaction in Eager and Uncorq: message distribution (a) and cache-to-cache transfer latency (b).

There are a few possible algorithms to decide which transactidretween when a node starts a transaction and when it receives the
has priority and, therefore, wins. One is to use node ID humbers asdppliership message. This has an obvious benefit in read misses,
select the highest — this is unfair, but it never ties. Another is tgince such time is in the critical path of using the requested data.
use random numbers attached to transactions and select the higlizsgpending on the memory consistency model, reducing such time
— this has a very small probability of a tie, but it is fair. Anotheralso benefits write transactions (Section 5.3).
is to use the transaction type. Specifically, a write hit that sends On the other hand, the time to reception of thenessage is
invalidations takes priority over any other transaction type, while &rgely the same in all the algorithms. Such time is important for
write miss takes priority over a read miss. Indeed, selecting a writerites because it marks the point when all cached copies of the
hit minimizes accesses to memory, since the node issuing it alrealitye are guaranteed to be invalidated. It is also the point when the
caches the data. Moreover, selecting a write miss over a read migsgjuester realizes that there is no supplier on chip and, therefore,
may speed up transferring a lock variable from one node to anothérhas to use data from memory. We address the case of memory
In our design, we use a hierarchy of the three algorithms. We statcesses in Section 5.4.
with the transaction type, then fall back to the random number, and Figure 5(b) compares the latencies in a cache-to-cache trans-

then to node ID, if necessary. fer transaction for Eager and Uncorg. The top diagram shows the
Table 1 summarizes the main events in this case. time to suppliership reception. It includes the timdgdropagation

to the supplier, snoop at the supplier, and suppliership propagation
4. Unconstrained Snoop Request Delivery back to the requester. Because Uncorq does not d&tineessages

. . using the ring, amR can reach the supplier node sooner ((1) in Fig-
4.1. Rationale and Benefits ure 5(b)), reducing the time to suppliership reception.

A shortcoming of the existing embedded-ring protocols such as 1he bottom diagram in Figure 5(b) shows the time to response
Eager and Flexible Snooping is that the latency of a ring transactiéception, which is the time it takes for thenessage to traverse the
can be relatively large. This is because Renessages have to ing. Such time is the same in both algorithms.

.trav'erse the ring. If the ;upp!ler node is far from the requgstlng 0”5.2. Uncorq in Action
in ring order, the suppliership message may take a relatively long
time to be sent. Figure 6 shows how Uncorq services a read miss when there

Intuitively, an embedded-ring protocol should be able to worlare no collisions. Figure 6(a) shows tliimessages are directly
without requiringR messages to traverse the ring. This is becauséglivered to all nodes, whilemessages proceed as usual.
as indicated in Section 3.1, the roleRimessages in a collision is Figure 6(b) shows a timeline of events at each node. Wken
only to order the transactions at the supplier node — while commuguffers a read miss, it broadcasts a read regiesto S and B,
nicating this order to other nodes is left to theessages. This idea and then forwards 4- using the ring (1).SandB receiveR 4 and
inspired the Ordering invariant. both initiate snoop operations (2). Aft&completes the snoop,

Based on this insight, we propose a new protocol cadlladon- it sends the suppliership messageAtoA receives the message in
strained Snoop Request Deliveftyncorg). The idea is for theR (3). WhenSreceives4-, Scombines it with its positive outcome
message to be delivered to all nodes in the fastest possible manggg forwards it as 4+ (4). WhenB receivesra+, it combines it
— using any network links and leveraging efficient multicast. InWith its local snoop outcome and forwards it (5). Note that, if a
dividual R messages arrive to nodes quickly and, as soon as th&lessage arrives at a node suctBas B before the corresponding
arrive, initiate a snoop. When the supplier completes its snoop, R has arrived, the message is buffered unfl is received and the
sends the suppliership to the requester. Meanwhiler thessage Snoop operation is performed. Finally, whameceivesr+, the
traverses the ring as usual. If tharrives at a node that has not transaction completes (6).
seen theR yet, it waits untilR is received and the snoop is com- . . .
pleted; thenr is combined with the snoop outcome and forwarde(fl'g' Ordering Invariant with Uncorq
to the next node in the ring. Figure 5(a) shows the different message Supporting the Ordering invariant with the Uncorq algorithm
distribution in Eager and Uncorgq. requires a different set of mechanisms than the ones described in

The advantage of Uncorg over the Eager and Flexible Snoopir8gction 3.2 for the Eager and Flexible Snooping algorithms. To un-
algorithms is that, in a cache-to-cache transfer, it reduces the tinderstand them, recall why we required FIFO handling of same-line
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Figure 7. Breaking the Ordering invariant (a) and enforcing it with the LTT (b) in Uncorq.

messages in Section 3.2. It ensured that, in a collision; treer 1. After a supplier node processes a winning request message
seen by the nodes beyond the supplier node (in ring order) is the R;, the node cannot forward any respomge (wherej # 1)
same as th& order seen by the supplier. before it forwards-; +.

Unfortunately, in Uncorqg, we can only talk about the ring order 2. |f a node receives a positive response, the node cannot
of r messages — not &t messages. Sind@messages travel along forward any response;- received after;+ until it receives
any network links, twdRk messages may arrive at a node in a given R; and forwards response+.

order and at a second one in the opposite order. . . »
The first mechanism ensures that the positive respaonse

What matters is the order in which the tlmessages are pro- |eaves the supplier before the negative ones. The second mecha-
cessed at the supplier node. To support the Ordering invariant, sugdm ensures that+ is not overtaken by any negative response
order should determine the order in which the nodes following thg, any of the nodes that follow the supplier in ring order. Therefore,
supplier in ring order — up until the first of the two requestingone of the two requesting nodes will seg beforer;-. Note that
nodes — receive the messages. This cannot be ensured only bywo negative responses can always overtake each other.

FIFO transfer and FIFO processing. These two mechanisms, combined, require that a node that has
ﬁither (i) performed a snoop that triggered a suppliership transfer or
(ii) received a positiver, keeps buffering incoming messages to

the same line until the node can forward the positive

This adds a third condition to the conditions to forward re-
sponses presented in Section 2.1: (3) if the node has performed
a snoop that triggered a suppliership transfer or has received a pos-
itive response for the same memory line, a combined response can-
not be forwarded until the positive response has been forwarded.

To see why not, consider the example in Figure 7(a), whic
shows the messages at a n@ihat is between the supplier no8e
andB in Figure 6(a). Assume that starts a read transaction at the
same time a®3 starts an invalidation one. Suppose tRat arrived
at Sfirst and, therefore, thé transaction was the winner. In the
figure, we see that receives- 4+ first (1), before it receiveR 4 —
which was delayed in the network. Sinég is missing,C cannot
process 4+. Then,C receivesR s and performs a snoop operation
(2). After that,C receives g- and, since the snoop is dones-is  4.4. Protocol Operation
combined with the local snoop outcome and forwarded (3). L@ter,
receivesR 4, performs the snoop and forwards+ (4). This breaks
the invariant.

With Uncorq, the types of collisions and how they are handled
are largely like in Eager (Section 3.3). The exception is that Uncorq
introduces three new collision instances: one under Forced Serial-

To support the Ordering invariant with Uncorg, we argue thaization with supplier present and two under Forced Serialization
the hardware must enforce the following two mechanisms, whiclith no supplier present. We discuss them next. Table 2 shows all
refer to messages requesting the same line: the collision types, but focuses on the new instances.



S,t\llpzlier Serializ. | Process — namely, any transaction for which the node has receivedRthe
ode . .
Present | Natural | Same as in Eager and/o_r ther message, but for which it has not yet forwarded the
CaseSreceivesR 4 first: same as in Eager combined with the snoop outcome.
CaseSreceivesR s first: , The LTT stallsr messages when necessary to enforce the Or-
BreceivesR 4 (Bis in transient) deri . . s ificall h de h ith 1 ived
SreceivesR ering invariant. pecifically, when a node has either (1) receive
Present | Forced Ssends suppliership B a R message for a line and produced a positive snoop outcome —
Srecelvesl 4 , ) i.e., the node was the supplier for the line — or (2) received a
B receivesr g+ and record#\’s trans. is loser K
B receives 4 - and marks- 4 - as squashed message for a line, then the LTT stalls and buffers all subsequent
Areceivesr 4 - and retries its transaction r messages to the same line. Only after ithend snoop outcome
Not Natural | Same as in Eager for the line are combined intoa+ message and forwarded, can the
Present
AtecevesR 5 (A S in transient) bufferedr messages be forwarded as well.
CaseAreceives z- and thenr 4 -: ) ) All simultaneous in-flight transactions at a node for a given
r - arrives:A runs winner-selection algorithm) .
7 4- arTives-A gets data from mem. or retries memory I|.ne are mapped to th.e same LTT entry. An entry con-
Not Forced | CaseAreceives 4-and thenr - sists of: (i) the line address, (ii) the ID of the node that initiated
Present ra- iﬁ'ﬁi the in-flight transaction with the positive snoop outcome orrthe
TB- . - . . .
? A runs winner-selection algorithm message — thgVinning Node ID (WIDXield — and (iii) two bit
Agets data from mem. or retries vectors with as many bits as nodes. The bit vectors ar&ttoop
Table 2. Handling collisions in Uncorg. Vector (SVand theResponse Vector (RVijhey record which nodes

initiated the in-flight transactions for which the local node has per-

Supplier Present, Forced Serialization With Eager, sinceR  formed a snoop operation or receivedmessage, respectively.
messages use the rinf.4 reachesS before Rp does. With Un- When a node receivesRor ar, the LTT is accessed. If an entry
corg, Rp may reactSbeforelz4. This is a new collision instance. s not already allocated for the line, one is allocated with the line
In this caseB receives the suppliership message and, after thadddress. If this is &, the node performs a snoop operation and,
rp+. Atthe timeB receivesrp+, sinceB has already seef4, it after that, the corresponding bit in SV is set. Moreover, if the snoop
records thaf\'s transaction is the loser. Later, whBrseesra-, B outcome is positive, when the suppliership is sent to the requester
marks it as squashed. Finally, wharsees 4-, it retries. node, the WID is set to the requester’s ID. Instead, if thisristhe
Supplier Not Present, Forced Serialization In this case, with corresponding bit in RV is set. Moreover, if thés positive, the
Eager, since messages cannot get reordered, each requesting noff&P is set to the requester node’s ID.
sees the other node’s before seeing its ownr. With Uncorg, two According to the conditions presented in Sections 2.1 and 4.3,
negativer messages can get reordered — i.a that arrives first @ node is ready to forward theof a transaction when: (1) the cor-
at a node waits for itR to arrive, while ar- that arrives second is "€Sponding SV bit is set — i.e., the node has completed the snoop;
combined with itsR's snoop outcome and forwarded. This effect(2) the corresponding RV bit is set — i.e., the node has received the
causes two new collision instances. r; and (3) either WID is clear —i.e., no node has obtained the sup-

To describe these collisions, consider négevhich has already Pliership of the line yet — or WID is equal to the node that initiated
seenRp. The first new collision appears when- overtakes -  this transaction — i.e., the initiator of this transaction has received
and arrives ah first. In this caseA sees - andr4- out of order.  the suppliership of the line. Wherras forwarded, the correspond-
The second new collision appears whissuesR s andr - after N SV and RV bits are cleared and, if applicable, the WID field is
having forwarded 4-, butr - overtakes 4- and arrives aa first. ~ cleared. Finally, when the SV and RV bit vectors are clear, the LTT
In this case, whileA sees what appears to be the usual messa§&ty is deallocated.
order, B is unaware of any collision. We need to ensure that, if Figure 7(b) shows how the mechanism works. Wleaeceives
necessaryB is made aware of the collision — so that it does not"a+, an LTT entry is allocated (1). It has the line address, the RV
appear as a Natural Serialization instancB.to bit for A set to one, and WID set th. WhenC receivesR g, it per-

These two reorderings, together with the case of no reoderinfprms a snoop operation (2). When the snoop operation completes
are handled in the same way — with only a small extension over E¥(ith a negative snoop outcome, the SV bit Bgets set. Whe
ger's way. Specifically: (i) wheA receives -, it runs the winner- receivesrg-, the RV bit for B gets set, and the hardware verifies
selection algorithm; (i) whei receives the latest ofz- andr,-,  that the SV bit forB is already set (3). At this point, the hardware
it acts on the algorithm’s outcome (get data from memory or retryghecks whether WID i8. Since it is not, the combined response
and (jii) as part of running the algorithm, & is the winner, aug- 7B~ is stalled. WherC receivesR 4, it initiates a snoop operation
mentr- with a Loser Hintbit. When a node receives its own  (4)- When this operation completes with a negative snoop outcome,
with such bit set, it knows it has to retry. Table 2 summarizes th&e hardware sets the SV bit féy verifies that the RV bit foA is

actions. already set, and checks whether the ID in WIRAISSince it is, the
) ) hardware forwards 4+ and resets both the SV and RV bits fgras
5. Implementation Issues in Uncorq well as WID. After that, the hardware checks if there are any stalled

r messages ready to go. Singe- is, rg- is immediately forwarded,
resetting the SV and RV bits f@. As a resulty 4+ andrg- have

To support the Ordering invariant, each node has a seot been reordered, preserving correct transaction serialization.
associative table calledocal Transaction Tabl€LTT). The LTT LTT-induced stalling of negative responses cannot lead to a
records information on transactions that areflight at the node deadlock. The reason is that, given multiple colliding transactions,

5.1. Supporting the Ordering Invariant



only messages from the single, already-identified winner transalb in their SNID before letting them go. Wherranessage reaches
tion can stall messages from the other, loser transactions. Moreowvigs,destination node, if it is a positive it means that the destination
no message from the winner transaction can be stalled. has become the new supplier. In this case, the hardware checks the

Finally, to size the LTT, a designer may choose one of two difSNID. If it is not null, it allocates an entry in the new supplier’s
ferent approaches. One is to structure it so that it can support th&T and saves the SNID in the WID field. Itis, therefore, reserving
maximum possible number of in-flight transactions at a node. Thiie next winner transaction ftd. The hardware will stall any new
requires approximately as many entri€$ s number of nodedNj  transactions from other nodes to that line — for a limited period of
times the maximum number of outstanding transactions per notiene — until it processes the transaction frdinlf there are several
(T), namelyE=NxT. Moreover, the LTT associativity has to be starving nodes, they all update the SNID fieldrahessages, and
equal to the maximum possible number of in-flight transactions théte node closest to the supplier node in counter-ring order wins. As
can map to an LTT set. To reduce hardware requirements, we enin-Eager, the supplier status moves counter-ring wise, closir to
sion such number] to be much smaller thaB. This can be done In the worse case, after as many transactions as nodes belveen
by placing restrictions on the addresses of Trmutstanding trans- and the supplier in ring ordel’s transaction will succeed.

actions of a node. For example, a banked MSHR may allow onlséé .
t outstanding transactions that map to the same LTT set. Con 3. Fences and Memory Consistency Issues

quently, the LTT associativity only needs to eNxt. Overall,  when the requester node receives the suppliership message, the
even with a sizable number of entries and associativity, accessifi@nsaction is bound and cannot be undone. If the transaction orig-
the LTT takes only a handful of cycles. inated from a load, the load is then complete. If it originated from

The second approach is to reduce the size and associativity ktore, there may still be copies of the line in other nodes to be
the LTT to save real estate, while risking running out of entries ifhvalidated. Only when the requester node receives tmessage
rare cases. When the latter happens, the LTT would send a negaiiig guaranteed that all copies have been invalidated. At that point,
acknowledgment to the requester of the dropped message, whigfe store is complete.
would then retry. Since this approach requires changes to the pro- From this, it is clear that, compared to Eager or Flexible Snoop-
tocol to avoid inducing livelocks, we do not consider it here. ing, Uncorq speeds up loads. However, to understand the full im-
52 E dp pact of Uncorq on loads and stores, consider how accesses are or-

- Forwar rogress dered within and across threads.

There are two aspects to forward progress, namely system and Within a thread, a fence instruction stalls the issue of requests
individual-node forward progress. System forward progress is guagfter the fence until those requests that precede the fence are com-
anteed in Eager, Flexible Snooping and Uncorg because, in any cplete. In relaxed memory consistency models such as that of IBM’s
lision, at least one of the requests succeeds. PowerPC [12], fences are largely associated only with synchroniza-

While the collision resolution algorithms described in Section operations — not with all accesses as in strict models such as
tions 3.3 and 4.4 are expected to provide, in practice, individuaSequential Consistency. In the absence of fences, loads and stores
node forward progress, they do not guarantee it. Consequently, &&n overlap and reorder. Even in the presence of fences, there are
ter a node has unsuccessfully retried the same transaction a cer@timizations to enable request overlap and reorder (e.g., [5]). Still,
number of times, an algorithm needs to kick in to ensure that th@ this environment, Uncorq largely speeds up only loads.
transaction eventually succeeds. Such algorithm is different in Ea- Consider now the interaction between threads — a transaction
ger (or Flexible Snooping) and in Uncorg. In both cases, howevelfom nodeA followed by one from nodéB to the same line. In
it tries to ensure that the starving nodBsnessage gets to the sup- Sections 3 and 4, we have assumed that nedely changes the

plier before the other nodes®messages. state of the line in its cache to a stable state after it receivesstthe
. message. Moreover, it can send suppliership emly after that.
5.2.1. Node Forward Progress in Eager In reality, we can optimize this casé can potentially provide

In Eager,R messages use the ring. Consequently, a starvirgippliership tdB right afterA gets suppliership, even befokere-
nodeN can intercept all the conflicting messages that it sees, stallCeives the+ message. As a result, a load or a storB imould get
them, and insert its owR ahead of them. This ensures thawill ~ the data faster. This is clearly safe wh&’s transaction is a load
succeed before the nodes that are between the supplier nodie anlgecause, by this timey's load is complete. Importantly, it is also
in ring order. However, the nodes that are betwileand the sup- correct whem\'s transaction is a store — if we use a relaxed mem-
plier in ring order can potentially complete their transactions beforery consistency model such as PowerPC's. This is because this kind
N's. Fortunately, as the transactions of these nodes complete, ®emodel does not require write atomicity; the data can be provided
supplier status moves from node to node counter-ring wise, clostéranother processor even though not all other processors have been
to N. If there are many starving nodes, in the worse case, after d¥alidated. Consequently, this is a case where Uncorq speeds up

many transactions as there are nodes betweand the supplier in stores. While we do not evaluate this optimization in this paper,
ring order,N's transaction will succeed. it can speed up the situation where a processor releases a lock and

) another acquires it.
5.2.2. Node Forward Progress in Uncorq

In Uncorq, since messages use the ring, they can be used tg'4' Optimization: Hardware Data Prefetching

guarantee node forward progress. Specifically, we add a new field Uncorq focuses on reducing the latency of cache-to-cache trans-
to eachr message, called starving node ID (SNID). A starving nodéers. If we also want to reduce the latency of memory-to-cache
N intercepts all the conflictingmessages that it sees, and places ittransfers, we must augment Uncorq with further optimizations.



One such optimization is hardware data prefetching. In this casejll fit in a large chip in a near-future technology. The system uses
the hardware at the requesting node sends a prefetching requesteiease memory consistency. All algorithms use exactly the same
the on-chip memory controller at the same time as it issue$ca  network and, therefore, see the same available network bandwidth.
the ring. The controller gets the data from memory. If the ringrable 3 lists the main parameters.
transaction returns a- message, the requesting node’s hardware

sends a request to the memory controller, which provides the line[] System CMP with 64 cores
If an on-chip node provides the data, the data in the controller ig| Core 4-issue, out-of-order, and 4GHz
discarded. D-L1 (and I-L1) 32KB, 4-way, 64B line, 2 cyc round trip
. . Unified L2 512KB, 8-way, 64B line, 7 cyc round trip
. Issuing a prefetch at _every_ C?'Ch(.:'\ miss W_aStes power a_nd band- On-chip network 8x8 2D torus, 8 cyc/hop, 2GHz, 64GBY/s,
width. Consequently, this optimization requires a mechanism tha Xy routing
predicts, at the time of the miss, whether or not the line will be pro-|| memory DDR2-800, 224 cyc round trip, 4KB pages
vided by a node in the ring. Depending on the prediction, a requesti Node prefetch pred.| 8K line addresses
is sent to memory controller in addition to the ring. Cont. prefetch pred, 16K entries, 64 bits/entry
LTT 512 entries, 64-way

As an example, we describe a simple prefetch predictor that w
evaluate in Section 7. Each node has a Node Prefetch Predictor Taple 3. Parameters of the architecture simulated. All laten-
(NPP), while the memory controller has a Controller Prefetch Pre- cjes are given in processor cycles.
dictor (CPP). The NPP is a table with the line addresses of cache
miss and invalidation transactions recently seen in the ring. When
a node’s hardware sendsReto the ring, it checks the NPP. If the ~ We run 11 SPLASH-2 applications [17] (all bublrend which
requested address is not found there, a prefetch request is sent todes not run on our infrastructure), SPECjbb 2000 and SPECweb
memory controller. 2005. SPLASH-2 applications run to completion after skipping ini-

The CPP is a table where each entry corresponds to one paggl_ization. They execute with 64 threads. The SPEC applications
Each entry has as many bits as lines in a page. Whenever the mdhia for over 750M instructions after Sklpplng initialization. To cap-
ory controller brings in a line from memory due to a cache miss dire system-level references, we run them through a Simics [16]
a prefetch, the corresponding bit gets set; whenever a dirty line fgont-end that interfaces to SESC. They run with 8 threads. In our
written back, the bit gets cleared. When the memory controller r&xperiments, we run 8 concurrent instances of a given SPEC ap-
ceives a prefetch request from a node, it checks the CPP. Only if tRéication, for a total of 64 threads. However, there is no sharing
corresponding bit is clear, is the line fetched from memory. Whehetween the 8 instances. SPECjbb uses an 8 warehouse configura-
the line is received, it is kept in a small buffer for a certain numbetion, while SPECweb uses the e-commerce workload.
of cycles in case the requesting node wants it. .

There are other possible optimizations for memory-to-cachz- Evaluation
transfers. Their analysis is beyond this paper’s scope.

In this evaluation, we examine read miss latency (Section 7.1),
5.5. Optimization: Supplier Status Transfer overall performance (Section 7.2), impact of the prefetching opti-
mization (Section 7.3), and a comparison to cache-coherent Hyper-
In our description of Uncorg, every successful transaction praransport (Section 7.4).
vides the requester with the supplier status. While this makes the )
protocol simpler to describe, it implies that when two cache-to?.1. Read Miss Latency

cachereadtransactions collide, unless they are naturally serialized, Figure 8 compares the read miss latency with Uncorq and Ea-

one of them needs to be squashed. Squashing one transaction in - . :
L o . ger. This latency is the number of processor cycles from the time
such a two-read collision is unintuitive and limits concurrency.

. the read miss is declared in the requester’s L2 cache until the data
It can be shown that the Uncorqg protocol can be |mplemente§ﬂ,rives at the requester’s L1 cache

so that cache-to-cache read misses do not transfer supplier status_. . .

o . - Figures 8(a) and (b) show a histogram of the read miss latency
Under this implementation, colliding cache-to-cache read transag-
- . . or cache-to-cache transfers onlfor Eager and Uncorq, respec-
tions are always serviced without squashes. We do not evaluate t

. AT |{/Sely, in fmm— one of the SPLASH-2 applications. We limit the
implementation in this paper.

data to cache-to-cache transfers because these are the misses that
6. Evaluation Methodology l_Jncorq optimizgs. _The figures al_so_ show the cumulative distribu-
tion. Other applications behave similarly.

We use detailed simulations using the SESC [10] cycle-accurate Comparing Figures 8(a) and (b), we see that the latencies of
simulator to evaluate Uncorg, Uncorq plus the prefetching optieache-to-cache transfers in Eager are typically much longer than in
mization of Section 5.4 (Uncorg+Pref), Eager, and two Flexiblé&Jncorg. This is because requests reach the supplier nodes much
Snooping algorithms from [14], namely SupersetCon and Supefaster in Uncorg. Moreover, the fact that both figures exhibit sharp
setAgg. In our evaluation, the Uncorg and Uncorg+Pref improvespikes rather than smooth curves is an indication that there is not
ments only apply to read transactions — in write transactiés, much network contention. Figure 8(a) has many spikes, which are
messages still traverse the ring and do not use prefetching. due to the many distinct latencies between a requester node and a

The architecture modeled is a CMP with 64 cores connected Bupplier. The variability of the spike heights is due to the network
a 2D torus with xy routing. Each core is a 4-issue out-of-order praopology rather than to any uneven distribution of the data across
cessor with private L1 and L2 caches. We estimate that this desigodes.
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Figure 9. Execution time normalized to Eager.

— on average, 90%. On the other hand, this fraction is a lower

—fmm fraction ==fmm cumulative

[i0g 72% and 3_2%_for SPECjbb and SPECweb, respectively. Therefore,
g eo % these applications cannot benefit as much from Uncorqg.
4 60 =
£ s 7.2. Overall Performance
S 30 3
) 20 2 Figure 9 shows the execution time of the applications in Eager,
A SupersetCon, SupersetAgg, Uncorg, and Uncorg+Pref. In each ap-
latency in processor cycles plication, the execution time is normalized to that of Eager.
(a) Cache-to-cache read miss latencfnmmwith Eager The figure shows that Uncorq is consistently faster than Eager.
Uncorq reduces the execution time of the applications by an average
fmm fraction - =<fmm cumulative . of 23% for SPLASH-2, 15% for SPECjbb, and 5% for SPECweb.
- B g This reduction is largely correlated with the reduction in read miss
g e latency shown in Figure 8(c).
£ 50 = In addition, Uncorg+Pref reduces the execution time even fur-
s I § ther. Compared to Eager, Uncorg+Pref reduces the execution time
‘ ‘ ‘ ‘ [l g of the applications by an average of 26% for SPLASH-2, 22% for
0 100 200 300 400 500 600 SPECjbb, and 13% for SPECweb. The impact of the prefetching
latency in processor cycles . . . . .
optimization is higher for the commercial workloads because they
(b) Cache-to-cache read miss latencgrimwith Uncorg have a lower fraction of cache-to-cache transfers (Figure 8(c)).
Read Miss Lat. | (Eager-Uncorg)/| c2c Comparing SupersetCon and SupersetAgg to Eager, we see that
Application (Proc. Cycles) Eager (%) both perform worse. This is in contrast to the results in [14], which
Eager [ Uncorg (%) showed that both algorithms have a performance similar to Eager.
barnes 319 107 66 97 The reason for the difference is that the two papers evaluate differ-
cholesky 354 145 59 90 ent architectures: while [14] evaluates a multi-CMP multiprocessor,
]ffr;m 2411; ??1411 gg gg’ this paper models a single CMP. Such architecture has a much lower
u 385 195 9 82 inter-node latency. As a result, the latency of the snoop filters in Su-
ocean 454 330 27 99 persetCon and SupersetAgg adds significantly to the request deliv-
radiosity 301 80 74 99 ery latency, rendering these algorithms less attractive in our setting.
radix 316 95 70 99 A more detailed analysis is presented in Strauss’s thesis [13].
raytrace 320 106 67 95
water-nsquared || 365 158 57 90 7.3. Impact of the Prefetching Optimization
water-spatial 312 92 70 98
SPLASH-2 avg.|| 363 168 56 90 Figure 10 provides insight into the prefetching optimization.
SPEC]jbb 416 252 39 72 Figure 10(a) classifies read misses into four categories: (1) a
SPECweb 598 522 13 32 prefetch request is issued but the miss is serviced from a cache
(c) Read miss latency characteristics (Pref,Cachg (2) no prefetch request is issued and the miss is ser-
Figure 8. Read miss latency with Uncorq and Eager. viced from a cacheNoPref,Cachg (3) no prefetch request is is-

sued but the miss is serviced from memadoPref,Memory, and

Figure 8(c) shows data call read misses for all applications. (4) a prefetch request is issued and the miss is indeed serviced from
Columns 2-3 list the average read miss latency in Eager and Umemory Pref,Memory.
corqg, respectively, while Column 4 shows the reduction as we go We see that th@ref,Cachecategory is very small. This means
from Eager to Uncorg. We see that, for SPLASH-2 applicationghat the prefetching optimization is not wasteful: the great majority
Uncorqg reduces the latency by an average of 56%. This is a subk prefetching requests bring useful data from memory. Moreover,
stantial impact. For SPECjbb and SPECweb, the reduction isfeom the two bottom categories, we observe that the prefetcher is
more modest 39% and 13%, respectively. To understand these nuable to prefetch a good percentage of all memory-to-cache transfers.
bers, the last column of Figure 8(c) shows the fraction read misses Figure 10(b) shows the impact of the prefetching optimization
serviced with cache-to-cache transfers. We can see that SPLASH2 the average read miss latency. Column 2 shows the read miss
applications have a large fraction of cache-to-cache transfer misdagency for Uncorg+Pref, while Column 3 shows the reduction in



module in each serialization point in the network that collects and
broadcasts messages.

On the other hand, the latency of memory-to-cache transactions
is longer in Uncorg than in HT. This is because thmessage that
tells the requester in Uncorq that no other node can supply the data
has to sequentially visit all nodes.

To assess some of these effects, Figure 11 compares the latency
and traffic characteristics of read misses in Uncorq and in (an es-
timate of) HT. We use Uncorq rather than Uncorg+Pref because it
is fairer — HT could also use data prefetching. Starting from the
top, Figures 11(a) and (b) show a histogram of the read miss latency
for cache-to-cache transfers onfpr Uncorg and HT, respectively,
in fmm Figure 11(a) repeats Figure 8(b) with an expanded Y axis.
Comparing Figures 11(a) and (b), we see that Uncorq reduces the
latency of cache-to-cache transfer read misses substantially.
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(a) Breakdown of read misses
Read Miss Lat. | (Uncorq - Uncorg+Pref)/
Application in Uncorqg+Pref Uncorq
(Proc. Cycles) (%)
barnes 99 7
cholesky 126 13
fft 294 25
fmm 134 7
lu 174 11
ocean 236 28
radiosity 78 2
radix 94 1
raytrace 101 4
water-nsquared 148 6
water-spatial 88 5
SPLASH-2 avg. 143 10
SPECjbb 219 13
SPECweb 427 18

(b) Read miss latency characteristics
Figure 10. Impact of the prefetching optimization.

such latency as we go from Uncorq to Uncorg+Pref. From the data,
we see that such a reduction is significant — 10% on average for
the SPLASH-2 applications and 13-18% for the commercial appli-
cations. The reduction is largely correlated with the reduction in
execution time. One notable exceptioroisean where prefetching
reduces the read miss latency but not the execution time. This is
because, when the prefetching optimization is used, the application
changes its sharing behavior and suffers from thread imbalance.

7.4. Cache-Coherent Hypertransport

An alternative to Uncorg in a point-to-point network is a
directory-based protocol. However, directory protocols require the
addition of a relatively expensive directory structure. A simpler al-
ternative that is also broadcast-based like Uncorqg is AMD’s cache
coherent Hypertransport (HT) [4]. In HT, like directories, each ad-
dress is assigned a serialization point in the network. When a node
misses on an address, it sends a request to the corresponding seri-
alization point. That point then broadcasts the request to all other
nodes, which in turn directly respond to the requester. The exis-
tence of a serialization point for each address simplifies transaction
ordering.

Compared to Uncorq, HT (like directories) has longer cache-to-
cache transaction latencies. This is because, due to the indirection

of the serialization point, a transaction needs three “node hops” to Figure 11(c) shows data ail read misses for all applications.

complete instead of the two in Uncorq. In addition, since rep\Column 2 lists the average read miss latency in HT. Moreover,
messages to the requester are not combined in HT, HT induces m@elumns 3-4 compare Uncorq to HT, showing how much of the
network traffic than Uncorq. Finally, HT requires a new hardwardatency and traffic of read misses is saved by Uncorq. From the
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(b) Cache-to-cache read miss latencynmmwith HT

Read Miss Lat.| (HT - Uncorq) / HT
Application in HT (%)

(Proc. Cycles) | Latency [ Traffic
barnes 172 38 56
cholesky 273 a7 55
fft 431 9 52
fmm 190 24 55
lu 197 1 55
ocean 460 28 56
radiosity 144 44 56
radix 213 55 56
raytrace 153 31 56
water-nsquared 277 43 55
water-spatial 149 38 56
SPLASH-2 avg. 242 33 55
SPECjbb 205 -23 54
SPECweb 268 -95 48

(c) Latency and traffic characteristics of read misses

Figure 11. Comparing Uncorq and Hypertransport (HT).




data, we see that Uncorq reduces the read miss latency of SPLASidet serialization of colliding transactions in these protocols. Sec-
2 applications by an average of 33%. On the other hand, it irend, using insights from this invariant, it presented Uncorq, a pro-
creases the latency of read misses relative to HT for SPECjbb atatol that removes the requirement that snoop requests traverse the
SPECweb. This is because these applications have a sizable freng. Instead, they are delivered using any network path, as long as
tion of memory-to-cache transfers, which are faster in HT. Howsnoop responses — which are typically off the critical path — use
ever, Uncorg generates much less read miss traffic than HT. Indedlge logical ring. This substantially reduces transaction latency.

as shown in Column 4, Uncorq reduces the traffic (in bytes) by an Our results indicated that Uncorq is very effective. On a 64-node
average of 55% for SPLASH-2 applications, and 54% and 48% f&€MP, Uncorg improved the performance, on average, by 23% for
SPECjbb and SPECweb, respectively. These are all large red@PLASH-2 applications and by 10% for commercial applications.
tions, which can have a large impact on execution time when tHdoreover, with an additional simple prefetching optimization, the

system is limited by network bandwidth.

performance improvement was, on average, 26% for SPLASH-2

applications and 18% for commercial applications.

8. Related Work
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Barroso and Dubois propose the use of a slotted ring to imple-
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messages on the ring and completing transactions in ring positioP]]
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sharing behavior of applications to predict the set of nodes that need
to receive a given request [6]. Our prefetch predictor is different iﬁo
purpose and implementation. While their goal is to predict which
nodes should receive a request, our goal is to decide whether any
node can supply the requested line. Because of this, our predictof1g]
simpler and only records addresses. However, their techniques and
other techniques to improve snoopy protocols, such as JETTY [é]]2
and coarse-grain coherence tracking [3, 8], can also be applied['hl_%]
our framework.

Prefetching predictors like ours are also proposed in [11]. Thejti4]
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found in the caches to predict line presence in other caches.
9. Conclusions [15]

While snoopy cache coherence based on embedded logical rings
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lengthening miss latency and limiting performance.

To address this problem, this paper made two contributions.
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