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Abstract

Snoopy cache coherence can be implemented in any physical
network topology by embedding a logical unidirectional ring in the
network. Control messages are forwarded using the ring, while
other messages can use any path. While the resulting coherence
protocols are inexpensive to implement, they enable many ways of
overlapping multiple transactions that access the same line — mak-
ing it hard to reason about correctness. Moreover, snoop requests
are required to traverse the ring, therefore lengthening coherence
transaction latencies.

In this paper, we address these problems and make two
main contributions. First, we introduce theOrdering invariant,
which ensures the correct serialization of colliding transactions in
embedded-ring protocols. Second, based on this invariant, we re-
move the requirement that snoop requests traverse the ring. In-
stead, they are delivered using any network path, as long as snoop
responses — which are typically off the critical path — use the logi-
cal ring. This approach substantially reduces coherence transaction
latency. We call the resulting protocolUncorq.

We show that, on a 64-node Chip Multiprocessor (CMP), Un-
corq improves the performance, on average, by 23% for SPLASH-2
applications and by 10% for commercial applications. With an ad-
ditional simple prefetching optimization, the performance improve-
ment is, on average, 26% for SPLASH-2 applications and 18% for
commercial applications.

1. Introduction

As systems continue to integrate, it is becoming feasible to build
medium-scale shared-memory multiprocessors with 32-128 proces-
sor cores at remarkably low cost. In such systems, a major chal-
lenge for designers is to implement a cache coherence solution that
carefully balances performance, complexity, and cost.

Two traditional approaches to cache coherence are snoopy and
directory-based schemes. Snoopy schemes that rely on one or
more broadcast buses cannot scale beyond a small number of cores
without significant increases in cost. On the other hand, directory
schemes, while scalable, have the disadvantage of adding one level
of indirection to coherence transactions, increasing latency. More-
over, directories can be expensive and complex to design.

A cost-effective approach for these machines is to support
snoopy cache coherence on a point-to-point network rather than on
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a broadcast bus. This approach is popularly referred to asnetwork-
basedsnoopy cache coherence. While this approach is not as scal-
able as directory schemes, it is inexpensive and may represent the
best design approach for medium machine sizes. This general ap-
proach is used by IBM Power systems [15].

Interestingly, while the broadcast bus in bus-based snoopy
schemes ensures that coherence messages are delivered in the same
order to all the nodes, this is not the case in network-based snoopy
schemes. Indeed, messages from two different concurrent trans-
actions to the same address can be received by different nodes in
different orders. This lack of ordering makes the design and verifi-
cation of efficient network-based snoopy schemes challenging.

To address this lack of ordering, we proposed embedding a logi-
cal unidirectional ring in the physical network of the machine [14].
Snoop requests and responses use the logical ring, while other mes-
sages can use any path through the network. This approach is at-
tractive because it is simple — it places no constraints on network
topology or timing. However, there are still many ways in which
multiple transactions that access the same line can overlap.

In [14], we did not list the invariants that need to be enforced to
ensure the correct ordering of transactions in these protocols. More-
over, all protocols that use rings — either physical rings (e.g., [1, 7])
or logical rings [14] — require that snoop requests traverse the ring,
as they visit all nodes. This requirement limits the parallelism of
snoop operations and lengthens the latency of coherence transac-
tions.

To address these problems, this paper makes two main contri-
butions. First, it presents theOrdering invariant, which ensures the
correct serialization of overlapping transactions in embedded-ring
protocols. Second, based on this invariant, it introduces a novel pro-
tocol that allows snoop requests to be delivered to multiple nodes
in parallel, using any path in the network. Snoop responses still use
the ring, but they are typically off the critical path. The new pro-
tocol is calledUnconstrained Snoop Request Delivery, or Uncorq.
Uncorq greatly reduces miss latency, while still preserving protocol
simplicity.

Our results show that Uncorq is very effective. On a 64-node
Chip Multiprocessor (CMP), Uncorq improves the performance, on
average, by 23% for SPLASH-2 applications and by 10% for com-
mercial applications. Moreover, with an additional simple prefetch-
ing optimization, the performance improvement is, on average, 26%
for SPLASH-2 applications and 18% for commercial applications.

This paper is organized as follows. Section 2 presents some
background; Section 3 presents our invariant; Section 4 introduces
Uncorq; Section 5 describes implementation issues; Sections 6
and 7 present an evaluation; Section 8 discusses related work; and
Section 9 concludes.
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Figure 1. Read miss transaction in the Eager protocol.

2. Background

2.1. Basics of Embedded-Ring Protocols

In embedded-ring snoopy protocols, a unidirectional ring is log-
ically embedded in whatever network topology a machine uses [14].
When a processor needs to initiate a coherence operation, it places a
request on the ring. The request traverses the ring, visiting all nodes
in order. In a naive implementation, as the request visits a node, it
induces a cache snoop. If the request is a miss and the data is found,
the node — which we callSupplier— sends it to the requester us-
ing the shortest path provided by the network topology. Irrespective
of whether the data is found, after the snoop is completed, the re-
quest is forwarded to the next node in the ring. Unless the request
is a read and the data was already found, the next node repeats the
process. As soon as the data arrives at the requester, the latter can
use it; as soon as the request message returns to the requester node,
the coherence transaction is completed. For load balancing, mes-
sages to different line addresses can use different logical rings, or
the same ring with different directions.

Since the supplier node may be far from the requester, the la-
tency of a coherence transaction in this naive implementation may
be long. To reduce the latency, the Eager Forwarding algorithm
(Eager) is used. This algorithm breaks down the message in the
transaction into arequest(R) and aresponse(r) message. The re-
quester node places both messages in the ring. TheR races ahead,
initiating snoops in all the nodes without waiting for their comple-
tion. As usual, as soon as the data is found in a cache, it is sent
to the requester. Ther travels behind, leaving a node only after the
snoop has completed there. It also carries information as to whether
the data has already been found in one of the visited nodes (positive
combined response, orr+ ) or not (negative combined response, or
r-). As usual, whenr reaches the requester, the transaction is com-
pleted. While Eager was described in [14], the separation ofR and
r was already used in physical-ring protocols [1].

As an illustration, Figure 1 shows a read miss transaction under
Eager. Part (a) shows the ring with nodesA, S (the supplier node)
andB, and the ring traversal direction of bothRandr messages. Part
(b) shows a timeline of events in the three nodes. The notation used
is as follows: requests are denoted byRX(Y ), snoop operations
by snoop(X,Y), and local snoop outcomes byls(X,Y), whereX is the
requester node ID andY is the type of request. A combined response
is denoted byrX+(Y,N) if it is positive or rX -(Y,N) if it is so far
negative, whereN is the number of collected snoop outcomes so

far. Circled numbers are events referenced in the text — typically,
but not necessarily, in chronological order.

When requester nodeA suffers a read miss (event 1), it places
a read requestRA and a negative responserA- on the ring. The
latter indicates that no node has yet been found that can supply the
requested data. NodeS receivesRA (2), forwards it toB and then
initiates a local snoop operation, which generates a local snoop out-
come indicating whetherS can supply the requested data. In our
example, sinceScan supply the data, it generates a positive snoop
outcome and immediately sends the data toA, using the shortest
path. WhenB receivesRA from S(3), B forwards it and initiates a
local snoop operation, which generates a negative snoop outcome.
As soon asA receives the data fromS(4), A is free to use it. When
SreceivesrA- from A (5), Scombines it with its positive outcome,
resulting in a positive combined responserA+, thatSthen forwards
to B. WhenB receivesrA+ fromS(6), it further combines it with its
negative outcome into a new positive combined responserA+, and
sends it toA. WhenrA+ reachesA (7), the transaction completes.

A node can only generate and forward a new combined response
when both (1) the local snoop operation has completed and gener-
ated an outcome and (2) the node has received a combined response
from the previous node in the ring.

When the requester receives the data (or just the data owner-
ship in case of a store to locally cached but unowned data), the load
or store is bound — it cannot be undone. If a load originated the
transaction, the load is now complete and can retire. If a store orig-
inated it, there may still be copies of the line in other nodes to be
invalidated. Only when the requester receives ther message it is
guaranteed that all copies have been invalidated. At this point, the
store is complete. To simplify the coherence protocol implementa-
tion, in all cases, the requester only changes the state of the line in
its cache to a stable state and is allowed to supply the line to other
nodes when it receives ther message.

Compared to the naive implementation, Eager reduces transac-
tion latency but increases the number of snoop operations and ring
messages — increasing power consumption and, in some cases,
network contention. These effects are mitigated with theFlexible
Snoopingfamily of snooping algorithms [14]. The idea is to aug-
ment each node with a predictor of how likely the requested line is
to be found in the node in the appropriate state. Then, when aR
is received at a node, depending on the predictor’s information, it
can either (i) proceed as in Eager, (ii) initiate the local snoop while
stallingR until r is received and the snoop is complete, or (iii) sim-



ply forwardRwithout snooping. Each algorithm is a different point
in the energy and performance space.

The type of transaction illustrated in the example, where a sec-
ond node satisfies the transaction, is called acache-to-cachetrans-
action. If, instead, no other node is able to satisfy the transaction,
the requester receives ar-. In this case, the requester must get the
line from memory. When the memory responds with the line, the
transaction completes. This is amemory-to-cachetransaction.

In this paper, we focus primarily on optimizing cache-to-cache
transactions. These include the misses that, traditionally, have been
the most expensive and that are common in many applications [2,
6]. Such misses are likely to continue to be frequent in the future,
as CMPs continue to increase the size of their on-chip caches, and
workloads become more sharing-intensive to leverage the presence
of multiple on-chip cores.

2.2. Protocol Used

In this paper, we use a coherence protocol with asingle sup-
plier. This means that the protocol is such that, given a request, at
most one node in the machine will be in a state capable of supply-
ing the line to the requester. This condition substantially simplifies
supporting embedded-ring coherence.

Our protocol is an invalidation-based one similar to the one for
IBM Power4 [15]. The details are presented in [14] although, in
this paper, we evaluate a single-CMP machine. Therefore, theSL

state mentioned in [14] does not exist. The supplier cache can have
the requested line in one of the followingSupplierstates. If the line
has the same value as in memory, the supplier states are Exclusive
(no other node has a copy) or Master Shared (other nodes may have
a cached copy but this one is designated to provide the line). If the
line does not have the same value as in memory, the supplier states
are Dirty (no other cache has a valid copy of the line) or Tagged
(other nodes may share this dirty line but this one is designated to
provide the line and write it back on eviction).

When a processor issues a write, the line ends up in its cache
in a supplier state. When it issues a read miss, this is not always
desirable. However, to simplify the description of our contributions,
unless otherwise indicated, we will assume that read misses also
lead to a supplier state.

2.3. Transaction Collision and Serialization

A collisionoccurs when two or more coherence transactions di-
rected to the same line use the ring at the same time. Although col-
lisions may be rare, the coherence protocol needs to handle them
properly to ensure correctness. Specifically, given two colliding
transactions, the coherence protocol has to ensure that (i) they get
serialized — namely, that they appear as if one transaction com-
pleted before the other one started — and (ii) all nodes observe the
same order of the transactions.

If such requirements are not guaranteed, different nodes ob-
serving two colliding transactions may transition into incompatible
states, causing incoherence. As an example, consider Figure 2 and
assume a generic network topology.

Initially, nodesB andScache a line in state Shared (S) and Mas-
ter Shared (MS), while nodeA does not have the line (I).B wants to
write the line, so it broadcasts invalidations. An invalidation reaches
A, which acknowledges it toB. Later,A wants to read the line and,
because it misses in its cache, it sends a read request. Assume that
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Figure 2. Two colliding transactions that lead to incompatible
coherence states.

A’s read request reachesSbeforeB’s invalidation does.Ssupplies
the data toA andA caches the line in state Master Shared (MS).
Later,B’s invalidation reachesS, which invalidates its copy and ac-
knowledges the invalidation toB. The latter, having received ac-
knowledgments fromA and S, transitions to state Dirty (D). The
system is now incoherent:A caches the line in state Master Shared
while B caches the same line in state Dirty. This problem is caused
by the inability of the system to ensure that all nodes see the same
transaction order:A sees the write transaction before the read one,
while Ssees them in the opposite order.

3. Serialization in Embedded-Ring Protocols

3.1. Invariant for Correct Serialization

Correctly serializing colliding transactions in an embedded-ring
protocol is challenging because there is no central transaction arbi-
tration point such as a broadcast bus or a directory. Consequently,
we want to identify an invariant such that, if enforced, ensures the
correct serialization of colliding transactions. Without loss of gen-
erality, our discussion assumes collisions of only two transactions.

Note that request (R) and response (r) messages have different
roles. R messages determine theorder of transactions: when two
transactions collide, the firstR that reaches the supplier node orders
its transaction ahead of the other one. The supplier node sends a
message to the initiator of thatR with the supplier status and, if the
transaction is a miss, with the data as well. In the rest of this paper,
we call this message theSuppliershipmessage.

On the other hand, the role of ther messages is tocommunicate
the transaction order to the other nodes, so that they enforce correct
serialization. Specifically, when the node that initiated one of the
two colliding transactions sees the twor messages (one positive
and one negative), it can enforce correct serialization. It can do so
either by squashing (or marking as squashed) the loser transaction
so that it is forced to retry, or by completing the winning transaction
and then servicing the loser transaction.

Consequently, we propose the followingOrdering invariant to
guarantee the correct serialization of colliding transactions. The
invariant relies on intuition and is proven by exhaustively testing
all possible transaction combinations [13]. Section 3.3 gives an
overview of the possible cases.
Ordering Invariant: Given two colliding transactions, consider the
order in which theirr messages (one positive and one negative) ar-
rive at the first of the two requesting nodes found in ring order after
the supplier nodeS. That order must be the same as the order in
which theirRmessages arrived atS.

Knowing that the order ofr messages reflects that ofR ones at
S gives this first requesting node enough information to enforce the
correct serialization of the two transactions — either by squashing



the loser transaction or by completing the winner transaction and
then servicing the loser one.

This invariant applies when there is a supplier node in the ring;
we will see later the case when there is none.

3.2. Supporting the Ordering Invariant

Supporting the Ordering invariant in an embedded ring running
the Eager or Flexible Snooping algorithms requires only three safe-
guards. First, bothR andr messages should traverse the ring in the
same direction. Second, a node that observes in the ring a request
Ri to a certain line is not allowed to issue its ownR to the same
line until after it observes in the ring the corresponding responseri

to that request. We call this requirement theIn-Progress Transac-
tion Restriction. Limiting this type of transaction overlap is easy to
enforce. Finally, messages to the same line should be transfered in
FIFO mode in any ring link and should be processed in FIFO mode
by any node. The only exception to this rule is that, to speed up
transactions,R messages are allowed to overtaker messages from
other transactions.

With these three safeguards, the ring order in which two requests
Ri andRj were initially placed in the ring determines the ring order
in which the correspondingri andrj will follow. This is sufficient
to enforce the Ordering invariant. Indeed, if a supplier node re-
ceives requestsRi andRj in this order, it will process them in this
order, and then receive and forward responsesri andrj in the same
order. Such response order will be preserved until the first of the
two colliding requester nodes in ring order.

3.3. Protocol Operation

We now overview an implementation of Eager that relies on the
Ordering invariant to correctly serialize colliding transactions.

3.3.1. Types of Collisions

To understand the protocol, we classify collisions in two dimen-
sions: (i) whether they induceNatural or Forced Serialization, and
(ii) whether or not there is a supplier node in the ring for them.
These two dimensions result in 4 cases, which are shown in Ta-
ble 1. Unless otherwise noted, our description applies equally to
collisions of two reads, a read and a write, or two writes.

A Natural Serializationcollision occurs when one of the two re-
questing nodes (e.g.,A) receives its own responserA before it sees
any messages from the other requesting node. In this case, both
transactions usually complete without squashes. If there is a sup-
plier in the ring, the response is positive (rA+), and whenA receives
it, the transaction completes. WhenA later seesRB , it servicesB’s
request. Note that there is the uncommon situation where, by the
time A receivesRB , A has receivedrA+ but not the suppliership.
In this case,A’s transaction is not complete and a squash will be
required. Specifically, whenA receivesRB , it ignores it, and when
laterA receivesrB-, it marks it as squashed. WhenB sees thatrB-
is marked as squashed, it retries its transaction.

Still under Natural Serialization, if there is no supplier node in
the ring, nodeA receives a negative response (rA-). At this point,
nodeA gets the data from memory. As before, if nodeA sees the
other transaction’s request (RB) after it obtains the memory value,
it services the request. Otherwise,A ignoresRB and, when it sees
the transaction’s response (rB-), it marks it as squashed. When
nodeB sees thatrB- is marked as squashed, it retries its transaction.

Supplier Serializ. Process
Node

SreceivesRA

Ssends suppliership toA
Present Natural A receivesrA+

A receivesRB

A sends suppliership toB
A receivesRB , rB - (A is in transient)
SreceivesRA

Ssends suppliership toA
Present Forced SreceivesRB

B receivesrA+ and records own transaction is loser
A receivesrA+ and completes its transaction
B receivesrB - and retries its transaction
A receivesrA-

Not
Natural

A requests data from memory
Present A receivesrB - and marksrB - as squashed

B receivesrB - and retries its transaction
A receivesRB ; B receivesRA

(A andB are in transient)
A receivesrB -; B receivesrA-

Not
Forced

A andB separately run winner-selection algo.
Present A receivesrA-; B receivesrB -

if winner, node gets data from memory
if loser, node retries its transaction

Table 1. Handling collisions in Eager.

A Forced Serializationcollision occurs when there is no Natural
Serialization of the transactions. For Eager, this means that each
of the two requesting nodes sees the other transaction’sR before
receiving its ownr. Under Forced Serialization, one of the trans-
actions will be squashed. If there is a supplier in the ring, one of
the responses is positive and the other negative. In this case, the
requesting node that is closest to the supplier in ring order sees the
two responses and marks ther- one as squashed. When the origi-
nator of the squashed transaction sees its squashedr-, it retries the
transaction.

Still under Forced Serialization, if there is no supplier node in
the ring, each of the requesting nodes sees: (i) the other node’sR,
(ii) the other node’sr-, and (iii) its own r-. Since all responses
are negative and not marked as squashed, the nodes cannot decide
which transaction should be retried based only on the messages ob-
served. An algorithm is separately run in each requesting node to
decide which node is the winner and, therefore, can access memory,
and which one is the loser and, therefore, needs to retry.

3.3.2. Overall Operation

We now consider each of the four cases in detail. Without loss
of generality, we assume that the relative position of nodes in ring
order is as in Figure 1(a):A (one requesting node), thenS(supplier,
if there is one), thenB (the other requesting node). In our protocol,
a node with an outstandingR on a line keeps the entry in its cache
in a transient state. This means that it takes no action on reception
of anotherR on the line. However, if this otherR is for a write, the
cache records that, if its own transaction loses, it has to invalidate
the line from its cache.
Supplier Present, Natural Serialization Without loss of gener-
ality, we describe the case whenB wins. In this case,rB traverses
the entire ring beforeB observesRA.

Figure 3 shows an example whereA issues a read miss andB
an invalidation, as in Figure 2.B sends the invalidation requestRB

followed by a negative responserB- (1). A receivesRB , forwards
it, and performs a local snoop operation that generates a negative
outcome (2).A combines the negative outcome withrB- and for-
wards it (3). After that,A suffers a read miss on the same line and
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sends a read requestRA and arA- (4). Our same-address FIFO pol-
icy guarantees thatSobserves and processesRB first, sending the
suppliership toB (5). Later,S receives and forwards the following
three messages in order:rB-, which is transformed intorB+ (6);
RA (7); andrA-, which remains negative (8). Meanwhile,B re-
ceives the suppliership (not shown) andrB+ (9), which completes
the transaction. Later,B receivesRA (10), which causes the sup-
pliership to be sent toA, andrA- (11), which is transformed into
rA+. Finally, A receives the suppliership (not shown),rA+ (12),
and completes. The two transactions have correctly serialized.

Table 1 lists the main events in the dual case whenA wins.
Supplier Present, Forced Serialization In this case,A andB ob-
serve each other’sR before observing their ownr. Due to the posi-
tion of nodes on the ring,A’s transaction has to win. The case when
RB reachesS first, given the In-Progress Transaction Restriction
(Section 3.2), is an example of Natural Serialization.

Figure 4 shows an example whereA issues a read miss andB an
invalidation, as in the previous case. Initially,A sends a read request
RA followed by arA- (1), while B sends an invalidation request
RB followed by arB- (2). WhenA receivesRB , it forwards it
and performs a snoop operation to record whether the cache has the
line (3). If present, the line would not be invalidated because of its
transient state; it would be invalidated only ifA’s transaction lost.
WhenA receivesrB-, it combines it with its snoop outcome (which
is negative because of the transient state) and forwards it (4). Then,
SreceivesRA and sends the suppliership toA (5). Later,Sreceives
two messages in any order:rA-, which is transformed intorA+
and forwarded (6), andRB , which is forwarded (7). Note thatRB

also invalidates the line fromS’s cache. After that,S receives and
forwardsrB- (8).

Meanwhile,B receivesRA and realizes there is a collision (9).
Later, whenB receivesrA+ (10), it realizes that its transaction has
lost, records it, and forwardsrA+. Eventually,A receives the suppli-
ership (not shown) andrA+ (11), which completes its transaction.
B receivesrB- and, knowing that its transaction has been squashed,
retries it (12).

The Ordering invariant has enabled the correct handling of the
collision. It ensured that the first of the two requesting nodes after
S in ring order (B) sees the twor in the same sequence asSsaw the
two R. Table 1 summarizes the main events in the example.
Supplier Not Present, Natural Serialization In this case,A re-
ceivesrA-, which indicates that no other node can supply the data,
beforeA observes any other message.A then gets the data from
memory. If A has received the data by the time it observesRB ,
A servicesB’s request. Otherwise,A ignoresRB becauseA’s line
is in transient state and, whenA later receivesrB-, it marks it as
squashed. In this case, whenB receivesrB-, it retries the transac-
tion. Table 1 summarizes the main events in this specific case.
Supplier Not Present, Forced Serialization In this case, after a
node initiates a transaction, it sees theR andr- of the other trans-
action before receiving its own, squash-free,r-. Both requesting
nodes see the symmetric sequence of messages. In this case, the
two nodes cannot decide which transaction is the winner based only
on the messages observed. Instead, when each node receives the
other’sr-, the node runs by itself an algorithm to decide which node
is the winner. Later, when the node finally receives its ownr-, it acts
based on the outcome of the algorithm: if the node was the winner,
it proceeds to get the data from memory; if the node was the loser,
it invalidates the line from its cache (if the winner was a write) and
retries the transaction.
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Figure 5. Comparing a transaction in Eager and Uncorq: message distribution (a) and cache-to-cache transfer latency (b).

There are a few possible algorithms to decide which transaction
has priority and, therefore, wins. One is to use node ID numbers and
select the highest — this is unfair, but it never ties. Another is to
use random numbers attached to transactions and select the highest
— this has a very small probability of a tie, but it is fair. Another
is to use the transaction type. Specifically, a write hit that sends
invalidations takes priority over any other transaction type, while a
write miss takes priority over a read miss. Indeed, selecting a write
hit minimizes accesses to memory, since the node issuing it already
caches the data. Moreover, selecting a write miss over a read miss
may speed up transferring a lock variable from one node to another.
In our design, we use a hierarchy of the three algorithms. We start
with the transaction type, then fall back to the random number, and
then to node ID, if necessary.

Table 1 summarizes the main events in this case.

4. Unconstrained Snoop Request Delivery

4.1. Rationale and Benefits

A shortcoming of the existing embedded-ring protocols such as
Eager and Flexible Snooping is that the latency of a ring transaction
can be relatively large. This is because theR messages have to
traverse the ring. If the supplier node is far from the requesting one
in ring order, the suppliership message may take a relatively long
time to be sent.

Intuitively, an embedded-ring protocol should be able to work
without requiringR messages to traverse the ring. This is because,
as indicated in Section 3.1, the role ofR messages in a collision is
only to order the transactions at the supplier node — while commu-
nicating this order to other nodes is left to ther messages. This idea
inspired the Ordering invariant.

Based on this insight, we propose a new protocol calledUncon-
strained Snoop Request Delivery(Uncorq). The idea is for theR
message to be delivered to all nodes in the fastest possible manner
— using any network links and leveraging efficient multicast. In-
dividual R messages arrive to nodes quickly and, as soon as they
arrive, initiate a snoop. When the supplier completes its snoop, it
sends the suppliership to the requester. Meanwhile, ther message
traverses the ring as usual. If ther arrives at a node that has not
seen theR yet, it waits untilR is received and the snoop is com-
pleted; then,r is combined with the snoop outcome and forwarded
to the next node in the ring. Figure 5(a) shows the different message
distribution in Eager and Uncorq.

The advantage of Uncorq over the Eager and Flexible Snooping
algorithms is that, in a cache-to-cache transfer, it reduces the time

between when a node starts a transaction and when it receives the
suppliership message. This has an obvious benefit in read misses,
since such time is in the critical path of using the requested data.
Depending on the memory consistency model, reducing such time
also benefits write transactions (Section 5.3).

On the other hand, the time to reception of ther message is
largely the same in all the algorithms. Such time is important for
writes because it marks the point when all cached copies of the
line are guaranteed to be invalidated. It is also the point when the
requester realizes that there is no supplier on chip and, therefore,
it has to use data from memory. We address the case of memory
accesses in Section 5.4.

Figure 5(b) compares the latencies in a cache-to-cache trans-
fer transaction for Eager and Uncorq. The top diagram shows the
time to suppliership reception. It includes the time ofRpropagation
to the supplier, snoop at the supplier, and suppliership propagation
back to the requester. Because Uncorq does not deliverRmessages
using the ring, anR can reach the supplier node sooner ((1) in Fig-
ure 5(b)), reducing the time to suppliership reception.

The bottom diagram in Figure 5(b) shows the time to response
reception, which is the time it takes for ther message to traverse the
ring. Such time is the same in both algorithms.

4.2. Uncorq in Action

Figure 6 shows how Uncorq services a read miss when there
are no collisions. Figure 6(a) shows thatR messages are directly
delivered to all nodes, whiler messages proceed as usual.

Figure 6(b) shows a timeline of events at each node. WhenA
suffers a read miss, it broadcasts a read requestRA to S and B,
and then forwardsrA- using the ring (1).SandB receiveRA and
both initiate snoop operations (2). AfterS completes the snoop,
it sends the suppliership message toA. A receives the message in
(3). WhenS receivesrA-, Scombines it with its positive outcome
and forwards it asrA+ (4). WhenB receivesrA+, it combines it
with its local snoop outcome and forwards it (5). Note that, if ar
message arrives at a node such asSor B before the corresponding
R has arrived, ther message is buffered untilR is received and the
snoop operation is performed. Finally, whenA receivesrA+, the
transaction completes (6).

4.3. Ordering Invariant with Uncorq

Supporting the Ordering invariant with the Uncorq algorithm
requires a different set of mechanisms than the ones described in
Section 3.2 for the Eager and Flexible Snooping algorithms. To un-
derstand them, recall why we required FIFO handling of same-line
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Figure 7. Breaking the Ordering invariant (a) and enforcing it with the LTT (b) in Uncorq.

messages in Section 3.2. It ensured that, in a collision, ther order
seen by the nodes beyond the supplier node (in ring order) is the
same as theRorder seen by the supplier.

Unfortunately, in Uncorq, we can only talk about the ring order
of r messages — not ofRmessages. SinceRmessages travel along
any network links, twoR messages may arrive at a node in a given
order and at a second one in the opposite order.

What matters is the order in which the twoR messages are pro-
cessed at the supplier node. To support the Ordering invariant, such
order should determine the order in which the nodes following the
supplier in ring order — up until the first of the two requesting
nodes — receive ther messages. This cannot be ensured only by
FIFO transfer and FIFO processing.

To see why not, consider the example in Figure 7(a), which
shows the messages at a nodeC that is between the supplier nodeS
andB in Figure 6(a). Assume thatA starts a read transaction at the
same time asB starts an invalidation one. Suppose thatRA arrived
at S first and, therefore, theA transaction was the winner. In the
figure, we see thatC receivesrA+ first (1), before it receivesRA —
which was delayed in the network. SinceRA is missing,C cannot
processrA+. Then,C receivesRB and performs a snoop operation
(2). After that,C receivesrB- and, since the snoop is done,rB- is
combined with the local snoop outcome and forwarded (3). Later,C
receivesRA, performs the snoop and forwardsrA+ (4). This breaks
the invariant.

To support the Ordering invariant with Uncorq, we argue that
the hardware must enforce the following two mechanisms, which
refer to messages requesting the same line:

1. After a supplier node processes a winning request message
Ri, the node cannot forward any responserj- (wherej 6= i)
before it forwardsri+.

2. If a node receives a positive responseri+, the node cannot
forward any responserj- received afterri+ until it receives
Ri and forwards responseri+.

The first mechanism ensures that the positive responseri+
leaves the supplier before the negative ones. The second mecha-
nism ensures thatri+ is not overtaken by any negative responserj-
in any of the nodes that follow the supplier in ring order. Therefore,
one of the two requesting nodes will seeri+ beforerj-. Note that
two negative responses can always overtake each other.

These two mechanisms, combined, require that a node that has
either (i) performed a snoop that triggered a suppliership transfer or
(ii) received a positiver, keeps buffering incomingr messages to
the same line until the node can forward the positiver.

This adds a third condition to the conditions to forward re-
sponses presented in Section 2.1: (3) if the node has performed
a snoop that triggered a suppliership transfer or has received a pos-
itive response for the same memory line, a combined response can-
not be forwarded until the positive response has been forwarded.

4.4. Protocol Operation

With Uncorq, the types of collisions and how they are handled
are largely like in Eager (Section 3.3). The exception is that Uncorq
introduces three new collision instances: one under Forced Serial-
ization with supplier present and two under Forced Serialization
with no supplier present. We discuss them next. Table 2 shows all
the collision types, but focuses on the new instances.



Supplier Serializ. Process
Node

Present Natural Same as in Eager
CaseSreceivesRA first: same as in Eager
CaseSreceivesRB first:

B receivesRA (B is in transient)
SreceivesRB

Present Forced Ssends suppliership toB
SreceivesRA

B receivesrB+ and recordsA’s trans. is loser
B receivesrA- and marksrA- as squashed
A receivesrA- and retries its transaction

Not
Natural Same as in Eager

Present
A receivesRB (A is in transient)
CaseA receivesrB - and thenrA-:

rB - arrives:A runs winner-selection algorithm
rA- arrives:A gets data from mem. or retries

Not
Forced

CaseA receivesrA- and thenrB -:
Present rA- arrives

rB - arrives:
A runs winner-selection algorithm
A gets data from mem. or retries

Table 2. Handling collisions in Uncorq.

Supplier Present, Forced Serialization With Eager, sinceR
messages use the ring,RA reachesS beforeRB does. With Un-
corq,RB may reachSbeforeRA. This is a new collision instance.
In this case,B receives the suppliership message and, after that,
rB+. At the timeB receivesrB+, sinceB has already seenRA, it
records thatA’s transaction is the loser. Later, whenB seesrA-, B
marks it as squashed. Finally, whenA seesrA-, it retries.

Supplier Not Present, Forced Serialization In this case, with
Eager, sincer messages cannot get reordered, each requesting node
sees the other node’sr- before seeing its ownr-. With Uncorq, two
negativer messages can get reordered — i.e., ar- that arrives first
at a node waits for itsR to arrive, while ar- that arrives second is
combined with itsR’s snoop outcome and forwarded. This effect
causes two new collision instances.

To describe these collisions, consider nodeA, which has already
seenRB . The first new collision appears whenrA- overtakesrB-
and arrives atA first. In this case,A seesrB- andrA- out of order.
The second new collision appears whenB issuesRB andrB- after
having forwardedrA-, butrB- overtakesrA- and arrives atA first.
In this case, whileA sees what appears to be the usual message
order, B is unaware of any collision. We need to ensure that, if
necessary,B is made aware of the collision — so that it does not
appear as a Natural Serialization instance toB.

These two reorderings, together with the case of no reodering,
are handled in the same way — with only a small extension over Ea-
ger’s way. Specifically: (i) whenA receivesrB-, it runs the winner-
selection algorithm; (ii) whenA receives the latest ofrB- andrA-,
it acts on the algorithm’s outcome (get data from memory or retry);
and (iii) as part of running the algorithm, ifA is the winner, aug-
mentrB- with a Loser Hintbit. When a node receives its ownr-
with such bit set, it knows it has to retry. Table 2 summarizes the
actions.

5. Implementation Issues in Uncorq
5.1. Supporting the Ordering Invariant

To support the Ordering invariant, each node has a set-
associative table calledLocal Transaction Table(LTT). The LTT
records information on transactions that arein flight at the node

— namely, any transaction for which the node has received theR
and/or ther message, but for which it has not yet forwarded ther
combined with the snoop outcome.

The LTT stallsr messages when necessary to enforce the Or-
dering invariant. Specifically, when a node has either (1) received
a R message for a line and produced a positive snoop outcome —
i.e., the node was the supplier for the line — or (2) received ar+
message for a line, then the LTT stalls and buffers all subsequent
r messages to the same line. Only after ther and snoop outcome
for the line are combined into ar+ message and forwarded, can the
bufferedr messages be forwarded as well.

All simultaneous in-flight transactions at a node for a given
memory line are mapped to the same LTT entry. An entry con-
sists of: (i) the line address, (ii) the ID of the node that initiated
the in-flight transaction with the positive snoop outcome or ther+
message — theWinning Node ID (WID)field — and (iii) two bit
vectors with as many bits as nodes. The bit vectors are theSnoop
Vector (SV)and theResponse Vector (RV). They record which nodes
initiated the in-flight transactions for which the local node has per-
formed a snoop operation or received ar message, respectively.

When a node receives aRor ar, the LTT is accessed. If an entry
is not already allocated for the line, one is allocated with the line
address. If this is aR, the node performs a snoop operation and,
after that, the corresponding bit in SV is set. Moreover, if the snoop
outcome is positive, when the suppliership is sent to the requester
node, the WID is set to the requester’s ID. Instead, if this is ar, the
corresponding bit in RV is set. Moreover, if ther is positive, the
WID is set to the requester node’s ID.

According to the conditions presented in Sections 2.1 and 4.3,
a node is ready to forward ther of a transaction when: (1) the cor-
responding SV bit is set — i.e., the node has completed the snoop;
(2) the corresponding RV bit is set — i.e., the node has received the
r; and (3) either WID is clear — i.e., no node has obtained the sup-
pliership of the line yet — or WID is equal to the node that initiated
this transaction — i.e., the initiator of this transaction has received
the suppliership of the line. When ar is forwarded, the correspond-
ing SV and RV bits are cleared and, if applicable, the WID field is
cleared. Finally, when the SV and RV bit vectors are clear, the LTT
entry is deallocated.

Figure 7(b) shows how the mechanism works. WhenC receives
rA+, an LTT entry is allocated (1). It has the line address, the RV
bit for A set to one, and WID set toA. WhenC receivesRB , it per-
forms a snoop operation (2). When the snoop operation completes
with a negative snoop outcome, the SV bit forB gets set. WhenC
receivesrB-, the RV bit for B gets set, and the hardware verifies
that the SV bit forB is already set (3). At this point, the hardware
checks whether WID isB. Since it is not, the combined response
rB- is stalled. WhenC receivesRA, it initiates a snoop operation
(4). When this operation completes with a negative snoop outcome,
the hardware sets the SV bit forA, verifies that the RV bit forA is
already set, and checks whether the ID in WID isA. Since it is, the
hardware forwardsrA+ and resets both the SV and RV bits forA, as
well as WID. After that, the hardware checks if there are any stalled
r messages ready to go. SincerB- is,rB- is immediately forwarded,
resetting the SV and RV bits forB. As a result,rA+ andrB- have
not been reordered, preserving correct transaction serialization.

LTT-induced stalling of negative responses cannot lead to a
deadlock. The reason is that, given multiple colliding transactions,



only messages from the single, already-identified winner transac-
tion can stall messages from the other, loser transactions. Moreover,
no message from the winner transaction can be stalled.

Finally, to size the LTT, a designer may choose one of two dif-
ferent approaches. One is to structure it so that it can support the
maximum possible number of in-flight transactions at a node. This
requires approximately as many entries (E) as number of nodes (N)
times the maximum number of outstanding transactions per node
(T), namelyE=N×T. Moreover, the LTT associativity has to be
equal to the maximum possible number of in-flight transactions that
can map to an LTT set. To reduce hardware requirements, we envi-
sion such number (e) to be much smaller thanE. This can be done
by placing restrictions on the addresses of theT outstanding trans-
actions of a node. For example, a banked MSHR may allow only
t outstanding transactions that map to the same LTT set. Conse-
quently, the LTT associativity only needs to bee=N×t. Overall,
even with a sizable number of entries and associativity, accessing
the LTT takes only a handful of cycles.

The second approach is to reduce the size and associativity of
the LTT to save real estate, while risking running out of entries in
rare cases. When the latter happens, the LTT would send a negative
acknowledgment to the requester of the dropped message, which
would then retry. Since this approach requires changes to the pro-
tocol to avoid inducing livelocks, we do not consider it here.

5.2. Forward Progress

There are two aspects to forward progress, namely system and
individual-node forward progress. System forward progress is guar-
anteed in Eager, Flexible Snooping and Uncorq because, in any col-
lision, at least one of the requests succeeds.

While the collision resolution algorithms described in Sec-
tions 3.3 and 4.4 are expected to provide, in practice, individual-
node forward progress, they do not guarantee it. Consequently, af-
ter a node has unsuccessfully retried the same transaction a certain
number of times, an algorithm needs to kick in to ensure that the
transaction eventually succeeds. Such algorithm is different in Ea-
ger (or Flexible Snooping) and in Uncorq. In both cases, however,
it tries to ensure that the starving node’sR message gets to the sup-
plier before the other nodes’sRmessages.

5.2.1. Node Forward Progress in Eager

In Eager,R messages use the ring. Consequently, a starving
nodeN can intercept all the conflictingRmessages that it sees, stall
them, and insert its ownR ahead of them. This ensures thatN will
succeed before the nodes that are between the supplier node andN
in ring order. However, the nodes that are betweenN and the sup-
plier in ring order can potentially complete their transactions before
N’s. Fortunately, as the transactions of these nodes complete, the
supplier status moves from node to node counter-ring wise, closer
to N. If there are many starving nodes, in the worse case, after as
many transactions as there are nodes betweenN and the supplier in
ring order,N’s transaction will succeed.

5.2.2. Node Forward Progress in Uncorq

In Uncorq, sincer messages use the ring, they can be used to
guarantee node forward progress. Specifically, we add a new field
to eachr message, called starving node ID (SNID). A starving node
N intercepts all the conflictingr messages that it sees, and places its

ID in their SNID before letting them go. When ar message reaches
its destination node, if it is a positiver, it means that the destination
has become the new supplier. In this case, the hardware checks the
SNID. If it is not null, it allocates an entry in the new supplier’s
LTT and saves the SNID in the WID field. It is, therefore, reserving
the next winner transaction forN. The hardware will stall any new
transactions from other nodes to that line — for a limited period of
time — until it processes the transaction fromN. If there are several
starving nodes, they all update the SNID field ofr messages, and
the node closest to the supplier node in counter-ring order wins. As
in Eager, the supplier status moves counter-ring wise, closer toN.
In the worse case, after as many transactions as nodes betweenN
and the supplier in ring order,N’s transaction will succeed.

5.3. Fences and Memory Consistency Issues

When the requester node receives the suppliership message, the
transaction is bound and cannot be undone. If the transaction orig-
inated from a load, the load is then complete. If it originated from
a store, there may still be copies of the line in other nodes to be
invalidated. Only when the requester node receives ther message
it is guaranteed that all copies have been invalidated. At that point,
the store is complete.

From this, it is clear that, compared to Eager or Flexible Snoop-
ing, Uncorq speeds up loads. However, to understand the full im-
pact of Uncorq on loads and stores, consider how accesses are or-
dered within and across threads.

Within a thread, a fence instruction stalls the issue of requests
after the fence until those requests that precede the fence are com-
plete. In relaxed memory consistency models such as that of IBM’s
PowerPC [12], fences are largely associated only with synchroniza-
tion operations — not with all accesses as in strict models such as
Sequential Consistency. In the absence of fences, loads and stores
can overlap and reorder. Even in the presence of fences, there are
optimizations to enable request overlap and reorder (e.g., [5]). Still,
in this environment, Uncorq largely speeds up only loads.

Consider now the interaction between threads — a transaction
from nodeA followed by one from nodeB to the same line. In
Sections 3 and 4, we have assumed that nodeA only changes the
state of the line in its cache to a stable state after it receives ther+
message. Moreover, it can send suppliership toB only after that.

In reality, we can optimize this case:A can potentially provide
suppliership toB right afterA gets suppliership, even beforeA re-
ceives ther+ message. As a result, a load or a store inB would get
the data faster. This is clearly safe whenA’s transaction is a load
because, by this time,A’s load is complete. Importantly, it is also
correct whenA’s transaction is a store — if we use a relaxed mem-
ory consistency model such as PowerPC’s. This is because this kind
of model does not require write atomicity; the data can be provided
to another processor even though not all other processors have been
invalidated. Consequently, this is a case where Uncorq speeds up
stores. While we do not evaluate this optimization in this paper,
it can speed up the situation where a processor releases a lock and
another acquires it.

5.4. Optimization: Hardware Data Prefetching

Uncorq focuses on reducing the latency of cache-to-cache trans-
fers. If we also want to reduce the latency of memory-to-cache
transfers, we must augment Uncorq with further optimizations.



One such optimization is hardware data prefetching. In this case,
the hardware at the requesting node sends a prefetching request to
the on-chip memory controller at the same time as it issues aR to
the ring. The controller gets the data from memory. If the ring
transaction returns ar- message, the requesting node’s hardware
sends a request to the memory controller, which provides the line.
If an on-chip node provides the data, the data in the controller is
discarded.

Issuing a prefetch at every cache miss wastes power and band-
width. Consequently, this optimization requires a mechanism that
predicts, at the time of the miss, whether or not the line will be pro-
vided by a node in the ring. Depending on the prediction, a request
is sent to memory controller in addition to the ring.

As an example, we describe a simple prefetch predictor that we
evaluate in Section 7. Each node has a Node Prefetch Predictor
(NPP), while the memory controller has a Controller Prefetch Pre-
dictor (CPP). The NPP is a table with the line addresses of cache
miss and invalidation transactions recently seen in the ring. When
a node’s hardware sends aR to the ring, it checks the NPP. If the
requested address is not found there, a prefetch request is sent to the
memory controller.

The CPP is a table where each entry corresponds to one page.
Each entry has as many bits as lines in a page. Whenever the mem-
ory controller brings in a line from memory due to a cache miss or
a prefetch, the corresponding bit gets set; whenever a dirty line is
written back, the bit gets cleared. When the memory controller re-
ceives a prefetch request from a node, it checks the CPP. Only if the
corresponding bit is clear, is the line fetched from memory. When
the line is received, it is kept in a small buffer for a certain number
of cycles in case the requesting node wants it.

There are other possible optimizations for memory-to-cache
transfers. Their analysis is beyond this paper’s scope.

5.5. Optimization: Supplier Status Transfer

In our description of Uncorq, every successful transaction pro-
vides the requester with the supplier status. While this makes the
protocol simpler to describe, it implies that when two cache-to-
cachereadtransactions collide, unless they are naturally serialized,
one of them needs to be squashed. Squashing one transaction in
such a two-read collision is unintuitive and limits concurrency.

It can be shown that the Uncorq protocol can be implemented
so that cache-to-cache read misses do not transfer supplier status.
Under this implementation, colliding cache-to-cache read transac-
tions are always serviced without squashes. We do not evaluate this
implementation in this paper.

6. Evaluation Methodology

We use detailed simulations using the SESC [10] cycle-accurate
simulator to evaluate Uncorq, Uncorq plus the prefetching opti-
mization of Section 5.4 (Uncorq+Pref), Eager, and two Flexible
Snooping algorithms from [14], namely SupersetCon and Super-
setAgg. In our evaluation, the Uncorq and Uncorq+Pref improve-
ments only apply to read transactions — in write transactions,R
messages still traverse the ring and do not use prefetching.

The architecture modeled is a CMP with 64 cores connected in
a 2D torus with xy routing. Each core is a 4-issue out-of-order pro-
cessor with private L1 and L2 caches. We estimate that this design

will fit in a large chip in a near-future technology. The system uses
release memory consistency. All algorithms use exactly the same
network and, therefore, see the same available network bandwidth.
Table 3 lists the main parameters.

System CMP with 64 cores
Core 4-issue, out-of-order, and 4GHz
D-L1 (and I-L1) 32KB, 4-way, 64B line, 2 cyc round trip
Unified L2 512KB, 8-way, 64B line, 7 cyc round trip
On-chip network 8x8 2D torus, 8 cyc/hop, 2GHz, 64GB/s,

xy routing
Memory DDR2-800, 224 cyc round trip, 4KB pages
Node prefetch pred. 8K line addresses
Cont. prefetch pred. 16K entries, 64 bits/entry
LTT 512 entries, 64-way

Table 3. Parameters of the architecture simulated. All laten-
cies are given in processor cycles.

We run 11 SPLASH-2 applications [17] (all butvolrend, which
does not run on our infrastructure), SPECjbb 2000 and SPECweb
2005. SPLASH-2 applications run to completion after skipping ini-
tialization. They execute with 64 threads. The SPEC applications
run for over 750M instructions after skipping initialization. To cap-
ture system-level references, we run them through a Simics [16]
front-end that interfaces to SESC. They run with 8 threads. In our
experiments, we run 8 concurrent instances of a given SPEC ap-
plication, for a total of 64 threads. However, there is no sharing
between the 8 instances. SPECjbb uses an 8 warehouse configura-
tion, while SPECweb uses the e-commerce workload.

7. Evaluation

In this evaluation, we examine read miss latency (Section 7.1),
overall performance (Section 7.2), impact of the prefetching opti-
mization (Section 7.3), and a comparison to cache-coherent Hyper-
transport (Section 7.4).

7.1. Read Miss Latency

Figure 8 compares the read miss latency with Uncorq and Ea-
ger. This latency is the number of processor cycles from the time
the read miss is declared in the requester’s L2 cache until the data
arrives at the requester’s L1 cache.

Figures 8(a) and (b) show a histogram of the read miss latency
for cache-to-cache transfers only, for Eager and Uncorq, respec-
tively, in fmm— one of the SPLASH-2 applications. We limit the
data to cache-to-cache transfers because these are the misses that
Uncorq optimizes. The figures also show the cumulative distribu-
tion. Other applications behave similarly.

Comparing Figures 8(a) and (b), we see that the latencies of
cache-to-cache transfers in Eager are typically much longer than in
Uncorq. This is because requests reach the supplier nodes much
faster in Uncorq. Moreover, the fact that both figures exhibit sharp
spikes rather than smooth curves is an indication that there is not
much network contention. Figure 8(a) has many spikes, which are
due to the many distinct latencies between a requester node and a
supplier. The variability of the spike heights is due to the network
topology rather than to any uneven distribution of the data across
nodes.
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Figure 9. Execution time normalized to Eager.
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(a) Cache-to-cache read miss latency infmmwith Eager
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(b) Cache-to-cache read miss latency infmmwith Uncorq

Read Miss Lat. (Eager-Uncorq)/ c2c
Application (Proc. Cycles) Eager (%)

Eager Uncorq (%)

barnes 319 107 66 97
cholesky 354 145 59 90
fft 517 391 24 54
fmm 345 144 58 90
lu 385 195 49 82
ocean 454 330 27 99
radiosity 301 80 74 99
radix 316 95 70 99
raytrace 320 106 67 95
water-nsquared 365 158 57 90
water-spatial 312 92 70 98
SPLASH-2 avg. 363 168 56 90
SPECjbb 416 252 39 72
SPECweb 598 522 13 32

(c) Read miss latency characteristics

Figure 8. Read miss latency with Uncorq and Eager.

Figure 8(c) shows data onall read misses for all applications.
Columns 2-3 list the average read miss latency in Eager and Un-
corq, respectively, while Column 4 shows the reduction as we go
from Eager to Uncorq. We see that, for SPLASH-2 applications,
Uncorq reduces the latency by an average of 56%. This is a sub-
stantial impact. For SPECjbb and SPECweb, the reduction is a
more modest 39% and 13%, respectively. To understand these num-
bers, the last column of Figure 8(c) shows the fraction read misses
serviced with cache-to-cache transfers. We can see that SPLASH-2
applications have a large fraction of cache-to-cache transfer misses

— on average, 90%. On the other hand, this fraction is a lower
72% and 32% for SPECjbb and SPECweb, respectively. Therefore,
these applications cannot benefit as much from Uncorq.

7.2. Overall Performance

Figure 9 shows the execution time of the applications in Eager,
SupersetCon, SupersetAgg, Uncorq, and Uncorq+Pref. In each ap-
plication, the execution time is normalized to that of Eager.

The figure shows that Uncorq is consistently faster than Eager.
Uncorq reduces the execution time of the applications by an average
of 23% for SPLASH-2, 15% for SPECjbb, and 5% for SPECweb.
This reduction is largely correlated with the reduction in read miss
latency shown in Figure 8(c).

In addition, Uncorq+Pref reduces the execution time even fur-
ther. Compared to Eager, Uncorq+Pref reduces the execution time
of the applications by an average of 26% for SPLASH-2, 22% for
SPECjbb, and 13% for SPECweb. The impact of the prefetching
optimization is higher for the commercial workloads because they
have a lower fraction of cache-to-cache transfers (Figure 8(c)).

Comparing SupersetCon and SupersetAgg to Eager, we see that
both perform worse. This is in contrast to the results in [14], which
showed that both algorithms have a performance similar to Eager.
The reason for the difference is that the two papers evaluate differ-
ent architectures: while [14] evaluates a multi-CMP multiprocessor,
this paper models a single CMP. Such architecture has a much lower
inter-node latency. As a result, the latency of the snoop filters in Su-
persetCon and SupersetAgg adds significantly to the request deliv-
ery latency, rendering these algorithms less attractive in our setting.
A more detailed analysis is presented in Strauss’s thesis [13].

7.3. Impact of the Prefetching Optimization

Figure 10 provides insight into the prefetching optimization.
Figure 10(a) classifies read misses into four categories: (1) a
prefetch request is issued but the miss is serviced from a cache
(Pref,Cache); (2) no prefetch request is issued and the miss is ser-
viced from a cache (NoPref,Cache); (3) no prefetch request is is-
sued but the miss is serviced from memory (NoPref,Memory); and
(4) a prefetch request is issued and the miss is indeed serviced from
memory (Pref,Memory).

We see that thePref,Cachecategory is very small. This means
that the prefetching optimization is not wasteful: the great majority
of prefetching requests bring useful data from memory. Moreover,
from the two bottom categories, we observe that the prefetcher is
able to prefetch a good percentage of all memory-to-cache transfers.

Figure 10(b) shows the impact of the prefetching optimization
on the average read miss latency. Column 2 shows the read miss
latency for Uncorq+Pref, while Column 3 shows the reduction in
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(a) Breakdown of read misses

Read Miss Lat. (Uncorq - Uncorq+Pref)/
Application in Uncorq+Pref Uncorq

(Proc. Cycles) (%)

barnes 99 7
cholesky 126 13
fft 294 25
fmm 134 7
lu 174 11
ocean 236 28
radiosity 78 2
radix 94 1
raytrace 101 4
water-nsquared 148 6
water-spatial 88 5
SPLASH-2 avg. 143 10
SPECjbb 219 13
SPECweb 427 18

(b) Read miss latency characteristics

Figure 10. Impact of the prefetching optimization.

such latency as we go from Uncorq to Uncorq+Pref. From the data,
we see that such a reduction is significant — 10% on average for
the SPLASH-2 applications and 13-18% for the commercial appli-
cations. The reduction is largely correlated with the reduction in
execution time. One notable exception isocean, where prefetching
reduces the read miss latency but not the execution time. This is
because, when the prefetching optimization is used, the application
changes its sharing behavior and suffers from thread imbalance.

7.4. Cache-Coherent Hypertransport

An alternative to Uncorq in a point-to-point network is a
directory-based protocol. However, directory protocols require the
addition of a relatively expensive directory structure. A simpler al-
ternative that is also broadcast-based like Uncorq is AMD’s cache
coherent Hypertransport (HT) [4]. In HT, like directories, each ad-
dress is assigned a serialization point in the network. When a node
misses on an address, it sends a request to the corresponding seri-
alization point. That point then broadcasts the request to all other
nodes, which in turn directly respond to the requester. The exis-
tence of a serialization point for each address simplifies transaction
ordering.

Compared to Uncorq, HT (like directories) has longer cache-to-
cache transaction latencies. This is because, due to the indirection
of the serialization point, a transaction needs three “node hops” to
complete instead of the two in Uncorq. In addition, since reply
messages to the requester are not combined in HT, HT induces more
network traffic than Uncorq. Finally, HT requires a new hardware

module in each serialization point in the network that collects and
broadcasts messages.

On the other hand, the latency of memory-to-cache transactions
is longer in Uncorq than in HT. This is because ther message that
tells the requester in Uncorq that no other node can supply the data
has to sequentially visit all nodes.

To assess some of these effects, Figure 11 compares the latency
and traffic characteristics of read misses in Uncorq and in (an es-
timate of) HT. We use Uncorq rather than Uncorq+Pref because it
is fairer — HT could also use data prefetching. Starting from the
top, Figures 11(a) and (b) show a histogram of the read miss latency
for cache-to-cache transfers only, for Uncorq and HT, respectively,
in fmm. Figure 11(a) repeats Figure 8(b) with an expanded Y axis.
Comparing Figures 11(a) and (b), we see that Uncorq reduces the
latency of cache-to-cache transfer read misses substantially.
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(a) Cache-to-cache read miss latency infmmwith Uncorq
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(b) Cache-to-cache read miss latency infmmwith HT

Read Miss Lat. (HT - Uncorq) / HT
Application in HT (%)

(Proc. Cycles) Latency Traffic

barnes 172 38 56
cholesky 273 47 55
fft 431 9 52
fmm 190 24 55
lu 197 1 55
ocean 460 28 56
radiosity 144 44 56
radix 213 55 56
raytrace 153 31 56
water-nsquared 277 43 55
water-spatial 149 38 56
SPLASH-2 avg. 242 33 55
SPECjbb 205 -23 54
SPECweb 268 -95 48

(c) Latency and traffic characteristics of read misses

Figure 11. Comparing Uncorq and Hypertransport (HT).

Figure 11(c) shows data onall read misses for all applications.
Column 2 lists the average read miss latency in HT. Moreover,
Columns 3-4 compare Uncorq to HT, showing how much of the
latency and traffic of read misses is saved by Uncorq. From the



data, we see that Uncorq reduces the read miss latency of SPLASH-
2 applications by an average of 33%. On the other hand, it in-
creases the latency of read misses relative to HT for SPECjbb and
SPECweb. This is because these applications have a sizable frac-
tion of memory-to-cache transfers, which are faster in HT. How-
ever, Uncorq generates much less read miss traffic than HT. Indeed,
as shown in Column 4, Uncorq reduces the traffic (in bytes) by an
average of 55% for SPLASH-2 applications, and 54% and 48% for
SPECjbb and SPECweb, respectively. These are all large reduc-
tions, which can have a large impact on execution time when the
system is limited by network bandwidth.

8. Related Work

Barroso and Dubois propose the use of a slotted ring to imple-
ment snoopy cache coherence [1]. Their design is different in that
they propose using the ring as thephysical network topology, while
we embed a logical unidirectional ring in any network. In addition,
they use time slots to send messages, while we impose no timing
constraints.

In previous work, we propose embedding a ring in any network
to provide ordering in a snoopy network-based cache coherence
system [14]. We suggest adaptive forwarding and filtering algo-
rithms called Flexible Snooping to improve performance and re-
duce energy consumption. However, these algorithms require re-
quests to use the ring, which limits performance. In this paper, we
take embedded-ring protocols one step further by allowing requests
to use any path in the network.

Marty and Hill propose Ring-Order, a physical-ring protocol
that avoids transaction retries by intercepting response-and-data
messages on the ring and completing transactions in ring position
order [7]. Although their proposal is suitable for physical rings,
we feel it may not be profitable on an embedded-ring system. The
reason is that Ring-Order would require data to follow the embed-
ded ring, which would add long latencies to the data reception path.
However, Uncorq and Ring-Order could be combined to reduce re-
quest delivery latency while avoiding retries.

Martin et al. propose Destination-Set Prediction, which uses the
sharing behavior of applications to predict the set of nodes that need
to receive a given request [6]. Our prefetch predictor is different in
purpose and implementation. While their goal is to predict which
nodes should receive a request, our goal is to decide whether any
node can supply the requested line. Because of this, our predictor is
simpler and only records addresses. However, their techniques and
other techniques to improve snoopy protocols, such as JETTY [9]
and coarse-grain coherence tracking [3, 8], can also be applied in
our framework.

Prefetching predictors like ours are also proposed in [11]. Their
proposal focuses on using the address of invalid or shared lines
found in the caches to predict line presence in other caches.

9. Conclusions

While snoopy cache coherence based on embedded logical rings
is relatively inexpensive to implement, all proposed designs re-
quired that snoop requests be delivered using the logical ring —
lengthening miss latency and limiting performance.

To address this problem, this paper made two contributions.
First, it introduced the Ordering invariant, which ensures the cor-

rect serialization of colliding transactions in these protocols. Sec-
ond, using insights from this invariant, it presented Uncorq, a pro-
tocol that removes the requirement that snoop requests traverse the
ring. Instead, they are delivered using any network path, as long as
snoop responses — which are typically off the critical path — use
the logical ring. This substantially reduces transaction latency.

Our results indicated that Uncorq is very effective. On a 64-node
CMP, Uncorq improved the performance, on average, by 23% for
SPLASH-2 applications and by 10% for commercial applications.
Moreover, with an additional simple prefetching optimization, the
performance improvement was, on average, 26% for SPLASH-2
applications and 18% for commercial applications.
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