Flexible Snooping: Adaptive Forwarding and Filtering of Snoops
in Embedded-Ring Multiprocessors*

Karin Strauss

Dept. of Computer Science
University of Illinois, Urbana-Champaign
{kstrauss, torrellas } @cs.uiuc.edu
http://iacoma.cs.uiuc.edu

Abstract

A simple and low-cost approach to supporting snoopy cache co-
herence is to logically embed a unidirectional ring in the network of
a multiprocessor, and use it to transfer snoop messages. Other mes-
sages can use any link in the network. While this scheme works for
any network topology, a naive implementation may result in long
response times or in many snoop messages and snoop operations.

To address this problem, this paper proposes Flexible Snoop-
ing algorithms, a family of adaptive forwarding and filtering snoop-
ing algorithms. In these algorithms, a node receiving a snoop re-
quest may either forward it to another node and then perform the
snoop, or snoop and then forward it, or simply forward it without
snooping. The resulting design space offers trade-offs in number
of snoop operations and messages, response time, and energy con-
sumption. Our analysis using SPLASH-2, SPECjbb, and SPECweb
workloads finds several snooping algorithms that are more cost-
effective than current ones. Specifically, our choice for a high-
performance snooping algorithm is faster than the currently fastest
algorithm while consuming 9-17% less energy; our choice for an
energy-efficient algorithm is only 3-6% slower than the previous
one while consuming 36-42% less energy.

1. Introduction

The wide availability of Chip Multiprocessors (CMPs) is en-
abling the design of inexpensive, multi-CMP shared-memory ma-
chines of medium size (32-128 cores). However, as in traditional,
less-integrated designs, supporting hardware cache coherence in
these machines requires a major engineering effort.

There are several known approaches to build cache coherence
support in medium-sized shared-memory machines [5]. One of
them is a snoopy protocol with one or several buses to broadcast
coherence operations. Another is a directory-based protocol, which
uses a distributed directory to record the location and state of cached
lines. Another scheme is Token Coherence [10], which extends a
protocol with tokens to make it easier to serialize concurrent trans-
actions in any network topology. Finally, another approach is to use

*This work was supported in part by the National Science Foun-
dation under grants EIA-0072102, EIA-0103610, CHE-0121357, and
CCR-0325603; DARPA under grant NBCH30390004; DOE under grant
B347886; and gifts from IBM and Intel. Karin Strauss was supported by
an Intel PhD Fellowship.

Xiaowei Shen’

Josep Torrellas

TIBM T. J. Watson Research Center
Yorktown Heights, NY
xwshen@us.ibm.com

a snoopy protocol with a unidirectional ring [2]. In this case, coher-
ence transactions are serialized by sending snoop messages along
the ring.

This last approach is particularly attractive if we logically em-
bed the ring in whatever network topology the machine uses. Snoop
messages use the logical ring, while other messages can use any link
in the network. The resulting design is simple and low cost. Specif-
ically, it places no constraints on the network topology or timing. In
addition, it needs no expensive hardware support such as a broad-
cast bus or a directory module. Moreover, the ring’s serialization
properties enable the use of a simple cache coherence protocol. Fi-
nally, while it is not highly scalable, it is certainly appropriate for
medium-range machines — for example, systems with 8-16 nodes.

Perhaps the main drawback of this approach is that snoop re-
quests may suffer long latencies or induce many snoop messages
and operations. For example, a scheme where each CMP snoops
the request before forwarding it to the next CMP in the ring induces
long request latencies. Alternatively, a scheme where each CMP
immediately forwards the request and then performs the snoop
will be shown to induce many snoop messages and snoop oper-
ations. This is energy inefficient. Unfortunately, as technology
advances, these shortcomings become more acute: long latencies
are less tolerable to multi-GHz processors, and marginally-useful
energy-consuming operations are unappealing in energy-conscious
systems.

Ideally, we would like to forward the snoop request as quickly as
possible to the CMP that will provide the line while consuming as
little energy as possible. To this end, this paper proposes Flexible
Snooping algorithms, a family of adaptive forwarding and filter-
ing snooping algorithms. In these algorithms, depending on certain
conditions, a CMP node receiving a snoop request may either for-
ward it to another CMP and then perform the snoop, or snoop and
then forward it, or simply forward it without snooping.

We examine the design space of these algorithms and, based on
the analysis, describe four general approaches for these algorithms.
They represent different trade-offs in number of snoop operations
and messages, snoop response time, energy consumption, and im-
plementation difficulty.

Our analysis using SPLASH-2, SPECjbb, and SPECweb work-
loads finds that several of these snooping algorithms are more
cost-effective than current ones. Specifically, our choice for a
high-performance snooping algorithm is faster than the currently

fastest algorithm while consuming 9-17% less energy; moreover,
our choice for an energy-efficient algorithm is only 3-6% slower
than the previous one while consuming 36-42% less energy.

The contribution of our paper is three-fold. First, we introduce
a family of adaptive snooping algorithms for embedded-ring multi-
processors and describe the primitive operations they rely on. Sec-
ond, we analyze the design space of these algorithms. Finally, we
evaluate them and show that some of them are more cost-effective
than current snooping algorithms.

This paper is organized as follows: Section 2 provides back-
ground information; Section 3 describes the hardware primitives for
Flexible Snooping algorithms; Section 4 presents the design space
and implementation of the algorithms; Sections 5 and 6 evaluate the
algorithms; and Section 7 discusses related work.

2. Message Ordering & Ring-Based Protocols
2.1. Arbitration of Coherence Messages

A key requirement for correct operation of a cache coherence
protocol is that concurrent coherence transactions to the same ad-
dress must be completely serialized. Moreover, all processors must
see the transactions execute in the same order. To see why, con-
sider Figure 1. Processors A, B, and C cache line L in state shared
(S). Suppose that A writes L and that, after the invalidation from A
reaches B, B reads L. In this case, if the read from B obtains the
line from processor C before the invalidation from A reaches C, the
system becomes incoherent: A will cache the data in state dirty (D)
and B will cache it in state shared (S). This problem occurs because
the system has failed to serialize the two transactions.

time @
inv @

ack
Final States @ @

Figure 1. Incorrect execution due to failure to serialize two
transactions to the same address.

@/

Different types of coherence protocols ensure transaction serial-
ization differently. Next, we examine snoopy protocols with broad-
cast link, directory protocols, token coherence, and snoopy proto-
cols with embedded unidirectional ring.

2.1.1. Snoopy with Broadcast Link

In this approach, transactions obtain a shared broadcast link,
which all processors snoop [5]. Only one transaction can use the
link each cycle. If two transactions to the same line L attempt to
grab the bus, only one succeeds, and the other is forced to wait,
serializing the transactions. Modern designs use advanced imple-
mentations, such as split-transaction buses and multiple buses. For

example, Sun’s Starfire [21] uses four fast buses for snoop mes-
sages; data transfers are performed on another network.

A drawback of buses is their limited scalability. Buses can only
support one transaction per cycle, require global arbitration cycles
to be allocated, and have physical effects that limit their frequency,
such as signal propagation delays, signal reflection and attenua-
tion. While manufacturers have engineered ever better designs, it is
hard to imagine buses as the best interconnect for a high-frequency
multi-CMP machine with 64-128 processors.

2.1.2. Directory

In directory protocols, all transactions on a memory line L are
directed to the directory at the home node of that line [5]. The
directory serializes the transactions — for example, by bouncing
or buffering the transaction that arrives second until the one that
arrived first completes. While directory protocols such as that in
Silicon Graphics’s Altrix [19] are scalable, they add non-negligible
overhead to a mid-range machine — directories introduce a time-
consuming indirection in all transactions. Moreover, the directory
itself is a complicated component, with significant state and logic.

2.1.3. Token Coherence

In Token Coherence, each memory line, whether in cache or
in memory, is associated with N tokens, where N is the number
of processors [10]. A processor cannot read a line until its cache
obtains at least one of the line’s tokens. A processor cannot write
to a line unless its cache obtains all of its tokens. This convention
ensures that two transactions to a line are serialized, irrespective of
the network used. Partial overlap results in failure of one or both
transactions to obtain all necessary tokens. These transactions then
retry.

While conceptually appealing, the scheme has some potentially
difficult implementation issues. One of them is that retries may
result in continuous collisions, potentially creating live-lock. A so-
lution based on providing some queuing hardware to ensure that
colliding transactions make progress is presented in [11]. Another
issue is that every line needs token storage in main memory, since
some of the line’s tokens may be stored there. Unless special ac-
tions are taken, such token memory may need to be accessed at
write transactions. Finally, in multiprocessors with multiple CMPs,
the scheme needs to be extended with additional storage and state
to allow a local cache in the CMP to supply data to another local
cache. Some of these issues are addressed in [11].

2.1.4. Snoopy with Embedded Unidirectional Ring

In this approach, coherence transactions are serialized by send-
ing control messages along a unidirectional ring connecting all pro-
cessors. Collisions of two transactions directed to the same line L
are easily detectable because all snoop requests go around the ring
and can be seen by all the processors. A collision can be detected by
a processor that issued one of the two requests, or by the processor
supplying a response. At that point, the processor marks one of the
messages as squashed. Squashed messages are retried later. With a
given algorithm of message priorities, collisions are resolved with
the squash of only one message; there is no need to retry both.

Older designs use a ring network fopology [2, 24] and constrain
the timing of transactions with time slots. However, in practice,
this approach works with any network topology — as long as we

embed a unidirectional ring in the network connecting all nodes.
Snoop messages are forced to use this network, while other mes-
sages can use any links in the network. This general approach is
used in IBM’s Power 4 [22].

An advantage of this approach is its simplicity and low cost:
it places no constraints on the network topology, can use a simple
cache coherence protocol, and needs no extra modules like a direc-
tory. While it is not scalable to large numbers of processors, it is
appropriate for CMP-based machines with 64-128 processors. A
drawback is that this approach may induce long snoop latencies or
need many snoop operations and additional traffic. For example, if
each node snoops a request before passing it on to the next node in
the ring, the snoop request takes long to go around the ring. Alter-
natively, if each node passes on the snoop request, then snoops, and
finally sends a reply, we may end up snooping all nodes and gen-
erating extra traffic, which is inefficient. In this paper, we address
this problem.

2.2. Multi-CMP Multiprocessor with Embedded
Ring

Before we address the problem described, we briefly outline the
snoopy protocol in the embedded unidirectional ring that we con-
sider. The multiprocessor is built out of CMPs (Figure 2-(a)). Each
CMP has several cores, each with a private L2 cache, and is attached
to a portion of the shared memory. The CMPs can be interconnected
by any physical network, on which we embed one or more unidi-
rectional rings for snoop requests (Figure 2-(a)). If more than one
unidirectional ring is embedded, snoop requests may be mapped to
different rings according to their memory address. This helps to
balance the load on the underlying physical network. Data-transfer
messages do not use the logical ring.

; cMP
‘ i , e 1
/ Processor Memory
+L1
+L2 Shared Bus 1

——

‘ Gateway ‘
(N

(a)

State | Compatible States
1 1,58, 8.,8¢,E,D, T
S 1,S,5.,5,T
St 1,5,51,56,T"
Se | I,S,S5]
E I
D I
T 1,8, S
(b)

Figure 2. Machine architecture modeled (a) and matrix of
compatible cache states in the coherence protocol used (b). In
the network, the darker line shows the embedded ring. In the
protocol table, “*”” means that a line can be in this state only if
it is in a different CMP.

We use a MESI coherence protocol [5] enhanced with additional
states. In addition to the typical Invalid (1), Shared (.5), Exclusive
(E), and modified (or Dirty (D)) states of a MESI scheme, we add
the Global/Local Master qualifier to the Shared state (S and Sr.)
and the Tagged (7") state.

To understand the Global Master qualifier, consider a set of
caches with a Shared line. If a cache outside the set reads the
line, at most one of the caches can supply the line — the one with
the Global Master qualifier (S¢). In our protocol, the cache that
brought the line from memory retains the Global Master qualifier
until it evicts the line or gets invalidated.

Since the machine has multiple CMPs, performance would im-
prove if reads were satisfied by a local cache (i.e., one in the same
CMP), even if it did not have the Global Master qualifier for that
line. Consequently, we allow one cache per CMP to have the Local
Master qualifier (St). The cache that brings in the line from outside
the CMP retains the Local Master qualifier until it evicts the line or
gets invalidated.

The T state is used to support the sharing of dirty data. In 7T’
state, the line is dirty, but coherent copies can also be found in other
caches (in S or St state). On eviction, a line in 7" state is written
back to memory.

Figure 2-(b) shows which states are compatible with which other
ones. It should be noted that, for each read request, at most one
cache (or none) can supply the data. In the following, we give two
examples of transactions.

Read Satisfied by Another Cache. When a processor issues a
read, the local caches are snooped. If the line is found in Sz, Sq,
E, D, or T state, it is supplied. Otherwise, the snoop request R
is forwarded to the ring. As R reaches a node, it enters the CMP
and checks all the caches. If no cache has the line in state Sg, F,
D, or T', the request moves to the next node, repeating the process.
Otherwise, a copy of the line is sent to the requester using the reg-
ular routing algorithm (not the snoop ring). In parallel, R is marked
as a reply message and traverses the remainder of the ring without
inducing any more snoops until it reaches the requester. It can be
shown that, when the data line (not the snoop reply) reaches the
requester, the processor can use it, since it is guaranteed that the
transaction will not be squashed. More details on the protocol can
be found in [17].

Read Satisfied by Memory. If R returns to the requester with a
negative response, the requester sends a read message to the mem-
ory at the home node. Both this message and the memory reply
use the regular routing algorithm. To minimize the latency of this
DRAM access, we may choose (with certain heuristics) to initiate a
memory prefetch when R is snooped at its home node. This would
reduce the latency of a subsequent memory access.

In the rest of the paper, we focus on read snoop requests. While
our contribution also applies to write snoop requests, it is more rel-
evant to reads due to their higher number and criticality.

3. Toward Flexible Snooping
3.1. Eager and Lazy Forwarding

We call the algorithm described in Section 2.2 Lazy Forward-
ing or Lazy. The actions of a snoop request in this algorithm are
shown in Figure 3-(a). In the figure, a requester node sends a re-
quest that snoops at every node until it reaches the supplier node.

Supplier Supplier
iode node

Snoop
reply

Snoop - -
reque’?st Snoop -

request

Requester Requester
node node

(a) Lazy (b) Eager

Supplier
iode

@ CMP node

. Forward-Then
Snoop

Snoop-Then

(J
M Forward

—= Message

Snoop -
request

Requester
node

(c) Oracle

Figure 3. Actions of a snoop request in three different algorithms. Each node is a CMP.

Avg. # of Snoop Operations Avg. # of Messages
per Snoop Request per Snoop Request

Algorithm Snoop Request Latency
(Unloaded Machine)

Lazy Forwarding High

Eager Forwarding Low

Oracle Low

Adaptive Forwarding & Filtering || Between Oracle and Lazy

(N-1)/2 1
N-1 ~2
1 1
Between Oracle and Eager | Between Oracle and Eager

Table 1. Comparing different snooping algorithms. The table assumes a perfectly-uniform distribution of the accesses and that one
of the nodes can supply the data. N is the number of CMP nodes in the machine.

After that, the message proceeds without snooping until it reaches
the requester.

Lazy has two limitations: the long latency of snoop requests and
the substantial number of snoop operations performed. The first
limitation slows down program execution because lines take long to
be obtained; the second one results in high energy consumption and
may also hinder performance by inducing contention in the CMPs.

Table 1 shows the characteristics of Lazy. If we assume a
perfectly-uniform distribution of the accesses and that one of the
nodes can supply the data, the supplier is found half-way through
the ring. Consequently, the number of snoop operations is (N-1)/2,
where N is the number of CMP nodes in the ring.

An alternative is to forward the snoop request from node ¢ to
node ¢ + 1 before starting the snoop operation on ¢. We call this
algorithm Eager Forwarding or Eager. It is used by Barroso and
Dubois for a slotted ring [2]. For the non-slotted, embedded ring
that we consider, we slightly change the implementation.

When a snoop request arrives at a node, it is immediately for-
warded to the next one, while the current node initiates a snoop op-
eration. When the snoop completes, the outcome is combined with
a Snoop Reply message coming from the preceding nodes in the
ring, and is then forwarded to the next node (Figure 3-(b)). Some
temporary buffering may be necessary for the incoming snoop reply
or for the outcome of the local snoop. All along the ring, we have
two messages: a snoop request that moves ahead quickly, initiating
a snoop at every node, and a snoop reply that collects all the replies.

Table 1 compares Eager to Lazy. Eager reduces snoop request
latency. Since the snoop operations proceed in parallel with re-
quest forwarding, the supplier node is found sooner, and the data
is returned to the requester sooner. However, the disadvantages of
Eager are that it causes many snoop operations and messages. In-
deed, Eager snoops all the nodes in the ring (N-1). Moreover, what
was one message in Lazy, now becomes two — except for the first
ring segment (Figure 3-(b)). These two effects increase the energy
to service a snoop request.

A third design point is the Oracle algorithm of Figure 3-(c). In
this case, we know which node is the supplier and only snoop there.

As shown in Table 1, Oracle’s latency is low and there is a single
snoop operation and message.

3.2. Adaptive Forwarding and Filtering

We would like to develop snooping algorithms that have the low
request latency of Eager, the few messages per request of Lazy, and
the few snoop operations per request of Oracle. Toward this end, we
propose Adaptive Forwarding and Filtering algorithms (Adaptive).
These algorithms use two techniques. First, when a node receives
a snoop request, depending on the likelihood that it can provide the
line, it will perform the snoop operation first and then the request-
forwarding operation or vice-versa (Adaptive Forwarding). Second,
if the node can prove that it will not be able to provide the line, it
will skip the snoop operation (Adaptive Filtering).

Adaptive forwarding is original. Adaptive filtering has been pro-
posed in schemes such as JETTY [14] and Destination-Set Predic-
tion [9], but our proposal is the first to integrate it with adaptive
forwarding in a taxonomy of adaptive algorithms.

Adaptive hopes to attain the behavior of Oracle. In practice, for
each of the metrics listed in Table 1, Adaptive will exhibit a behavior
that is somewhere between Oracle and the worst of Lazy and Eager
for that metric.

Adaptive works by adding a hardware Supplier Predictor at each
node that predicts if the node has a copy of the requested line in any
of the supplier states (S, F, D, and T'). When a snoop request
arrives at a node, this predictor is checked and, based on the predic-
tion, the hardware performs one of three possible primitive opera-
tions: Forward Then Snoop, Snoop Then Forward, or Forward.

Table 2 describes the actions taken by these primitives. At a high
level, Forward Then Snoop divides a snoop message into a Snoop
Request sent before initiating the snoop operation and a Snoop Re-
ply sent when the current node and all its predecessors in the ring
have completed the snoop. On the other hand, Snoop Then Forward
combines the incoming request and reply messages into a single
message issued when the current snoop completes. We call this
message Combined Request/Reply (R/R). Consequently, in a ring

Number of Action
Ring Messages CMP Can Supply Line CMP Cannot Supply Line
Primitive || Arriving and Snoop Request Snoop Operation Snoop Reply Snoop Operation Snoop Reply
Leaving a Node || or Combined R/R || Completes at Node | Arrives at Node || Completes at Node Arrives at Node
per Request Arrives at Node (if Applicable) (if Applicable) (if Applicable) (if Applicable)
Forward Arriving: 1 or 2 Forward Send Discard If had received combined R/R | Forward
Then Leaving: 2 snoop request, Snoop sSnoop then send snoop reply sSnoop
Snoop then snoop reply reply else wait for snoop reply reply
Snoop Arriving: 1 or 2 Send Discard If had received combined R/R | Forward it as
Then Leaving: 1 Snoop combined R/R snoop then send new combined R/R | combined R/R
Forward reply else wait for snoop reply
Arriving: 1 or 2
Forward Leaving: same Forward N/A Forward N/A Forward
as arriving

Table 2. Actions taken by each of the primitive operations Forward Then Snoop, Snoop Then Forward, and Forward. In the table,
R/R stands for Request/Reply. Recall that at most one CMP has the line in a supplier state.

where different nodes choose a different primitive, a snoop mes-
sage can potentially be divided into two and recombined multiple
times. In all cases, as soon as the requested line is found in a sup-
plier state, the line is sent to the requester through regular network
paths.

Consider Forward Then Snoop in Table 2. As soon as the node
receives a snoop request or a combined R/R, it forwards a snoop
request and initiates the snoop operation. If the CMP can supply
the line, the node sends a snoop reply message through the ring
with this information and the line through regular network paths; if
the node later receives a snoop reply message, it simply discards it
because it contains no new information'. If, instead, the snoop op-
eration shows that the CMP cannot supply the line, the node sends
a negative snoop reply (if it had received a combined R/R message)
or waits for a reply message (if it had received a request message).
In the latter case, when it receives the reply, it augments it with the
negative outcome of the local snoop and forwards it. Overall, the
node will always send a snoop request and a snoop reply.

On the other hand, with Snoop Then Forward, when a node re-
ceives a snoop request or a combined R/R, it starts to snoop. If the
CMP can supply the line, the node sends a combined R/R message
through the ring with this information and the line through regular
network paths; if the node later receives a reply from the preceding
nodes in the ring, it discards it. If, instead, the snoop shows that
the CMP cannot provide the line, the node sends a combined R/R
with the negative information (if it had received a combined R/R
message) or waits for a reply message (if it had received a request
message). In the latter case, when it receives the reply, it augments
it as usual and forwards it as a combined R/R. Overall, the node will
always send a single message, namely a combined R/R.

The Forward primitive simply forwards the two messages
(snoop request and reply) or one message (combined R/R) that con-
stitute this request.

It is possible to design different Adaptive algorithms by simply
choosing between these three primitives at different times or con-
ditions. In the following, we examine the design space of these
algorithms.

It only contains the information “I have not been able to find the line”,
which is already known.

4. Algorithms for Flexible Snooping
4.1. Design Space

To understand the design space for these algorithms, consider
the types of Supplier Predictors that exist. One type is predictors
that keep a strict subset of the lines that are in supplier states in
the CMP. These predictors have no false positives, but may have
false negatives. They can be implemented with a cache. We call the
algorithm that uses these predictors Subset.

A second type of predictors are those that keep a strict superset
of the supplier lines. Such predictors have no false negatives, but
may have false positives. They can be implemented with a form of
hashing, such as a Bloom filter [3]. We call the algorithm that uses
these predictors Superset. Predictors of this type have been used in
JETTY [14] and RegionScout [13] to save energy in a broadcast-
based multiprocessor.

The third type of predictors are those that keep the exact set of
supplier lines. They have neither false positives nor false negatives.
They can be implemented with an exhaustive table. We call the al-
gorithm that uses these predictors Exact. Note that there is a fourth
type of predictors, namely those that suffer both false positives and
false negatives. These predictors are uninteresting because they are
less precise than all the other types, while those that suffer either
false positives or false negatives are already reasonably inexpensive
to implement.

Table 3 compares these algorithms in terms of latency of snoop
requests, number of snoop operations, snoop traffic, and implemen-
tation difficulty. In the following, we examine them in detail (Sec-
tion 4.2) and then present implementations (Section 4.3).

4.2. Description of the Algorithms

We first consider the Subset algorithm (Table 3). On a positive
prediction, since the supplier is guaranteed to be in the CMP, the al-
gorithm uses Snoop Then Forward. On a negative prediction, since
there is still chance that the supplier is in the CMP, the algorithm
selects Forward Then Snoop. The latency of the snoop requests is
low because requests are not slowed down by any snoop operation
as they travel from the requester to the supplier nodes. The number
of snoops is higher than in Lazy because at least all the CMPs up to
the supplier are snooped. In addition, if the supplier node is falsely
predicted negative, more snoops may occur on subsequent nodes.
Consequently, Table 3 shows that the number of snoops is Lazy +

Characteristics
Algorithm False | False | ActionIf | Action If Snoop Request Avg # Snoop Avg # Msgs | Implementation
Pos? | Neg? Predict Predict Latency Operations per per Snoop Difficulty
Positive Negative (Unloaded Machine) Snoop Request Request
Snoop Forward Medium
Subset N Y Then Then Low (Lazy + o X F'N) 1-2 Low
Forward Snoop
Snoop Low
Con Then Forward Medium (1+ax FP) 1 Medium
Superset Y N Forward
Forward Low
Agg Then Forward Low (1+ax FP) 1-2 Medium
Snoop
Snoop
Exact N N Then Forward Low 1 1 Medium
Forward

Table 3. Proposed Flexible Snooping algorithms. This characterization assumes that one of the nodes supplies the data and, therefore,
the request does not go to memory. In the table, FN and FP stand for the number of false negatives and false positives, respectively.

aXx FalseNegatives. The number of messages per snoop request is
between 1 and 2 because negative predictions produce 2 messages
but the positive prediction combines them.

Figure 4-(a) shows, in a shaded pattern, the design space of Flex-
ible Snooping algorithms in a graph of snoop request latency versus
the number of snoop operations per request. The figure also shows
the placement of the baseline algorithms. Figure 4-(b) repeats the
figure and adds the data points corresponding to the algorithms pro-
posed. Based on the previous discussion, we place Subset in the Y
axis and above Lazy.

Consider the Superset algorithm in Table 3. On a negative pre-
diction, since there are no false negatives, it uses Forward. On a
positive prediction, since there is still a chance that the supplier
is not in the CMP, we have two choices. A conservative approach
(Superset Con) assumes that the CMP has the supplier and performs
Snoop Then Forward. An aggressive approach (Superset Agg) per-
forms Forward Then Snoop. The latency of the snoop requests is
medium in Superset Con because false positives introduce snoop
operations in the critical path of getting to the supplier node; the la-
tency is low in Superset Agg because requests are not slowed down
by any snoop operation as they travel to the supplier node. The
number of snoops is low in both algorithms: 1 plus a number pro-
portional to the number of false positives. Such term is lower in
Superset Con than in Superset Agg: Superset Con only checks the
Supplier Predictor in the nodes between the requester and the sup-
plier, while Superset Agg checks the Supplier Predictor in all the
nodes. The number of messages per snoop request is 1 in Superset
Con and 1-2 in Superset Agg. Based on this analysis, we place these
algorithms in the design space of Figure 4-(b).

The Exact algorithm uses Snoop Then Forward on a positive
prediction and Forward in a negative one (Table 3). Since it has
perfect prediction, the snoop request latency is low and the number
of snoops and messages is 1. Figure 4-(b) places it in the origin
with the Oracle algorithm.

4.3. Implementation of the Algorithms

The proposed snoopy algorithms enhance the gateway module
of each CMP (Figure 2-(a)) with a hardware-based Supplier Pre-

k7
(]
g E;
ager
o109
Q
o
o
=
%]
g
2 Lazy
o °
s
[
Q
o
Q
o
o
&] Oracle
g [
¢ Unloaded Snoop Request Latency
Link latency Until Supplier Found
to supplier
(a)
Snoop Request
] Forwarding
=]
5 Eager Snoop
< Filtering
Q
o
[e]
c
@« Subset
g
2 Lazy
o °
©
g SupersetAgg
2 SupersetCon
Q
S °
o
& 'Oracle
= Exact

Unloaded Snoop Request Latency
Until Supplier Found

(b)
Figure 4. Design space of Flexible Snooping algorithms ac-
cording to the snoop request latency and the number of snoop
operations per request. Chart (a) shows the baseline algo-
rithms, with the shade covering the area of Flexible Snoop-
ing algorithms. Chart (b) places the proposed algorithms. The
charts assume that one of the nodes provides the line.

dictor. When a snoop request arrives at the CMP, the predictor is
checked. The predictor predicts whether the CMP contains the re-
quested line in any of the supplier states (S¢, E, D, or T'). Based
on the predictor’s outcome and the algorithm used, an action from
Table 3 is taken. Next, we describe possible implementations of the
Supplier Predictors we study.

4.3.1. Subset Algorithm

The predictor for Subset can be implemented with a set-
associative cache that contains the addresses of lines known to be
in supplier states in the CMP (Figure 5-(a)). When a line is brought
to the CMP in a supplier state, the address is inserted into the pre-
dictor. If possible, the address overwrites an invalid entry in the
predictor. If all the lines in the corresponding set are valid, the LRU
one is overwritten. This opens up the possibility of false negatives.

Physical Address

Tag Index Block
Line ‘ ‘ ‘ ‘
Address I ‘
Valid \ i
N Y Y Y Y J
=« > >

(a)
Physical Address
Index Index Index Index Block

[] | cee
/7

Counter

(b)
Figure 5. Implementation of the Supplier Predictor.

A line in a supplier state in the CMP can only lose its state if
it is evicted or invalidated. Note that, at any time, only one copy
of a given line can be in a supplier state. Consequently, when any
of these lines is evicted or invalidated, the hardware removes the
address from the Supplier Predictor if it is there. This operation
eliminates the possibility of false positives.

4.3.2. Superset Algorithm

The predictor for the two Superset algorithms of Table 3 can
be implemented with a Bloom filter [3] (Figure 5-(b)). The Bloom
filter is implemented by logically breaking down the line address
into P fields. The bits in each field index into a separate table. Each
entry in each table has a count of the number of lines in a supplier
state in the CMP whose address has this particular bit combination.
Every time that a line in supplier state is brought into the CMP,
the corresponding P counters are incremented; when one such line
is evicted or invalidated, the counters are decremented. When a
snoop request is received, the address requested is hashed and the
corresponding entries inspected. If at least one of the counters is
zero, the address is guaranteed not to be in the CMP. However, due
to aliasing, this scheme can incur false positives.

To reduce the number of false positives, we can follow the
JETTY design [14] and augment the Bloom filter with an Exclude
cache. The latter is a set-associative cache storing the addresses of
lines that are known not to be in supplier states in the CMP. Ev-
ery time a false positive is detected, the corresponding address is
inserted in the Exclude cache. Every time that a line in supplier

state is brought into the CMP, the Exclude cache is checked and
potentially one of its entries is invalidated. With this support, when
a snoop request is received, its address is checked against both the
Bloom filter and the Exclude cache. If one the counters in the filter
is zero or the address is found in the Exclude cache, the prediction
is declared negative.

4.3.3. Exact Algorithm

The predictor for Exact can be implemented by enhancing the
Subset design of Section 4.3.1. We eliminate false negatives as
follows: every time that a valid entry in the Supplier Predictor is
overwritten due to a conflict, the hardware downgrades the supplier
state of the corresponding line in the CMP to a non-supplier state.
Specifically, if the line is in S¢ or E, it is silently downgraded to
St; if the line is in D or T state, the line is written back to memory
and kept cached in Sy, state.

This support eliminates false negatives but can hurt the perfor-
mance of the application. Specifically, a subsequent snoop request
for the downgraded line from any node will have to be serviced from
memory. Moreover, if the downgraded cache attempts to write one
of the lines downgraded from E, D, or T, it now needs one more
network transaction to upgrade the line to its previous state again
before the write can complete.

Overall, the performance impact of this implementation depends
on two factors: the size of the predictor table relative to the number
of supplier lines in a CMP, which affects the amount of downgrad-
ing, and the program access patterns, which determine whether or
not the positive effects of downgrading dominate the negative ones.

4.3.4. Difficulty of Implementation

We claim in Table 3 that Superset and Exact are more difficult
to implement than Subset. The reason is that these algorithms have
no false negatives, whereas Subset has no false positives. To see
why this matters, assume that a hardware race induces an unnoticed
false negative in Superset and Exact, and an unnoticed false positive
in Subset. In the first case, a request skips the snoop operation at
the CMP that has the line in supplier state; therefore, execution is
incorrect. In the second case, the request unnecessarily snoops a
CMP that does not have the line; therefore, execution is slower but
still correct.

Consequently, implementations of Superset and Exact have to
guarantee that no hardware race ever allows a false negative to oc-
cur. Such races can occur at two time windows. The first window is
between the time the CMP receives a line in supplier state and the
time the Superset or Exact predictor tables are updated to include
the line. Note that the line may be received from local memory
(Figure 2-(a)) or through other network links that do not go through
the gateway. The second race window is between the time the Exact
predictor table removes an entry due to a conflict and the time the
corresponding line in the CMP is downgraded. Careful design of
the logic involved will ensure that these races are eliminated.

5. Evaluation Methodology
5.1. Architecture and Applications Evaluated

We evaluate the proposed algorithms for Flexible Snooping us-
ing detailed simulations of out-of-order processors and memory
subsystems. The baseline system architecture is a multiprocessor

[Processor and Private Caches CMP [Global Network [Memory 0
Frequency: 6.0 GHz Fetch/issue/comm width: 6/4/4 Processors/CMP: E;?:g(;:dfrci}:llpi:e?work' RT to local memory: 350 cyc
Branch penalty: 17 cyc (min) I-window/ROB size: 80/176 SPLASH-2: 4 s ; RT to remote memory (max):

RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor:
bimodal size: 16K entries
gshare-11 size: 16K entries
Int/FP registers: 176/130

LdSt/Int/FP units: 2/3/2

Ld/St queue entries: 64/64

D-L1 size/assoc/line:
32KB/4-way/64B

D-L1RT: 2 cyc

L2 size/assoc/line:

SPEC;jbb, SPECweb: 1
Per-processor L2
Intra-CMP network:

Topology: shared bus

Bandwidth: 64 GB/s

RT to another L2: 55 cyc

CMP to CMP latency: 39 cyc
Link bandwidth: 8GB/s
CMP bus access & L2
snoop time: 55 cyc
Data network:
Topology: 2D torus
Link bandwidth: 32GB/s

With prefetch: 312 cyc

Without prefetch: 710 cyc
Main memory:

Frequency: 667MHz

Width: 128bit

DRAM bandwidth: 10.7GB/s

512KB/8-way/64B
L2 RT: 11 cyc

DRAM latency: 50ns

[Subset Predictor [

Superset Con or Superset Agg Predictor

Exact Predictor ”

Size: 512, 2K, or 8K entries Bloom filter:

Entry size: 20, 18, or 16 bits n filter:
Total size: 1.3, 4.8, or 17KB Fields: 9,9,6 bits. Total size: 2.3KB
Access time: 2,2, or 3 cyc y filter:

Fields: 10,4,7 bits. Total size: 2.5KB
Size of filter entry: 16 bits + Zero bit
Access time: 2 cyc

Assoc: 8-way
Ports: 1

Exclude cache:
Size: 512 or 2K entries
Entry size: 20 or 18 bits
Total size: 1.3 or 4.8KB
Access time: 2 cyc
Assoc: 8-way
Ports: 1

Size: 512, 2K, or 8K entries
Entry size: 20, 18 or 16 bits
Total size: 1.3, 4.8 or 17KB
Access time: 2, 2, or 3 cyc
Assoc: 8-way

Ports: 1

Table 4. Architectural parameters used. In the table, RT means minimum Round-Trip time from the processor. Cycle counts are in

processor cycles.

with 8 CMPs, where each CMP has 4 processors (Figure 2-(a)). The
CMPs are interconnected with a 2-dimensional torus, on which we
embed two unidirectional rings for snoop messages. The snoop re-
quests and replies are assigned to rings based on their address. The
interconnect inside each CMP is a high-bandwidth shared bus. The
cache coherence protocol used is described in Section 2.2. Table 4
details most of the architectural parameters used.

We estimate that a message in the embedded ring network needs
55 cycles at 6 GHz to access the CMP bus and snoop the caches.
This includes 38 cycles for on-chip network transmission (transmis-
sion from gateway to arbiter, from arbiter to L2 caches, and from
L2 caches to gateway), 10 cycles for on-chip network arbitration,
and 7 cycles for L2 snooping plus buffering. All on-chip L2 caches
are snooped in parallel. These numbers are consistent with those
in [8].

We run 11 SPLASH-2 applications [26] (all except Volrend,
which has calls that our simulator does not support), SPECjbb 2000,
and SPECweb 2005 [20]. The SPLASH-2 applications run with 32
processors (8 CMPs of 4 cores each). Due to limitations in our sim-
ulation infrastructure, we can only run the SPECjbb and SPECweb
workloads with 8 processors; we assume that they are in 8 different
CMPs. The SPLASH-2 applications are simulated in execution-
driven mode by SESC [15], while the SPEC applications are sim-
ulated in trace-driven mode by a combination of Simics [23] and
SESC.

The SPLASH-2 applications use the input sets suggested in [26].
SPEC;jbb runs with 8 warehouses and is measured for over 750 mil-
lion instructions after skipping initialization. SPECweb runs with
the e-commerce workload for over 750 million instructions after
skipping initialization. Since the SPEC workloads are simulated in
trace-driven mode, we compare the different snooping algorithms
with exactly the same traces, and do not re-run multiple instances
of the same workload.

5.2. Supplier Predictors Used

For our experiments, we use three different Supplier Predictors
for each of our Flexible Snooping algorithms. The predictors used

are shown in the lower part of Table 4. The three predictors for
Subset are an 8-way cache with either 512, 2K, or 8K entries. We
call them Sub512, Sub2k, and SubS8k.

The three predictors for Superset Con and Superset Agg are as
follows: y512 has the y Bloom filter of Table 4 and a 512-entry
Exclude cache; y2k has the same Bloom filter and a 2K Exclude
cache; and n2k has the n Bloom filter of Table 4 and a 2K Exclude
cache. We call the resulting predictors SupCy512, SupCy2k, and
SupCn2k for the Conservative algorithm and SupAy512, SupAy2k,
and SupAn2k for the Aggressive one.

Finally, the predictors for Exact are an 8-way predictor cache
with 512, 2K, or 8K entries. We call them Exa512, Exa2k, and
ExaSk.

5.3. Handling Write Snoop Requests

Write snoop requests cannot use our predictors of Section 4.3.
The reason is that writes need to invalidate all the cached copies of
a line. As a result, they would need a predictor of line presence,
rather than one of line in supplier state.

In our simulations, we handle write snoop requests as follows.
Recall from Table 3 that our Flexible Snooping algorithms fall into
two classes: those that do not decouple read snoop messages into
request and reply (Superset Con and Exact, together with Lazy), and
those that do (Subset and Superset Agg, together with Eager). Con-
sequently, for the former, we do not decouple write snoop messages
either. For the latter, we think it is fair to always decouple write
snoops into request and reply — it enables parallel invalidation of
the nodes. Also, since we are not concerned with the implemen-
tation feasibility of Oracle and we use it to estimate the potential
performance improvement of our techniques, we allow write snoop
messages to decouple for Oracle as well. In any case, writes are
less critical and numerous than reads.

6. Evaluation

In this section, we first compare our Flexible Snooping algo-
rithms to each other and to Lazy, Eager, and Oracle. Then, we per-

form a brief sensitivity analysis of the impact of various Supplier
Predictor organizations.

6.1. Comparison of Flexible Snooping Algorithms

For our main comparison between the schemes, we use the
Sub2k, SupCy2k, SupAy2k, and Exa2k predictors for the Subset, Su-
perset Con, Superset Agg, and Exact algorithms, respectively. In all
cases, the per-node predictors have 2K entries in their cache or Ex-
clude cache — although the Superset algorithms additionally add
a Bloom filter. The predictor sizes are 4.8 Kbytes for Subset and
Exact, and 7.3 Kbytes for the Superset algorithms.

In the following, we compare our Flexible Snooping algorithms
to Lazy, Eager, and Oracle along four dimensions: number of snoop
operations per read snoop request, number of read messages in the
ring, total execution time, and energy consumption. We consider
each dimension in turn.

6.1.1. Number of Snoops per Read Request

The number of snoop operations per read snoop request for the
different algorithms is shown in Figure 6. The figure shows ab-
solute values for the arithmetic mean of SPLASH-2 applications,
SPEC;jbb, and SPECweb.

8
w 7 m Lazy
- % 6 m Eager
g O 5 Oracle
o7 4 m Subset
E g
33 3 SupersetCon
5 2 SupersetAgg
:) “| O Exact

SPLASH-2 SPECjbb SPECweb

Figure 6. Average number of snoop operations per read snoop
request for different algorithms.

The figure shows that Eager snoops the most. As expected, it
snoops all 7 CMPs in every request. As a result, it consumes sig-
nificant energy. If there is a supplier node, Lazy should snoop on
average about half of the nodes, namely 3-4. In practice, since many
requests do not find a supplier node and need to go to memory, Lazy
snoops more. In particular, in SPECjbb, threads do not share much
data, and many requests go to memory. For this workload, Lazy
incurs an average number of snoops close to 7.

The relative snoop frequency of the Flexible Snooping algo-
rithms follows the graphical representation of Figure 4-(b). For
example, Subset snoops slightly more than Lazy. As indicated in
Table 3, its snoops over Lazy depend on the number of false nega-
tives. On the other hand, the Superset algorithms have many fewer
snoops, typically 2-3. As indicated in Figure 4-(b), Superset Con
snoops slightly less than Superset Agg.

Oracle has a very low value. Its number of snoops is less than
one because when the line needs to be obtained from memory, Or-
acle does not snoop at all. Finally, Exact is very close to Ora-
cle. It has in fact fewer snoops than Oracle because, as indicated
in Section 4.3.3, its Supplier Predictor induces some line down-
grades. These downgrades result in relatively fewer lines supplied
by caches.

6.1.2. Number of Read Messages in the Ring

The total number of read snoop requests and replies in the ring
for the different algorithms is shown in Figure 7. In the figure, the
bars for SPLASH-2 correspond to the geometric mean. Within an
application, the bars are normalized to Lazy.

2

o018 m Lazy
(0]
£516 m Eager
So 14 -
Z 842 - Oracle
§§ 1 -~| m Subset
3 g g'g SupersetCon
CE, T 04 SupersetAgg
Z o 062 ~| O Exact

SPLASH-2 SPECjbb SPECweb

Figure 7. Total number of read snoop requests and replies in
the ring for different algorithms. The bars are normalized to
Lazy.

The figure shows that Eager has the most read messages in the
ring. As indicated in Table 1, Eager generates nearly twice the num-
ber of messages of Lazy. The number is not exactly twice because
request and reply travel together in the first ring segment (Figure 3-
(b)). In any case, Eager consumes a lot of energy in the ring. Lazy,
on the other hand, uses a single message per request and, therefore,
is frugal.

The relative number of messages in Flexible Snooping algo-
rithms follows the discussion in Table 3. The number of messages
in Subset and Superset Agg is between that of Eager and Lazy. The
reason is that, while Subset often produces two messages per re-
quest, it merges them when it predicts that a line can be supplied
by the local node. Superset Agg allows the request and the reply
to travel in the same message until it first predicts that the line
may be supplied by the local node. From Figure 7, we see that
these schemes induce a similar number of messages — except in
SPEC;jbb.

Finally, as indicated in Table 3, Superset Con and Exact have
the same number of read messages as Lazy (and Oracle). This
gives these schemes an energy advantage. The figure also shows
that downgrades do not seem to affect the number of read messages
in Exact — only the location from where they are supplied.

6.1.3. Total Execution Time

The total execution time of the applications for the different al-
gorithms is shown in Figure 8. In the figure, the SPLASH-2 bars
show the geometric mean of the applications. The bars are normal-
ized to Lazy.

1 m Lazy
o &osl -| ™ Eager
s Oracle
g2 067~ | m Subset
5 2 0.41- SupersetCon
zQ s
& 0.2k- upersetAgg
O Exact

SPLASH-2

SPECjbb SPECweb

Figure 8. Execution time of the applications for different al-
gorithms. The bars are normalized to Lazy.

To understand the results, consider Figure 4-(b), which qual-
itatively shows the relative snoop request latency in the different

algorithms. In there, Lazy has the longest latency, while Superset
Con has somewhat longer latency than the other Flexible Snooping
algorithms.

Figure 8 is consistent with these observations. The figure shows
that, on average, Lazy is the slowest algorithm, and that most of the
other algorithms track the performance of Eager. Of the Flexible
Snooping schemes, Exact is slow when running SPLASH-2 and, to
a lesser extent, SPECweb. This is because it induces downgrades
in these workloads, which result in more requests being satisfied
by main memory than before. On the other hand, Exact does not
hurt the performance of SPECjbb because many accesses in this
workload would not find the data in caches anyway.

Among the remaining three Flexible Snooping algorithms, Su-
perset Con is the slightly slower one, as expected. When it runs the
SPEC workloads, it suffers delays caused by false positives, which
induce snoop operations in the critical path.

Superset Agg is the fastest algorithm. It is always very close to
Oracle, which is a lower execution bound. On average, Superset
Agg is faster than Eager. Compared to Lazy, it reduces the execu-
tion time of the SPLASH-2, SPECjbb, and SPECweb workloads by
14%, 13%, and 6%, respectively.

6.1.4. Energy Consumption

Finally, we compute the energy consumed by the different algo-
rithms. We are interested in the energy consumed by the read and
write snoop requests and replies. Consequently, we add up the en-
ergy spent snooping nodes other than the requester, accessing and
updating the Supplier Predictors, and transmitting request and re-
ply messages along the ring links. In addition, for Exact, we also
add the energy spent downgrading lines in caches and, most im-
portantly, the resulting additional cache line write backs to main
memory and eventual re-reads from main memory. These accesses
are counted because they are a direct result of Exact’s operation.

To estimate this energy we use several tools. We use models
from CACTI [18] to estimate the energy consumed accessing cache
structures (when snooping or downgrading lines) and predictors.
We use Orion [25] to estimate the energy consumed to access the
on-chip network. We use the HyperTransport I/O Link Specifica-
tion [7] to estimate the energy consumed by the transmission of
messages in the ring interconnect. Finally, we use Micron’s System-
Power Calculator [12] to estimate the energy consumed in main
memory accesses.

As an example of the numbers obtained, transferring one snoop
request message on a single ring link is estimated to consume
3.17 nJ. In contrast, the energy of a CMP snoop is estimated to be
only 0.69 nJ. We can see, therefore, that a lot of the energy is dissi-
pated in the ring links. Finally, reading a line from main memory is
estimated to consume 24 nJ.

Figure 9 shows the resulting energy consumption for the differ-
ent algorithms. As usual, the SPLASH-2 bar is the geometric mean
of the applications, and all bars are normalized to Lazy. The figure
shows that Eager consumes about 80% more energy than Lazy. This
is because it needs more messages and more snoop operations than
Lazy. Of the Flexible Snooping algorithms, Subset and Superset
Agg are also less efficient than Lazy, as they induce more messages
than Lazy and, in the case of Subset, more snoop operations as well.
Still, Superset Agg consumes 14%, 17%, and 9% less energy than
Eager for SPLASH-2, SPECjbb, and SPECweb, respectively.

.22

m Lazy

S — . _| m Eager

Oracle

= —| B Subset
SupersetCon
SupersetAgg

O Exact

Normalized Energy

SPLASH-2

SPECjbb SPECweb

Figure 9. Energy consumed by read and write snoop requests
and replies for different algorithms. The bars are normalized
to Lazy.

Exact is not an attractive algorithm energy-wise. While it needs
few snoop messages and snoop operations, it induces cache-line
downgrading. As indicated in Section 4.3.3, some of these lines
need to be written back to memory and later re-read from memory.
As shown in Figure 9, this increases the energy consumption sig-
nificantly, especially for applications with frequent cache-to-cache
transfers such as SPLASH-2.

Finally, Superset Con is the most efficient algorithm. Its en-
ergy consumption is the lowest, thanks to needing the same num-
ber of messages as Lazy and fewer snoop operations. Compared to
Lazy, however, it adds the energy consumed in the predictors. In
particular, the predictors used by the Superset algorithms consume
substantial energy in both training and prediction. As a result, Su-
perset Con’s energy is only slightly lower than Lazy’s. Compared
to Eager, however, it consumes 48%, 47%, and 47% less energy for
SPLASH-2, SPECjbb, and SPECweb, respectively.

6.1.5. Summary of Results

Based on this analysis, we argue that Superset Agg and Super-
set Con are the most cost-effective algorithms. Superset Agg is the
choice algorithm for a high-performance system. It is the fastest
algorithm — faster than Eager while consuming 9-17% less energy
than Eager. For an energy-efficient environment, the choice algo-
rithm is Superset Con. It is only 3-6% slower than Superset Agg
while consuming 36-42% less energy.

Interestingly, both Superset Con and Superset Agg use the same
Supplier Predictor. The only difference between the two is the ac-
tion taken on a positive prediction (Table 3). Therefore, we envision
an adaptive system where the action is chosen dynamically. Typi-
cally, the action would be that of Superset Agg. However, if the
system needs to save energy, it would use the action of Superset
Con.

6.2. Sensitivity Analysis

In this section, we evaluate the impact of the Supplier Predictor
size on the performance of the Flexible Snooping algorithms. We
evaluate the predictors described in Section 5.2, namely Sub512,
Sub2k, and Sub8k for Subset; SupCy512, SupCy2k, and SupCn2k
for Superset Con; SupAy512, SupAy2k, and SupAn2k for Superset
Agg; and Exa512, Exa2k, and Exa8k for Exact.

Figure 10 compares the execution time of the workloads for the
different Supplier Predictor sizes and organizations. For each algo-
rithm and application, we normalize the three bars to the one for the
predictor used in Section 6.1 (in all cases, the central bar).

From the figure, we see that these environments are not very
sensitive to the size and organization of the Supplier Predictor —

Normalized
Execution Time

Sub SupC SupA Exa

SPLASH-2 SPECjbb

Sub SupC SupA Exa

B Sub512 W SupAy512
Sub2k B SupAy2k

| Sub8k O SupAn2k
B SupCy512H Exa512

| m™ SupCy2k W Exa2k

SupCn2k Exa8k

Sub SupC SupA Exa
SPECweb

Figure 10. Execution time of Subset, Superset Con, Superset Agg, and Exact algorithms with different Supplier Predictor sizes and

organizations.

] m False Negatives
k] False Positives
8 True Negatives
L8 &
ag m True Positives
33
<
[o%
>
@

S J W S J W S J W S J W S J W S J w S J W S J w S J W S J w

Perfect Sub512 Sub2k Sub8k SupCy512 SupCy2k SupCn2k Exa512 Exa2k Exa8k

Figure 11. Supplier Predictor accuracy for the different implementations of the Subset, Superset, and Exact algorithms. In the figure,
S, J, and W stand for SPLASH-2, SPECjbb, and SPECweb, respectively.

at least for the ranges considered. The only exception is the Exact
algorithm for the SPLASH-2 applications. In this case, larger Sup-
plier Predictors reduce the execution time noticeably. The reason
is that small predictor caches cause many line downgrades. This
hurts performance in applications with significant cache-to-cache
data transfers such as SPLASH-2. Overall, based on Figure 10, we
conclude that the predictor sizes used in Section 6.1 represent good
design points.

To gain further insight into how these predictors work, Figure 11
shows the fraction of true positive, true negative, false positive, and
false negative predictions issued by read snoop requests using each
of these Supplier Predictors. The figure includes a perfect predictor
that is checked by the snoop request at every node, until the request
finds the supplier node. The predictors for the two Superset algo-
rithms behave very similarly and, therefore, we only show one of
them. In the figure, S, J, and W stand for SPLASH-2, SPECjbb, and
SPECweb, respectively.

The perfect predictor in Figure 11 shows how soon a read snoop
request finds the supplier node. Specifically, in SPLASH-2 and
SPECweb, the predictor makes about 4 negative predictions for ev-
ery positive prediction. This means that the supplier is found on
average about 5 nodes away from the requester. In SPECjbb, how-
ever, there is rarely a supplier node, and the request typically gets
the line from memory.

The next three sets of bars show that the Subset predictors have
few false negatives. As we increase the size of the predictor from
512 entries to 8K entries, the number of false negatives decreases.
For 8K entries, false negatives practically disappear.

On the other hand, the Superset predictors in the next three sets
of bars have a significant fraction of false positives. For the best
configuration (SupCy2k), false positives account for 20-40% of the
predictions. While we have tried many different bit-field organiza-
tions for the Bloom filter, we find that it is difficult to reduce the

number of false positives. The Exclude cache helps for SPLASH-2
and for SPECweb. However, it does not help for SPECjbb, where
there are few cache-to-cache transfers — as seen from the perfect
predictor. Since there are few cache-to-cache transfers, the Exclude
cache thrashes and never helps.

Finally, the bars for the Exact predictors give an idea of the im-
pact of downgrades. In Figure 11, the difference between these pre-
dictors and the perfect one is due to downgrades. Specifically, the
more downgrades issued, the lower the fraction of true positives.
We can see from the figure that, for an 8K entry predictor cache,
the effect of the downgrades is relatively small. However, as we de-
crease the predictor size, more downgrades mean a lower fraction
of true positives.

7. Related Work

Our work is related to several schemes that improve per-
formance or energy consumption in coherence protocols. In
Destination-Set Prediction [9], requester caches predict which other
caches need to observe a certain memory request. Unlike our pro-
posal, the prediction is performed at the source node, rather than at
the destination node. Moreover, destination-set prediction targets
a multicast network environment. It leverages specific sharing pat-
terns like pairwise sharing to send multicasts to only a few nodes in
the system.

JETTY [14] is a filtering proposal targeted at snoopy bus-based
SMP systems. A data presence predictor is placed between the
shared bus and each L2 cache, and filters part of the snoops to the
L2 tag arrays. The goal of the mechanism is exclusively to save
energy. While we used one of the structures proposed by JETTY,
our work is more general: we leverage snoop forwarding in addi-
tion to snoop filtering; we use a variety of structures; we use these

techniques to improve both performance and energy; and finally we
use a supplier predictor.

Power Efficient Cache Coherence [16] proposes to perform
snoops serially on an SMP with a shared hierarchical bus. Lever-
aging the bus hierarchy, close-by caches are snooped in sequence,
potentially reducing the number of snoops necessary to service a
read miss. Our work is different in the following ways: our work
focuses on a ring, on which we detail a race-free coherence proto-
col; we present a family of adaptive protocols; finally we focus on
both high performance and low energy.

Ekman et al [6] evaluate JETTY and serial snooping in the con-
text of a cache-coherent CMP (private L1 caches and shared L2
cache) and conclude these schemes are not appropriate for this kind
of environment.

Owner prediction has been used to speed-up cache-to-cache in-
terventions in a CC-NUMA architecture [1]. The idea is to shortcut
the directory lookup latency in a 3-hop service by predicting which
cache in the system would be able to supply the requested data and
sending the request directly to it, only using the home directory to
validate the prediction.

Barroso and Dubois [2] propose the use of a slotted ring as a
substitute for a bus in an SMP system. As indicated in Section 2.1.4,
their work is different in that they look at a ring network topology
(while we use a logically-embedded ring) and that they use slotting
(while we do not have these timing constraints). They use the Eager
algorithm, which we use as a baseline here. Another system that
uses a slotted ring topology is Hector [24]. Hector uses a hierarchy
of rings.

Moshovos [13] and Cantin et al. [4] propose coarse-grain mech-
anisms to filter snoops on memory regions private to the requesting
node. They differ from our work in that they are source-filtering
mechanisms. In addition, these mechanisms work at a coarser gran-
ularity and target only a certain category of misses (cold misses or
misses to private data). These techniques may be combined with
our techniques to further improve performance and energy savings.

8. Conclusions

While snoopy protocols using logically-embedded rings in the
network are simple and low cost, straightforward implementations
may suffer from long snoop request latencies or many snoop mes-
sages and operations. To address this problem, this paper made
three contributions. First, it introduced Flexible Snooping algo-
rithms, a family of adaptive forwarding and filtering snooping algo-
rithms, and described the primitive operations they rely on. Second,
it analyzed the design space of these algorithms and described four
general approaches, namely Subset, Superset Con, Superset Agg,
and Exact. These approaches have different trade-offs in number of
snoop operations and messages, Snoop response time, energy con-
sumption, and implementation difficulty.

Finally, we used SPLASH-2, SPECjbb, and SPECweb work-
loads to evaluate these approaches. Our analysis found several
snooping algorithms that are more cost-effective than current ones.
Specifically, our choice for a high-performance snooping algorithm
(Superset Agg with a 7.3-Kbyte per-node predictor) was faster than
the currently fastest algorithm (Eager), while consuming 9-17%
less energy; moreover, our choice for an energy-efficient algorithm
(Superset Con with the same predictor) was only 3-6% slower than
Superset Agg, while consuming 36-42% less energy.

Acknowledgments

We thank the anonymous reviewers and members of the I-
ACOMA group for their valuable comments. Special thanks go
to Luis Ceze, Paul Sack, Smruti Sarangi and James Tuck for their
insights and help with the simulation infrastructure and energy con-
sumption estimations. Karin Strauss thanks IBM Research for her
internship at the Scalable Server Network and Memory System De-
partment at the IBM T. J. Watson Research Center.

References

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. Owner Prediction for Ac-
celerating Cache-to-Cache Transfer Misses in a cc-NUMA Architecture. In High
Performance Computing, Networks and Storage Conference (SC), Nov 2002.

[2] L. Barroso and M. Dubois. The Performance of Cache-Coherent Ring-based
Multiprocessors. In International Symposium on Computer Architecture, May
1993.

[3] B. Bloom. Space/time Trade-offs in Hash Coding with Allowable Errors. Com-
munications of the ACM, 11(7):422-426, July 1970.

[4] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving Multiprocessor Perfor-
mance with Coarse-Grain Coherence Tracking. In International Symposium on
Computer Architecture, June 2005.

[5] D. E. Culler and J. P. Singh. Parallel Computer Architecture; A Hard-
ware/Software Approach. Morgan Kaufmann, 1999.

[6] M. Ekman, F. Dahlgren, and P. Stenstrom. Evaluation of Snoop-Energy Reduc-
tion Techniques for Chip-Multiprocessors. In Workshop on Duplicating, Decon-
structing, and Debunking, May 2002.

[7]1 HyperTransport Technology Consortium. HyperTransport 1/O Link Specifica-
tion, 2.00b edition, April 2005.

[8] R.Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-Core Archi-
tectures: Understanding Mechanisms, Overheads and Scaling. In International
Symposium on Computer Architecture, June 2005.

[9] M. Martin, P. Harper, D. Sorin, M. Hill, and D. Wood. Using Destination-Set
Prediction to Improve the Latency/Bandwidth Tradeoff in Shared-Memory Mul-
tiprocessors. In International Symposium on Computer Architecture, June 2003.

[10] M. Martin, M. Hill, and D. Wood. Token Coherence: Decoupling Performance
and Correctness. In International Symposium on Computer Architecture, June
2003.

[11] M. Marty, J. Bingham, M. Hill, A. Hu, M. Martin, and D. Wood. Improving
Multiple-CMP Systems Using Token Coherence. In International Symposium
on High-Performance Computer Architecture, Feb 2005.

[12] Micron Technology, Inc. System-Power Calculator.
http://www.micron.com/products/dram/syscalc.html.

[13] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based
Coherence. In International Symposium on Computer Architecture, June 2005.

[14] A.Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY: Filtering Snoops
for Reduced Energy Consumption in SMP Servers. In International Symposium
on High-Perfomance Computer Architecture, Jan 2001.

[15] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss,
S. Sarangi, P. Sack, and P. Montesinos. SESC Simulator, Jan 2005.
http://sesc.sourceforge.net.

[16] C. Saldanha and M. Lipasti. Power Efficient Cache Coherence. In Workshop on
Memory Performance Issues, June 2001.

[17] X. Shen. A Snoop-and-Forward Cache Coherence Protocol for SMP Systems
with Ring-based Address Networks. Technical report, IBM T. J. Watson Re-
search Center, June 2004.

[18] P. Shivakumar and N. Jouppi. CACTI 3.0: An Integrated Cache Timing, Power
and Area Model. Technical Report 2001/2, Compaq Computer Corporation, Aug
2001.

[19] Silicon Graphics. Silicon Graphics Altrix 3000 Scalable 64-bit Linux Platform.
http://www.sgi.com/products/servers/altix/.

[20] Standard Performace Evaluation Corporation (SPEC). http://www.spec.org.

[21] Sun Microsystems. Sun Enterprise =~ 10000 Server Overview.
http://www.sun.com/servers/highend/e10000/.

[22] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4
System Microarchitecture. In /BM Journal of Research and Development, Jan
2002.

[23] Virtutech. Virtutech Simics. http://www.virtutech.com/products.

[24] Z. Vranesic, M. Stumm, D. Lewis, and R. White. Hector: A Hierarchically
Structured Shared-Memory Multiprocessor. In IEEE Computer Magazine, Jan
1991.

[25] H.S. Wang, X. P. Zhu, L. S. Peh, and S. Malik. Orion: A Power-Performance
Simulator for Interconnection Networks. In International Symposium on Mi-
croarchitecture, Nov 2002.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In International
Symposium on Computer Architecture, June 1995.

