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Many large-scale utility computing infrastructures comprise heterogeneous hardware and software re-
sources. This raises the need for scalable resource selection services that identify resources that match
application requirements. Such a service must provide an efficient lookup in spite of changing resource
attributes such as disk size, changing application requirements such as installed software libraries, and
changing system composition as resources join or leave. We present a fully decentralized, self-managing
Resource Selection Service (RSS) algorithm by which resources autonomously select themselves when their
attributes match a query. An application specifies what it expects from a resource by means of a conjunction
of (attribute,value-range) pairs, which are matched against the attribute values of resources. The set of
search attributes can also be updated online to reflect new requirements. We show that our solution scales
in the number of resources and in the number of attributes, while being relatively insensitive to churn and
other membership changes like node failures. Our RSS continuously self-adapts its routing structure in
response to variations in the distribution of node attributes and queries. We show that this autonomous
optimization maintains performance and availability in a long-lived service even when the set of application
requirements used to select resources changes.
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1. INTRODUCTION

Applications are increasingly voracious in the computing resources they require to
execute efficiently. Moreover, the computing demand of many users changes over time.
Instead of statically assigning resources to applications, we observe a steady growth
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in the adoption of the utility computing model in large-scale systems like Grids, Peer-
to-Peer systems and Clouds. According to this model, the execution of applications is
outsourced to a (potentially very large) shared external infrastructure of compute and
storage resources that can manage both long-term growth and short-term fluctuations
in use.

In such large-scale systems, the capabilities of individual resources are often very
diverse [Anderson and Reed 2009]. Therefore, an essential instrument is a resource
selection service capable of identifying suitable resources for executing each applica-
tion. The resource selection service should provide a lookup primitive that takes a
specification of required resource attributes and returns a list of machines suitable for
running the concerned application.

Although previous research work targets the problem of resource selection in dis-
tributed systems, some challenges related to this problem have not been completely
addressed yet. An essential issue is the scalability, both in terms of the number of
nodes the service can support and in the supported number of node attributes; utility
computing platforms might need to maintain large numbers of attributes per node to
represent hardware characteristics as well as the (non-)availability of certain libraries
or other administrative properties.

Besides scalability, another challenge in large scale distributed systems is their dy-
namic and complex behavior: computing resources can join or leave the system at
any time, creating so-called churn; whole data centers might become unreachable due
to network failures; operating systems and software systems might be upgraded or
modified; and application requirements might change over time. To maintain efficient
behavior, the system needs to dynamically self-adapt to all such changes. While some
self-adaptation may occur independently at each node, other changes require coordi-
nation among a vast majority of nodes to maintain the system’s correctness in the
presence of churn. For example, nodes can locally perform maintenance of the overlay
by periodically checking for failed neighbors. However, changing the attribute space to
add or remove search attributes requires coordination among nodes to prevent conflict-
ing views of the search space. Currently, such changes requiring global coordination
are done offline by administrators and are not amenable to online dynamic control.

The resource selection solutions proposed previously range from centralized and hi-
erarchical node directories to DHT-based solutions [Ranjan et al. 2008]. Most of these
approaches rely on delegation, where compute nodes register their attributes to reg-
istry nodes that implement the lookup functionality. Registry nodes must then monitor
the availability of compute nodes and periodically refresh the registered attribute val-
ues to maintain accuracy. We claim that delegation should be avoided for four reasons:
(i) it creates unnecessary load on the system due to the periodic revalidations of the
registered values and the need to check node availability regularly; (ii) it creates in-
consistency between the actual and registered attribute values, for example, in the
case of a failure of a compute node or its corresponding registry node(s); (iii) it creates
imbalanced workloads, requiring extra effort to balance. DHT-based resource selection
systems frequently divide the searchable space on a per-attribute basis and each peer
in the system is then responsible for keeping references to the nodes in charge of those
specific attribute values. This, however, generates uneven load distribution when a
particular attribute range becomes popular; (iv) it leads to scalability problems: cen-
tralized and hierarchical registries can in principle handle any number of attributes
but have limited scalability in the number of nodes, particularly in a dynamic envi-
ronment that is exposed to failures, where managing a robust node hierarchy is far
from trivial [van Steen and Ballintijn 2002]. On the other hand, DHT-based solutions
usually scale very well with large numbers of nodes, but they do not efficiently support
multidimensional-range searches.
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This article extensively discusses the Resource Selection Service (RSS) implemented
in the context of the XtreemOS Grid operating system [Coppola et al. 2008]. RSS is a
fully decentralized system where each compute node is solely responsible for its own
attributes and self-organization is achieved through a gossip-based overlay comprising
all the nodes. Given the fact that in our system each computing resource acts as a node
in the service’s overlay, we will use the terms resource and node interchangeably.

Self-adaptation mechanisms enable RSS to automatically maintain performance in
the presence of churn, of changes in the query workload patterns and of changes in
the distribution of node attribute values. These adaptation mechanisms enable good
performance even during online changes in the set of attribute values.

In RSS, nodes are directly responsible for providing accurate and timely informa-
tion about their resources, and to minimize overhead queries are routed quickly to
nodes that can provide the desired resources. Each node is conceptually placed in a
multidimensional space where each dimension represents a resource-attribute type. A
query is specified as a list of (attribute, value interval) pairs, effectively demarcating a
subregion in this multi-dimensional space. Irrelevant attributes for a given job can be
left unspecified. Nodes maintain a few links to other nodes in an overlay network so
that queries can be forwarded to a node that lies either in the associated subregion or
is closer to that region. Once a query is being processed within the associated subre-
gion, it needs merely to be forwarded to enough nodes within that subregion to satisfy
the query. Gossip-based epidemic protocols [Voulgaris and van Steen 2005] manage
the overlay network, enabling high resilience to faults with negligible overhead. A
gossip-based aggregation protocol [Sacha et al. 2010] is used to continuously estimate
the statistical distribution of node attribute values and of query ranges. Based on
these estimations, RSS self-adapts the way the multi-dimensional space is divided to
minimize the routing overhead. This self-adaptation maintains routing efficiency for
queries even in the presence of large variations in the attribute values of resources or
the composition of queries. We are not aware of any other resource selection system
that can autonomically adapt to the dynamic composition of the attribute search space,
the distribution of attribute values, and the changing query workload.

This article is an extended version of a previous conference paper [Costa et al.
2009]. The additional contributions of this article are as follows: (i) we present and
evaluate self-adaptation algorithms that enable RSS to maintain high performance
despite changes in the query workload patterns and node attribute distributions; (ii)
we present and evaluate algorithms that allow system administrators to control the
set of attributes considered by the RSS without the need to stop the system; and (iii)
we significantly extend the discussion on the gossip-based overlay maintenance and
present new algorithms that improve convergence times.

The article is organized as follows: Section 2 presents the RSS system model. Then,
Section 3 details the query routing protocol, and Section 4 shows how the overlay is
constructed and maintained in the presence of churn. Section 5 details the admin-
istration functionality to change the attribute set, while Section 6 demonstrates the
benefits and importance of self-adaptation to attribute value and query load distribu-
tions. Section 7 discusses related work, and Section 8 concludes the article.

2. SYSTEM MODEL

In our model, each node is characterized by a set of (attribute, value) pairs such as
memory, bandwidth and CPU power. For the sake of simplicity, in this section, we
assume that the number of attributes is fixed and known a priori. In Section 5, we
discuss adding and removing attributes online.
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We represent the overlay as a d−dimensional space A � A1 × A2 × · · · × Ad, with
Ai being the set of all possible values for attribute ai and d the number of different
attributes considered. Every node X can therefore be represented as a single point
with coordinates (v1, v2, . . . , vd) where vi is the value of attribute ai for node X . A query
is defined as a binary relation over A, that is, q : A → {0, 1} that selects nodes which
satisfy the application requirements. For simplicity, we focus on range queries so the
query can be represented as a range [min, max] such that only nodes within the range
satisfy the query. More complex queries can be represented as the union of different
range queries. The set of nodes for which q yields 1 represents the set of candidates to
be allocated to the application. Note that q identifies a subset Q(q) � Q1×Q2×· · ·×Qd,
where Qi ⊆ Ai.

As an example, consider a space based on five attributes: CPU instruction set, mem-
ory size, bandwidth, disk space, and operating system. An example query could then
be formulated as:

CPU = amd64
MEM ∈ [4 GB,∞)
BANDWIDTH ∈ [512 Kb/s,∞)
DISK ∈ [128 GB,∞)
OS ∈ {Linux 2.6.19-1.2895, . . . , Linux 2.6.20-1.2944}

A query can be issued at any node; there is no designated node where queries should
initially be sent to. Finally, we assume that the underlying network is fully connected
such that each node can reach any other node, as it is common on the Internet.

3. QUERY ROUTING

This section discusses the base resource discovery protocol without self-adaptation. We
first describe the properties of the simple overlay, then detail query routing, building
up an understanding of why and how RSS self-adapts to large changes in the query
distribution and values of node attributes. Query routing in RSS can be optimized
when the distribution of node attribute values and query ranges are known. Learn-
ing and leveraging the distribution of such values is the goal of the self adaptation
mechanisms that are described in Section 6.

3.1. Overlay Network Topology

The model of node attributes described in Section 2 is naturally represented as a multi-
dimensional cube. In order to scale up to large numbers of nodes, we must limit the
amount of links that each node needs to maintain. A naive, inefficient solution is to
connect every node, for each dimension, with its most immediate neighbors, that is,
the nodes having the most similar attribute values. When a node receives a query
message q, it can then forward it in a greedy fashion to the neighbor closest to the area
Q(q). Unfortunately, this approach creates dramatic latency and traffic overheads:
since a query can be issued at any node, it may need to traverse many nodes along
every dimension to reach the area Q.

We instead opt for a hierarchical approach by recursively splitting the
d-dimensional space into smaller spaces, called cells, and providing each node with
a link to the increasingly larger subspaces of which it is a member. An example for
d = 2 is shown in Figure 1(a). The largest cell has been partitioned into four smaller
cells which each, in turn, have been split into four even smaller cells. Note that the
attribute ranges of each cell do not have to be regular: One cell may range over mem-
ory between 0 and 128 MB, and another one between 4 GB and 8 GB. This allows us
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Fig. 1. Attribute space partition with d = 2.

to deal with skewed distributions of attributes values. For the same reason, we do not
impose an upper bound on attribute values: in our example, all nodes with more than
8 GB of RAM will be placed in the lowest row of the grid.

To distinguish among cells, we introduce the notion of level l. The smallest cells are
at level zero. These are denoted as C0. C1 cells are obtained by grouping four C0 cells.
Similarly, four C1 cells create a single C2 cell and so on. More formally, given a cube of
d dimensions and a level l, a Cl cell is obtained by joining 2d adjacent Cl−1 cells. Every
node X belongs to a unique Cl cell, denoted Cl(X ).

The key to our approach is that when a node X is requested to handle a query q, X
forwards the query to the lowest level cell Cl(X ) that overlaps with Q(q). This approach
requires that for each level l, X knows about nodes in Cl(X ) \ Cl−1(X ). We construct for
each dimension a neighboring subcell of Cl−1(X ) by first splitting Cl(X ) along dimension
#0. The half in which Cl−1(X ) is contained, is then split along dimension #1. This
procedure is repeated until all dimensions have been considered, so that we will then
have created d subcells at level l of Cl(X ), each of which is adjacent to one “side” of
Cl−1(X ). Figure 1(b) shows the neighboring cells for a node A with the corresponding
levels and dimensions.

We require that a node knows one other neighbor node falling in one of these subcells
for each level l > 0, and a set of neighbors for the subcell with the level l = 0. If no
node is present in a given subcell, then no link must be maintained. The nodes in
C0(X ) are arranged in such a way that X can efficiently broadcast a message to each of
them, for example through an epidemic protocol [Jelasity et al. 2007]. Links need not
be symmetric. We denote the neighboring cell of node X at level l and dimension k as
N (l,k)(X ). Similarly, the selected neighbor in N (l,k)(X ) is denoted as n(l,k)(X ). Notably,
while the number of Cl cells grows exponentially with the number of dimensions, the
number of N (l,k) subcells (and hence the number of neighbors required per node) grows
only linearly, and will thus not hinder scalability.

Figure 2(a) shows an example for node A (for the sake of clarity, we omit the con-
nections among the other nodes). First, A is connected with some other nodes in C0(A)
that is, B and C. Then, for each neighboring cell N (l,k)(A) depicted in Figure 1(b), it
must choose one node n(l,k) to connect with. For l = 1, it has chosen nodes D (k = 1) and
E (k = 0). For l = 2, it has two available nodes for k = 0 (F is selected). There is no
node in N (2,1)(A) so no link is created. The same procedure is repeated for l = 3 (nodes
O and H are selected).
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Fig. 2. Two-dimensional RSS system example. The dotted rectangle indicates a query area.

Note that even if the nodes are initially uniformly distributed throughout the space,
over time changes in the node’s attribute value distribution can result in a highly
skewed distribution of nodes in the space. Our protocol benefits in some respects from
a skewed distribution. If most nodes fall within a small portion of the space, this
means that on average nodes will have fewer neighbors because many neighboring
cells will be empty (e.g., A has no neighbor in N (2,1)(A)). However, as a previous ex-
ample demonstrated query routing can be adversely affected by extremely large cells
because queries do not use hierarchical routing within a cell. In Section 6, we describe
our solution to eliminate large cells that can develop after initial deployment.

3.2. Query Routing

We illustrate query routing in RSS by example as depicted in Figure 2(b). Assume
that node A is looking for σ = 4 nodes that have a network connection greater than
512 Kb/s and at least 4 GB of RAM. Graphically, this is represented by the dotted
rectangle in Figure 2(b), representing the area Q. Node A will first find that itself does
not fall into Q. A then increases its scope starting from the highest level neighboring
cells, until it finds one that overlaps Q. In our example, this process ends immediately
with l = 3, since an overlap is found between N (3,0)(A) and Q. Hence, node A forwards
the query to its neighbor n(3,0)(A) responsible for that subcell (node O in the example).
The latter will proceed in the same way. However, to avoid backward messages, it
considers only N (3,1)(O) or lower-level cells.

Node O finds that N (3,1)(O) partially overlaps Q. It therefore forwards the query to
T, that is, n(3,1)(O). T first includes itself in the candidate set as it matches the query
requirements. Then, since both N (3,0)(T) and N (3,1)(T) cannot be further considered
to avoid backward propagation of the query, it can just consider N (l,k)(T) with l < 3.
It therefore routes the query towards n(2,0)(T), namely U, which fulfills the query re-
quirements. Since A asked for 4 nodes, U continues to disseminate the query to S, in
N (1,1)(U), which also matches. Now, S cannot propagate the query further and thus
replies back to U. Also U, T and O do not have alternative paths so, following the
return path, the query goes back to A. Node A, however, can forward the query to H,
since also N (3,1)(A) overlaps with Q. Here the propagation occurs as above and in the
end the query reaches node L, whose attributes also match the query. This algorithm
can easily be extended to support rapidly changing attributes, such as the available
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disk space of a node. Instead of representing this attribute as an extra dimension,
one can route queries according to other requested attributes, and let resources check
locally if they match the dynamic attribute as well. This is not feasible in delegation-
based systems.

As shown in Figure 2(b), query propagation follows a depth-first tree rooted at the
originating node. This ensures that no loops are created. However, this tree is cre-
ated dynamically each time a new query is issued, exploiting the links of the overlay
network and thus dependent on the properties of the overlay. Compared with tradi-
tional approaches, where a single tree is used, this solution is more efficient due to a
better load distribution and much lower maintenance costs, especially in presence of
churn. With the self-adaptation discussed later, maintenance of the cell boundaries is
autonomous and efficiently distributes load even in a highly dynamic system.

The query stops when all matching nodes have been found or the upper bound σ on
the number of requested nodes has been reached. We refer the interested reader to
Costa et al. [2009] for a formal description of the routing protocol.

3.3. Evaluation

To assess the performance of our routing protocol with fixed cell boundaries, we built
two implementations. We deployed the first implementation on the DAS-3 cluster at
VU University Amsterdam [DAS-3]. We emulated a system with 1,000 nodes by run-
ning 20 processes per node on 50 nodes. The second implementation runs on top of the
PeerSim discrete event simulator [Jelasity et al.]. This allows us to explore setups with
up to 100,000 nodes.

Based on these setups, we evaluated the performance of our system in terms of effi-
ciency and correctness. Efficiency is measured in terms of routing overhead, defined as
the average number of hops travelled by a query through nodes that did not match the
query themselves. Correctness means that each node that matches a query must be hit
exactly once. We note that we always obtained 100% delivery (i.e., all matching nodes
receive the query message) in all experiments where the system does not experience
churn or changes in the node attributes. We discuss the effects of churn and dynamic
changes on delivery in Sections 4.3 and 5.3.

In all experiments, including the ones on the DAS, we first randomly populate the
space with nodes following a uniform distribution and give them sufficient time to
build their routing tables. Effectively, this allows us to consider the space as nicely
built up from equally-sized d-dimensional cells. In later experiments, we drop the uni-
form distribution of nodes and consider a skewed one. In these experiments, we fix the
cell boundaries to evaluate the base protocol without self-adaptation.

We generate queries by selecting a subspace in the d-dimensional space such that it
approximately contains a desired fraction f of the total number of nodes N, which we
refer to as the query selectivity. Each query will therefore be satisfied by approximately
f × N nodes. Different queries refer to different subspaces. Each query is then issued
repeatedly from every node in the system. Unless otherwise specified, simulations are
based on the default parameters depicted in Table I.

Hereafter, we focus on the performance of the routing protocol and basic overlay and
defer discussion of maintenance of the overlay to Section 4.

3.3.1. Effect of Network Size. Figure 3 plots the routing overhead of our system for
different network sizes N. In all configurations, the overhead remains very small,
on average below three messages per query. The overhead increases approximately
logarithmically until 10,000 nodes, then decreases for large network sizes. This is due
to the threshold σ = 50: when the network is densely populated, a query often reaches
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Table I. Default Simulation Parameters

Parameter Default value

Network size (N) 100,000 (PeerSim)
1,000 (DAS)

Query selectivity ( f ) 0.125
Max. no. requested nodes (σ ) 50

Dimensions (d) 4
Nesting depth (max(l)) 3

Fig. 3. Routing overhead vs. network size (PeerSim).

its requested threshold very early and does not need to iterate through all cells that
may overlap with the query.

3.3.2. Effect of Query Selectivity. We now study the cost of queries with different se-
lectivity, that is queries that match different fractions of the total system nodes. We
studied two workloads. In the “best-case” scenario, each query is built such that it
is satisfied by the nodes in a single cell and matches exactly the required number of
nodes. The “worst-case” scenario consists of queries that require nodes from multiple
subcells such that every dimension and cell level is represented. This represents the
worst-case scenario because this requires to route the query on every dimension and
level, thus increasing the path to reach all matching nodes.

Figure 4 shows results based on PeerSim and DAS. In the best-case scenario, the
overhead remains negligible for all selectivity values. The worst-case scenario, how-
ever, shows higher overhead values, albeit still reasonable: for example, in Figure 4(a),
for f = 0.125 the overhead is 257 messages, to be compared with 12,500 matching
nodes. This is due to the fact that queries that span multiple subcells must be split to
cover all requested cells. This overhead decreases for queries with high selectivity: in
these cases, the system contains less nodes that do not match the query.

In most cases, we can assume that a user wants to identify a limited number of
nodes out of a large population of candidates that match the query. Due to the depth-
first search of our algorithm, such queries can be stopped when they reach the thresh-
old σ . This explains why experiments with σ = 50 always exhibit very low query
overheads.

The overhead in the worst case does not change significantly between 100,000
(Figure 4(a)) and 1,000 nodes (Figure 4(b)). The reason is that the number of nodes to
contact to reach the matching ones does not depend on the size of the network but on
the topological properties of the space (i.e., the number of dimensions and the nesting
depth), which are the same in both systems.
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Fig. 4. Routing overhead vs. selectivity.

Fig. 5. Routing overhead vs. dimensions.

In our experience, the (non-)alignment of queries with the cell boundaries is one of
the main factors which determines the performance of RSS. Ideally, cell boundaries
would be selected such that most queries cover exactly one cell. This is however very
difficult to impose, as users can in principle send any query workload to the system.
We return to this issue in Section 6 where we discuss self-adaptation algorithms to
dynamically control the cell boundaries and minimize query cost.

3.3.3. Effect of the Number of Dimensions. A major difficulty in multidimensional peer-
to-peer systems is to be able to handle a large number of dimensions, which in our
system correspond to node attributes. Figure 5 charts the performance when using
different numbers of dimensions, in both PeerSim and DAS setups. In PeerSim, the
overhead increases slightly with the number of dimensions, while in the DAS it re-
mains roughly constant. These variations, however, remain difficult to interpret, as
such low overhead values typically fall within statistical error margins. Note that in
all cases the overhead remains very low.

3.3.4. Load Distribution. In a large-scale system, it is important that the load imposed
by the protocol is evenly distributed among nodes. Figure 6(a) shows the load in terms
of messages (queries and replies) dispatched by each node. We exercised PeerSim with
two different node distributions across the space. In the first one, each parameter of
each node is selected randomly in the interval [0, 80] using a uniformly random distri-
bution. The second configuration creates a hotspot around coordinate (60, 60, . . . , 60).
Nodes were distributed around that coordinate, with a standard deviation of 10.
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Fig. 6. Node load distribution.

In both cases, we observe that no node receives a load significantly higher than the
others. This is due to the way neighbor lists are constructed (see Section 4). Even
in dense areas of the hyperspace, each node selects its neighbors independently. The
inherent randomness of this neighbor-selecting protocol evenly distributes the links
across all nodes of a given cell which, in turn, leads to an even distribution of load
among those nodes.

Figure 6(b) shows the load (as number of queries processed) seen by nodes compar-
ing a DHT-based implementation to our approach in the DAS setup using 16 dimen-
sions. Node attributes for each dimension are taken from the XtremLab BOINC project
traces [XtremLab Project] that record node properties seen for more than 10,000 hosts
in BOINC projects and are highly skewed. We use the Bamboo DHT [Rhea et al. 2004]
and, as in SWORD [Albrecht et al. 2008], store a record of the nodes’ attributes in the
DHT at a key for each attribute value for each dimension. Searches are performed
using a range query (implemented as an iterated search) across a random dimension
until the requested number of nodes is found matching the query or the range is ex-
hausted. Note that delegation produces a distribution with a heavy tail so that a few
nodes receive a large number of queries in the DHT approach while our approach sends
relatively few queries to all nodes, thus achieving an effective load-balancing. We chose
SWORD for our comparison because it has been successfully adopted as resource se-
lection service in PlanetLab and it is based on the publicly available Bamboo DHT.
Nevertheless, the conclusions drawn can be extended to other DHT-based approaches
as well.

3.3.5. Number of Neighbors Per Node. The next evaluation concerns the number of links
that each node must maintain. Links belong to two categories. First, a node must
maintain its neighborZero list, which links to at most every other node present in the
same lowest-level cell. The number of cells in the system is

(
2d

)max(l), where d is the
number of dimensions and max(l) is the nesting depth. The cell number grows ex-
tremely fast with d and max(l), so we expect that in practice a lowest-level cell will
contain only nodes strictly identical to each other (e.g., nodes belonging to the same
cluster). However, even if that is not the case, we can relax this condition by demand-
ing that the nodes in the same lowest-level cell are connected in an overlay. Such
overlays are easy to construct and maintain [Jelasity et al. 2007].

Second, every node must maintain one link to a node in every neighbor cell for each
dimension and level. Each node thus has d × max(l) neighbor cells. However, because
of the huge number of cells, even a 100,000-node system such as our PeerSim example
will leave most cells empty. Nodes do not need to maintain a link to empty cells, so
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Fig. 7. Number of neighbors (PeerSim).

the actual number of neighbor links per node will be much lower than d× max(l). This
is confirmed in Figure 7(a): except for very low numbers of dimensions, the number
of links per node, both in its neighborZero list and in its neighbor cells, is virtually
constant. Similar results (omitted here for brevity reasons) are also obtained when
varying max(l).

Figure 7(b) plots the distribution of the links per node in PeerSim, under uniform
and normal distribution. In both cases, this number remains under 20 links in total.
We note, however, that the normal distribution case requires slightly more links per
node. This is due to the fact that neighborZero lists will grow in the cells around the
hotspot.

4. OVERLAY MAINTENANCE

An important issue in the RSS protocol is to efficiently maintain the overlay in the
presence of dynamic changes in the system. Nodes must be expected to join or leave the
network frequently, for example due to failures and recoveries. Also, a node’s attribute
values may change during the system’s lifetime. The distribution of requested values
in queries will change significantly, possibly even on short time scales. In this section,
we show how the RSS overlay is proactively maintained in order to preserve routing
correctness despite such changes. In this section, we do not address yet self-adaptation
for performance optimization.

4.1. Principles

Overlay maintenance is realized using previous work from our group in which nodes
can dynamically self-organize into any predefined structure. The approach relies on
a layered gossip-based protocol [Voulgaris and van Steen 2005]. In this organization,
each node takes part in several overlays. Each overlay proactively maintains a list of
links to other nodes in the system according to a well-defined criterion. In the simplest
setup, we need two layers to build and maintain the RSS overlay over time.

The bottom layer executes the CYCLON protocol [Jelasity et al. 2007], which aims to
connect all nodes into a randomly structured overlay. Each node maintains a small list
of Kc random links to other nodes in the system (with Kc � N). Each node periodically
selects one neighbor randomly among Kc and exchanges a few of its links with those
from its neighbor’s list. This way, all nodes are periodically provided with a refreshed
set of links to other randomly chosen nodes. The resulting overlay closely resembles
a random graph in which failing nodes are quickly replaced and removed from the
lists of other nodes. Such overlays have been shown to be extremely robust against
partitioning even in the presence of churn and massive node failures.
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The upper layer, named VICINITY, aims to maintain links to semantically related
nodes rather than to random nodes. VICINITY executes a protocol very similar to CY-
CLON in that each node has a set of Kv links to other nodes and periodically exchanges
information about a subset of its links Kc and Kv with its neighbors. However, un-
like in CYCLON, nodes do not select links to keep in their sets randomly but choose
them according to a preference function. All VICINITY links are associated with the
attribute values of the nodes they represent. The preference function is constructed in
such a way that the node that runs VICINITY selects at least one neighbor in each of
its neighboring cells (assuming enough neighbors are available). This way, RSS nodes
build an overlay required to route queries using the algorithm described in Section 3.

The two gossip layers interact in the sense that the underlying CYCLON layer con-
tinuously feeds the top VICINITY layers with random nodes to make sure the system
remains connected. While the VICINITY layer are optimized for searching, the bottom
CYCLON protocol is designed to handle network dynamics and to provide up-to-date
information that will allow proper adjustments in the semantic lists.

These gossip protocols involve a continuous succession of so-called gossip cycles,
where at the beginning of each cycle the node contacts one of its neighbors to exchange
information with. Typically, the length of a gossip cycle is in the order of seconds; for
our experiments we chose a gossip cycle length of 5 seconds.

In order to join the system, a new node needs to know the addresses of a few other
nodes (at least one) that already participate in the overlays, and with whom it will
start gossiping. No particular bootstrapping action is necessary beyond this point.
The new node will automatically be fed with the information it needs thanks to the
regular gossiping protocol.

As discussed in Voulgaris and van Steen [2005] and Section 4.3, this approach for
self-organization converges very fast in the presence of major changes in node mem-
bership due to the fact that if two nodes are neighbors of each other, then there is a
high probability that they have other neighbors in common.

4.2. Overlay Maintenance Implementation

In RSS, we use two separate VICINITY layers on top of CYCLON. The role of the first
layer is to maintain links to nodes in neighboring cells. Specifically, each node X main-
tains, for each level l and each dimension k, at least one link to a node placed in the
neighboring cell N (l,k)(X ). When choosing their neighbors for this layer, the nodes also
use their CYCLON caches, which provide fresh lists of random overlay members.

The second VICINITY layer aims to maintain links to other nodes located in the same
zero-level cell. Unlike the first VICINITY layer which needs to find only one node in
each neighboring cell, here the overlay aims to discover as many zero-level neighbors
as possible. This dense inter-cell node mesh allows spreading queries efficiently within
a zero-level cell in order to discover matching nodes.

Figure 8 shows an example of the links maintained by a node in the three gossip
layers. Any node can simply lookup in its two VICINITY neighbor lists to find nodes in
specific cells, and thereby route queries.

4.3. Evaluation

Experiments presented so far assume that the list of nodes remains stable. This is
clearly unrealistic: any large network will exhibit a degree of dynamicity due to
node joins and leaves. In particular, ungraceful node departures may represent an
issue, since the routing tables of other nodes need to be updated to maintain correct
routing. We claim, however, that no particular measure should be taken to handle
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Fig. 8. Example of links maintained by a node in different gossip layers.

churn. Instead, the underlying gossip-based protocol maintains correct routing tables
continuously.

To support this claim, we evaluate our system with PeerSim in the cases of churn
(a small percentage of nodes continuously joining or leaving the system) and massive
failure (a large number of nodes failing simultaneously). We use as a metric the query
delivery, which is defined as the fraction of nodes that are delivered in response to
a query, compared to the total number of nodes that actually match the query. We
also repeated the experiments on the DAS, which shows results comparable to those
obtained on PeerSim. We omitted the charts for space reasons but they can be found
in our previous paper [Costa et al. 2009].

4.3.1. Delivery under Churn. To evaluate the system under churn, we consider churn
rates of 0.1% and 0.2% per gossip cycle. This means that respectively 0.1% and 0.2%
of the nodes leave the system and re-enter it under a different identity every gossip
cycle. Considering the gossip cycle length of 5 seconds, the 0.1% value corresponds to
a churn rate of 0.2% per 10 seconds, which was observed in Gnutella [Saroiu et al.
2003]. However, many real-world systems are considerably more stable [Iosup et al.
2007]. We use a network size N = 10,000.
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Fig. 9. Delivery vs. churn (PeerSim).

We measure the delivery over time by issuing one query every 5 seconds. Although
in these experiments the queries are issued with the same frequency as the gossip
cycles, there is no synchronization in the simulator between the query routing mes-
sages and the gossip messages. In order to assess the effect of churn with the highest
accuracy, we did not set any threshold value for the queries, that is, σ = ∞. There-
fore, a delivery of 1 means that we reached all the matching nodes. As shown in
Figure 9, the delivery rate remains high both for 0.1% and 0.2% churn rates. A de-
livery of 0.8 means that we retrieve 80% of all matching nodes. However, we expect
most users of a real system to issue queries with a threshold. In such cases churn
would only slightly reduce the number of reachable matching nodes to choose from,
but most queries would be satisfied according to their specification. For instance, with
a network size N = 10,000 and a selectivity f = 0.125, a delivery of 0.8 yields around
1,000 nodes (i.e., N · f · 0.8), which will often be above the expected number of nodes
needed for a job.

Also note that in these experiments, if a query cannot be propagated due to a broken
link, the message is dropped. An alternative is to delay the query until the overlay has
been restored by the underlying gossip protocols. This would have allowed delivery
close to 1. However, this approach would increase latency, because nodes, upon the de-
tection of a failed neighbor, would wait for the overlay to be repaired before forwarding
the query.

4.3.2. Delivery under Massive Failure. This experiment studies delivery when a massive
failure of a large fraction of the system happens simultaneously. We measure the
delivery over time before and after the failure. Again, we do not use any threshold
values or the previously discussed mechanism to avoid evaluation bias.

Figure 10(a) and 10(b) shows delivery in PeerSim when we remove respectively 50%
and 90% of random nodes from the network at once. We submit a query to the system
once in every 5 seconds (which is, once per gossip cycle). When the failure occurs
many routing paths get disrupted, so the delivery oscillates across a broad spectrum.
However, the system re-organizes itself rapidly. In the case of 50% simultaneous node
failures, the system needs less than 10 minutes to recover completely. Only in the
case of 90% simultaneous failures, the delivery could not be restored. The overlay gets
partitioned by the massive failure so full recovery is impossible. A fallback protocol
could be used in this case to bootstrap the system again.

5. ONLINE RECONFIGURATION

In a long-lived system, administrators will face the need to modify the set of attributes
that describe the computing resources. For example, if the users of a new application
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Fig. 10. Delivery vs. massive failure.

need a specific library, the resource selection service must distinguish between the
nodes on which the library is available and the ones on which it is not; furthermore,
it might also be necessary to distinguish between different versions of the library. In
this case, the administrators need to add a new attribute corresponding to the library.
Conversely, when a certain library or feature is no longer used as a search criterion,
the corresponding attribute should be removed.

Changes to the attribute search set must be performed online because the resource
selection service is integral to using the system. Consequently, we designed a protocol
that allows RSS to update its attribute set at runtime. In essence, this translates into
modifying the dimensions of the RSS’s attribute space while simultaneously handling
search queries. In this section we introduce the update protocol and present a PeerSim-
based evaluation.

In RSS, we consider three types of dimension set updates.

— Adding a Dimension. This requires the administrator to specify the name of the
new attribute and provide a code module that can calculate the value for the new
attribute at any node in the system. Providing the appropriate security and access
control mechanisms is outside the scope of this article. However, we envisage that
every update (especially code) is signed by an administrator and can be securely
verified by every node in the system.

— Removing a Dimension. For this operation, the administrator has to specify the
name of the dimension to be removed.

— Updating a Dimension. This refers to changing the method by which an attribute
value is computed (for example, when a more accurate or efficient CPU usage
method is developed); the administrator has to provide new code that computes
the attribute value.

The two main challenges in performing such dynamic updates are to quickly propa-
gate the update to all system’s nodes and to handle the user queries consistently while
the update is in progress. The following two sections address these issues.

5.1. The Update Protocol

In RSS, new dimension sets are disseminated through a push-pull gossip protocol,
which allows for rapid (exponential rate) propagation and has advantages of high scal-
ability, robustness, and low overhead. Specifically, we use the same CYCLON protocol
that stays at the base of the RSS overlay.

A dimension set update is introduced into the system by an administrator and can
be submitted to any node in the system. The administrator associates every update
with a timestamp. An update performed on a node creates a new node configuration,
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Fig. 11. Pseudocode for a gossip exchange during which a node updates its dimension set.

which consists of a timestamp and a list of dimension specifications. A dimension
specification contains a dimension name, a code module for computing attribute values,
and a timestamp of the last modification done to that dimension (or the time when the
dimension was introduced if there have been no modifications).

We require that timestamps are totally ordered and newer configurations eventually
overwrite an older configuration. We expect the frequency of updates be of the order
of minutes, if not hours. This means that a loosely clock synchronization among nodes
such as the one provided by the Network Time Protocol (NTP)1 is sufficient.

In the RSS, each node periodically gossips with a randomly-selected CYCLON neigh-
bor in order to check for dimension updates. We use a push-pull gossip model in which
two gossiping nodes both send and receive their current configuration timestamps. If
the timestamps are equal, nodes have the same configurations and no further com-
munication is required. Otherwise, the node with the older configuration sends its
dimension timestamps to the node with the newer configuration. The latter node then
replies with the specifications for the dimensions that have been updated (i.e., those
that have newer timestamps). The pseudocode for the gossip exchange is shown in
Figure 11. As we show later in the evaluation section, this simple push-pull protocol
propagates updates to virtually all nodes in a large system in just a few gossip cycles.

5.2. Query Handling during Updates

The RSS query-routing protocol described in Section 3 requires that all nodes involved
in query processing must use the same configuration (i.e., the same set of dimensions).
Although the push-pull update protocol propagates new configurations very quickly
to all nodes in the overlay, inevitably there are moments during reconfiguration in
which multiple nodes have different dimension sets. Furthermore, since queries are
processed in a certain non-negligible time, even if all nodes could switch their configu-
rations instantaneously and synchronously, it might still happen that dimension sets
are updated while queries are being processed.

In order to be able to handle queries correctly during configuration changes, RSS
nodes temporarily cache old configurations. Each time a node receives a new configu-
ration, it caches its current configuration together with the current set of neighbors. To
prevent a maintenance overhead increase, the node runs the overlay maintenance pro-
tocols (CYCLON and VICINITY described in Section 4) only for the most recent neighbor

1http://www.ntp.org
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set. Cached configurations and corresponding neighbor sets are stored read-only and
are eventually discarded after a timeout.

When a query is generated by a node, it is associated with a configuration times-
tamp. All nodes that receive this query must make sure that they use the same (po-
tentially cached) configuration to route the query consistently. In case a node receives
a query for which it does not yet have a configuration, it can obtain the needed config-
uration from the query sender. However, as described later, we avoid such situations
by delaying the use of new configurations.

Another challenge in handling queries while dimension sets are being updated is
related to neighbor discovery. When a node receives a new configuration, it starts
building a new neighbor set based on the new dimension specifications. For a certain
time the node has an incomplete neighbor set because the overlay maintenance pro-
tocols need to run for a few gossip cycles to discover all neighbors. In order to avoid
routing queries over incomplete neighbor sets, RSS nodes delay the use of new con-
figurations. Specifically, when a node generates a query and its current configuration
is more recent than a certain threshold, the query is associated with an old (cached)
configuration. Using this mechanism, nodes make sure that queries are routed over
fully converged and healthy overlays.

5.3. Evaluation

We evaluated the protocol for handling the reconfiguration of dimension sets in Peer-
Sim. The goals of the evaluation were to assess how fast the new configurations are
propagated in the system, and how much the query delivery rate is affected during
such reconfiguration.

We present here the results of an experiment simulating a system with 10,000 nodes
and with 5 initial dimensions, in which we perform two reconfiguration operations:
adding a new dimension and then removing an older one. These operations are initi-
ated, respectively, at 80 and 160 gossip cycles from the system startup.

This experiment shows that the updates are spread at an exponential rate among
the nodes, which is consistent with the theoretical results proved by the existing lit-
erature on push-pull gossiping [Jelasity et al. 2007]. Figure 12(a) shows the results of
our experiment in this respect. On the y axis we represent the total number of nodes
that are currently using the updated dimension sets (each curve corresponding to one
of the two updates). The x axis represents the time. As can be seen from the figure,
it takes only approximately 5 gossip cycles (25 seconds) to propagate an update in a
10000 nodes system. The curves are used to represent the latest update obtained by
the nodes; thus, once the second update is issued, the first update will be used by fewer
and fewer nodes.

Figure 12(b) shows the query delivery rate for the same experiment. The queries are
issued in this experiment at every 5 seconds. We noticed that, after a reconfiguration,
the system needs approximately 20–30 gossip cycles (100–150 seconds) to completely
rebuild the overlay and achieve a high delivery rate. In this experiment we again
performed an exhaustive search in the system (i.e., asking for all the nodes that satisfy
some given requirements), which is more than users normally require.

The communication overhead associated with a dimension set update is small. The
mechanism used to update the dimension set is similar to the one employed to update
the cell boundary sets for self-adaptation. We estimate this overhead in Section 6.6.5.

6. SELF-ADAPTATION

The cell boundaries in RSS can be chosen arbitrarily as the routing algorithm
works correctly for any division of the virtual space. However, we observed that the
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Fig. 12. System behavior during two reconfiguration operations.

placement of cell boundaries has a strong impact on RSS’s performance. In this sec-
tion, we describe the self-adaptive algorithm that continuously runs at all RSS nodes
and makes autonomous decisions on cell boundary placement based on the current
system load and node characteristics. As we show later, this self-adaptive algorithm
reduces query routing overhead in RSS up to 4 times.

The self-adaptation mechanism is integral to a long-lived resource service that can
survive significant changes in query load and the composition of the nodes in the sys-
tem. This mechanism enables RSS to support occasional changes in attribute values.
However, using it to support fast-changing attributes such as the CPU load or the cur-
rent amount of available memory would incur very frequent reconfiguration of the RSS
overlay and, hence, it would be highly inefficient. To avoid this overhead, RSS supports
fast-changing attributes using local filters. Queries are routed only based on static (or
moderately changing) parameters. Each matching node can then locally check if it
also matches additional dynamic properties, and decide to add itself to the result or
not based on this local information. This reduces the RSS reconfiguration overhead
and allows queries to always use up-to-date information about dynamic parameters.
A similar approach of performing the system-wide search based on static parameters,
and then checking the dynamic values, was recently used by Sharma et al. [2011].

6.1. Performance Model

As discussed in Section 3, the cost of a query routing from a node where a query is sub-
mitted to the cell matching this query, in terms of message transmissions, is bounded
by O(D log K). Since all messages are sent sequentially, this cost also determines
query latency. Further, the cost of searching within a zero-level cell (depth-first search)
is proportional to the number of nodes that belong to that cell. Thus, large zero-level
cells might generate a high overhead as they potentially require sending messages to
many nodes that do not match the query. The boundaries between cells should there-
fore be defined such that the nodes be more or less evenly distributed among cells.

User queries represent another factor that should be taken into account when defin-
ing the cell boundaries. Let us consider an example shown in Figure 13. A sample
query overlaps with 4 cells in a 2-dimensional space. The query needs to be routed up
to 4 different cells and a number of nonmatching nodes potentially needs to be visited
in each of these cells. For this query, a better boundary placement would have been
the one represented in Figure 13(b), where only one cell needs to be explored and no
nonmatching nodes have to be traversed. As we have shown in Section 3.3.2, there is
a significant difference in overhead between best-case queries (those that fit into one
cell in the multidimensional space) and worst-case queries (those that span a large
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Fig. 13. RSS query routing in two dimensions. Every node is placed in a multidimensional space according
to its attributes, and queries are represented by hyper-rectangles of the attribute space. Optimum boundary
placement for a given query forms a single cell coincident with the query.

number of cells). Hence, as a general heuristic, it is desirable to have cells that fully
overlap with frequently specified user queries.

For the system administrator, it would be difficult to guess the optimal RSS bound-
ary settings: first, because of the large number of nodes, and second because of the
system’s dynamism. The distribution of node attribute values changes in time due to
churn (thus changing the size of the cells), and so do the queries issued by users. Of
course, tuning the cell boundaries to adapt to each received query would be impracti-
cal; however, making periodic boundary adjustments based on statistical information
for the recently received queries can bring important improvements. Thus, the goal
of our adaptation algorithm is to periodically reconfigure cell boundaries, according to
the heuristics previously introduced, in order to minimize the query handling overhead
and distribution skew.

6.2. Decentralized Self-Adaptation Approach

It should be emphasized that although RSS is fully decentralized with respect to node
membership and query management, the set of cell boundaries in the attribute space
represents a global configuration parameter on which all the nodes must agree. If the
nodes have different views on the cell boundaries, several query routing errors may
occur such as queries not being routed to some of the matching nodes or even routing
loops. Our self-adaptation algorithm must guarantee that all nodes eventually agree
on how the attribute space is divided into multidimensional cells.

Addressing such a coordinated self-adaptation in a distributed system requires find-
ing a sweet spot between a fully decentralized design where each node may choose its
own settings autonomously and a centralized one in which a single leader chooses a
global configuration (such as an attribute space decomposition) and imposes it on the
rest of the system. The first design faces the risk that nodes choose inconsistent con-
figurations, while the centralized approach introduces a single point of failure and a
potential performance bottleneck.

In order to perform efficient coordination, RSS relies on self-elected leaders, where
each leader is in charge of carrying out one instance of the adaptation protocol through
the whole system. Instances of the protocol are run periodically, with the purpose
of recomputing the optimal set of cell boundaries according to the current attribute
values distribution and query workload. At each round, each node may elect itself
as a leader with a probability inversely proportional to the number of nodes in the
system. This allows maintaining the average frequency at which leaders emerge from
the system. However, it does not prevent multiple adaptation instances from executing

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 37, Publication date: December 2012.



37:20 C. Stratan et al.

simultaneously in the system. We therefore impose a global order between protocol
instances using a totally ordered timestamp so that newer instances can supersede
older ones. This also allows nodes to garbage collect old instances whose leader failed
before the completion of its task.

To obtain a global order among the protocol instances, we use a combination of
physical timestamps and unique node identifiers. For the physical timestamps, we
assume, as discussed in Section 5.1 that the nodes use a clock synchronization protocol
like NTP. The synchronization errors introduced by such protocols are at least two
orders of magnitude smaller than the typical gossip frequency.

6.3. Gathering Monitoring Information

An adaptation leader needs information about the global system state in order to select
new cell boundaries for the RSS attribute space. Here as well, we observe a necessary
tradeoff regarding the quantity of information made available to the leader. On the one
hand, bringing detailed information about each node may allow the leader to make ac-
curate complex choices, but the costs of gathering such exhaustive information may
be prohibitive, especially in large-scale distributed systems. On the other hand, dis-
tributed aggregation algorithms can efficiently compute functions such as the average
of some attribute value across the system. However, a single aggregate value such
as an average might not provide enough detail to optimize the global configuration.
In particular, average values are very sensitive to the presence of a small number of
outliers in the system.

We argue that a reasonable tradeoff consists of estimating the statistical distribu-
tion of node attributes across the system. A statistical distribution captures essential
information about the system: it shows the full spectrum of node characteristics, and
the proportion in which they exist. This allows nodes to make complex decisions where
a balance between multiple contradictory requirements is often involved. In particu-
lar, in RSS we are interested in the statistical distributions for node attribute values
and also for query ranges.

Estimating the statistical distribution of an attribute across a large-scale dis-
tributed system can be realized both accurately and inexpensively. In this article,
we use our own Adam2 algorithm, which efficiently approximates node attribute dis-
tributions in a fully decentralized manner [Sacha et al. 2010]. Adam2 approximates
cumulative distribution functions by estimating their values in a few carefully selected
points and interpolating between these known points. Each distribution approxima-
tion is produced by a sequence of aggregation instances composed of a fixed number of
gossip rounds. Instances iteratively refine the interpolation point placement. Adam2
is also able to tune its own approximation accuracy during the refinement process.

In the self-adaptive RSS, instances of Adam2 are continuously initiated by self-
elected leaders. A leader maintains two distribution approximations for each dimen-
sion d: the node attribute distribution Attrd, and the query range distribution Queryd.
The attribute distribution is a function Attrd : R → R defined such that Attrd(x) is
equal to the fraction of nodes in the system that have a value for attribute Ad below
x. This distribution provides the leader enough information to place cell boundaries to
balance the number of nodes in each cell.

Monitoring the distribution of queries is harder than monitoring node attributes
because queries are composed of ranges in each dimension. As we discuss next, for
the placement of cell boundaries, the leader is interested only in the distribution of
the endpoints of query ranges. We thus define the query distribution for dimension d
as a function Queryd : R → R such that Queryd(x) is equal to the fraction of all the
endpoints of query ranges (upper or lower) for dimension d. In order to reduce the
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Fig. 14. The boundary calculation algorithm first finds (k0, . . . , k3) to balance the number of nodes in each
partition (above), and then places a boundary B in each partition at the largest grouping of query endpoints
(below).

influence of old queries and to reduce bookkeeping, nodes cache received queries for
only T time units to form the query distribution.

6.4. Computing New Configurations

Using the distributions of node attributes and query ranges obtained from Adam2,
the leader of the instance creates a configuration consisting of a new unique, totally
ordered timestamp and (possibly new) cell boundaries. The new configuration is then
installed by the leader and will then be spread by gossip as discussed shortly. Note
that the leader installs a new configuration even if it differs only slightly from the
previous configuration because the precise placement of cell boundaries is important
to reduce query overhead.

To create a configuration with good expected performance, the leader must solve an
online optimization problem with future queries assumed to be similar to recent past
queries. As discussed previously, the optimal placement of boundaries for a particular
query creates a cell precisely the same size as the query to minimize routing costs to
only one cell and within the cell all nodes match the query. A larger cell than the query
runs the risk of routing to some nodes within the cell that do not match the query,
while smaller cells than the query result in higher routing overhead between all the
cells that overlap the query. The tradeoffs in cell size are complex and interdependent.

We use two heuristics to simplify the calculation of cell boundaries: (i) we attempt
to balance the number of nodes in each cell to prevent the formation of overly large or
small cells; and (ii) we attempt to place the boundaries of the cells coincident with the
endpoints of the most frequent query ranges. Specifically, the cell boundary algorithm
calculates a new set of K cell boundaries Bd(0), Bd(1), ..., Bd(K−1) for each dimension d
independently. The calculation follows our two heuristics one after the other, as shown
in Figure 14. In the first step, the node attribute distribution is used to define initial
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intervals for boundary values such that the nodes are roughly balanced between all
cells. Specifically, K + 1 points are calculated, k0, k1, ..., kK , such that Attrd(ki) = i

K .
The calculation of ki points is straightforward since Attrd is a nondecreasing function
approximated by line segments, which can be easily inverted. The final value for each
Bd(i) boundary is later chosen such that ki ≤ Bd(i) < ki+1 so that the cell determined
by any two consecutive boundaries Bd(i) and Bd(i + 1) contains at most 2

K of all nodes.
In the second step, precise cell boundaries are calculated using the query distribu-

tion. The goal of this phase is to place cell boundaries specifically at the most frequent
query range endpoints. The reason we chose the location of the most frequent end-
points instead of using more complex clustering of endpoints was not the simplicity of
this solution. The benefits of reducing routing overhead only appear if the cell bound-
aries are exactly those of the query: A small overlap of the query with another cell can
force the query to be routed to all nodes in the other cell. Hence, precise placement of
cell boundaries is very important to reducing routing overhead in the RSS.

The most frequent range endpoints are easily identified by the point of the largest
change in Queryd. The height of each change in the query distribution function is by
definition equal to the frequency of the corresponding query endpoint. Boundary Bd(i)
is placed at the greatest change in the query distribution between points ki and ki+1 as
shown in the bottom of Figure 14. If Queryd does not change between points ki and ki+1,
boundary Bd(i) is simply defined as ki+ki+1

2 . By aligning cell boundaries with common
query ranges we reduce both the hierarchical routing overhead since queries intersect
with fewer cells, and the intra-cell routing overhead since fewer nonmatching nodes
have to be visited when exploring partially overlapping cells.

6.5. System Reconfiguration

Relying on self-elected leaders allows the RSS nodes to take unambiguous decisions
on the attribute space decomposition. However, to achieve a consistent system state,
we must also ensure that all nodes receive the same new configuration and transi-
tion to the new configuration in a coordinated manner, without a significant service
disruption.

In order to spread the new set of boundaries from the leader to the rest of the sys-
tem, we extend the gossip protocol that we used in Section 5.1 for adding and removing
dimensions. In the extended protocol, a node configuration contains not only dimen-
sion specifications but also current cell boundaries. Hence, when a self-elected leader
decides on a new set of cell boundaries, it generates a new configuration, which is then
quickly propagated to other nodes in the system by the push-pull gossip protocol.

Since the leaders are elected probabilistically, it is possible that multiple leaders
choose different cell boundaries and start concurrent reconfigurations. However, the
total order on timestamps guarantees that only one set of cell boundaries becomes the
latest and eventually overwrites all other boundary sets.

6.6. Evaluation

The evaluation of our self-adaptation protocol aims to estimate the performance im-
provement that this protocol brings to RSS. We evaluate our protocol in PeerSim, by
comparing two versions of RSS: one that uses the self-adaptation protocol, and one
that does not use it.

We consider two test cases in our evaluation: an adaptation to changes in the node
population, and an adaptation to changes in query workloads. In both test cases, we
simulate two types of changes: sudden changes (e.g., an addition of a new computing
cluster to the system, or a switch from one type of application to another), and gradual

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 37, Publication date: December 2012.



The XtreemOS Resource Selection Service 37:23

changes (e.g., a system in which old machines are gradually replaced by new machines,
or a slow transition in the type of jobs that users tend to run in the system).

We assess the improvement in the RSS performance by measuring the RSS total
query cost, defined as the average number of nodes traversed by a query. This metric
captures both the query routing cost and query latency, since RSS queries traverse
nodes sequentially. We also investigate the impact of our self-adaptation protocol on
the RSS responsiveness by measuring the query delivery rate, defined as the aver-
age fraction of nodes correctly discovered by a query. Finally, we measure the extra
maintenance cost introduced in the RSS by our self-adaptation protocol.

6.6.1. Experimental Setup. Although we evaluate our system through simulation, we
use real-world data to initialize node attribute values and several types of queries that
closely resemble the workloads from current Grid systems. Specifically, we obtained
descriptions of over 300,000 machines that participated in the the BOINC volunteer
computing project between 2004 and 2008 [Anderson and Reed 2009]. Based on these
machine descriptions, we initialize the following four node attributes in the RSS: mea-
sured CPU performance in FLOPS, measured downstream bandwidth, amount of in-
stalled memory, and amount of installed disk space.

We exercise the system with several types of synthetic query workloads that have
similar characteristics to the workloads observed in real Grid systems. Although a
number of job traces from Grid systems are available [Iosup et al. 2008], we could not
use them directly in our experiments because they mostly contain information about
job runtime characteristics (e.g., total running time, amount of used memory) and give
very little information about node characteristics required for job execution. In our
experiments, we use the following three workload types.

— bag-of-tasks. A workload in which a few specific queries appear very frequently. This
corresponds to the “bag-of-tasks” type of jobs, that contain a large number of very
similar tasks (and thus, a large number of identical job submissions). We generate
this workload by creating three queries that account for 75% of all submissions (25%
each) and drawing all other queries randomly.

— coarse-grained. A workload which simulates user-generated queries. In such
queries, attribute ranges are specified in course-grained units. For example, the
amount of RAM is specified in multiples of 512 MB. We generate these queries by
rounding up random attribute intervals.

— random. A workload in which all the queries specify random intervals for attribute
values. We use this workload as a base for comparison with the other workloads.

6.6.2. Adaptation to Changes in Node Properties. The statistical distribution of node prop-
erties may change dramatically when new machines are added to the system, or when
they replace older ones. To simulate such situations, we use two sets of node properties
based on the BOINC traces from years 2004 and 2008. For this particular experiment,
we replaced one node attribute (available downstream bandwidth) with the installed
kernel version: this attribute suffers much more changes across the years, and allows
to stress our system better.

The case when a new computing cluster is added to the system creates a sudden
change in the statistical distribution of node properties. We simulated this case by
starting RSS with 5,000 nodes with attribute values obtained from the 2004 traces.
After 300 gossip cycles, we added 5,000 more nodes with attribute values from the
2008 trace. We used a workload composed of random queries for these experiments.
The total query cost, with and without the self-adaptation protocol running, is shown
in Figure 15.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 37, Publication date: December 2012.



37:24 C. Stratan et al.

Fig. 15. Total query cost for a sudden change in the node properties (with random queries).

Fig. 16. Total query cost for gradual changes in the statistical distribution of node properties (with random
queries).

The first part of Figures 15(a) and 15(b) show the effect of self-configuration in the
RSS. Both systems start with the same set of query boundaries chosen by the human
operator, and experience a query cost in the order of 800 messages per query. In the
adaptive system, these costs drop by a factor 4 after the first system reconfiguration.
At time 300, both systems see a cost increase. Part of this increase is due to the fact
that the size of the system is doubled, and therefore the number of nodes matching the
queries also roughly doubles. The adaptive system also sees an additional cost increase
due to the fact that its configuration is suddenly ill-suited to the workload. It however
quickly adapts to this new situation and returns to an average cost four times lower
than the nonadaptive system.

The high cost values obtained in this experiment (and also in the other experiments
presented in this section) are due to the fact that, to stress the system, we did not set
any threshold for the number of nodes that should be returned by the queries. Thus,
we perform exhaustive searching in the overlay, which incurs a much larger cost than
the limited search requests that are usually issued by real-world applications.

Figure 16 presents similar simulation results for a situation in which the node prop-
erties gradually change from one distribution to another. We create this change by
starting with 5,000 nodes from the 2004 BOINC trace, and subsequently replacing
a few nodes at each gossip cycle with new ones drawn from the 2008 trace. Again,
the adaptive system shows much better performance than the nonadaptive one. The
nonadaptive system sees a relative performance improvement until cycle 250. This
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Fig. 17. Total query cost for sudden changes in query workloads (nodes from 2008 only).

is explained by the fact that, in that phase of the experiment, there is a balance
between the number of old and new machines, and the nodes are distributed more
evenly into cells. The adaptive system, on the other hand, issues several relatively
minor reconfigurations, and maintains a constant performance despite the workload
variations.

6.6.3. Adaptation to Varying Query Workloads. We now evaluate RSS adaptation to vari-
ations in the query workloads it receives. We simulated 10,000 nodes, with attributes
drawn from the 2008 BOINC trace. We first consider sudden workload changes by
switching the query workload from one type to another every 300 gossip cycles. We
start the experiment with random queries. We then switch to bags-of-tasks, then
coarse-grained queries, and then bags-of-tasks again (similar to the first workload but
with a different set of frequent queries).

Figure 17 shows the performance of the RSS in the adaptive and nonadaptive cases.
The nonadaptive system observes no significant cost difference between workloads,
except for the coarse-grained workload. This workload can in fact be considered as
a best case for the manual configuration of the system, since the query ranges are
aligned to the same values as the cell boundaries.

We can observe that here as well the self-adaptation protocol brings a significant
cost improvement. The first decrease in the cost, obtained at a short time after the
experiment’s startup, is due to the system adapting to the distribution of node prop-
erties. When the workload changes at gossip cycle 600 and 900, we see a small cost
increase due to the fact that the previous configuration does not work best with the
new workload. However, the costs quickly decrease again thanks to self-adaptation.
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Fig. 18. Total query cost for a gradual change in the query workload (nodes from 2008 only).

In particular, for the coarse-grained workload, we can see that the self-adaptation
algorithm finds a configuration very close to the manually-configured “optimal” one
from the nonadaptive system.

In order to evaluate the system’s behavior for a (more realistic) gradual change of
workload, we model a slow transition from the coarse-grained workload to a bag-of-
tasks. Figure 18 shows the results of this experiment. In the first 100 gossip cycles,
all the queries submitted to the system are coarse-grained. Then, we introduce bag-of-
tasks queries with an increasing frequency besides the coarse-grained queries, until
the last 100 gossip cycles when all the queries are bag-of-tasks. At the beginning
of the experiment, both systems use the same “optimal” set of boundaries so their
performance is similar. When the workload starts to change, however, the nonadaptive
system sees its costs increase twofold while the adaptive system efficiently controls
reconfigurations and maintains a constant performance.

6.6.4. Impact on the Query Delivery. We now evaluate the impact of a runtime reconfig-
uration on the query delivery–that is, the number of nodes found by RSS divided by
the total number of nodes that actually match the query.

When the system starts, it takes 100 to 200 gossip cycles for each node to build
a full set of neighbors. In a system with no churn nor runtime reconfiguration, the
query delivery converges to 100%. When a reconfiguration occurs, each node needs to
rebuild a new list of neighbors according to the new cell boundaries. However, when
the reconfiguration is small, most of the previous neighbors can be reused in the new
list. Only very few neighbors need to be found anew.

Reconfigurations have a second type of impact on query delivery: once a query is
submitted to the system the routing algorithm assumes that all nodes use a single
consistent set of cell boundaries. When a node receives a query that refers to an old
set of boundaries that it does not maintain any more, all it can do is terminate the
query, leading to poor query delivery.

Figure 19 shows the query delivery during the same experiment as in Figure 18: the
workload gradually changes from coarse-grained queries to bags-of tasks. We show two
cases: one in which each node immediately forgets its previous configuration when
it receives a new one, and the case where nodes maintain a read-only cache of re-
cent configurations. When previous configurations are not cached, the system experi-
ences a large drop in query delivery at each adaptation. This is due to the fact that
most queries present in the system at the time of reconfiguration will be terminated
prematurely due to configuration inconsistencies. Figure 19(b) shows that this effect
disappears when using the caching policy. In this case, delivery decreases only at the
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Fig. 19. Query delivery rate, without (a) and with (b) caching older configurations.

times of major reconfigurations when nodes need to seek for new neighbors. In all
cases, even during reconfiguration, delivery remains high, which should remain suffi-
cient for ensuring continuous service of the RSS within the computing grid.

6.6.5. The Cost of Self-Adaptation and Overlay Maintenance. An important goal of the adap-
tation algorithm is to incur only a small cost overhead compared to the system that is
optimizing. The most significant part of this overhead is the protocol’s communication
cost, which we estimate as follows.

The two main protocol phases that involve communication among nodes are the
attribute CDF estimation through the Adam2 protocol and the dissemination of new
boundary sets. As shown in Sacha et al. [2010], the Adam2 protocol needs up to 100
gossip cycles to generate an accurate distribution approximation. During this time, a
node typically sends a total of 160 kB of data for each attribute and receives a similar
amount of data. Considering a periodicity of one gossip round per 5 seconds, during the
aggregation phase each node would need an average upstream bandwidth of 0.32 kB/s
for each attribute. For an overlay with 4 attributes, as the one used in our tests, the
needed bandwidth during aggregation is 2.56 kB/s for each node.

Besides the overhead brought by the self-adaptation protocol, there is also a com-
munication cost associated with the overlay maintenance protocols: one CYCLON layer
and two VICINITY layers. These protocols use gossiping to exchange the list of neigh-
boring nodes. In our experiments, for each protocol layer a node sends and receives, in
each gossip round, a list containing 15 other nodes. Each node is uniquely identified
by the (IP address, port) pair, which requires 6 bytes per node. Therefore, the size of a
message sent or received in a gossip round by a protocol layer is therefore smaller than
100 B, assuming 6 bytes (IP address and port) are used per node. Thus, the cumulative
size of the messages sent or received by the overlay maintenance protocols is at most
300 B. Considering a periodicity of one gossip round per 5 seconds, each node would
need an average upstream bandwidth of 60 B/s and a similar downstream bandwidth.
Cumulating this with the bandwidth used by the aggregation protocol, we obtain a
total used bandwidth of 2.68 kB/s for each node during aggregation.

The dissemination of new boundary sets has a significantly lower communication
overhead. In order to decide whether it is necessary to reconfigure the boundary sets,
the nodes periodically exchange their current timestamps of the sets. This information
can be added to the regular gossip messages used to maintain the overlay, increasing
their size with only 4 B. When a new boundary set is issued, each node receives it only
once; for one attribute, the size of the set is normally less than 150 B. Updating the
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overlay’s dimension set (discussed in Section 5.1) has a similar overhead to the one
associated with updating the boundary set.

Caching old configurations during boundary set or dimension set updates incurs a
small memory overhead in the order of a few kilobytes.

Taking into account the time needed to propagate the new boundary sets after they
are calculated, it takes a total of up to 200 gossip cycles to effectively reduce the routing
overhead after a change in the system. Considering a gossip cycle of 5 seconds, the
system will be properly reconfigured within 15–20 minutes. In case a faster reaction
time is necessary, gossip cycles can be initiated more frequently, for example once per
second; this would result in a reconfiguration time of 3–4 minutes.

7. RELATED WORK

In this section, we discuss previous research works related to resource selection in
large-scale distributed systems. We also introduce some relevant works that approach
decentralized self-adaptation, which is essential in the RSS to maintain good perfor-
mance despite variations of workload and node attributes.

7.1. Resource Selection

Traditional approaches for resource selection in distributed environments use central-
ized or hierarchical architectures in which a few servers keep track of all the resources
in the network and offer lookup functionality to the users [Zanikolas and Sakellariou
2005]. While these solutions are well suited for clusters or small collections of PCs,
they exhibit scalability issues when the system size increases [Anderson and Roscoe
2006]. Hence, in recent years, researchers put forth a large effort to devise decentral-
ized solutions addressing large-scale scenarios [Foster and Iamnitchi 2003].

The vast majority of these systems exploit DHTs to map resources to nodes in or-
der to distribute the search operations across different nodes [Ranjan et al. 2008].
Early approaches maintain a separate DHT per attribute: a query is executed in
parallel on every overlay network and results are then intersected [Cai et al. 2003;
Spence and Harris 2003]. Alternative approaches reduce the d-dimensional space to
a 1-dimensional space by means of a Space Filling Curve, thus reducing the prob-
lem to routing in 1-dimensional space [Ganesan et al. 2004; Schmidt and Parashar
2003]. More recent work, inspired by CAN [Ratnasamy et al. 2001], partitions the d-
dimensional space into smaller blocks that are assigned to specific nodes, which are
responsible for all resources falling in that block [Bharambe et al. 2004; Gupta et al.
2004; Schütt et al. 2007; Tanin et al. 2007]. Finally, SWORD [Albrecht et al. 2008]
explores several centralized and decentralized solutions for resource discovery; in the
decentralized solution, a different DHT key is generated for each attribute based on
its current value and each node is responsible for a continuous range of values.

An important issue in large-scale resource discovery systems is load balancing.
Some of the DHT-based approaches described above provide mechanisms to address
this issue. For example, Bharambe et al. [2004] introduce an additional protocol to
reallocate responsibilities, while Albrecht et al. [2008] propose to split the attribute
space unevenly in order to uniformize the load. Although these approaches achieve
the desired results, they come at the cost of increasing the complexity and overhead of
the protocol. In contrast, RSS provides load balancing by design, without the need for
any additional mechanisms. Most of the protocols described previously have been de-
signed to operate in environments where the number of resources largely exceeds the
number of nodes. In our scenario, the published resources are the nodes themselves.
Instead of having each node delegating the registration of its attribute values to an-
other node, each node represents itself directly in the overlay. With this approach,
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the load is spread across nodes without any additional overhead. Our evaluation
results from Section 3.3.4 show a more even distribution than using a simple DHT-
based solution.

High churn rates also negatively impact DHTs [Rhea et al. 2004] and inconsisten-
cies can arise between a resource and its representation in the DHT. In case of resource
failure, a failure detector must explicitly update the DHT. Conversely, resources might
become unreachable because their representative in the DHT has disconnected. In our
approach, each resource represents itself in the overlay, removing the inconsistency
problem: when a node’s properties change, or if the node fails, no registry node must
be updated. The overlay merely reconfigures to repair the broken links.

Beaumont et al. [2007] exploit Voronoi diagrams to equally partition the
d-dimensional space among nodes. This approach is elegant and scales well with the
number of nodes. However, as the authors note, the complexity of Voronoi diagrams
is exponential with the number of dimensions, that is, number of different attributes.
This practically limits this system to supporting only two different attributes. Con-
versely, as we show in Section 3.3.3, our protocol scales well with the numbers of
dimensions.

A requirement in many distributed applications is to have computing resources that
are close to each other in terms of network latency. Albrecht et al. [2008] address
this requirement by supporting inter-node parameters such as network latency and
bandwidth. Although this approach offers great flexibility, it also adds a significant
overhead to the search operations. Zorilla uses a flooding mechanism to identify avail-
able resources, and implements locality awareness by searching for computing nodes
in the proximity of the first node that was selected for a given application [Drost et al.
2006]. While RSS does not support inter-node attributes, it can perform locality-aware
searching by using network parameters that are associated with a single node (such
as Vivaldi coordinates). Thus, RSS can be used to select nodes that are close in terms
of network latency to a given location.

The two systems closest to our approach are Jelasity and Kermarrec [2006] and
Astrolabe [van Renesse et al. 2003]. Similar to us, both systems rely on gossip-based
protocols to keep track of resources in an overlay.

Jelasity and Kermarrec [2006] propose to use gossiping to dynamically order the
nodes of an overlay according to any metric such as available disk space and mem-
ory. Ordered slicing differs from our approach in two ways. First, ordered slicing
is directed towards finding a fraction of best nodes in a collection. In contrast, we
aim for finding any fixed number of suitable nodes. This is a different problem that
cannot be easily solved through ordered slicing. Second, ordered slicing requires all
nodes of the overlay to collaborate in answering any query. In our system, a single
gossip-based overlay operates continuously in the background to maintain neighbor-
ship links between nodes. Query routing based on these links is very efficient, akin
to routing in a structured peer-to-peer overlay. In other words, we separate overlay
maintenance from the problem of resource selection. These two are intertwined in
Jelasity and Kermarrec [2006], so that each new query causes a rerun of the whole
protocol.

In Astrolabe, nodes are organized along a tree structure. Each node gossips only
with other nodes at the same level. Information about available resources is incre-
mentally summarized as it is reported from the tree leaves toward the root. The main
purpose of Astrolabe is to provide aggregated information on the status of (a part of)
the system. However, reporting aggregate information is not sufficient for resource
selection. As the authors acknowledge [van Renesse et al. 2003], Astrolabe can easily
provide (approximate) information on how many nodes fit an application’s require-
ments, but cannot efficiently produce the list of nodes themselves.
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7.2. Self-Adaptation

As we saw in Section 6, the optimal performance of the RSS requires to continuously
self-adapt a number of internal system parameters. However, for query-routing cor-
rectness, it is essential to coordinate adaptations across the entire system such that
(almost) all nodes use the same value of such parameters at any given time. To our
surprise, previous work in self-adaptation in large-scale decentralized systems focuses
entirely on tuning parameters at the local level rather than on “global” coordinated
parameters. For example, tuning local node parameters can be used for decentralized
load balancing [Steele et al. 2008], load-balancing storage and replication in DHTs
[Aberer et al. 2005], adapting the critical exponent of power-law networks [Scholtes
et al. 2008], and maintaining the optimal ratio of super-peers to subgroups [Sanchez-
Artigas et al. 2008; Snyder et al. 2009]. Each of these is a difficult problem in itself,
and one of the paramount difficulties of tuning local node parameters is to ensure that
the system converges without coordination to an optimum global state. Our work in-
stead focuses on directly adapting global parameters requiring coordination while still
maintaining a completely decentralized system. To the best of our knowledge, this
is the first work specifically addressing the self-adaptation of global parameters in a
decentralized setting.

Our work uses a decentralized monitor for P2P systems. Some large-scale moni-
toring systems use hierarchical aggregation by building a tree-like topology to collect
data (e.g., van Renesse et al. [2003] and Yalagandula and Dahlin [2004]). However, the
hierarchical topology is difficult to construct and maintain in the presence of churn,
which is always present in P2P systems. A different direction builds on fully decen-
tralized gossip-based aggregation to obtain compact statistical results like averages
or total counts. This method is simple to implement, robust to churn, and provides
any node in the system with the computed statistics. The compact values obtained
are however not always sufficient for optimization tasks. The decentralized monitor
we use in this article provides the statistical distribution of the values of a param-
eter at low cost, while retaining all the advantages of other aggregation methods
[Sacha et al. 2010].

8. CONCLUSIONS

Future utility-computing platforms will be too large to support (semi-)centralized re-
source discovery. We have presented a fully decentralized protocol to select nodes
according to their properties. Each node represents itself in an overlay where re-
source discovery queries can be routed. Self-adaptation of the routing overlay en-
sures efficient lookup even as the queries and composition of the system change
over time.

We have shown through simulations and actual deployments that this protocol
scales well with the number of nodes and dimensions. The overlay adopts a gossip-
based infrastructure that continuously maintains its routing tables, making our sys-
tem extremely resilient to churn. Also, no intricate measures are necessary to ensure
load balancing, to recover from link or node failures, or to adapt to changes in a node’s
attributes. By keeping management localized and by following an autonomous ap-
proach of “continuous maintenance,” our system achieves a high degree of simplicity
from which the properties discussed in this article emerge naturally.

Finally, we note that resource selection is just the first step towards a complete
decentralized job execution system and other issues (e.g., scheduling [Fiscato et al.
2008], trust, and incentives schemes) deserve further investigation and are part of our
future research agenda.
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