

Automating Statistics Management for Query Optimizers

Surajit Chaudhuri, Vivek Narasayya
Microsoft Research, Redmond

{surajitc, viveknar}@microsoft.com

Abstract

Statistics play a key role in influencing the quality of
plans chosen by a database query optimizer. In this
paper, we identify the statistics that are essential for an
optimizer. We introduce novel techniques that help
significantly reduce the set of statistics that need to be
created without sacrificing the quality of query plans
generated. We discuss how these techniques can be
leveraged to automate statistics management in
databases. We have implemented and experimentally
evaluated our approach on Microsoft SQL Server 7.0.

1. Introduction

The increasing importance of decision-support systems

has amplified the need to ensure that optimizers produce
query plans that are as optimal as possible. The query
optimizer component of a database system relies on
statistics on data for generating query execution plans.
The availability of relevant statistics can greatly improve
the quality of plans generated by the optimizer. In fact, in
the absence of statistics, cost estimates can be
dramatically different, often resulting in a poor choice of
execution plans. On the other hand, unnecessary statistics
may result in substantial overhead due to creation and
update costs for statistics. As an example, consider a
tuned TPC-D 1GB database on Microsoft SQL Server 7.0
with 13 indexes, and a workload consisting of the 17
queries defined in the benchmark. We recorded the plans
for each query when no additional statistics on columns
(besides statistics on indexed columns) were available.
We then created a set of relevant statistics for the
workload and re-optimized each query and recorded its
plan. We observed that in all but 2 queries, the execution
plans chosen with additional statistics were different, and
resulted in improved execution cost.

Despite its importance, the problem of automatically
determining the right set of statistics to build and maintain
for a database has received little or no attention. The task
of deciding which statistics to create and maintain is a
complex function of the workload the database system

experiences, the optimizer’s usage of statistics, and the
data distribution itself. Indeed, the choice of statistics
changes as the workload and data distribution evolves.
Today, this challenging task falls on the database
administrator (DBA). Only a few DBA-s can do justice to
the task of picking appropriate statistics for an enterprise
database.

In this paper, we present techniques towards
automating the management of statistics in databases. The
choice of statistics must be guided by the nature of the
workload that the database system experiences. By
syntactic analysis of the workload, it is possible to
identify a set of relevant statistics. However, the
usefulness of statistics is determined not just by syntactic
relevance, but also by the nature of the data distribution
associated with the statistics. This is a chicken-and-egg
problem, i.e., there is no way to determine if statistics are
useful to build until we have actually built them! We
address this difficulty by using a novel technique called
Magic Number Sensitivity Analysis that significantly
reduces the need to create all syntactically relevant
statistics. In other words, this technique helps avoid
creation of many “non-essential” statistics, i.e., statistics
that are syntactically relevant but do not affect the quality
of the plans.

Despite the success of magic number sensitivity
analysis in building a smaller number of statistics, a
mechanism to identify non-essential statistics is still
needed since there is no way to escape building at least
some non-essential statistics even using magic number
sensitivity analysis. We present algorithms to detect such
statistics. We also touch upon some of the policy issues
that determine how the above techniques may be used to
suit the performance needs of a system. We implemented
our techniques on Microsoft SQL Server 7.0, and we
present experimental results showing their effectiveness.
This research work was done in the context of the
AutoAdmin research project [1]. The goal of AutoAdmin
is to make databases self-tuning and self-administering.

Finally, we note that the techniques described in this
paper are general in the sense that the proposed
algorithms do not depend on the specific structure of

statistics used in a DBMS (e.g., type of histogram).
However, the experimental evaluation of the techniques
has been in the context of statistics used in Microsoft SQL
Server (see Section 8 for details).

The rest of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we present
a formal framework that defines essential statistics. In
Section 4, we present an effective algorithm for creating a
set of statistics for a query using the magic number
sensitivity analysis technique. In Section 5, we describe
techniques for detecting non-essential statistics. Section 6
discusses policy issues for automating statistics
management. We describe server extensions and
implementation issues on Microsoft SQL Server 7.0 in
Section 7. We present experimental results that validate
our techniques in Section 8 and conclude in Section 9.

2. Related work

Traditionally, database administrators decided which

statistics to create for a database. Recently, Microsoft
SQL Server 7.0 has introduced the “auto-statistics” mode
in which it creates all single-column statistics that are
syntactically relevant for the incoming query. Statistics
are updated when the number of rows modified in the
base table exceeds a threshold, and statistics are dropped
if they have been updated more than a predetermined
number of times. Our work builds upon this state-of-the-
art solution by: (a) avoiding creation of many statistics
that are syntactically relevant (b) considering both single
and multi-column statistics (c) taking into consideration
the usefulness of a statistic in determining whether it
should be dropped. Thus, we try to avoid the situation
where we drop a useful statistic only to re-create it
immediately for a subsequent query.

There is a large body of work that studies
representation of statistics on a given column or columns
(e.g., different kinds of histograms [10,13]). In this paper
we have studied the orthogonal problem of deciding
which column (or sets of columns) to build statistics on.
While much work has also focussed on how to efficiently
construct and maintain statistics (primarily histograms)
using sampling [3,8,9,12,14], the large space of possible
statistics makes our techniques important, particularly for
large databases. Furthermore, if all statistics on a table are
created from a single random sample of the data
undesirable correlation in the statistics may result,
particularly when block-level sampling is used.

The problem of identifying essential statistics has great
relevance to the problem of selecting the right indexes for
a database [2,4,6,7,11]. Specifically, the new generation
of index tuning tools (e.g., Microsoft SQL Server Index
Tuning Wizard [4]) builds statistics to determine the
appropriate choice of indexes. Such tools will directly

benefit from the techniques proposed in this paper since
our techniques would help minimize the overhead of
building statistics.

3. Framework for statistics selection

A statistic is a summary structure associated with a set

of one or more columns in a relation. A set of statistics S
can consist of single as well as multi-column statistics.
Thus, {R1.a, R1.c, (R2.c, R2.d)} represents a set of 3
statistics consisting of single column statistics on R1.a (on
column a of relation R1), R1.c, and a two-column (also
called 2-dimensional) statistic (R2.c, R2.d). We represent
the number of statistics in the set S by |S|.

 An example of a commonly used statistic is a
histogram. Many variants of histogram structures have
been proposed, e.g., Equi-depth, MaxDiff. Multi-
dimensional histogram structures can be constructed using
Phased or MHIST-p [14] strategy over the joint
distribution of multiple columns of a relation. Although
all database systems exploit histograms, the nature of the
specific histograms varies across systems.

For a given query Q, we can identify a set of statistics
that potentially affects the plan chosen by the query
optimizer for Q. We refer to this set as the candidate
statistics for the query. In Section 3.1 we discuss how to
determine candidate statistics for a given query. However,
as we demonstrate in this paper, creating all candidate
statistics for a query is infeasible in practice, even using
sampling based techniques. Therefore, our goal is to
create a smaller subset of the candidate statistics such
that the plan chosen by the optimizer using the smaller
subset is as good (or nearly as good) as the plan chosen if
all candidate statistics had been created. We call such a
minimal subset an essential set, and we formally define
this notion in Sections 3.2 and 3.3.

3.1. Candidate statistics for a query

The syntax of a query helps identify a set of relevant

columns for the query, i.e., columns referenced in the
query such that statistics on these columns potentially
impacts the optimization of the query. For example, a
column that occurs in the WHERE clause or in the
GROUP BY clause is relevant for the query1. Statistics on
a condition are useful since they help estimate the
selectivity of the predicate. Statistics on a column in a
GROUP BY clause can help estimate the number of
groups (i.e. distinct values) in the column.

1 Note that a column that is only referenced in an ORDERY BY clause
is not relevant since statistics on that column cannot affect the cost
estimation or plan of that query.

The simplest approach for defining candidate statistics
for a query is to consider one single-column statistic on
each relevant column in the query. However, a set of
multi-column statistics on combinations of relevant
columns from the same table may also be very useful for
the optimizer. For example, if a query has k join
predicates between two tables R1 and R2: R1.a1=R2.b1, …
R1.ak=R2.bk, then multi-column statistics on (a1,…,ak) and
(b1,…,bk) may be useful since they provide information to
the optimizer on the joint data distribution of columns
{a1,…,ak} and {b1,…,bk} respectively. However, rather
than building a single multi-column statistic containing all
relevant columns, it may sometimes be advantageous to
build one or more multi-column statistics on a smaller
number of the relevant columns. Thus, the space of
candidate multi-column statistics (and hence, the set of
candidate statistics) for a query can be very large and
deciding which multi-column statistics to build is
complex. In Section 7.1, we describe the algorithm for
candidate statistics we used in our implementation on
Microsoft SQL Server. We emphasize that the techniques
presented in this paper are oblivious to the exact set of
candidate statistics, i.e., they work with any technique to
choose candidate statistics.

3.2. Equivalence of sets of statistics

The quality of two plans that use different sets of

statistics can be compared by their execution cost.
Unfortunately, the above definition of comparing quality
of plans is not suitable since testing equivalence of sets of
statistics would require execution of queries, which is
prohibitively expensive. In this paper, we will consider
alternative definitions of equivalence of sets of statistics
that can be used more effectively:

• Execution-Tree equivalence: Two sets of
statistics S and S’ are Execution-Tree equivalent for a
query Q if the optimizer generates the same query
execution tree for Q for both choices of S and S’. We
note that Execution-Tree equivalence is the strongest
notion of equivalence since it implies execution cost
equivalence.
• Optimizer-Cost equivalence: Two sets of
statistics S and S’ are optimizer-cost equivalent for a
query Q if the optimizer-estimated costs of the plans
are the same irrespective of whether S or S’ is used.
In such cases, the plans generated by the optimizer
for Q can still be different. Thus, this is a weaker
notion of equivalence than Execution-Tree
equivalence.

• t-Optimizer-Cost equivalence: This definition
generalizes optimizer-cost equivalence. Let us use
Estimated-Cost (Q, S) to denote the optimizer-
estimated cost for query Q when the existing set of

statistics is S. We say that two sets of statistics S and
S’ are t-Optimizer-Cost equivalent if Estimated-Cost
(Q, S) and Estimated-Cost (Q, S’) are within t% of
each other2. This definition reflects the intuition that
while analyzing the choice of statistics we can afford
to ignore the differences among plans that differ in
cost in a limited fashion. The value of t reflects the
degree of rigor used to enforce equivalence. In
particular, Optimizer-Cost equivalence is a special
case of t-Optimizer-Cost equivalence.

The above definitions have been presented in the order
of increasing flexibility and may be chosen to trade cost
of statistics selection with accuracy of plans. Although t-
Optimizer-Cost equivalence is the weaker than the
execution-tree equivalence, it is a pragmatic choice for
statistics selection and we used this definition for our
implementation. In our experiments on Microsoft SQL
Server, we have found that a value of t = 20% is a
conservative choice (see Section 8.2).

3.3. Essential set of statistics

Most query optimizers are known to improve their

estimation with additional statistical information. Thus,
we assume that the execution cost of a plan for a query
does not increase as additional statistics are created.
Indeed, in the experiments that we have carried out on
Microsoft SQL Server 7.0, we have not observed any
violation of the above assumption. However, note that
pathological violation of the above assumption is clearly
possible. For example, estimation of selectivity of a
predicate via a system-wide constant may coincidentally
be more accurate than the selectivity computed via a
histogram.

If we accept the above assumption, then it follows that
the optimizer chooses a plan with the least execution cost
when the entire set of candidate statistics C for Q is
created. Since the candidate set C can be quite large, our
goal is to find S ⊆ C that is a much smaller compared to
C, but the quality of the plan is “as good”. The following
definition formalizes this intuition. The following
definition is with respect to a snapshot of the database and
the implicit parameters have been omitted from the
definitions.

Definition 1. Essential set of statistics for a query.

Given a query Q and a set of candidate statistics C for the
query, an essential set of statistics for Q, is a subset S of
C, such that S, but no proper subset S1 of S, is equivalent
to C with respect to Q.

2 More precisely, |Estimated-Cost(Q,S) – Estimated-Cost(Q,S’)|
/Estimated-Cost(Q,S) < t/100, where Estimated-Cost(Q,S) < Estimated-
Cost(Q,S’) .

Note that any of the equivalence definitions presented
in the previous section may be used. An essential set
identifies a subset of statistics such that we can remove no
more statistics without violating the property of
equivalence with respect to the set of candidate statistics.
This definition does not preclude the possibility of having
multiple essential sets of statistics for the same given
query. In fact, it is possible to further refine the definition
to choose among the essential sets by some other
criterion. For example, we may prefer the essential set
that has the minimal cost of updating statistics. The
following example illustrates the definition of essential
set for execution-tree equivalence.

Example 1. Essential set of statistics. Let Q be a query

SELECT * FROM T1, T2 WHERE T1.a = T2.b AND T1.c
< 100. Let C = {T1.a, T2.b, T1.c} be the set of candidate
statistics. Let us use the notation Plan(Q,X) to denote the
execution tree for the query Q where X is the set of
available statistics. Let S = {T1.a, T2.b}. For S to be an
essential set of statistics for Q, using execution tree
equivalence, each of the following conditions must be
true: (1) Plan(Q,S) = Plan(Q,C) (2) Plan(Q,{T1.a}) ��
Plan(Q,C) (3) Plan(Q,{T2.b}) �� ������	� C) and (4)
Plan(Q,{}) ��������	C).

So far, we have defined candidate statistics and

essential statistics with respect to a query. We now define
these concepts for a workload, i.e., a set of queries. We
define the candidate statistics for a workload as the union
of candidate statistics for each query in the workload.
Likewise, an essential set for a workload must contain an
essential set of statistics for each query, but no more.

Definition 2. Essential set of statistics for a workload.

An essential set of statistics for a workload W with
respect to the set of candidate statistics C for the
workload, is a minimal subset S of C that is equivalent to
C with respect to every query Q in the workload W.

4. Identifying and creating an essential set
of statistics

In this section, we present techniques to identify an

essential set for a query (and a workload) efficiently. We
accomplish this using a novel technique called magic
number sensitivity analysis (MNSA). The MNSA
algorithm has the following structure:

Repeat
If Enough statistics
 Return

 Identify and build the next statistic
End Repeat

Thus, the technique has two key components: (a) a test
to determine whether or not any additional statistics are
needed and (b) a strategy to pick the next statistic to
create from the set of remaining candidate statistics for
the query. We describe these two steps in Section 4.1 and
4.2 respectively. Section 4.3 presents the overall
algorithm. Note that we can create a set of statistics for a
workload by repeatedly invoking MNSA for each query
in the workload.

4.1. Testing for essential set property

Suppose that S is the existing set of statistics in the

database. For a given query Q, with a set of candidate
statistics C, we do not need to create any more statistics
for Q if S includes an essential set of statistics. However,
verifying the above condition is difficult since we cannot
test that S is equivalent to C with respect to the query Q
until all remaining candidate statistics in C-S have been
created! Therefore, what we need is a method for
determining whether the existing set of statistics is
adequate without requiring creation of the remaining
candidate statistics. The following example illustrates a
scenario where the remaining candidate statistics for a
query are not needed:

Example 2. Let Q be the query: SELECT

E.EmployeeName, D.DeptName FROM Employees E,
Department D WHERE E.DeptId = D.DeptId AND E.Age
< 30 AND E.Salary > 200K. Assume that statistics on the
join columns as well as E.Salary already exist but no
statistics on E.Age are available. Further, assume that the
fraction of Employees satisfying the predicate (E.Salary >
200K) is very small. In such a case, the join method
chosen by the optimizer, and hence the plan for Q, is not
likely to change even if we build statistics on E.Age. The
question is how can we determine that statistics on E.Age
are not useful without first building statistics on E.Age?

We now discuss how to effectively test if S includes an

essential set of Q, but without creating statistics in C-S.
For the rest of this section, we will focus only on Select-
Project-Join (SPJ) queries3 and use t-Optimizer-Cost
equivalence. The key to our technique is to carefully
consider how the presence of statistics impacts
optimization of queries. The optimizer uses statistics
primarily for estimation of selectivity of predicates. For
example, if a histogram is available on R.a and the query
Q has a condition R.a < 10, then the histogram is used to
estimate a selectivity for the predicate. If statistics
appropriate for a predicate are not available, then the

3 Without loss of generalization, we assume that the SPJ query is
normalized and does not contain the NOT Boolean operator.

optimizer uses a default “magic number” for the
corresponding selectivity. Magic numbers are system
wide constants between 0 and 1 that are predetermined for
various kinds of predicates. For example, consider query
Q in Example 2 above. Since statistics on the column
E.Age are not present, most relational optimizers use a
default magic number, say 0.30, for the selectivity of the
range predicate on E.Age. Thus, for an SPJ query Q, the
dependence of the optimizer on statistics can be
conceptually characterized by a set of selectivity
variables, with one selectivity variable corresponding to
each predicate in Q. The specific value used for the
selectivity variable for a predicate must be between [0,1].
The value is determined either by using an existing
statistic or by a default magic number. Thus, one way to
confirm that S includes an essential set for the query Q is:

(a) Identify which selectivity variables of Q are
forced to use default magic numbers due to lack of
available statistics in the existing set S. Let this set
be: {s1,s2,…,sk}.

(b) Verify that the optimizer-cost estimate is
insensitive (i.e., satisfies the t-Optimizer-Cost
equivalence) to changes in the values of the
selectivity variables identified in (a).

It would seem that in order to test (b), we would need
to optimize Q once for all possible values of each
selectivity variable in (a). However, by and large, it is a
safe assumption that the optimizer-estimated cost of an
SPJ query is monotonic in the values of the selectivity
variables. We will refer to the above as the cost-
monotonicity assumption. Therefore, the following steps
suffice to check if the existing set of statistics S contains
an essential set for an SPJ query Q:

(i) Let Plow be the plan where we associate for each si
(1≤ i ≤ k) a selectivity ε, where ε is a small value >
0. Similarly, let Phigh be the plan where we
associate for each si (1≤ i ≤ k) a selectivity 1-ε. The
implementation needed to construct Plow and Phigh
are described in Section 7.

(ii) If all predicates have selectivity between ε and 1-ε,
then due to our assumption on cost-monotonicity,
Plow is the plan with the lowest cost, and Phigh is the
plan with the highest cost.

(iii) If Plow and Phigh are t-Optimizer-Cost equivalent,
then due to cost monotonicity assumption, all plans
where sj is in the range [ε, 1-ε] (j = 1,…,k) must
also be t-Optimizer-Cost equivalent [5]. Thus, t-
Optimizer-cost equivalence exists between the plan
using the default magic numbers and the plan using
statistics for one or more of the selectivity
variables s1,…,sk.

 Note that the test in (iii) is sufficient to verify that the

existing set of statistics S includes an essential set for Q.
If the test fails, i.e., Plow and Phigh are not t-Optimizer-Cost

equivalent, then we assume that one or more additional
statistics are necessary to improve the plan for Q.

The basic strategy outlined above needs to be qualified
with several comments. First, note that even for a single
selectivity variable, multiple statistics (e.g., multi-column
as well as single-column histograms) may be applicable
with different degrees of accuracy. Therefore, the choice
of selectivity variables in step (a) needs to be extended.
Second, for an SPJ query, MNSA guarantees inclusion of
an essential set of the query only as long as the selectivity
of predicates in the query (for the given snapshot of data)
is between ε and 1-ε. Therefore, it is important to choose
a small value for ε. In our implementation, we used
ε=0.0005. Third, although for SPJ queries MNSA ensures
that an essential set is included among the statistics, it is
necessary to extend the above methodology beyond
simple queries. We can handle aggregation (GROUP BY/
SELECT DISTINCT) clauses by associating a selectivity
variable that indicates the fraction of rows in the table
with distinct values of the column(s) in the clause. For
example, a value of 0.01 for such a selectivity variable for
the clause GROUP BY ProductName implies that the
number of distinct values of ProductName is 1% of the
number of rows in the table. For complex (e.g., multi-
block) SQL queries, the basic MNSA strategy is not
guaranteed to ensure inclusion of an essential set since the
cost-monotonicity assumption may not be true for such
queries. However, analyzing relationships among
predicates in the query may enable us to extend the
applicability of the algorithm. For example, consider the
case where the cost increases monotonically with
increasing selectivity si of predicate pi, and decreases
monotonically with increasing selectivity sj of predicate
pj. In this case, the selectivity variables that should be
used (in steps (i)-(iii)) correspond to pi and NOT(pj)
respectively since they ensure cost-monotonicity. Finally,
the above presentation has centered on t-Optimizer-Cost
equivalence, and does not consider cases where
execution-tree equivalence is desired. We defer a
complete discussion of these issues to [5].

4.2. Finding the next statistic to build

Once we determine that additional statistics need to be

created to capture an essential set for the query, we must
decide which statistic to build next. Our goal is to decide
which of the remaining candidate statistics, if created, is
most likely to benefit query optimization. A good
heuristic to identify the next statistic to build can sharply
lower the number of statistics that need to be created.

Our approach exploits information obtained from the
plan of the query. The plan for a query contains valuable
information about individual operators in the plan tree,
including the cost of the operator and the statistics that are

potentially relevant to that operator. We use the intuition
that statistics that are relevant for the most expensive
operators in the current query plan are likely to have the
most impact on the optimizer. Thus, we identify the most
expensive operator in the plan tree for which one or more
candidate statistics have not yet been built, and consider
those statistics. The most expensive operator/node is the
node n in the plan for which the following expression is
maximal:

cost (plan subtree rooted at n) – Σ cost (Children (n)).
The space of candidate statistics considered for our
implementation is described in Section 7.1. We note that
there may exist dependency among statistics. An example
of such dependence is statistics on columns of a join
predicate. In such situations, we need to create a pair of
statistics rather than a single statistic.

4.3. Algorithm for creating a set of statistics for a
query

Figure 1 describes our algorithm for creating a set of

statistics for a query based on the techniques presented in
Sections 4.1 and 4.2. We denote the optimizer-estimated
cost of a plan P by Cost(P). The algorithm computes Plow
and Phigh for Q and terminates statistics creation if the cost
differential between these two plans is below the
threshold of t%. We decide which statistic to create next
by invoking the function FindNextStatToBuild (described
in Section 4.2). This function proposes the next statistic to
build based on the “current” plan of the query, i.e., the
plan P obtained with the default magic number settings.
For FindNextStatToBuild, it is appropriate to use P
instead of Plow or Phigh, since using the latter correspond to
extreme selectivity values. Therefore, the overhead of
MNSA is three optimizer calls for each statistic that is
created. The running time of the algorithm is linear in the

number of candidate statistics for the query. Since the
time to create a statistic typically far exceeds the time to
optimize a query, the algorithm in Figure 1 is a significant
improvement over algorithms that create all candidate
statistics. We note that since creating candidate statistics
on “small” tables is inexpensive, MNSA can be
augmented with a threshold such that the analysis in
MNSA is triggered only if the table size exceeds the
threshold. Finally, note that a sufficient set of statistics for
a workload can be obtained by invoking MNSA for each
query in the workload.

5. Identifying non-essential statistics

MNSA ensures that given a query (or workload), the

existing set of statistics is augmented to include an
essential set of statistics for the query (or workload).
However, MNSA uses only a sufficient condition (see
Section 4.1) to conclude that statistics need not be created
for an essential set. Therefore, despite using MNSA, we
cannot always avoid building some non-essential
statistics. A database system that is sensitive to the update
cost of statistics requires the ability to drop non-essential
statistics. In this section, we describe techniques to
identify such non-essential statistics.

In Section 5.1, we present an adaptation of MNSA,
called Magic Number Sensitivity Analysis with Drop
(MNSA/D) that interleaves detection of non-essential
statistics with creation of statistics. This extension ensures
that relevance of the statistics is evaluated as soon as it is
created. This adaptation significantly reduces the number
of non-essential statistics left behind by MNSA but can
no longer guarantee that an essential set for the query is
included even where the query is (or, queries in the
workload are) restricted to SPJ. Therefore, we also
present the Shrinking Set algorithm (Section 5.2) that for a
given query (or workload), together with MNSA, can
guarantee an essential set of statistics, and does not leave
behind any non-essential statistics. However, we should
note that MNSA/D performs satisfactorily in practice. We
present detailed experimental comparison of MNSA/D
and the Shrinking Set algorithm in [5].

Finally, we note that identifying non-essential statistics
only marks the statistics as candidates for eventual
deletion. Such statistics are added to a drop-list. A
statistic in the drop-list is a candidate for being physically
deleted. However, physical deletion of statistics may be
delayed as described in Section 6. Furthermore, if the
statistic s is subsequently found to be useful for another
query, then instead of re-creating the statistic s, it can
simply be removed from the drop-list and made accessible
to the optimizer.

1. Let S be the current set of statistics.
2. Let P = Plan of Q with default magic numbers
3. Repeat
4. Let s1…sk be the current selectivity variables for Q
 for which the optimizer must use magic numbers
 due to lack of statistics.
5. Plow = Plan of Q when {s1=ε, …, sk=ε}.
6. Phigh = Plan of Q when {s1=1-ε, …, sk=1-ε}
7. If ((|Cost (Phigh) - Cost (Plow)| / Cost (Plow)) ≤ t%)
 Return
8. s = FindNextStatToBuild (P)
9. If (!s) Return
10. Build statistic s; S = S ∪ {s}.
11. P' = Plan of Q with default magic numbers
12. P = P'
13. End Repeat

Figure 1. Statistics Creation using Magic
Number Sensitivity Analysis for a query Q.

5.1. Statistics creation with non-essential statistics
identification (MNSA/D)

MNSA/D is a simple adaptation of the MNSA
algorithm. If we observe that creation of the statistic s
(step 10, Figure 1) leaves the plan of the query Q (step 11,
Figure 1) equivalent, then s is heuristically identified as
non-essential. The increase in running time of MNSA/D
compared to MNSA is negligible since the only overhead
is: (a) comparing the plan tree of the query obtained in the
current iteration with the plan tree obtained in the
previous iteration of MNSA (b) maintaining the drop-list.

Unlike MNSA, even for SPJ queries, MNSA/D cannot
guarantee an essential set because it might be erroneously
aggressive in detecting non-essential statistics. For
example, the plan for a query Q may be the same for the
set of statistics S and S ∪ {g}, but the plan may be
different for S ∪ {g,h}. In such a case, MNSA/D may
greedily drop the statistic g if the statistic g happened to
be created first, since plans with S and S ∪{g} are the
same. MNSA/D cannot also guarantee that all non-
essential statistics will be eliminated since its decision to
include a statistic is done in a greedy manner, i.e., once a
statistic is included, it is not considered for dropping as
other statistics get created. Nonetheless, in practice we
observe that MNSA/D eliminates a significant fraction of
non-essential statistics and only rarely fails to preserve an
essential set.

5.2. The Shrinking Set algorithm for finding an
essential set

We now describe an algorithm, called Shrinking Set,

which for a given query (or a workload) can produce an
essential set of statistics. The Shrinking Set algorithm
assumes that the current set of statistics S is a superset of
the required essential set. Such a set S of statistics may be
created by using the vanilla MNSA algorithm. We can
detect a non-essential statistic s if we find that removing s
from S has no impact on the plan of any query in the
workload. In such a case, we are assured that there is an
essential set ⊆ S that does not contain s. The algorithm,
outlined in Figure 2, considers each statistic one at a time.
We use the notation Plan(Q,X) to denote the execution
tree for the query Q where X is the set of available
statistics. If the absence of the statistic (Step 4) does not
affect the plan, we discard that statistic and never consider
it again. We continue shrinking the set until we have
iterated over all statistics in the initial set S. The result of
the algorithm is guaranteed to be an essential set. Observe
that the specific set of statistics that is produced may
depend on the order in which the statistics are tested for
inclusion in the essential set.

Figure 2 presents the Shrinking set algorithm for
execution-tree equivalence criteria. The algorithm can be
used in a similar fashion for t-Optimizer-Cost equivalence
[5]. In the worst case, the shrinking set algorithm must
make |S|*|W| calls to the optimizer, where S is the initial
set of statistics and W is the workload. A key technique
for improving the efficiency of the Shrinking Set
algorithm is based on the intuition that it is often possible
to quickly find a small set of statistics that is essential for
many queries in the workload. Once such a set (call it S’)
is found, we subsequently need to consider only those
queries for which S’ is not adequate. We defer the details
of this technique as well as experimental evaluation of
Shrinking Set to [5].

6. Issues in automating statistics
management

Sections 4 and 5 provided the basic mechanisms for

automating statistics. In this section, we comment on
some of the policy issues in leveraging these techniques.
The database administrator (DBA) will need to set these
policies to suit the needs of their databases. However, the
DBA’s job is still considerably simplified since he/she is
no longer responsible for selecting the appropriate
statistics.

Creating Statistics: The most aggressive policy for

statistics creation is to build statistics on the fly for each
incoming query. Although this policy incurs increased
query compilation time, it ensures the best possible
execution plan for every incoming query. Microsoft SQL
Server 7.0 is an example of such a system. For each
incoming query, it creates syntactically relevant statistics.
For such a system, using MNSA or MNSA/D can
significantly reduce the time spent on creating statistics
on the fly.

On the other hand, the most conservative policy for
statistics creation is for the system (or the DBA) to
periodically initiate an off-line process to determine a set
of statistics for the workload, and this set is retained until
the next invocation of the off-line process. In such an off-

1. S = Initial Set of Statistics
2. R = S
3. For each s ∈ S Do
4. If Plan (Q, R – {s}) = Plan (Q, S) for each query Q
 in W for which s is potentially relevant
5. R = R - {s}
6. Return R

Figure 2. The Shrinking-Set (W,S) algorithm for
finding an essential set for a workload W from
an initial set S.

line process, MNSA can be used to create a set of
statistics for each query in the workload, and this can be
followed by the Shrinking Set algorithm to eliminate non-
essential statistics. We also note that in such an off-line
process, we may exploit workload characteristics to
optimize statistics creation. For example, in MNSA we
may only consider building statistics that would
potentially serve a significant fraction of the workload
cost.

The mechanism of aging can help strike a balance
between the quality of the plan for the incoming query
and the cost of creating and updating statistics. The basic
idea behind aging is that statistics with high
creation/update cost that have been dropped after being
found non-essential for a workload should not be re-
created immediately if the same (or similar) workload
repeats on the server. In other words, aging allows us to
“dampen” the process of re-creation of recently dropped
statistics. However, we need to ensure that optimization
of significantly expensive queries are not adversely
affected due to aging. We defer the details of the aging
algorithm and its experimental evaluation to [5].

Dropping Statistics: The decision of when to

physically drop non-essential statistics that have been
placed in the drop-list (see Section 5) is also a policy
issue. Such deletion may be triggered when the cost of
maintaining statistics in the drop-list is high. Statistics
may be either dropped individually or together (e.g. all
non-essential statistics on a table). An example of a policy
for dropping statistics is the one used in Microsoft SQL
Server 7.0. The server maintains a counter for each table
that records the number of rows modified in the table
since the last time statistics on the table were updated.
When this counter exceeds a specified fraction of the
table size, statistics on the table are updated. When a
statistic has been updated more than a predetermined
number of times, it is physically dropped. Such a policy
can be easily modified to take advantage of our
techniques (such as MNSA/D or Shrinking Set) by only
dropping statistics that are in the drop-list. Finally, we
note that in an update sensitive system, we may consider
dropping even an essential statistic with a high update
cost.

7. Implementation

In this section we describe the necessary server

extensions to support the techniques presented in this
paper; and aspects of our implementation that are specific
to Microsoft SQL Server 7.0.

7.1. Candidate statistics for a query

As described in Section 3.1, for a given query we can
derive a set of candidate single and multi-column
statistics. In general, given a multi-column candidate
statistic for a query, any subset of those columns is also a
candidate statistic. However, many of today’s relational
systems associate less than complete information with
multi-column statistics. For example, in Microsoft SQL
Server 7.0, a multi-column statistic on (a,b,c) is
asymmetric since it contains a histogram on a, and density
information on the leading prefixes of (a,b,c). Our
Candidate Statistics algorithm considers for a query: (a) a
single-column statistic on each relevant column (b) one
multi-column statistic per table on the columns in
selection predicates (c) one multi-column statistic per
table on the join columns (d) one multi-column statistic
per table on the group by columns. Our experiments (see
Section 8.2) show that the above choice of candidate
statistics performs satisfactorily.

Example 3: Let Q2 = SELECT * FROM R1, R2

WHERE R1.a = R2.b AND R1.c = R2.d AND R1.e < 100
and R1.f > 10 and R1.g = 25. Then, the candidate statistics
proposed are (a), (b), (c), (d), (e), (f), (a,c), (b,d), (e,f,g).
We do not propose statistics (e,f), (f,g), (e,g).

7.2. Server extensions

The techniques described in this paper assume an

interface that is not standard in today’s relational database
systems but can be readily implemented on most systems.
This interface obtains Plan(Q,S’) where S’ is a subset of
the existing set of statistics S. By default, today’s
optimizers consider all available statistics during
optimization. Thus, the optimizer must be told not to
consider the set of statistics (S-S’) when optimizing Q.
We extended Microsoft SQL Server to support this
interface:

Ignore_Statistics_Subset (db_id, stat_id_list), where
db_id is an identifier for the database, and stat_id_list is a
list of statistics that should be ignored during query
optimization. To implement this call, we store the
arguments in a connection specific buffer in the server.
Subsequently, when a query is optimized from the same
connection, the optimizer ignores the subset of statistics
currently in the buffer.

As discussed earlier, optimizers typically use a default
magic number for the selectivity of a predicate for which
no statistics are available. Therefore, to support the
MNSA technique (see Section 4), we had to modify the
selectivity estimation module to accept the selectivity of
such predicates as a parameter rather than using the
default magic number (a compile-time constant).

8. Experiments

In this section we describe experiments that show the

effectiveness of algorithms presented in this paper. We
show through experiments that:

• Our algorithm for candidate statistics proposes
significantly fewer statistics than an exhaustive
approach, without adversely affecting the quality of
plans chosen by the optimizer.
• MNSA significantly reduces the time spent on
statistics creation without significantly affecting the
execution cost of queries in the workload.
• The MNSA with drop (MNSA/D) algorithm
reduces the update cost of statistics compared to
MNSA by identifying many non-essential statistics.

8.1. Experimental setup

Databases: We use the popular TPC-D benchmark

[16] schema for our experiments. One of the requirements
of the benchmark however, is that the data is generated
from a uniform distribution. Since we wanted to verify the
effectiveness of our techniques over different data
distributions, we modified the TPC-D generation program
to support data generation with varying degree of skew. In
particular, the program generates data for each column in
the schema from a Zipfian distribution. The degree of
skew in the data is controlled by the Zipfian parameter z,
which can be varied between 0 (uniform) and 4 (highly
skewed). The program can also generate an instance of
TPC-D containing mixed data distributions by assigning
each column a randomly chosen value of z between 0 and
4. We have made this program (which runs on
x86/Windows NT platform) available for download from
[17]. Our experiments were run on an Intel Pentium 400
MHz processor with 256MB RAM, and two internal 9 GB
disk drives.

Workloads: In addition to experimenting with the

queries defined in the TPC-D benchmark, we used the
automatic query generation tool Rags [15] to generate a
variety of workloads. We varied the following workload
characteristics in Rags: (a) Percentage of SQL
insert/delete/update statements (0%, 25%, 50%) (b)
Complexity of queries, determined by max number of
tables in a query (Simple – 2 tables, Complex – 8 tables).
(c) Number of queries (100, 500, 1000). In our graphs, we
use the notation U25-S-1000, for example, to denote a
Simple 1000 statement workload consisting of 25%
update/insert/delete statements generated using Rags. In
this section, we report results on the original TPC-D
workload (TPCD-ORIG) as well as workloads generated
using Rags.

8.2. Results

Candidate Statistics Algorithm: In this experiment, we

measure the reduction in statistics creation time as well as
the drop in quality due to our heuristic approach for
proposing candidate statistics (Section 7.1) compared to
an algorithm that creates all syntactically relevant
statistics (referred to as Exhaustive). We measure the drop
in quality by the increase in execution cost of workload
due to changed plans. Figure 3 shows that across various
data distributions, our approach dramatically reduces the
time for creating candidate statistics (by 50-80%).
Moreover, we found that across the combination of
databases and workloads shown in Figure 3, the increase
in execution cost of the workload due to the pruning of
statistics never exceeded 3%. This experiment shows that
our candidate statistics algorithm significantly reduces the
number of statistics that need to be considered for a
query.

Effectiveness of MNSA: To study the effectiveness of

MNSA, we compare the following two alternatives: (a)
create all statistics proposed by our Candidate Statistics
algorithm (b) create statistics by using MNSA on the
statistics proposed by the Candidate Statistics algorithm.
We measured (1) reduction in statistics creation time by
using MNSA and (2) impact of reduced statistics creation
on the execution cost of the workload. We included the
overhead for performing MNSA as part of statistics

Statistics creation tim e using Candidate Statistics
algorithm com pared to Exhaustive

0%

20%

40%

60%

80%

100%

TPCD_0

TPCD_2

TPCD_4

TPCD_M
IX

Database

R
ed

u
ct

io
n

 in
 s

ta
ti

st
ic

s
cr

ea
ti

o
n

 t
im

e TPCD-ORIG

U0-S-100

U0-C-100

Figure 3. Evaluation of Candidate Statistics
Algorithm

Statistics creation time using MNSA compared to
Candidate Statistics algorithm

0%

10%

20%

30%

40%

50%

TPCD_0

TPCD_2

TPCD_4

TPCD_M
IX

Database

R
ed

u
ct

io
n

 in
 s

ta
ti

st
ic

s
cr

ea
ti

o
n

 t
im

e

TPCD-ORIG

U25-S-1000

U25-C-1000

Figure 4. Evaluation of MNSA

creation time. We set the threshold t (see Section 3.2) to
20% in our experiments. Figure 4 shows that for various
data distributions and workloads, using MNSA reduces
the statistics creation time significantly (30-45%).
Moreover, we found that the impact of not creating these
statistics on the quality of the plan was minimal, since the
workload execution cost never increased by more than 2%
for the workloads shown in Figure 4. We also conducted
an experiment where the candidate statistics considered
were only single-column statistics on relevant columns of
a query. Here too we saw reduction in statistics creation
time of above 30% in all cases, with small increase in
execution cost across workloads. This experiment
establishes the high quality of pruning by MNSA.

TPCD_0 TPCD_2 TPCD_4 TPCD_MIX

31% 34% 32% 30%

Quality of MNSA/D: We measured quality of

MNSA/D using two metrics: (1) the cost of updating the
set of statistics left behind by the algorithm (2) the
increase in execution cost if the original workload is re-
run after dropping statistics. Table 1 shows that MNSA/D
significantly reduces the update cost compared to MNSA
across databases. For these databases, we also found that
using MNSA/D to drop statistics for the workload,
followed by re-running the same workload, increased the
execution cost by no more than 6% (in TPCD_4) for the
above databases. We observed similar results for other
workloads. We conclude that MNSA/D detects many non-
essential statistics at low overhead, which makes it an
attractive alternative for automatic statistics management.

9. Conclusion

In this paper, we have presented techniques that help

automate the important task of statistics management in
database systems. We have provided a set of formal
definitions that guide our selection criteria for statistics.
The problem is intrinsically hard due to the chicken-and-
egg nature of the problem – the usefulness of statistics can
be determined only after they have been constructed. We
presented the Magic Number Sensitivity Analysis
technique that helps avoid creation of statistics that are
not useful, and thus sidesteps the chicken-and-egg
problem. We also presented techniques to identify non-
essential statistics, which may then be dropped to reduce
overhead of statistics update. Our implementation and
experimental evaluation on Microsoft SQL Server 7.0
showed the promise of these techniques. Extending and
evaluating our methodology for complex queries is

necessary. It also remains an interesting question as to
how the specific structure of statistics and the knowledge
of physical database design can be exploited to increase
efficiency of our techniques.

10. Acknowledgements

We thank Atul Adya, Sanjay Agrawal, Luis Gravano

and the anonymous referees for their valuable feedback.

11. References

[1] The AutoAdmin Project, Microsoft Research.
http://research.microsoft.com/db/AutoAdmin.

[2] Choenni S., Blanken H. M., Chang T., “Index Selection in
Relational Databases”, Proceedings of IEEE ICCI 1993.

[3] Chaudhuri S., Motwani R., Narasayya V. “Random
Sampling For Histogram Construction: How much is
enough?” Proc. of ACM SIGMOD, 1998.

[4] Chaudhuri, S., Narasayya, V., "An Efficient, Cost-Driven
Index Selection Tool for Microsoft SQL Server." Proc. of
the 23rd VLDB Conference Athens, Greece, 1997.

[5] Chaudhuri, S., Narasayya, V., "Automating Statistics
Management for Query Optimizers". In preparation for
submission to IEEE Transactions on Knowledge and Data
Engineering.

[6] Finkelstein S, Schkolnick M, Tiberio P.“Physical Database
Design for Relational Databases”, ACM TODS, March
1988.

[7] Frank M., Omiecinski E., Navathe S., “Adaptive and
Automative Index Selection in RDBMS”, Proc. of EDBT
1992.

[8] Gibbons P.B., Matias Y., Poosala V. “Fast Incremental
Maintenance of Approximate Histograms”. Proc. of the
VLDB Conference, 1997.

[9] Haas P.J., Naughton J.F., Seshadri S., Stokes L. “Sampling-
based estimation of the number of distinct values of an
attribute”. Proc. of VLDB Conference, 1995.

[10] Ioannidis Y., Poosala V. “Balancing Histogram Optimality
and Practicality for Query Result Size Estimation.” Proc. of
ACM SIGMOD, 1995.

[11] Labio W.J., Quass D., Adelberg B., “Physical Database
Design for Data Warehouses”, Proc. of ICDE 1997.

[12] Manku G.S., Rajagopalan S., Lindsay B., “Approximate
Medians and other Quantiles in One Pass and with Limited
Memory”. Proc. of ACM SIGMOD 1998.

[13] Poosala V., Ioannidis Y. “Selectivity Estimation Without
the Attribute Value Independence Assumption”. Proc. of
VLDB Conference, 1997.

[14] Poosala V., Ioannidis Y., Haas P., Shekita E. “Improved
Histograms for Selectivity Estimation of Range
Predicates”. Proceedings of the ACM SIGMOD, 1996.

[15] Slutz, D., Massive Stochastic Testing of SQL. Proc. of
VLDB Conference, 1998.

[16] TPC. TPC Benchmark D. (Decision Support). Working
Draft 6.0. August 1993.

[17] TPC-D Data Generation with Skew. Chaudhuri S.,
Narasayya V. January 1999. Available via anonymous ftp
from ftp.research.microsoft.com/users/viveknar/tpcdskew

Table 1. Reduction in update cost of statistics using
MNSA/D compared to MNSA (U25-C-100 workload)

