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Abstract 
 

Statistics play a key role in influencing the quality of 
plans chosen by a database query optimizer. In this 
paper, we identify the statistics that are essential for an 
optimizer. We introduce novel techniques that help 
significantly reduce the set of statistics that need to be 
created without sacrificing the quality of query plans 
generated. We discuss how these techniques can be 
leveraged to automate statistics management in 
databases. We have implemented and experimentally 
evaluated our approach on Microsoft SQL Server 7.0.  

 
 

1. Introduction 
 
The increasing importance of decision-support systems 

has amplified the need to ensure that optimizers produce 
query plans that are as optimal as possible. The query 
optimizer component of a database system relies on 
statistics on data for generating query execution plans. 
The availability of relevant statistics can greatly improve 
the quality of plans generated by the optimizer. In fact, in 
the absence of statistics, cost estimates can be 
dramatically different, often resulting in a poor choice of 
execution plans. On the other hand, unnecessary statistics 
may result in substantial overhead due to creation and 
update costs for statistics. As an example, consider a 
tuned TPC-D 1GB database on Microsoft SQL Server 7.0 
with 13 indexes, and a workload consisting of the 17 
queries defined in the benchmark. We recorded the plans 
for each query when no additional statistics on columns 
(besides statistics on indexed columns) were available. 
We then created a set of relevant statistics for the 
workload and re-optimized each query and recorded its 
plan. We observed that in all but 2 queries, the execution 
plans chosen with additional statistics were different, and 
resulted in improved execution cost.  

Despite its importance, the problem of automatically 
determining the right set of statistics to build and maintain 
for a database has received little or no attention. The task 
of deciding which statistics to create and maintain is a 
complex function of the workload the database system 

experiences, the optimizer’s usage of statistics, and the 
data distribution itself. Indeed, the choice of statistics 
changes as the workload and data distribution evolves. 
Today, this challenging task falls on the database 
administrator (DBA). Only a few DBA-s can do justice to 
the task of picking appropriate statistics for an enterprise 
database.  

In this paper, we present techniques towards 
automating the management of statistics in databases. The 
choice of statistics must be guided by the nature of the 
workload that the database system experiences. By 
syntactic analysis of the workload, it is possible to 
identify a set of relevant statistics. However, the 
usefulness of statistics is determined not just by syntactic 
relevance, but also by the nature of the data distribution 
associated with the statistics. This is a chicken-and-egg 
problem, i.e., there is no way to determine if statistics are 
useful to build until we have actually built them! We 
address this difficulty by using a novel technique called 
Magic Number Sensitivity Analysis that significantly 
reduces the need to create all syntactically relevant 
statistics. In other words, this technique helps avoid 
creation of many “non-essential” statistics, i.e., statistics 
that are syntactically relevant but do not affect the quality 
of the plans.  

Despite the success of magic number sensitivity 
analysis in building a smaller number of statistics, a 
mechanism to identify non-essential statistics is still 
needed since there is no way to escape building at least 
some non-essential statistics even using magic number 
sensitivity analysis. We present algorithms to detect such 
statistics. We also touch upon some of the policy issues 
that determine how the above techniques may be used to 
suit the performance needs of a system. We implemented 
our techniques on Microsoft SQL Server 7.0, and we 
present experimental results showing their effectiveness. 
This research work was done in the context of the 
AutoAdmin research project [1]. The goal of AutoAdmin 
is to make databases self-tuning and self-administering. 

Finally, we note that the techniques described in this 
paper are general in the sense that the proposed 
algorithms do not depend on the specific structure of 



   

statistics used in a DBMS (e.g., type of histogram). 
However, the experimental evaluation of the techniques 
has been in the context of statistics used in Microsoft SQL 
Server (see Section 8 for details).  

The rest of this paper is organized as follows. We 
discuss related work in Section 2. In Section 3, we present 
a formal framework that defines essential statistics. In 
Section 4, we present an effective algorithm for creating a 
set of statistics for a query using the magic number 
sensitivity analysis technique. In Section 5, we describe 
techniques for detecting non-essential statistics. Section 6 
discusses policy issues for automating statistics 
management. We describe server extensions and 
implementation issues on Microsoft SQL Server 7.0 in 
Section 7. We present experimental results that validate 
our techniques in Section 8 and conclude in Section 9.  

 

2. Related work 
 
Traditionally, database administrators decided which 

statistics to create for a database. Recently, Microsoft 
SQL Server 7.0 has introduced the “auto-statistics” mode 
in which it creates all single-column statistics that are 
syntactically relevant for the incoming query. Statistics 
are updated when the number of rows modified in the 
base table exceeds a threshold, and statistics are dropped 
if they have been updated more than a predetermined 
number of times. Our work builds upon this state-of-the-
art solution by: (a) avoiding creation of many statistics 
that are syntactically relevant  (b) considering both single 
and multi-column statistics (c) taking into consideration 
the usefulness of a statistic in determining whether it 
should be dropped. Thus, we try to avoid the situation 
where we drop a useful statistic only to re-create it 
immediately for a subsequent query. 

There is a large body of work that studies 
representation of statistics on a given column or columns 
(e.g., different kinds of histograms [10,13]). In this paper 
we have studied the orthogonal problem of deciding 
which column (or sets of columns) to build statistics on. 
While much work has also focussed on how to efficiently 
construct and maintain statistics (primarily histograms) 
using sampling [3,8,9,12,14], the large space of possible 
statistics makes our techniques important, particularly for 
large databases. Furthermore, if all statistics on a table are 
created from a single random sample of the data 
undesirable correlation in the statistics may result, 
particularly when block-level sampling is used.  

The problem of identifying essential statistics has great 
relevance to the problem of selecting the right indexes for 
a database [2,4,6,7,11]. Specifically, the new generation 
of index tuning tools (e.g., Microsoft SQL Server Index 
Tuning Wizard [4]) builds statistics to determine the 
appropriate choice of indexes. Such tools will directly 

benefit from the techniques proposed in this paper since 
our techniques would help minimize the overhead of 
building statistics.  

 

3. Framework for statistics selection 
 
A statistic is a summary structure associated with a set 

of one or more columns in a relation. A set of statistics S 
can consist of single as well as multi-column statistics. 
Thus, {R1.a, R1.c, (R2.c, R2.d)} represents a set of 3 
statistics consisting of single column statistics on R1.a (on 
column a of relation R1), R1.c, and a two-column (also 
called 2-dimensional) statistic (R2.c, R2.d). We represent 
the number of statistics in the set S by |S|. 

 An example of a commonly used statistic is a 
histogram. Many variants of histogram structures have 
been proposed, e.g., Equi-depth, MaxDiff. Multi-
dimensional histogram structures can be constructed using 
Phased or MHIST-p [14] strategy over the joint 
distribution of multiple columns of a relation. Although 
all database systems exploit histograms, the nature of the 
specific histograms varies across systems.  

For a given query Q, we can identify a set of statistics 
that potentially affects the plan chosen by the query 
optimizer for Q. We refer to this set as the candidate 
statistics for the query. In Section 3.1 we discuss how to 
determine candidate statistics for a given query. However, 
as we demonstrate in this paper, creating all candidate 
statistics for a query is infeasible in practice, even using 
sampling based techniques. Therefore, our goal is to 
create a  smaller subset of the candidate statistics such 
that the plan chosen by the optimizer using the smaller 
subset is as good (or nearly as good) as the plan chosen if 
all candidate statistics had been created. We call such a 
minimal subset an essential set, and we formally define 
this notion in Sections 3.2 and 3.3.  

 

3.1. Candidate statistics for a query 
 
The syntax of a query helps identify a set of relevant 

columns for the query, i.e., columns referenced in the 
query such that statistics on these columns potentially 
impacts the optimization of the query. For example, a 
column that occurs in  the WHERE clause or in the 
GROUP BY clause is relevant for the query1. Statistics on 
a condition are useful since they help estimate the 
selectivity of the predicate. Statistics on a column in a 
GROUP BY clause can help estimate the number of 
groups (i.e. distinct values) in the column. 

                                                 
1 Note that a column that is only referenced in an ORDERY BY clause 
is not relevant since statistics on that column cannot affect the cost 
estimation or plan of that query. 



   

The simplest approach for defining candidate statistics 
for a query is to consider one single-column statistic on 
each relevant column in the query. However, a set of 
multi-column statistics on combinations of relevant 
columns from the same table may also be very useful for 
the optimizer. For example, if a query has k join 
predicates between two tables R1 and R2: R1.a1=R2.b1, … 
R1.ak=R2.bk, then multi-column statistics on (a1,…,ak) and 
(b1,…,bk) may be useful since they provide information to 
the optimizer on the joint data distribution of columns 
{a1,…,ak} and {b1,…,bk} respectively. However, rather 
than building a single multi-column statistic containing all 
relevant columns, it may sometimes be advantageous to 
build one or more multi-column statistics on a smaller 
number of the relevant columns. Thus, the space of 
candidate multi-column statistics (and hence, the set of 
candidate statistics) for a query can be very large and 
deciding which multi-column statistics to build is 
complex. In Section 7.1, we describe the algorithm for 
candidate statistics we used in our implementation on 
Microsoft SQL Server. We emphasize that the techniques 
presented in this paper are oblivious to the exact set of 
candidate statistics, i.e., they work with any technique to 
choose candidate statistics.  

 

3.2. Equivalence of sets of statistics 
 
The quality of two plans that use different sets of 

statistics can be compared by their execution cost. 
Unfortunately, the above definition of comparing quality 
of plans is not suitable since testing equivalence of sets of 
statistics would require execution of queries, which is 
prohibitively expensive. In this paper, we will consider 
alternative definitions of equivalence of sets of statistics 
that can be used more effectively:  

• Execution-Tree equivalence: Two sets of 
statistics S and S’ are Execution-Tree equivalent for a 
query Q if the optimizer generates the same query 
execution tree for Q for both choices of S and S’. We 
note that Execution-Tree equivalence is the strongest 
notion of equivalence since it implies execution cost 
equivalence. 
• Optimizer-Cost equivalence: Two sets of 
statistics S and S’ are optimizer-cost equivalent for a 
query Q if the optimizer-estimated costs of the plans 
are the same irrespective of whether S or S’ is used. 
In such cases, the plans generated by the optimizer 
for Q can still be different. Thus, this is a weaker 
notion of equivalence than Execution-Tree 
equivalence.  

• t-Optimizer-Cost equivalence: This definition 
generalizes optimizer-cost equivalence. Let us use 
Estimated-Cost (Q, S) to denote the optimizer-
estimated cost for query Q when the existing set of 

statistics is S. We say that two sets of statistics S and 
S’ are t-Optimizer-Cost equivalent if Estimated-Cost 
(Q, S) and Estimated-Cost (Q, S’) are within t% of 
each other2. This definition reflects the intuition that 
while analyzing the choice of statistics we can afford 
to ignore the differences among plans that differ in 
cost in a limited fashion. The value of t reflects the 
degree of rigor used to enforce equivalence. In 
particular, Optimizer-Cost equivalence is a special 
case of    t-Optimizer-Cost equivalence. 

The above definitions have been presented in the order 
of increasing flexibility and may be chosen to trade cost 
of statistics selection with accuracy of plans. Although t-
Optimizer-Cost equivalence is the weaker than the 
execution-tree equivalence, it is a pragmatic choice for 
statistics selection and we used this definition for our 
implementation. In our experiments on Microsoft SQL 
Server, we have found that a value of t = 20% is a 
conservative choice (see Section 8.2).  

 
3.3. Essential set of statistics 

 
Most query optimizers are known to improve their 

estimation with additional statistical information. Thus, 
we assume that the execution cost of a plan for a query 
does not increase as additional statistics are created. 
Indeed, in the experiments that we have carried out on 
Microsoft SQL Server 7.0, we have not observed any 
violation of the above assumption. However, note that 
pathological violation of the above assumption is clearly 
possible. For example, estimation of selectivity of a 
predicate via a system-wide constant may coincidentally 
be more accurate than the selectivity computed via a 
histogram.  

If we accept the above assumption, then it follows that 
the optimizer chooses a plan with the least execution cost 
when the entire set of candidate statistics C for Q is 
created. Since the candidate set C can be quite large, our 
goal is to find S ⊆ C that is a much smaller compared to 
C, but the quality of the plan is “as good”. The following 
definition formalizes this intuition. The following 
definition is with respect to a snapshot of the database and 
the implicit parameters have been omitted from the 
definitions. 

 
Definition 1. Essential set of statistics for a query. 

Given a query Q and a set of candidate statistics C for the 
query, an essential set of statistics for Q, is a subset S of 
C, such that S, but no proper subset S1 of S, is equivalent 
to C with respect to Q. 

 

                                                 
2 More precisely, |Estimated-Cost(Q,S) – Estimated-Cost(Q,S’)| 
/Estimated-Cost(Q,S) < t/100, where Estimated-Cost(Q,S) < Estimated-
Cost(Q,S’) . 



   

Note that any of the equivalence definitions presented 
in the previous section may be used. An essential set 
identifies a subset of statistics such that we can remove no 
more statistics without violating the property of 
equivalence with respect to the set of candidate statistics. 
This definition does not preclude the possibility of having 
multiple essential sets of statistics for the same given 
query.  In fact, it is possible to further refine the definition 
to choose among the essential sets by some other 
criterion. For example, we may prefer the essential set 
that has the minimal cost of updating statistics. The 
following example illustrates the definition of essential 
set for execution-tree equivalence. 

 
Example 1. Essential set of statistics. Let Q be a query 

SELECT * FROM T1, T2 WHERE T1.a = T2.b AND T1.c 
< 100. Let C = {T1.a, T2.b, T1.c} be the set of candidate 
statistics. Let us use the notation Plan(Q,X) to denote the 
execution tree for the query Q where X is the set of 
available statistics. Let S = {T1.a, T2.b}. For S to be an 
essential set of statistics for Q, using execution tree 
equivalence, each of the following conditions must be 
true: (1) Plan(Q,S) = Plan(Q,C) (2) Plan(Q,{T1.a}) ��
Plan(Q,C) (3) Plan(Q,{T2.b}) �� ������	� C) and (4) 
Plan(Q,{}) ��������	C). 

 
So far, we have defined candidate statistics and 

essential statistics with respect to a query. We now define 
these concepts for a workload, i.e., a set of queries. We 
define the candidate statistics for a workload as the union 
of candidate statistics for each query in the workload. 
Likewise, an essential set for a workload must contain an 
essential set of statistics for each query, but no more. 

 
Definition 2.  Essential set of statistics for a workload. 

An essential set of statistics for a workload W with 
respect to the set of candidate statistics C for the 
workload, is a minimal subset S of C that is equivalent to 
C with respect to every query Q in the workload W. 

 

4. Identifying and creating an essential set 
of statistics  

 
In this section, we present techniques to identify an 

essential set for a query (and a workload) efficiently. We 
accomplish this using a novel technique called magic 
number sensitivity analysis (MNSA). The MNSA 
algorithm has the following structure: 

Repeat  
If  Enough statistics  
   Return 

 Identify and build the next statistic 
End Repeat 
 

Thus, the technique has two key components: (a) a test 
to determine whether or not any additional statistics are 
needed and (b) a strategy to pick the next statistic to 
create from the set of remaining candidate statistics for 
the query. We describe these two steps in Section 4.1 and 
4.2 respectively. Section 4.3 presents the overall 
algorithm. Note that we can create a set of statistics for a 
workload by repeatedly invoking MNSA for each query 
in the workload.  

 

4.1. Testing for essential set property 
 
Suppose that S is the existing set of statistics in the 

database. For a given query Q, with a set of candidate 
statistics C, we do not need to create any more statistics 
for Q if S includes an essential set of statistics. However, 
verifying the above condition is difficult since we cannot 
test that S is equivalent to C with respect to the query Q 
until all remaining candidate statistics in C-S have been 
created! Therefore, what we need is a method for 
determining whether the existing set of statistics is 
adequate without requiring creation of the remaining 
candidate statistics. The following example illustrates a 
scenario where the remaining candidate statistics for a 
query are not needed: 

 
Example 2. Let Q be the query: SELECT 

E.EmployeeName, D.DeptName FROM Employees E, 
Department D WHERE E.DeptId = D.DeptId AND E.Age 
< 30 AND E.Salary > 200K. Assume that statistics on the 
join columns as well as E.Salary already exist but no 
statistics on E.Age are available. Further, assume that the 
fraction of Employees satisfying the predicate (E.Salary > 
200K) is very small. In such a case, the join method 
chosen by the optimizer, and hence the plan for Q, is not 
likely to change even if we build statistics on E.Age. The 
question is how can we determine that statistics on E.Age 
are not useful without first building statistics on E.Age? 

 
We now discuss how to effectively test if S includes an 

essential set of Q, but without creating statistics in C-S. 
For the rest of this section, we will focus only on Select-
Project-Join (SPJ) queries3 and use t-Optimizer-Cost 
equivalence. The key to our technique is to carefully 
consider how the presence of statistics impacts 
optimization of queries. The optimizer uses statistics 
primarily for estimation of selectivity of predicates. For 
example, if a histogram is available on R.a and the query 
Q has a condition R.a  < 10, then the histogram is used to 
estimate a selectivity for the predicate. If statistics 
appropriate for a predicate are not available, then the 

                                                 
3 Without loss of generalization, we assume that the SPJ query is 
normalized and does not contain the NOT Boolean operator.  



   

optimizer uses a default “magic number” for the 
corresponding selectivity. Magic numbers are system 
wide constants between 0 and 1 that are predetermined for 
various kinds of predicates. For example, consider query 
Q in Example 2 above. Since statistics on the column 
E.Age are not present, most relational optimizers use a 
default magic number, say 0.30, for the selectivity of the 
range predicate on E.Age. Thus, for an SPJ query Q, the 
dependence of the optimizer on statistics can be 
conceptually characterized by a set of selectivity 
variables, with one selectivity variable corresponding to 
each predicate in Q. The specific value used for the 
selectivity variable for a predicate must be between [0,1]. 
The value is determined either by using an existing 
statistic or by a default magic number. Thus, one way to 
confirm that S includes an essential set for the query Q is: 

(a) Identify which selectivity variables of Q are 
forced to use default magic numbers due to lack of 
available statistics in the existing set S. Let this set 
be: {s1,s2,…,sk}. 

(b) Verify that the optimizer-cost estimate is 
insensitive (i.e., satisfies the t-Optimizer-Cost 
equivalence) to changes in the values of the 
selectivity variables identified in (a). 

It would seem that in order to test (b), we would need 
to optimize Q once for all possible values of each 
selectivity variable in (a). However, by and large, it is a 
safe assumption that the optimizer-estimated cost of an 
SPJ query is monotonic in the values of the selectivity 
variables. We will refer to the above as the cost-
monotonicity assumption. Therefore, the following steps 
suffice to check if the existing set of statistics S contains 
an essential set for an SPJ query Q:  

(i) Let Plow be the plan where we associate for each si 
(1≤ i ≤ k) a selectivity ε, where ε is a small value > 
0. Similarly, let Phigh be the plan where we 
associate for each si (1≤ i ≤ k) a selectivity 1-ε. The 
implementation needed to construct Plow and Phigh 
are described in Section 7. 

(ii) If all predicates have selectivity between ε and 1-ε, 
then due to our assumption on cost-monotonicity, 
Plow is the plan with the lowest cost, and Phigh is the 
plan with the highest cost.  

(iii) If Plow and Phigh are t-Optimizer-Cost equivalent, 
then due to cost monotonicity assumption, all plans 
where sj is in the range [ε, 1-ε] (j = 1,…,k) must 
also be t-Optimizer-Cost equivalent [5]. Thus, t-
Optimizer-cost equivalence exists between the plan 
using the default magic numbers and the plan using 
statistics for one or more of the selectivity 
variables s1,…,sk.  

 
 Note that the test in (iii) is sufficient to verify that the 

existing set of statistics S includes an essential set for Q.  
If the test fails, i.e., Plow and Phigh are not t-Optimizer-Cost 

equivalent, then we assume that one or more additional 
statistics are necessary to improve the plan for Q.  

The basic strategy outlined above needs to be qualified 
with several comments. First, note that even for a single 
selectivity variable, multiple statistics (e.g., multi-column 
as well as single-column histograms) may be applicable 
with different degrees of accuracy. Therefore, the choice 
of selectivity variables in step (a) needs to be extended. 
Second, for an SPJ query, MNSA guarantees inclusion of 
an essential set of the query only as long as the selectivity 
of predicates in the query (for the given snapshot of data) 
is between ε and 1-ε. Therefore, it is important to choose 
a small value for ε. In our implementation, we used 
ε=0.0005. Third, although for SPJ queries MNSA ensures 
that an essential set is included among the statistics, it is 
necessary to extend the above methodology beyond 
simple queries. We can handle aggregation (GROUP BY/ 
SELECT DISTINCT) clauses by associating a selectivity 
variable that indicates the fraction of rows in the table 
with distinct values of the column(s) in the clause. For 
example, a value of 0.01 for such a selectivity variable for 
the clause GROUP BY ProductName implies that the 
number of distinct values of ProductName is 1% of the 
number of rows in the table. For complex (e.g., multi-
block) SQL queries, the basic MNSA strategy is not 
guaranteed to ensure inclusion of an essential set since the 
cost-monotonicity assumption may not be true for such 
queries. However, analyzing relationships among 
predicates in the query may enable us to extend the 
applicability of the algorithm. For example, consider the 
case where the cost increases monotonically with 
increasing selectivity si of predicate pi, and decreases 
monotonically with increasing selectivity sj of predicate 
pj. In this case, the selectivity variables that should be 
used (in steps (i)-(iii)) correspond to pi and NOT(pj) 
respectively since they ensure cost-monotonicity. Finally, 
the above presentation has centered on t-Optimizer-Cost 
equivalence, and does not consider cases where 
execution-tree equivalence is desired. We defer a 
complete discussion of these issues to [5].  

 
4.2. Finding the next statistic to build 

 
Once we determine that additional statistics need to be 

created to capture an essential set for the query, we must 
decide which statistic to build next. Our goal is to decide 
which of the remaining candidate statistics, if created, is 
most likely to benefit query optimization. A good 
heuristic to identify the next statistic to build can sharply 
lower the number of statistics that need to be created.  

Our approach exploits information obtained from the 
plan of the query. The plan for a query contains valuable 
information about individual operators in the plan tree, 
including the cost of the operator and the statistics that are 



   

potentially relevant to that operator. We use the intuition 
that statistics that are relevant for the most expensive 
operators in the current query plan are likely to have the 
most impact on the optimizer. Thus, we identify the most 
expensive operator in the plan tree for which one or more 
candidate statistics have not yet been built, and consider 
those statistics. The most expensive operator/node is the 
node n in the plan for which the following expression is 
maximal: 

cost (plan subtree rooted at n) – Σ cost (Children (n)). 
The space of candidate statistics considered for our 
implementation is described in Section 7.1. We note that 
there may exist dependency among statistics. An example 
of such dependence is statistics on columns of a join 
predicate. In such situations, we need to create a pair of 
statistics rather than a single statistic.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3. Algorithm for creating a set of statistics for a 
query 

 
Figure 1 describes our algorithm for creating a set of 

statistics for a query based on the techniques presented in 
Sections 4.1 and 4.2. We denote the optimizer-estimated 
cost of a plan P by Cost(P). The algorithm computes Plow 
and Phigh for Q and terminates statistics creation if the cost 
differential between these two plans is below the 
threshold of t%. We decide which statistic to create next 
by invoking the function FindNextStatToBuild (described 
in Section 4.2). This function proposes the next statistic to 
build based on the “current” plan of the query, i.e., the 
plan P obtained with the default magic number settings. 
For FindNextStatToBuild, it is appropriate to use P 
instead of Plow or Phigh, since using the latter correspond to 
extreme selectivity values. Therefore, the overhead of 
MNSA is three optimizer calls for each statistic that is 
created. The running time of the algorithm is linear in the 

number of candidate statistics for the query. Since the 
time to create a statistic typically far exceeds the time to 
optimize a query, the algorithm in Figure 1 is a significant 
improvement over algorithms that create all candidate 
statistics. We note that since creating candidate statistics 
on “small” tables is inexpensive, MNSA can be 
augmented with a threshold such that the analysis in 
MNSA is triggered only if the table size exceeds the 
threshold. Finally, note that a sufficient set of statistics for 
a workload can be obtained by invoking MNSA for each 
query in the workload. 

 

5. Identifying non-essential statistics 
 
MNSA ensures that given a query (or workload), the 

existing set of statistics is augmented to include an 
essential set of statistics for the query (or workload). 
However, MNSA uses only a sufficient condition (see 
Section 4.1) to conclude that statistics need not be created 
for an essential set. Therefore, despite using MNSA, we 
cannot always avoid building some non-essential 
statistics. A database system that is sensitive to the update 
cost of statistics requires the ability to drop non-essential 
statistics. In this section, we describe techniques to 
identify such non-essential statistics.  

In Section 5.1, we present an adaptation of MNSA, 
called Magic Number Sensitivity Analysis with Drop 
(MNSA/D) that interleaves detection of non-essential 
statistics with creation of statistics. This extension ensures 
that relevance of the statistics is evaluated as soon as it is 
created. This adaptation significantly reduces the number 
of non-essential statistics left behind by MNSA but can 
no longer guarantee that an essential set for the query is 
included even where the query is (or, queries in the 
workload are) restricted to SPJ. Therefore, we also 
present the Shrinking Set algorithm (Section 5.2) that for a 
given query (or workload), together with MNSA, can 
guarantee an essential set of statistics, and does not leave 
behind any non-essential statistics. However, we should 
note that MNSA/D performs satisfactorily in practice. We 
present detailed experimental comparison of MNSA/D 
and the Shrinking Set algorithm in [5]. 

Finally, we note that identifying non-essential statistics 
only marks the statistics as candidates for eventual 
deletion. Such statistics are added to a drop-list. A 
statistic in the drop-list is a candidate for being physically 
deleted. However, physical deletion of statistics may be 
delayed as described in Section 6. Furthermore, if the 
statistic s is subsequently found to be useful for another 
query, then instead of re-creating the statistic s, it can 
simply be removed from the drop-list and made accessible 
to the optimizer.  

 

1. Let S be the current set of statistics.  
2. Let P = Plan of Q with default magic numbers 
3. Repeat 
4.     Let s1…sk be the current selectivity variables for Q  
             for which the optimizer must use magic numbers 
             due to lack of statistics. 
5.     Plow = Plan of Q when {s1=ε, …, sk=ε}.  
6.     Phigh = Plan of Q when {s1=1-ε, …, sk=1-ε} 
7.     If ((|Cost (Phigh) - Cost (Plow)| / Cost (Plow)) ≤ t%) 
                Return 
8.     s = FindNextStatToBuild (P) 
9.     If (!s) Return  
10.     Build statistic s; S = S ∪ {s}. 
11.     P' = Plan of Q with default magic numbers    
12.     P = P' 
13. End Repeat 

Figure 1. Statistics Creation using Magic 
Number Sensitivity Analysis for a query Q. 



   

5.1. Statistics creation with non-essential statistics 
identification (MNSA/D) 
 

MNSA/D is a simple adaptation of the MNSA 
algorithm. If we observe that creation of the statistic s 
(step 10, Figure 1) leaves the plan of the query Q (step 11, 
Figure 1) equivalent, then s is heuristically identified as 
non-essential. The increase in running time of MNSA/D 
compared to MNSA is negligible since the only overhead 
is: (a) comparing the plan tree of the query obtained in the 
current iteration with the plan tree obtained in the 
previous iteration of MNSA (b) maintaining the drop-list. 

Unlike MNSA, even for SPJ queries, MNSA/D cannot 
guarantee an essential set because it might be erroneously 
aggressive in detecting non-essential statistics. For 
example, the plan for a query Q may be the same for the 
set of statistics S and S ∪ {g}, but the plan may be 
different for S ∪ {g,h}. In such a case, MNSA/D may 
greedily drop the statistic g if the statistic g happened to 
be created first, since plans with S and S ∪{g} are the 
same. MNSA/D cannot also guarantee that all non-
essential statistics will be eliminated since its decision to 
include a statistic is done in a greedy manner, i.e., once a 
statistic is included, it is not considered for dropping as 
other statistics get created. Nonetheless, in practice we 
observe that MNSA/D eliminates a significant fraction of 
non-essential statistics and only rarely fails to preserve an 
essential set.  

 

5.2. The Shrinking Set algorithm for finding an 
essential set 

 
We now describe an algorithm, called Shrinking Set, 

which for a given query (or a workload) can produce an 
essential set of statistics. The Shrinking Set algorithm 
assumes that the current set of statistics S is a superset of 
the required essential set. Such a set S of statistics may be 
created by using the vanilla MNSA algorithm. We can 
detect a non-essential statistic s if we find that removing s 
from S has no impact on the plan of any query in the 
workload. In such a case, we are assured that there is an 
essential set ⊆ S that does not contain s. The algorithm, 
outlined in Figure 2, considers each statistic one at a time. 
We use the notation Plan(Q,X) to denote the execution 
tree for the query Q where X is the set of available 
statistics. If the absence of the statistic (Step 4) does not 
affect the plan, we discard that statistic and never consider 
it again. We continue shrinking the set until we have 
iterated over all statistics in the initial set S. The result of 
the algorithm is guaranteed to be an essential set. Observe 
that the specific set of statistics that is produced may 
depend on the order in which the statistics are tested for 
inclusion in the essential set. 

Figure 2 presents the Shrinking set algorithm for 
execution-tree equivalence criteria. The algorithm can be 
used in a similar fashion for t-Optimizer-Cost equivalence 
[5]. In the worst case, the shrinking set algorithm must 
make |S|*|W| calls to the optimizer, where S is the initial 
set of statistics and W is the workload. A key technique 
for improving the efficiency of the Shrinking Set 
algorithm is based on the intuition that it is often possible 
to quickly find a small set of statistics that is essential for 
many queries in the workload. Once such a set (call it S’) 
is found, we subsequently need to consider only those 
queries for which S’ is not adequate. We defer the details 
of this technique as well as experimental evaluation of 
Shrinking Set to [5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

6. Issues in automating statistics 
management 

 
Sections 4 and 5 provided the basic mechanisms for 

automating statistics. In this section, we comment on 
some of the policy issues in leveraging these techniques. 
The database administrator (DBA) will need to set these 
policies to suit the needs of their databases. However, the 
DBA’s job is still considerably simplified since he/she is 
no longer responsible for selecting the appropriate 
statistics.  

 
Creating Statistics: The most aggressive policy for 

statistics creation is to build statistics on the fly for each 
incoming query. Although this policy incurs increased 
query compilation time, it ensures the best possible 
execution plan for every incoming query. Microsoft SQL 
Server 7.0 is an example of such a system. For each 
incoming query, it creates syntactically relevant statistics. 
For such a system, using MNSA or MNSA/D can 
significantly reduce the time spent on creating statistics 
on the fly.   

On the other hand, the most conservative policy for 
statistics creation is for the system (or the DBA) to 
periodically initiate an off-line process to determine a set 
of statistics for the workload, and this set is retained until 
the next invocation of the off-line process. In such an off-

1. S = Initial Set of Statistics 
2. R = S 
3. For each s ∈ S Do 
4.   If Plan (Q, R – {s}) = Plan (Q, S) for each query Q 
              in W for which s is potentially relevant 
5.     R = R - {s} 
6. Return R 

Figure 2. The Shrinking-Set (W,S) algorithm for 
finding an essential set for a workload W from 
an initial set S. 



   

line process, MNSA can be used to create a set of 
statistics for each query in the workload, and this can be 
followed by the Shrinking Set algorithm to eliminate non-
essential statistics. We also note that in such an off-line 
process, we may exploit workload characteristics to 
optimize statistics creation. For example, in MNSA we 
may only consider building statistics that would 
potentially serve a significant fraction of the workload 
cost.  

The mechanism of aging can help strike a balance 
between the quality of the plan for the incoming query 
and the cost of creating and updating statistics. The basic 
idea behind aging is that statistics with high 
creation/update cost that have been dropped after being 
found non-essential for a workload should not be re-
created immediately if the same (or similar) workload 
repeats on the server. In other words, aging allows us to 
“dampen” the process of re-creation of recently dropped 
statistics. However, we need to ensure that optimization 
of significantly expensive queries are not adversely 
affected due to aging. We defer the details of the aging 
algorithm and its experimental evaluation to [5].  

 
Dropping Statistics: The decision of when to 

physically drop non-essential statistics that have been 
placed in the drop-list (see Section 5) is also a policy 
issue. Such deletion may be triggered when the cost of 
maintaining statistics in the drop-list is high. Statistics 
may be either dropped individually or together (e.g. all 
non-essential statistics on a table). An example of a policy 
for dropping statistics is the one used in Microsoft SQL 
Server 7.0. The server maintains a counter for each table 
that records the number of rows modified in the table 
since the last time statistics on the table were updated. 
When this counter exceeds a specified fraction of the 
table size, statistics on the table are updated. When a 
statistic has been updated more than a predetermined 
number of times, it is physically dropped. Such a policy 
can be easily modified to take advantage of our 
techniques (such as MNSA/D or Shrinking Set) by only 
dropping statistics that are in the drop-list. Finally, we 
note that in an update sensitive system, we may consider 
dropping even an essential statistic with a high update 
cost. 

 

7. Implementation 
 
In this section we describe the necessary server 

extensions to support the techniques presented in this 
paper; and aspects of our implementation that are specific 
to Microsoft SQL Server 7.0. 

 

7.1. Candidate statistics for a query 
 

As described in Section 3.1, for a given query we can 
derive a set of candidate single and multi-column 
statistics. In general, given a multi-column candidate 
statistic for a query, any subset of those columns is also a 
candidate statistic. However, many of today’s relational 
systems associate less than complete information with 
multi-column statistics. For example, in Microsoft SQL 
Server 7.0, a multi-column statistic on (a,b,c) is 
asymmetric since it contains a histogram on a, and density 
information on the leading prefixes of (a,b,c). Our 
Candidate Statistics algorithm considers for a query: (a) a 
single-column statistic on each relevant column (b) one 
multi-column statistic per table on the columns in 
selection predicates (c) one multi-column statistic per 
table on the join columns (d) one multi-column statistic 
per table on the group by columns. Our experiments (see 
Section 8.2) show that the above choice of candidate 
statistics performs satisfactorily. 

 
Example 3: Let Q2 = SELECT * FROM R1, R2 

WHERE R1.a = R2.b AND R1.c = R2.d AND R1.e < 100 
and R1.f > 10 and R1.g = 25. Then, the candidate statistics 
proposed are  (a), (b), (c), (d), (e), (f), (a,c), (b,d), (e,f,g). 
We do not propose statistics (e,f), (f,g), (e,g). 

 

7.2. Server extensions 
 
The techniques described in this paper assume an 

interface that is not standard in today’s relational database 
systems but can be readily implemented on most systems. 
This interface obtains Plan(Q,S’) where S’ is a subset of 
the existing set of statistics S. By default, today’s 
optimizers consider all available statistics during 
optimization. Thus, the optimizer must be told not to 
consider the set of statistics (S-S’) when optimizing Q. 
We extended Microsoft SQL Server to support this 
interface: 

Ignore_Statistics_Subset (db_id, stat_id_list), where 
db_id is an identifier for the database, and stat_id_list is a 
list of statistics that should be ignored during query 
optimization. To implement this call, we store the 
arguments in a connection specific buffer in the server. 
Subsequently, when a query is optimized from the same 
connection, the optimizer ignores the subset of statistics 
currently in the buffer.  

As discussed earlier, optimizers typically use a default 
magic number for the selectivity of a predicate for which 
no statistics are available. Therefore, to support the 
MNSA technique (see Section 4), we had to modify the 
selectivity estimation module to accept the selectivity of 
such predicates as a parameter rather than using the 
default magic number (a compile-time constant).  

 



   

8. Experiments 
 
In this section we describe experiments that show the 

effectiveness of algorithms presented in this paper. We 
show through experiments that: 

• Our algorithm for candidate statistics proposes 
significantly fewer statistics than an exhaustive 
approach, without adversely affecting the quality of 
plans chosen by the optimizer. 
• MNSA significantly reduces the time spent on 
statistics creation without significantly affecting the 
execution cost of queries in the workload. 
• The MNSA with drop (MNSA/D) algorithm 
reduces the update cost of statistics compared to 
MNSA by identifying many non-essential statistics.  

 

8.1. Experimental setup 
  
Databases: We use the popular TPC-D benchmark 

[16] schema for our experiments. One of the requirements 
of the benchmark however, is that the data is generated 
from a uniform distribution. Since we wanted to verify the 
effectiveness of our techniques over different data 
distributions, we modified the TPC-D generation program 
to support data generation with varying degree of skew. In 
particular, the program generates data for each column in 
the schema from a Zipfian distribution. The degree of 
skew in the data is controlled by the Zipfian parameter z, 
which can be varied between 0 (uniform) and 4 (highly 
skewed). The program can also generate an instance of 
TPC-D containing mixed data distributions by assigning 
each column a randomly chosen value of z between 0 and 
4. We have made this program (which runs on 
x86/Windows NT platform) available for download from 
[17]. Our experiments were run on an Intel Pentium 400 
MHz processor with 256MB RAM, and two internal 9 GB 
disk drives.  

 
Workloads: In addition to experimenting with the 

queries defined in the TPC-D benchmark, we used the 
automatic query generation tool Rags [15] to generate a 
variety of workloads. We varied the following workload 
characteristics in Rags: (a) Percentage of SQL 
insert/delete/update statements (0%, 25%, 50%) (b) 
Complexity of queries, determined by max number of 
tables in a query (Simple – 2 tables, Complex – 8 tables). 
(c) Number of queries (100, 500, 1000). In our graphs, we 
use the notation U25-S-1000, for example, to denote a 
Simple 1000 statement workload consisting of 25% 
update/insert/delete statements generated using Rags. In 
this section, we report results on the original TPC-D 
workload (TPCD-ORIG) as well as workloads generated 
using Rags. 

8.2. Results 
 
Candidate Statistics Algorithm: In this experiment, we 

measure the reduction in statistics creation time as well as 
the drop in quality due to our heuristic approach for 
proposing candidate statistics (Section 7.1) compared to 
an algorithm that creates all syntactically relevant 
statistics (referred to as Exhaustive). We measure the drop 
in quality by the increase in execution cost of workload 
due to changed plans. Figure 3 shows that across various 
data distributions, our approach dramatically reduces the 
time for creating candidate statistics (by 50-80%). 
Moreover, we found that across the combination of 
databases and workloads shown in Figure 3, the increase 
in execution cost of the workload due to the pruning of 
statistics never exceeded 3%. This experiment shows that 
our candidate statistics algorithm significantly reduces the 
number of statistics that need to be considered for a 
query. 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
Effectiveness of MNSA: To study the effectiveness of 

MNSA, we compare the following two alternatives: (a) 
create all statistics proposed by our Candidate Statistics 
algorithm (b) create statistics by using MNSA on the 
statistics proposed by the Candidate Statistics algorithm. 
We measured (1) reduction in statistics creation time by 
using MNSA and (2) impact of reduced statistics creation 
on the execution cost of the workload. We included the 
overhead for performing MNSA as part of statistics 

Statistics creation tim e using Candidate Statistics 
algorithm  com pared to Exhaustive

0%

20%

40%

60%

80%

100%

TPCD_0

TPCD_2

TPCD_4

TPCD_M
IX

Database

R
ed

u
ct

io
n

 in
 s

ta
ti

st
ic

s 
cr

ea
ti

o
n

 t
im

e TPCD-ORIG

U0-S-100

U0-C-100

Figure 3. Evaluation of Candidate Statistics 
Algorithm 

Statistics creation time using MNSA compared to 
Candidate Statistics algorithm

0%

10%

20%

30%

40%

50%

TPCD_0

TPCD_2

TPCD_4

TPCD_M
IX

Database

R
ed

u
ct

io
n

 in
 s

ta
ti

st
ic

s 
cr

ea
ti

o
n

 t
im

e

TPCD-ORIG

U25-S-1000

U25-C-1000

Figure 4. Evaluation of MNSA 



   

creation time. We set the threshold t (see Section 3.2) to 
20% in our experiments. Figure 4 shows that for various 
data distributions and workloads, using MNSA reduces 
the statistics creation time significantly (30-45%). 
Moreover, we found that the impact of not creating these 
statistics on the quality of the plan was minimal, since the 
workload execution cost never increased by more than 2% 
for the workloads shown in Figure 4. We also conducted 
an experiment where the candidate statistics considered 
were only single-column statistics on relevant columns of 
a query. Here too we saw reduction in statistics creation 
time of above 30% in all cases, with small increase in 
execution cost across workloads. This experiment 
establishes the high quality of pruning by MNSA. 

 
TPCD_0 TPCD_2 TPCD_4 TPCD_MIX 

31% 34% 32% 30% 
 
 
 
 
Quality of MNSA/D: We measured quality of 

MNSA/D using two metrics: (1) the cost of updating the 
set of statistics left behind by the algorithm (2) the 
increase in execution cost if the original workload is re-
run after dropping statistics. Table 1 shows that MNSA/D 
significantly reduces the update cost compared to MNSA 
across databases. For these databases, we also found that 
using MNSA/D to drop statistics for the workload, 
followed by re-running the same workload, increased the 
execution cost by no more than 6% (in TPCD_4) for the 
above databases. We observed similar results for other 
workloads. We conclude that MNSA/D detects many non-
essential statistics at low overhead, which makes it an 
attractive alternative for automatic statistics management.  

 

9. Conclusion 
 
In this paper, we have presented techniques that help 

automate the important task of statistics management in 
database systems. We have provided a set of formal 
definitions that guide our selection criteria for statistics.  
The problem is intrinsically hard due to the chicken-and-
egg nature of the problem – the usefulness of statistics can 
be determined only after they have been constructed. We 
presented the Magic Number Sensitivity Analysis 
technique that helps avoid creation of statistics that are 
not useful, and thus sidesteps the chicken-and-egg 
problem. We also presented techniques to identify non-
essential statistics, which may then be dropped to reduce 
overhead of statistics update. Our implementation and 
experimental evaluation on Microsoft SQL Server 7.0 
showed the promise of these techniques. Extending and 
evaluating our methodology for complex queries is 

necessary. It also remains an interesting question as to 
how the specific structure of statistics and the knowledge 
of physical database design can be exploited to increase 
efficiency of our techniques. 
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