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ABSTRACT 

Exploratory analysis on big data requires us to rethink data 

management across the entire stack – from the underlying data 

processing techniques to the user experience. We demonstrate 

Stat! – a visualization and analytics environment that allows users 

to rapidly experiment with exploratory queries over big data. Data 

scientists can use Stat! to quickly refine to the correct query, while 

getting immediate feedback after processing a fraction of the data. 

Stat! can work with multiple processing engines in the backend; in 

this demo, we use Stat! with the Microsoft StreamInsight 

streaming engine. StreamInsight is used to generate incremental 

early results to queries and refine these results as more data is 

processed. Stat! allows data scientists to explore data, dynamically 

compose multiple queries to generate streams of partial results, 

and display partial results in both textual and visual form. 

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems 

Keywords 
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1. INTRODUCTION 
Big data analytics allows a small number of users to burn a 

large amount of money very fast. The problem is exacerbated by 

the exploratory nature of big data analytics where queries are 

iteratively refined, including the submission of many erroneous 

(e.g., bad query parameters) and off-target queries. In existing 

systems, queries must complete before such errors are diagnosed, 

often after several hours of expensive compute time are used. 

With the pay-as-you-go paradigm becoming common in the 

Cloud, there is an increasing need to allow data scientists (also 

referred to as data analysts or users) to get immediate feedback to 

their ad-hoc analytics queries. In the same setting, data scientists 

may also wish to track the provenance of their results and 

maintain context information as they compose multiple queries. 

We define interactive analytics as the generation of results with 

very short latencies (e.g., seconds). From a data management 

standpoint, interactive analytics takes two main forms today: 

1) Full-Data Processing: Data is stored or cached in 

(distributed) main memory, and uses efficient organizations 

such as columnar formats, in order to allow queries over the 

entire data to complete in a very short time. Examples of 

such systems include Dremel [6] and PowerDrill [7].  

2) Progressive Processing: An alternative paradigm that can 

better fit a low-cost iterative querying paradigm is 

progressive processing, where the system produces early 

results based on partially processed data, and progressively 

refines these results as more data is received; until all the 

data is read, at which point the final result is produced. 

Progressive processing allows users to get early results using 

significantly fewer resources, and potentially end (or reissue) 

computations early once sufficient accuracy – or an early 

indication of query incorrectness – is observed. Several 

systems fall under the umbrella of progressive analytics, 

including the CONTROL project [3], the DBO system [5], 

and Map-Reduce-Online [6]. 

Interactive analytics requires us to rethink how data analysts (the 

end users) explore and interact with data. We have designed and 

built Stat!1 – a new workbench for interactive analytics that is 

built around the use of progressive computations for data 

processing in the backend. Using Stat!, data scientists get a rich 

and interactive analytics environment that can help them achieve 

several goals as part of their big data analytics experience: 

1) They can explore large data sets (both visually and in tabular 

forms) as if they fit in main memory; they are shown 

approximate results that are continually refined based on the 

amount of time that has elapsed since a query. 

2) The data scientist can dynamically compose and adjust 

progressive queries, and see the results of more complex data 

workflows as they evolve. 

3) They can follow an iterative approach of rapidly building, 

refining, and testing ad hoc queries. 

4) They get a homogeneous environment for loading and 

handling data and schemas, as well as computations over 

diverse data sources. 

Stat! needs a progressive query processing engine to execute 

queries in the backend. Instead of building an engine from scratch, 

we use an unmodified streaming engine (Microsoft StreamInsight 

[9]) to produce incremental results. StreamInsight is backed by a 

temporal algebra, where events are associated with logical 

application time [8] and the streaming query is modeled as a 

relational query over changing relational tables. This makes it 

possible to use the real-time streaming engine to instead compose 

and execute progressive queries over offline data. 

We describe the Stat! design in detail in Section 2. System and 

implementation details are covered in Section 3. Section 4 ends 

                                                                 

1stat   adverb: without delay, immediately (source: Merriam-

Webster). 
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with a detailed set of concrete scenarios that we will demonstrate 

with Stat! at the conference. 

2. THE STAT! DESIGN 
In large data systems, an analyst may wait hours for a script to run 

on a cluster, only to discover a mistake that makes the results 

unusable. Instead, the Stat! environment displays incremental 

results of long-running commands. In this section, we outline the 

overall high-level design of Stat! 

2.1 Unified Scripting Environment 
With Stat! we take advantage of LINQ, which embeds SQL-like 

data queries into C#. This allows a single notation to express both 

data access and aggregation that are typical of "big data" notations 

and the statistical and mathematical computations that are typical 

of "small data" notations. LINQ is, by its nature, a parallelizable 

query language [[4]; as a result, LINQ also offers the advantage of 

supporting several execution environments: LINQ-to-SQL, in 

which a subset of LINQ commands compiles into SQL bindings; 

PLINQ, which run queries in parallel on a single machine; 

DryadLINQ, which executes LINQ as distributed Map/Reduce 

jobs; and Microsoft StreamInsight, which executions queries in 

real time over data streams. The use of C#/LINQ also allows 

access to the full range of existing .NET libraries. 

2.2 Web-Based User Interface 
We designed Stat! as a web service, with a client based on HTML, 

Ajax, and Javascript. All script computations are performed on 

servers, and all data, including small samples, are stored on 

servers. This allows data storage and script execution to be easily 

re-hosted (for example, to Windows Azure), without the need for 

analysts to track the machines where data is stored and to perform 

the clerical work of copying or migrating data between machines. 

2.3 Interactive Analytics and Visualization 
The Stat! scripting environment provides the user with a read-

eval-print loop (REPL). In a REPL, such as Python or Matlab, a 

user types in a single line, which is read by the system, evaluated, 

and then a result is printed. REPL systems contrast with compiled 

code environments, in which a user creates a full end-to-end script 

and then runs it all at once. Of course, even in REPL scripting 

languages, users can also create stored scripts or loaded libraries; 

however, the system allows the user to interact with the system. 

In most REPL systems, the result of a command is swallowed 

silently, or printed as a specific side-effect. This leads frequently 

to a pattern of alternately writing a command, then a print 

statement, then a command again. Stat! is designed to provide 

visual results after every command. 

The Stat! scripting environment provides a two-column REPL. In 

the left column, the user types commands (C# statements or 

expressions); in the right column, the client displays the command 

result. In the case where the result is a simple scalar, the client 

draws a print string, like in a traditional REPL (Figure 1, first 

script line). However, when the result is a more complex object, 

the client chooses a default visualization for the data; the user can 

also interactively switch the visualization type or change its 

parameters. The visualization column reduces the need for many 

of the most common scripting commands which are used solely to 

dump results or create charts. 

2.4 Incremental and Cumulative Results 
In Figure 1, when the user enters the second script command to 

read from a 100 GB data file, the resulting table appears after one 

second and continues to update itself about once per second. The 

table shows the most recent 10 rows read. Similarly, the histogram 

appears a second after the third command is entered and updates 

itself once per second, showing the cumulative results of the 

commands so far. 

To support the incremental update of results, the Stat! service 

automatically rewrites script commands. In particular, when a 

script accesses an enumeration (IEnumerable<T> in .NET), the 

script engine wraps call in a Microsoft StreamInsight stream, 

which allows the result to be processed in real time. Every time 

unit, the service reports a summary of the result back to the client, 

and reports overall progress. For data sources whose size is 

known, this can be reported as the percent completed; for other 

sources, we report the number of items processed. Our use of 

Microsoft StreamInsight is described in more detail in Section 3. 

Since the results update incrementally, the corresponding 

visualizations need to update incrementally as well. Each 

visualization may use different strategies to help users keep 

context when viewing the visualization. Updates to graphs include 

animation; we are exploring ways to show changes to tables by 

using color and opacity to indicate volatile or stable rows. When 

possible in aggregate visualizations, we compute confidence 

bounds and display these on the visualizations based on dataset 

statistics.  

2.5 Notebook Model 
In a typical REPL environment, a session is by default ephemeral, 

unless the user takes explicit action to save her script to a file or to 

dump her whole session to a heap file. With Stat! we reverse this 

design choice. We use a notebook model in which every scripting 

action is implicitly persisted as it happens. As shown in Figure 1, 

the Scripts tab shows a list of existing scripts (left), with a new 

button at the end, and the contents of the currently selected script 

(right).  Each script is listed under its title, which could be, for 

example, the question the script is intended to answer. We 

organize scripts as a flat list sorted in creation order. All scripting 

actions—creating and deleting scripts, adding, deleting or editing 

script contents—are immediately stored in a central database. 

When a user opens the Stat! web site, she sees all users' scripts 

and script contents up to the last recorded change. 

The Stat! service also stores summaries of the results of all 

scripting commands, as they are computed. This means that the 

results of a script can outlast the REPL session itself. This 

 

Figure 1. A screenshot of the Stat! environment, showing 

the first three commands of a script titled "What words co-

occur with 'weather'?" The user enters C# or LINQ 

commands in the textbox (left) and sees visualizations of 

the service response (right). 

 



longevity is handy for preserving the interactive session and 

answering questions about past analyses, but makes the user 

interface more subtle. First, the web client uses a different 

background to distinguish scripts where there is an ongoing REPL 

session ("live" scripts) from those whose REPL session previously 

ended ("dead" scripts). There is a refresh button to revive dead 

scripts. REPL sessions time out after 20 minutes of inactivity.  

The ability to overwrite and delete commands, combined with the 

persistence of results, introduces a design subtlety, illustrated in 

Figure 2. Here the user entered two commands, then overwrote 

the second command. The resulting pair of commands would 

baffle anyone who had not seen the previous increment statement, 

because y seemingly has the wrong value. The issue is that 

replacing or deleting a command does not undo its effects on the 

REPL session. (However, the user can hit the refresh button to re-

run the script and give y the expected value of 3.) In this design, 

we face a trade-off between presenting inconsistent results and 

restarting potentially time- and resource-consuming commands. 

Our current implementation chooses the former; in the future, we 

will maintain the data dependencies needed for consistency, and 

provide an appropriate user experience. 

2.6 Collaborative Scripting 
As a consequence of storing scripts in a central database and 

hosting REPL sessions on a central server, multiple people can 

work concurrently on the same scripting session from different 

web browsers. The web service asynchronously contacts each 

client about changes to the database to keep each user's view up to 

date. We tag each scripting action with the user id of the person 

who took the action. For example, in Figure 1, to the left of each 

command are the initials of the person who last edited that 

command (RD). This allows the user to understand what her team 

mates are up to. 

3. SYSTEM DETAILS AND DISCUSSION 
The Stat! prototype uses a conventional client-server 

implementation; the back-end is implemented in C# using WCF 

for the REST interface. The service is hosted on Microsoft IIS and 

uses Microsoft SQL Server for database needs. In this section, we 

describe the aspects of the implementation that are less familiar. 

3.1 The Stat! Frontend 

3.1.1 Dynamic C# and LINQ Interpretation 
Our prototype uses Microsoft Roslyn2 to implement the REPL. 

Roslyn is a language service API, which includes interpreters for 

                                                                 
2 See http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx. 

C# and Visual Basic. Roslyn's APIs include a Session object to 

represent a REPL session, a method to compile a string containing 

C# code to a Submission object, and a method to evaluate a 

Submission object in a Session to produce a result object. The 

web service returns this result object as a JSON string, consisting 

of one or more variable declarations, or an expression result. For 

each variable declaration in the result object, the JSON string 

provides (1) the variable's declared name; (2) a print string for the 

variable's value, which is either the value itself (for simple 

scalars) or the value's type (for more complex objects); and (3) a 

description of the data to be visualized. 

Stat! supports several forms of data description and visualization, 

with more being added regularly. Stat! chooses defaults based on 

the dataset, or allows users to interactively select appropriate 

representations. These can include table samples (e.g. the variable 

data in Figure 1); simple vectors, which provides a list of 

numbers (the top part of the variable x in Figure 1); and various 

visualizations. These include frequency histograms (Figure 3); 

line charts; and 2D histograms for examining correlated arrays. 

3.1.2 Interactive Query Composition 
Cascading interactively implies that a user can enter line 1 ( x = 
readfile() ) and see partial results instantly, but later enter line 

2 ( y = x group by … ) after a long delay. If an earlier query 

Q’s result is a large memory structure (e.g., a histogram of user 

counters) then attaching a new query to Q can take a long time 

since it would need to consume these results prior to accepting 

new data.  Further, the system may need to keep state in memory 

just to support the possibility of someone else attaching to it later. 

We manage these tradeoffs by allowing the possibility of 

discarding such state and instead re-executing an earlier step in 

the pipeline if necessary. 

3.2 The Stat! Backend 

3.2.1 Processing SQL Queries Incrementally 
While relational engines are well-suited for set-oriented offline 

analysis, they are unable to produce incremental results as data is 

processed. For example, many database operations such as sort 

and merge-join employ algorithms that are fundamentally non-

incremental and require multiple passes over the entire data. 

Streaming engines, on the other hand, enable applications to issue 

long-running continuous queries (CQs) over real-time data that 

arrives as a stream or sequence of events. For example, in case of 

Microsoft StreamInsight, users write queries using LINQ, with 

extensions for time-oriented computations. 

Streaming engines work entirely in main memory and produce 

incremental results to CQs. CQs usually operate over bounded 

windows of data (e.g., a CQ may compute a 5 minute running 

average). Internal state is cleaned up when it is no longer needed, 

e.g., it cannot contribute to new results. All operators in relational 

algebra, including selects, projects, and joins, have their 

equivalent streaming counterparts. 

We use Microsoft StreamInsight to generate interactive SQL 

results for Stat!. This is done by reinterpreting the notion of 

application time in StreamInsight to denote query progress. 

Briefly, each tuple is given a coarse-grained timestamp 

corresponding to the order in which we would like to process 

tuples. The window size is set to   to denote that tuples never 

expire. Issues such as scheduling, synchronization across multi-

input operators, memory management and state cleanup, and 

incremental maintenance of internal state are handled by the 

streaming engine, allowing us to focus on core issues such as 

query semantics, interactivity, and dynamic composition. 

The user enters two commands: 

 

then replaces the second command: 

 

Figure 2. A notebook interface to a scripting session has the 

potential for confusion when commands are edited in place 

or deleted. The user can refresh the script to give the 

expected value. 



3.2.2 Memory Management 
A consequence of using an in-memory streaming engine to 

process offline data without enforcing bounded windows is that 

we can no longer clean up internal state in many cases.3 As a 

result, memory usage can monotonically increase over the lifetime 

of the query. In some cases, one can leverage sort orders inherent 

in the data to avoid this memory blowup (e.g., when the data is 

ordered by join key). Fortunately, we do not expect interactive 

queries to run to completion and thus find that this is not an issue 

in practice. We can alleviate the memory problem by using a 

distributed DSMS, or by using scaled-out analytics platforms such 

as TiMR [8] with MapReduce Online [6]. 

4. DEMO WALKTHROUGH 

4.1 Top-k Search Correlation 
We start the demo with a canned query called “top-k search 

correlation” that operates over a sample of a 10TB search log 

dataset. This query was created by users working on a feature 

discovery task for a search engine. While the query is prepared in 

advance, it is run as a series of interactive LINQ expressions in 

the Stat! environment. 

The user provides a keyword (e.g., “music”) as input parameter, 

and the sequence of queries returns the top-k words most closely 

correlated with the provided term. This is a two stage process. The 

first stage uses the search data set as input and partitions by user. 

For each user, we compute a histogram that reports, for each 

word, the number of searches with and without the input term, and 

the total number of searches. The second stage job groups by 

word, and aggregates the histograms from the first stage, 

computes a per-word goodness metric, and applies a top-k 

operation to report the k highly correlated words to the input term.  

The query is expressed in LINQ and executed incrementally by 

Microsoft StreamInsight in the backend. In Figure 4, we show 

how this query converges (in terms of top-k precision) as we 

process a large dataset using StreamInsight; we see that we 

                                                                 
3 To see why, consider the example of a join, where the last data item from 

the left-side input needs to join with the first item on the right. 

quickly get a very accurate answer without having to process the 

entire dataset.  

4.2 Twitter Data Exploration and Fusion 
The second demo is based on a large sample of Twitter data. This 

query was created with researchers exploring how users interact 

with Twitter. During the course of the demo, we will ingest one 

file containing sentiment keywords, and then start a continuous 

stream from a second file containing tweets. We will dynamically 

create a histogram of distributions of sentiment on the tweet 

stream, and will show several visualizations based on this dataset. 

As in the top-K search, the demo will be written in LINQ and 

executed incrementally on the back-end. Each command can be 

entered at the prompt; we will also use this demo to show the 

shared notebook and stored query facility. 

4.3 Visitor Interactivity 
Both of these demos are fully interactive. Visitors to the demo can 

broadly update or modify the demonstrations. At simplest, they 

can change parameters to the top-k search correlation query and 

visualize these results interactively. They can also tweak the 

query—altering its functions or its calls—to learn about both the 

iterative exploration process and the debugging experience. 

Similarly, users will be able to alter the Twitter experiment, 

including choosing new visualizations, adding or removing 

keywords, and otherwise tweaking the query. We will bring 

several other data sources so that users can issue and visualize 

their own interactive queries.  
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Figure 3. A screenshot of Stat! showing the incremental 

visualization of histograms computed in the backend, as 

part of the interactive querying environment. 

 

 

Figure 4. Convergence speed for top-k correlation query. 

 


