
Stat! – An Interactive Analytics Environment for Big Data
Mike Barnett1, Badrish Chandramouli1, Robert DeLine1, Steven Drucker1, Danyel Fisher1,

Jonathan Goldstein1, Patrick Morrison*2, John Platt1
1
Microsoft Research

Redmond, Washington, USA

{mbarnett, badrishc, rdeline, sdrucker,
danyelf, jongold, jplatt}@microsoft.com

2
North Carolina State University
Raleigh, North Carolina, USA

pjmorris@ncsu.edu

ABSTRACT

Exploratory analysis on big data requires us to rethink data

management across the entire stack – from the underlying data

processing techniques to the user experience. We demonstrate

Stat! – a visualization and analytics environment that allows users

to rapidly experiment with exploratory queries over big data. Data

scientists can use Stat! to quickly refine to the correct query, while

getting immediate feedback after processing a fraction of the data.

Stat! can work with multiple processing engines in the backend; in

this demo, we use Stat! with the Microsoft StreamInsight

streaming engine. StreamInsight is used to generate incremental

early results to queries and refine these results as more data is

processed. Stat! allows data scientists to explore data, dynamically

compose multiple queries to generate streams of partial results,

and display partial results in both textual and visual form.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

Keywords

Interactive; big data; analytics; visualization; tool.

1. INTRODUCTION
Big data analytics allows a small number of users to burn a

large amount of money very fast. The problem is exacerbated by

the exploratory nature of big data analytics where queries are

iteratively refined, including the submission of many erroneous

(e.g., bad query parameters) and off-target queries. In existing

systems, queries must complete before such errors are diagnosed,

often after several hours of expensive compute time are used.

With the pay-as-you-go paradigm becoming common in the

Cloud, there is an increasing need to allow data scientists (also

referred to as data analysts or users) to get immediate feedback to

their ad-hoc analytics queries. In the same setting, data scientists

may also wish to track the provenance of their results and

maintain context information as they compose multiple queries.

We define interactive analytics as the generation of results with

very short latencies (e.g., seconds). From a data management

standpoint, interactive analytics takes two main forms today:

1) Full-Data Processing: Data is stored or cached in

(distributed) main memory, and uses efficient organizations

such as columnar formats, in order to allow queries over the

entire data to complete in a very short time. Examples of

such systems include Dremel [6] and PowerDrill [7].

2) Progressive Processing: An alternative paradigm that can

better fit a low-cost iterative querying paradigm is

progressive processing, where the system produces early

results based on partially processed data, and progressively

refines these results as more data is received; until all the

data is read, at which point the final result is produced.

Progressive processing allows users to get early results using

significantly fewer resources, and potentially end (or reissue)

computations early once sufficient accuracy – or an early

indication of query incorrectness – is observed. Several

systems fall under the umbrella of progressive analytics,

including the CONTROL project [3], the DBO system [5],

and Map-Reduce-Online [6].

Interactive analytics requires us to rethink how data analysts (the

end users) explore and interact with data. We have designed and

built Stat!1 – a new workbench for interactive analytics that is

built around the use of progressive computations for data

processing in the backend. Using Stat!, data scientists get a rich

and interactive analytics environment that can help them achieve

several goals as part of their big data analytics experience:

1) They can explore large data sets (both visually and in tabular

forms) as if they fit in main memory; they are shown

approximate results that are continually refined based on the

amount of time that has elapsed since a query.

2) The data scientist can dynamically compose and adjust

progressive queries, and see the results of more complex data

workflows as they evolve.

3) They can follow an iterative approach of rapidly building,

refining, and testing ad hoc queries.

4) They get a homogeneous environment for loading and

handling data and schemas, as well as computations over

diverse data sources.

Stat! needs a progressive query processing engine to execute

queries in the backend. Instead of building an engine from scratch,

we use an unmodified streaming engine (Microsoft StreamInsight

[9]) to produce incremental results. StreamInsight is backed by a

temporal algebra, where events are associated with logical

application time [8] and the streaming query is modeled as a

relational query over changing relational tables. This makes it

possible to use the real-time streaming engine to instead compose

and execute progressive queries over offline data.

We describe the Stat! design in detail in Section 2. System and

implementation details are covered in Section 3. Section 4 ends

1stat adverb: without delay, immediately (source: Merriam-

Webster).

*Work performed during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGMOD’13, June 22–27, 2013, New York, New York, USA.

Copyright © ACM 978-1-4503-2037-5/13/06...$15.00.

with a detailed set of concrete scenarios that we will demonstrate

with Stat! at the conference.

2. THE STAT! DESIGN
In large data systems, an analyst may wait hours for a script to run

on a cluster, only to discover a mistake that makes the results

unusable. Instead, the Stat! environment displays incremental

results of long-running commands. In this section, we outline the

overall high-level design of Stat!

2.1 Unified Scripting Environment
With Stat! we take advantage of LINQ, which embeds SQL-like

data queries into C#. This allows a single notation to express both

data access and aggregation that are typical of "big data" notations

and the statistical and mathematical computations that are typical

of "small data" notations. LINQ is, by its nature, a parallelizable

query language [[4]; as a result, LINQ also offers the advantage of

supporting several execution environments: LINQ-to-SQL, in

which a subset of LINQ commands compiles into SQL bindings;

PLINQ, which run queries in parallel on a single machine;

DryadLINQ, which executes LINQ as distributed Map/Reduce

jobs; and Microsoft StreamInsight, which executions queries in

real time over data streams. The use of C#/LINQ also allows

access to the full range of existing .NET libraries.

2.2 Web-Based User Interface
We designed Stat! as a web service, with a client based on HTML,

Ajax, and Javascript. All script computations are performed on

servers, and all data, including small samples, are stored on

servers. This allows data storage and script execution to be easily

re-hosted (for example, to Windows Azure), without the need for

analysts to track the machines where data is stored and to perform

the clerical work of copying or migrating data between machines.

2.3 Interactive Analytics and Visualization
The Stat! scripting environment provides the user with a read-

eval-print loop (REPL). In a REPL, such as Python or Matlab, a

user types in a single line, which is read by the system, evaluated,

and then a result is printed. REPL systems contrast with compiled

code environments, in which a user creates a full end-to-end script

and then runs it all at once. Of course, even in REPL scripting

languages, users can also create stored scripts or loaded libraries;

however, the system allows the user to interact with the system.

In most REPL systems, the result of a command is swallowed

silently, or printed as a specific side-effect. This leads frequently

to a pattern of alternately writing a command, then a print

statement, then a command again. Stat! is designed to provide

visual results after every command.

The Stat! scripting environment provides a two-column REPL. In

the left column, the user types commands (C# statements or

expressions); in the right column, the client displays the command

result. In the case where the result is a simple scalar, the client

draws a print string, like in a traditional REPL (Figure 1, first

script line). However, when the result is a more complex object,

the client chooses a default visualization for the data; the user can

also interactively switch the visualization type or change its

parameters. The visualization column reduces the need for many

of the most common scripting commands which are used solely to

dump results or create charts.

2.4 Incremental and Cumulative Results
In Figure 1, when the user enters the second script command to

read from a 100 GB data file, the resulting table appears after one

second and continues to update itself about once per second. The

table shows the most recent 10 rows read. Similarly, the histogram

appears a second after the third command is entered and updates

itself once per second, showing the cumulative results of the

commands so far.

To support the incremental update of results, the Stat! service

automatically rewrites script commands. In particular, when a

script accesses an enumeration (IEnumerable<T> in .NET), the

script engine wraps call in a Microsoft StreamInsight stream,

which allows the result to be processed in real time. Every time

unit, the service reports a summary of the result back to the client,

and reports overall progress. For data sources whose size is

known, this can be reported as the percent completed; for other

sources, we report the number of items processed. Our use of

Microsoft StreamInsight is described in more detail in Section 3.

Since the results update incrementally, the corresponding

visualizations need to update incrementally as well. Each

visualization may use different strategies to help users keep

context when viewing the visualization. Updates to graphs include

animation; we are exploring ways to show changes to tables by

using color and opacity to indicate volatile or stable rows. When

possible in aggregate visualizations, we compute confidence

bounds and display these on the visualizations based on dataset

statistics.

2.5 Notebook Model
In a typical REPL environment, a session is by default ephemeral,

unless the user takes explicit action to save her script to a file or to

dump her whole session to a heap file. With Stat! we reverse this

design choice. We use a notebook model in which every scripting

action is implicitly persisted as it happens. As shown in Figure 1,

the Scripts tab shows a list of existing scripts (left), with a new

button at the end, and the contents of the currently selected script

(right). Each script is listed under its title, which could be, for

example, the question the script is intended to answer. We

organize scripts as a flat list sorted in creation order. All scripting

actions—creating and deleting scripts, adding, deleting or editing

script contents—are immediately stored in a central database.

When a user opens the Stat! web site, she sees all users' scripts

and script contents up to the last recorded change.

The Stat! service also stores summaries of the results of all

scripting commands, as they are computed. This means that the

results of a script can outlast the REPL session itself. This

Figure 1. A screenshot of the Stat! environment, showing

the first three commands of a script titled "What words co-

occur with 'weather'?" The user enters C# or LINQ

commands in the textbox (left) and sees visualizations of

the service response (right).

longevity is handy for preserving the interactive session and

answering questions about past analyses, but makes the user

interface more subtle. First, the web client uses a different

background to distinguish scripts where there is an ongoing REPL

session ("live" scripts) from those whose REPL session previously

ended ("dead" scripts). There is a refresh button to revive dead

scripts. REPL sessions time out after 20 minutes of inactivity.

The ability to overwrite and delete commands, combined with the

persistence of results, introduces a design subtlety, illustrated in

Figure 2. Here the user entered two commands, then overwrote

the second command. The resulting pair of commands would

baffle anyone who had not seen the previous increment statement,

because y seemingly has the wrong value. The issue is that

replacing or deleting a command does not undo its effects on the

REPL session. (However, the user can hit the refresh button to re-

run the script and give y the expected value of 3.) In this design,

we face a trade-off between presenting inconsistent results and

restarting potentially time- and resource-consuming commands.

Our current implementation chooses the former; in the future, we

will maintain the data dependencies needed for consistency, and

provide an appropriate user experience.

2.6 Collaborative Scripting
As a consequence of storing scripts in a central database and

hosting REPL sessions on a central server, multiple people can

work concurrently on the same scripting session from different

web browsers. The web service asynchronously contacts each

client about changes to the database to keep each user's view up to

date. We tag each scripting action with the user id of the person

who took the action. For example, in Figure 1, to the left of each

command are the initials of the person who last edited that

command (RD). This allows the user to understand what her team

mates are up to.

3. SYSTEM DETAILS AND DISCUSSION
The Stat! prototype uses a conventional client-server

implementation; the back-end is implemented in C# using WCF

for the REST interface. The service is hosted on Microsoft IIS and

uses Microsoft SQL Server for database needs. In this section, we

describe the aspects of the implementation that are less familiar.

3.1 The Stat! Frontend

3.1.1 Dynamic C# and LINQ Interpretation
Our prototype uses Microsoft Roslyn2 to implement the REPL.

Roslyn is a language service API, which includes interpreters for

2 See http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx.

C# and Visual Basic. Roslyn's APIs include a Session object to

represent a REPL session, a method to compile a string containing

C# code to a Submission object, and a method to evaluate a

Submission object in a Session to produce a result object. The

web service returns this result object as a JSON string, consisting

of one or more variable declarations, or an expression result. For

each variable declaration in the result object, the JSON string

provides (1) the variable's declared name; (2) a print string for the

variable's value, which is either the value itself (for simple

scalars) or the value's type (for more complex objects); and (3) a

description of the data to be visualized.

Stat! supports several forms of data description and visualization,

with more being added regularly. Stat! chooses defaults based on

the dataset, or allows users to interactively select appropriate

representations. These can include table samples (e.g. the variable

data in Figure 1); simple vectors, which provides a list of

numbers (the top part of the variable x in Figure 1); and various

visualizations. These include frequency histograms (Figure 3);

line charts; and 2D histograms for examining correlated arrays.

3.1.2 Interactive Query Composition
Cascading interactively implies that a user can enter line 1 (x =
readfile()) and see partial results instantly, but later enter line

2 (y = x group by …) after a long delay. If an earlier query

Q’s result is a large memory structure (e.g., a histogram of user

counters) then attaching a new query to Q can take a long time

since it would need to consume these results prior to accepting

new data. Further, the system may need to keep state in memory

just to support the possibility of someone else attaching to it later.

We manage these tradeoffs by allowing the possibility of

discarding such state and instead re-executing an earlier step in

the pipeline if necessary.

3.2 The Stat! Backend

3.2.1 Processing SQL Queries Incrementally
While relational engines are well-suited for set-oriented offline

analysis, they are unable to produce incremental results as data is

processed. For example, many database operations such as sort

and merge-join employ algorithms that are fundamentally non-

incremental and require multiple passes over the entire data.

Streaming engines, on the other hand, enable applications to issue

long-running continuous queries (CQs) over real-time data that

arrives as a stream or sequence of events. For example, in case of

Microsoft StreamInsight, users write queries using LINQ, with

extensions for time-oriented computations.

Streaming engines work entirely in main memory and produce

incremental results to CQs. CQs usually operate over bounded

windows of data (e.g., a CQ may compute a 5 minute running

average). Internal state is cleaned up when it is no longer needed,

e.g., it cannot contribute to new results. All operators in relational

algebra, including selects, projects, and joins, have their

equivalent streaming counterparts.

We use Microsoft StreamInsight to generate interactive SQL

results for Stat!. This is done by reinterpreting the notion of

application time in StreamInsight to denote query progress.

Briefly, each tuple is given a coarse-grained timestamp

corresponding to the order in which we would like to process

tuples. The window size is set to to denote that tuples never

expire. Issues such as scheduling, synchronization across multi-

input operators, memory management and state cleanup, and

incremental maintenance of internal state are handled by the

streaming engine, allowing us to focus on core issues such as

query semantics, interactivity, and dynamic composition.

The user enters two commands:

then replaces the second command:

Figure 2. A notebook interface to a scripting session has the

potential for confusion when commands are edited in place

or deleted. The user can refresh the script to give the

expected value.

3.2.2 Memory Management
A consequence of using an in-memory streaming engine to

process offline data without enforcing bounded windows is that

we can no longer clean up internal state in many cases.3 As a

result, memory usage can monotonically increase over the lifetime

of the query. In some cases, one can leverage sort orders inherent

in the data to avoid this memory blowup (e.g., when the data is

ordered by join key). Fortunately, we do not expect interactive

queries to run to completion and thus find that this is not an issue

in practice. We can alleviate the memory problem by using a

distributed DSMS, or by using scaled-out analytics platforms such

as TiMR [8] with MapReduce Online [6].

4. DEMO WALKTHROUGH

4.1 Top-k Search Correlation
We start the demo with a canned query called “top-k search

correlation” that operates over a sample of a 10TB search log

dataset. This query was created by users working on a feature

discovery task for a search engine. While the query is prepared in

advance, it is run as a series of interactive LINQ expressions in

the Stat! environment.

The user provides a keyword (e.g., “music”) as input parameter,

and the sequence of queries returns the top-k words most closely

correlated with the provided term. This is a two stage process. The

first stage uses the search data set as input and partitions by user.

For each user, we compute a histogram that reports, for each

word, the number of searches with and without the input term, and

the total number of searches. The second stage job groups by

word, and aggregates the histograms from the first stage,

computes a per-word goodness metric, and applies a top-k

operation to report the k highly correlated words to the input term.

The query is expressed in LINQ and executed incrementally by

Microsoft StreamInsight in the backend. In Figure 4, we show

how this query converges (in terms of top-k precision) as we

process a large dataset using StreamInsight; we see that we

3 To see why, consider the example of a join, where the last data item from

the left-side input needs to join with the first item on the right.

quickly get a very accurate answer without having to process the

entire dataset.

4.2 Twitter Data Exploration and Fusion
The second demo is based on a large sample of Twitter data. This

query was created with researchers exploring how users interact

with Twitter. During the course of the demo, we will ingest one

file containing sentiment keywords, and then start a continuous

stream from a second file containing tweets. We will dynamically

create a histogram of distributions of sentiment on the tweet

stream, and will show several visualizations based on this dataset.

As in the top-K search, the demo will be written in LINQ and

executed incrementally on the back-end. Each command can be

entered at the prompt; we will also use this demo to show the

shared notebook and stored query facility.

4.3 Visitor Interactivity
Both of these demos are fully interactive. Visitors to the demo can

broadly update or modify the demonstrations. At simplest, they

can change parameters to the top-k search correlation query and

visualize these results interactively. They can also tweak the

query—altering its functions or its calls—to learn about both the

iterative exploration process and the debugging experience.

Similarly, users will be able to alter the Twitter experiment,

including choosing new visualizations, adding or removing

keywords, and otherwise tweaking the query. We will bring

several other data sources so that users can issue and visualize

their own interactive queries.

5. REFERENCES
[1] B. Babcock et al. Models and Issues in Data Stream Systems. In

PODS, 2002.

[2] J. Hellerstein et al. Interactive Data Analysis: The Control Project.

IEEE Computer, August, 1999.

[3] D. Fisher, I. Popov, S. Drucker, and m c schraefel. “Trust Me, I’m

Partially Right: Incremental Visualization Lets Analysts Explore

Large Datasets Faster”. In CHI, 2012.

[4] E. Meijer. 2011. “The world according to LINQ”. Commun. ACM

54, 10 (October 2011), 45-51.
[5] S. Melnik et al., “Dremel: Interactive Analysis of Web-Scale

Datasets”. In VLDB, 2010.

[6] C. Jermaine et al. Scalable approximate query processing with the

DBO engine. In SIGMOD, 2007.

[7] T. Condie et al. MapReduce Online. In NSDI, 2010.

[8] A. Hall et al. Processing a trillion cells per mouse click. In VLDB,
2012.

[9] B. Chandramouli et al. Temporal analytics on big data for Web

advertising. In ICDE, 2012.

[10] Microsoft StreamInsight. http://aka.ms/stream.

Figure 3. A screenshot of Stat! showing the incremental

visualization of histograms computed in the backend, as

part of the interactive querying environment.

Figure 4. Convergence speed for top-k correlation query.

